// Written in the D programming language. /** Functions that manipulate other functions. This module provides functions for compile time function composition. These functions are helpful when constructing predicates for the algorithms in $(MREF std, algorithm) or $(MREF std, range). $(SCRIPT inhibitQuickIndex = 1;) $(BOOKTABLE , $(TR $(TH Function Name) $(TH Description) ) $(TR $(TD $(LREF adjoin)) $(TD Joins a couple of functions into one that executes the original functions independently and returns a tuple with all the results. )) $(TR $(TD $(LREF compose), $(LREF pipe)) $(TD Join a couple of functions into one that executes the original functions one after the other, using one function's result for the next function's argument. )) $(TR $(TD $(LREF forward)) $(TD Forwards function arguments while saving ref-ness. )) $(TR $(TD $(LREF lessThan), $(LREF greaterThan), $(LREF equalTo)) $(TD Ready-made predicate functions to compare two values. )) $(TR $(TD $(LREF memoize)) $(TD Creates a function that caches its result for fast re-evaluation. )) $(TR $(TD $(LREF not)) $(TD Creates a function that negates another. )) $(TR $(TD $(LREF partial)) $(TD Creates a function that binds the first argument of a given function to a given value. )) $(TR $(TD $(LREF reverseArgs), $(LREF binaryReverseArgs)) $(TD Predicate that reverses the order of its arguments. )) $(TR $(TD $(LREF toDelegate)) $(TD Converts a callable to a delegate. )) $(TR $(TD $(LREF unaryFun), $(LREF binaryFun)) $(TD Create a unary or binary function from a string. Most often used when defining algorithms on ranges. )) ) Copyright: Copyright Andrei Alexandrescu 2008 - 2009. License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0). Authors: $(HTTP erdani.org, Andrei Alexandrescu) Source: $(PHOBOSSRC std/_functional.d) */ /* Copyright Andrei Alexandrescu 2008 - 2009. Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ module std.functional; import std.meta; // AliasSeq, Reverse import std.traits; // isCallable, Parameters private template needOpCallAlias(alias fun) { /* Determine whether or not unaryFun and binaryFun need to alias to fun or * fun.opCall. Basically, fun is a function object if fun(...) compiles. We * want is(unaryFun!fun) (resp., is(binaryFun!fun)) to be true if fun is * any function object. There are 4 possible cases: * * 1) fun is the type of a function object with static opCall; * 2) fun is an instance of a function object with static opCall; * 3) fun is the type of a function object with non-static opCall; * 4) fun is an instance of a function object with non-static opCall. * * In case (1), is(unaryFun!fun) should compile, but does not if unaryFun * aliases itself to fun, because typeof(fun) is an error when fun itself * is a type. So it must be aliased to fun.opCall instead. All other cases * should be aliased to fun directly. */ static if (is(typeof(fun.opCall) == function)) { enum needOpCallAlias = !is(typeof(fun)) && __traits(compiles, () { return fun(Parameters!fun.init); }); } else enum needOpCallAlias = false; } /** Transforms a string representing an expression into a unary function. The string must either use symbol name $(D a) as the parameter or provide the symbol via the $(D parmName) argument. If $(D fun) is not a string, $(D unaryFun) aliases itself away to $(D fun). */ template unaryFun(alias fun, string parmName = "a") { static if (is(typeof(fun) : string)) { static if (!fun._ctfeMatchUnary(parmName)) { import std.algorithm, std.conv, std.exception, std.math, std.range, std.string; import std.meta, std.traits, std.typecons; } auto unaryFun(ElementType)(auto ref ElementType __a) { mixin("alias " ~ parmName ~ " = __a ;"); return mixin(fun); } } else static if (needOpCallAlias!fun) { // Issue 9906 alias unaryFun = fun.opCall; } else { alias unaryFun = fun; } } /// @safe unittest { // Strings are compiled into functions: alias isEven = unaryFun!("(a & 1) == 0"); assert(isEven(2) && !isEven(1)); } @safe unittest { static int f1(int a) { return a + 1; } static assert(is(typeof(unaryFun!(f1)(1)) == int)); assert(unaryFun!(f1)(41) == 42); int f2(int a) { return a + 1; } static assert(is(typeof(unaryFun!(f2)(1)) == int)); assert(unaryFun!(f2)(41) == 42); assert(unaryFun!("a + 1")(41) == 42); //assert(unaryFun!("return a + 1;")(41) == 42); int num = 41; assert(unaryFun!"a + 1"(num) == 42); // Issue 9906 struct Seen { static bool opCall(int n) { return true; } } static assert(needOpCallAlias!Seen); static assert(is(typeof(unaryFun!Seen(1)))); assert(unaryFun!Seen(1)); Seen s; static assert(!needOpCallAlias!s); static assert(is(typeof(unaryFun!s(1)))); assert(unaryFun!s(1)); struct FuncObj { bool opCall(int n) { return true; } } FuncObj fo; static assert(!needOpCallAlias!fo); static assert(is(typeof(unaryFun!fo))); assert(unaryFun!fo(1)); // Function object with non-static opCall can only be called with an // instance, not with merely the type. static assert(!is(typeof(unaryFun!FuncObj))); } /** Transforms a string representing an expression into a binary function. The string must either use symbol names $(D a) and $(D b) as the parameters or provide the symbols via the $(D parm1Name) and $(D parm2Name) arguments. If $(D fun) is not a string, $(D binaryFun) aliases itself away to $(D fun). */ template binaryFun(alias fun, string parm1Name = "a", string parm2Name = "b") { static if (is(typeof(fun) : string)) { static if (!fun._ctfeMatchBinary(parm1Name, parm2Name)) { import std.algorithm, std.conv, std.exception, std.math, std.range, std.string; import std.meta, std.traits, std.typecons; } auto binaryFun(ElementType1, ElementType2) (auto ref ElementType1 __a, auto ref ElementType2 __b) { mixin("alias "~parm1Name~" = __a ;"); mixin("alias "~parm2Name~" = __b ;"); return mixin(fun); } } else static if (needOpCallAlias!fun) { // Issue 9906 alias binaryFun = fun.opCall; } else { alias binaryFun = fun; } } /// @safe unittest { alias less = binaryFun!("a < b"); assert(less(1, 2) && !less(2, 1)); alias greater = binaryFun!("a > b"); assert(!greater("1", "2") && greater("2", "1")); } @safe unittest { static int f1(int a, string b) { return a + 1; } static assert(is(typeof(binaryFun!(f1)(1, "2")) == int)); assert(binaryFun!(f1)(41, "a") == 42); string f2(int a, string b) { return b ~ "2"; } static assert(is(typeof(binaryFun!(f2)(1, "1")) == string)); assert(binaryFun!(f2)(1, "4") == "42"); assert(binaryFun!("a + b")(41, 1) == 42); //@@BUG //assert(binaryFun!("return a + b;")(41, 1) == 42); // Issue 9906 struct Seen { static bool opCall(int x, int y) { return true; } } static assert(is(typeof(binaryFun!Seen))); assert(binaryFun!Seen(1,1)); struct FuncObj { bool opCall(int x, int y) { return true; } } FuncObj fo; static assert(!needOpCallAlias!fo); static assert(is(typeof(binaryFun!fo))); assert(unaryFun!fo(1,1)); // Function object with non-static opCall can only be called with an // instance, not with merely the type. static assert(!is(typeof(binaryFun!FuncObj))); } // skip all ASCII chars except a .. z, A .. Z, 0 .. 9, '_' and '.'. private uint _ctfeSkipOp(ref string op) { if (!__ctfe) assert(false); import std.ascii : isASCII, isAlphaNum; immutable oldLength = op.length; while (op.length) { immutable front = op[0]; if (front.isASCII() && !(front.isAlphaNum() || front == '_' || front == '.')) op = op[1..$]; else break; } return oldLength != op.length; } // skip all digits private uint _ctfeSkipInteger(ref string op) { if (!__ctfe) assert(false); import std.ascii : isDigit; immutable oldLength = op.length; while (op.length) { immutable front = op[0]; if (front.isDigit()) op = op[1..$]; else break; } return oldLength != op.length; } // skip name private uint _ctfeSkipName(ref string op, string name) { if (!__ctfe) assert(false); if (op.length >= name.length && op[0 .. name.length] == name) { op = op[name.length..$]; return 1; } return 0; } // returns 1 if $(D fun) is trivial unary function private uint _ctfeMatchUnary(string fun, string name) { if (!__ctfe) assert(false); fun._ctfeSkipOp(); for (;;) { immutable h = fun._ctfeSkipName(name) + fun._ctfeSkipInteger(); if (h == 0) { fun._ctfeSkipOp(); break; } else if (h == 1) { if (!fun._ctfeSkipOp()) break; } else return 0; } return fun.length == 0; } @safe unittest { static assert(!_ctfeMatchUnary("sqrt(ё)", "ё")); static assert(!_ctfeMatchUnary("ё.sqrt", "ё")); static assert(!_ctfeMatchUnary(".ё+ё", "ё")); static assert(!_ctfeMatchUnary("_ё+ё", "ё")); static assert(!_ctfeMatchUnary("ёё", "ё")); static assert(_ctfeMatchUnary("a+a", "a")); static assert(_ctfeMatchUnary("a + 10", "a")); static assert(_ctfeMatchUnary("4 == a", "a")); static assert(_ctfeMatchUnary("2 == a", "a")); static assert(_ctfeMatchUnary("1 != a", "a")); static assert(_ctfeMatchUnary("a != 4", "a")); static assert(_ctfeMatchUnary("a< 1", "a")); static assert(_ctfeMatchUnary("434 < a", "a")); static assert(_ctfeMatchUnary("132 > a", "a")); static assert(_ctfeMatchUnary("123 >a", "a")); static assert(_ctfeMatchUnary("a>82", "a")); static assert(_ctfeMatchUnary("ё>82", "ё")); static assert(_ctfeMatchUnary("ё[ё(ё)]", "ё")); static assert(_ctfeMatchUnary("ё[21]", "ё")); } // returns 1 if $(D fun) is trivial binary function private uint _ctfeMatchBinary(string fun, string name1, string name2) { if (!__ctfe) assert(false); fun._ctfeSkipOp(); for (;;) { immutable h = fun._ctfeSkipName(name1) + fun._ctfeSkipName(name2) + fun._ctfeSkipInteger(); if (h == 0) { fun._ctfeSkipOp(); break; } else if (h == 1) { if (!fun._ctfeSkipOp()) break; } else return 0; } return fun.length == 0; } @safe unittest { static assert(!_ctfeMatchBinary("sqrt(ё)", "ё", "b")); static assert(!_ctfeMatchBinary("ё.sqrt", "ё", "b")); static assert(!_ctfeMatchBinary(".ё+ё", "ё", "b")); static assert(!_ctfeMatchBinary("_ё+ё", "ё", "b")); static assert(!_ctfeMatchBinary("ёё", "ё", "b")); static assert(_ctfeMatchBinary("a+a", "a", "b")); static assert(_ctfeMatchBinary("a + 10", "a", "b")); static assert(_ctfeMatchBinary("4 == a", "a", "b")); static assert(_ctfeMatchBinary("2 == a", "a", "b")); static assert(_ctfeMatchBinary("1 != a", "a", "b")); static assert(_ctfeMatchBinary("a != 4", "a", "b")); static assert(_ctfeMatchBinary("a< 1", "a", "b")); static assert(_ctfeMatchBinary("434 < a", "a", "b")); static assert(_ctfeMatchBinary("132 > a", "a", "b")); static assert(_ctfeMatchBinary("123 >a", "a", "b")); static assert(_ctfeMatchBinary("a>82", "a", "b")); static assert(_ctfeMatchBinary("ё>82", "ё", "q")); static assert(_ctfeMatchBinary("ё[ё(10)]", "ё", "q")); static assert(_ctfeMatchBinary("ё[21]", "ё", "q")); static assert(!_ctfeMatchBinary("sqrt(ё)+b", "b", "ё")); static assert(!_ctfeMatchBinary("ё.sqrt-b", "b", "ё")); static assert(!_ctfeMatchBinary(".ё+b", "b", "ё")); static assert(!_ctfeMatchBinary("_b+ё", "b", "ё")); static assert(!_ctfeMatchBinary("ba", "b", "a")); static assert(_ctfeMatchBinary("a+b", "b", "a")); static assert(_ctfeMatchBinary("a + b", "b", "a")); static assert(_ctfeMatchBinary("b == a", "b", "a")); static assert(_ctfeMatchBinary("b == a", "b", "a")); static assert(_ctfeMatchBinary("b != a", "b", "a")); static assert(_ctfeMatchBinary("a != b", "b", "a")); static assert(_ctfeMatchBinary("a< b", "b", "a")); static assert(_ctfeMatchBinary("b < a", "b", "a")); static assert(_ctfeMatchBinary("b > a", "b", "a")); static assert(_ctfeMatchBinary("b >a", "b", "a")); static assert(_ctfeMatchBinary("a>b", "b", "a")); static assert(_ctfeMatchBinary("ё>b", "b", "ё")); static assert(_ctfeMatchBinary("b[ё(-1)]", "b", "ё")); static assert(_ctfeMatchBinary("ё[-21]", "b", "ё")); } //undocumented template safeOp(string S) if (S=="<"||S==">"||S=="<="||S==">="||S=="=="||S=="!=") { import std.traits : isIntegral; private bool unsafeOp(ElementType1, ElementType2)(ElementType1 a, ElementType2 b) pure if (isIntegral!ElementType1 && isIntegral!ElementType2) { import std.traits : CommonType; alias T = CommonType!(ElementType1, ElementType2); return mixin("cast(T)a "~S~" cast(T) b"); } bool safeOp(T0, T1)(auto ref T0 a, auto ref T1 b) { import std.traits : mostNegative; static if (isIntegral!T0 && isIntegral!T1 && (mostNegative!T0 < 0) != (mostNegative!T1 < 0)) { static if (S == "<=" || S == "<") { static if (mostNegative!T0 < 0) immutable result = a < 0 || unsafeOp(a, b); else immutable result = b >= 0 && unsafeOp(a, b); } else { static if (mostNegative!T0 < 0) immutable result = a >= 0 && unsafeOp(a, b); else immutable result = b < 0 || unsafeOp(a, b); } } else { static assert(is(typeof(mixin("a "~S~" b"))), "Invalid arguments: Cannot compare types " ~ T0.stringof ~ " and " ~ T1.stringof ~ "."); immutable result = mixin("a "~S~" b"); } return result; } } @safe unittest //check user defined types { import std.algorithm.comparison : equal; struct Foo { int a; auto opEquals(Foo foo) { return a == foo.a; } } assert(safeOp!"!="(Foo(1), Foo(2))); } /** Predicate that returns $(D_PARAM a < b). Correctly compares signed and unsigned integers, ie. -1 < 2U. */ alias lessThan = safeOp!"<"; /// pure @safe @nogc nothrow unittest { assert(lessThan(2, 3)); assert(lessThan(2U, 3U)); assert(lessThan(2, 3.0)); assert(lessThan(-2, 3U)); assert(lessThan(2, 3U)); assert(!lessThan(3U, -2)); assert(!lessThan(3U, 2)); assert(!lessThan(0, 0)); assert(!lessThan(0U, 0)); assert(!lessThan(0, 0U)); } /** Predicate that returns $(D_PARAM a > b). Correctly compares signed and unsigned integers, ie. 2U > -1. */ alias greaterThan = safeOp!">"; /// @safe unittest { assert(!greaterThan(2, 3)); assert(!greaterThan(2U, 3U)); assert(!greaterThan(2, 3.0)); assert(!greaterThan(-2, 3U)); assert(!greaterThan(2, 3U)); assert(greaterThan(3U, -2)); assert(greaterThan(3U, 2)); assert(!greaterThan(0, 0)); assert(!greaterThan(0U, 0)); assert(!greaterThan(0, 0U)); } /** Predicate that returns $(D_PARAM a == b). Correctly compares signed and unsigned integers, ie. !(-1 == ~0U). */ alias equalTo = safeOp!"=="; /// @safe unittest { assert(equalTo(0U, 0)); assert(equalTo(0, 0U)); assert(!equalTo(-1, ~0U)); } /** N-ary predicate that reverses the order of arguments, e.g., given $(D pred(a, b, c)), returns $(D pred(c, b, a)). */ template reverseArgs(alias pred) { auto reverseArgs(Args...)(auto ref Args args) if (is(typeof(pred(Reverse!args)))) { return pred(Reverse!args); } } /// @safe unittest { alias gt = reverseArgs!(binaryFun!("a < b")); assert(gt(2, 1) && !gt(1, 1)); int x = 42; bool xyz(int a, int b) { return a * x < b / x; } auto foo = &xyz; foo(4, 5); alias zyx = reverseArgs!(foo); assert(zyx(5, 4) == foo(4, 5)); } /// @safe unittest { int abc(int a, int b, int c) { return a * b + c; } alias cba = reverseArgs!abc; assert(abc(91, 17, 32) == cba(32, 17, 91)); } /// @safe unittest { int a(int a) { return a * 2; } alias _a = reverseArgs!a; assert(a(2) == _a(2)); } /// @safe unittest { int b() { return 4; } alias _b = reverseArgs!b; assert(b() == _b()); } /** Binary predicate that reverses the order of arguments, e.g., given $(D pred(a, b)), returns $(D pred(b, a)). */ template binaryReverseArgs(alias pred) { auto binaryReverseArgs(ElementType1, ElementType2) (auto ref ElementType1 a, auto ref ElementType2 b) { return pred(b, a); } } /// @safe unittest { alias gt = binaryReverseArgs!(binaryFun!("a < b")); assert(gt(2, 1) && !gt(1, 1)); } /// @safe unittest { int x = 42; bool xyz(int a, int b) { return a * x < b / x; } auto foo = &xyz; foo(4, 5); alias zyx = binaryReverseArgs!(foo); assert(zyx(5, 4) == foo(4, 5)); } /** Negates predicate $(D pred). */ template not(alias pred) { auto not(T...)(auto ref T args) { static if (is(typeof(!pred(args)))) return !pred(args); else static if (T.length == 1) return !unaryFun!pred(args); else static if (T.length == 2) return !binaryFun!pred(args); else static assert(0); } } /// @safe unittest { import std.algorithm.searching : find; import std.functional; import std.uni : isWhite; string a = " Hello, world!"; assert(find!(not!isWhite)(a) == "Hello, world!"); } @safe unittest { assert(not!"a != 5"(5)); assert(not!"a != b"(5, 5)); assert(not!(() => false)()); assert(not!(a => a != 5)(5)); assert(not!((a, b) => a != b)(5, 5)); assert(not!((a, b, c) => a * b * c != 125 )(5, 5, 5)); } /** $(LINK2 http://en.wikipedia.org/wiki/Partial_application, Partially applies) $(D_PARAM fun) by tying its first argument to $(D_PARAM arg). */ template partial(alias fun, alias arg) { static if (is(typeof(fun) == delegate) || is(typeof(fun) == function)) { import std.traits : ReturnType; ReturnType!fun partial(Parameters!fun[1..$] args2) { return fun(arg, args2); } } else { auto partial(Ts...)(Ts args2) { static if (is(typeof(fun(arg, args2)))) { return fun(arg, args2); } else { static string errormsg() { string msg = "Cannot call '" ~ fun.stringof ~ "' with arguments " ~ "(" ~ arg.stringof; foreach (T; Ts) msg ~= ", " ~ T.stringof; msg ~= ")."; return msg; } static assert(0, errormsg()); } } } } /// @safe unittest { int fun(int a, int b) { return a + b; } alias fun5 = partial!(fun, 5); assert(fun5(6) == 11); // Note that in most cases you'd use an alias instead of a value // assignment. Using an alias allows you to partially evaluate template // functions without committing to a particular type of the function. } // tests for partially evaluating callables @safe unittest { static int f1(int a, int b) { return a + b; } assert(partial!(f1, 5)(6) == 11); int f2(int a, int b) { return a + b; } int x = 5; assert(partial!(f2, x)(6) == 11); x = 7; assert(partial!(f2, x)(6) == 13); static assert(partial!(f2, 5)(6) == 11); auto dg = &f2; auto f3 = &partial!(dg, x); assert(f3(6) == 13); static int funOneArg(int a) { return a; } assert(partial!(funOneArg, 1)() == 1); static int funThreeArgs(int a, int b, int c) { return a + b + c; } alias funThreeArgs1 = partial!(funThreeArgs, 1); assert(funThreeArgs1(2, 3) == 6); static assert(!is(typeof(funThreeArgs1(2)))); enum xe = 5; alias fe = partial!(f2, xe); static assert(fe(6) == 11); } // tests for partially evaluating templated/overloaded callables @safe unittest { static auto add(A, B)(A x, B y) { return x + y; } alias add5 = partial!(add, 5); assert(add5(6) == 11); static assert(!is(typeof(add5()))); static assert(!is(typeof(add5(6, 7)))); // taking address of templated partial evaluation needs explicit type auto dg = &add5!(int); assert(dg(6) == 11); int x = 5; alias addX = partial!(add, x); assert(addX(6) == 11); static struct Callable { static string opCall(string a, string b) { return a ~ b; } int opCall(int a, int b) { return a * b; } double opCall(double a, double b) { return a + b; } } Callable callable; assert(partial!(Callable, "5")("6") == "56"); assert(partial!(callable, 5)(6) == 30); assert(partial!(callable, 7.0)(3.0) == 7.0 + 3.0); static struct TCallable { auto opCall(A, B)(A a, B b) { return a + b; } } TCallable tcallable; assert(partial!(tcallable, 5)(6) == 11); static assert(!is(typeof(partial!(tcallable, "5")(6)))); static A funOneArg(A)(A a) { return a; } alias funOneArg1 = partial!(funOneArg, 1); assert(funOneArg1() == 1); static auto funThreeArgs(A, B, C)(A a, B b, C c) { return a + b + c; } alias funThreeArgs1 = partial!(funThreeArgs, 1); assert(funThreeArgs1(2, 3) == 6); static assert(!is(typeof(funThreeArgs1(1)))); auto dg2 = &funOneArg1!(); assert(dg2() == 1); } /** Takes multiple functions and adjoins them together. The result is a $(REF Tuple, std,typecons) with one element per passed-in function. Upon invocation, the returned tuple is the adjoined results of all functions. Note: In the special case where only a single function is provided ($(D F.length == 1)), adjoin simply aliases to the single passed function ($(D F[0])). */ template adjoin(F...) if (F.length == 1) { alias adjoin = F[0]; } /// ditto template adjoin(F...) if (F.length > 1) { auto adjoin(V...)(auto ref V a) { import std.typecons : tuple; static if (F.length == 2) { return tuple(F[0](a), F[1](a)); } else static if (F.length == 3) { return tuple(F[0](a), F[1](a), F[2](a)); } else { import std.format : format; import std.range : iota; return mixin (q{tuple(%(F[%s](a)%|, %))}.format(iota(0, F.length))); } } } /// @safe unittest { import std.functional, std.typecons : Tuple; static bool f1(int a) { return a != 0; } static int f2(int a) { return a / 2; } auto x = adjoin!(f1, f2)(5); assert(is(typeof(x) == Tuple!(bool, int))); assert(x[0] == true && x[1] == 2); } @safe unittest { import std.typecons : Tuple; static bool F1(int a) { return a != 0; } auto x1 = adjoin!(F1)(5); static int F2(int a) { return a / 2; } auto x2 = adjoin!(F1, F2)(5); assert(is(typeof(x2) == Tuple!(bool, int))); assert(x2[0] && x2[1] == 2); auto x3 = adjoin!(F1, F2, F2)(5); assert(is(typeof(x3) == Tuple!(bool, int, int))); assert(x3[0] && x3[1] == 2 && x3[2] == 2); bool F4(int a) { return a != x1; } alias eff4 = adjoin!(F4); static struct S { bool delegate(int) @safe store; int fun() { return 42 + store(5); } } S s; s.store = (int a) { return eff4(a); }; auto x4 = s.fun(); assert(x4 == 43); } @safe unittest { import std.meta : staticMap; import std.typecons : Tuple, tuple; alias funs = staticMap!(unaryFun, "a", "a * 2", "a * 3", "a * a", "-a"); alias afun = adjoin!funs; assert(afun(5) == tuple(5, 10, 15, 25, -5)); static class C{} alias IC = immutable(C); IC foo(){return typeof(return).init;} Tuple!(IC, IC, IC, IC) ret1 = adjoin!(foo, foo, foo, foo)(); static struct S{int* p;} alias IS = immutable(S); IS bar(){return typeof(return).init;} enum Tuple!(IS, IS, IS, IS) ret2 = adjoin!(bar, bar, bar, bar)(); } /** Composes passed-in functions $(D fun[0], fun[1], ...) returning a function $(D f(x)) that in turn returns $(D fun[0](fun[1](...(x)))...). Each function can be a regular functions, a delegate, or a string. See_Also: $(LREF pipe) */ template compose(fun...) { static if (fun.length == 1) { alias compose = unaryFun!(fun[0]); } else static if (fun.length == 2) { // starch alias fun0 = unaryFun!(fun[0]); alias fun1 = unaryFun!(fun[1]); // protein: the core composition operation typeof({ E a; return fun0(fun1(a)); }()) compose(E)(E a) { return fun0(fun1(a)); } } else { // protein: assembling operations alias compose = compose!(fun[0], compose!(fun[1 .. $])); } } /// @safe unittest { import std.algorithm.comparison : equal; import std.algorithm.iteration : map; import std.array : split; import std.conv : to; // First split a string in whitespace-separated tokens and then // convert each token into an integer assert(compose!(map!(to!(int)), split)("1 2 3").equal([1, 2, 3])); } /** Pipes functions in sequence. Offers the same functionality as $(D compose), but with functions specified in reverse order. This may lead to more readable code in some situation because the order of execution is the same as lexical order. Example: ---- // Read an entire text file, split the resulting string in // whitespace-separated tokens, and then convert each token into an // integer int[] a = pipe!(readText, split, map!(to!(int)))("file.txt"); ---- See_Also: $(LREF compose) */ alias pipe(fun...) = compose!(Reverse!(fun)); @safe unittest { import std.conv : to; string foo(int a) { return to!(string)(a); } int bar(string a) { return to!(int)(a) + 1; } double baz(int a) { return a + 0.5; } assert(compose!(baz, bar, foo)(1) == 2.5); assert(pipe!(foo, bar, baz)(1) == 2.5); assert(compose!(baz, `to!(int)(a) + 1`, foo)(1) == 2.5); assert(compose!(baz, bar)("1"[]) == 2.5); assert(compose!(baz, bar)("1") == 2.5); assert(compose!(`a + 0.5`, `to!(int)(a) + 1`, foo)(1) == 2.5); } /** * $(LINK2 https://en.wikipedia.org/wiki/Memoization, Memoizes) a function so as * to avoid repeated computation. The memoization structure is a hash table keyed by a * tuple of the function's arguments. There is a speed gain if the * function is repeatedly called with the same arguments and is more * expensive than a hash table lookup. For more information on memoization, refer to $(HTTP docs.google.com/viewer?url=http%3A%2F%2Fhop.perl.plover.com%2Fbook%2Fpdf%2F03CachingAndMemoization.pdf, this book chapter). Example: ---- double transmogrify(int a, string b) { ... expensive computation ... } alias fastTransmogrify = memoize!transmogrify; unittest { auto slow = transmogrify(2, "hello"); auto fast = fastTransmogrify(2, "hello"); assert(slow == fast); } ---- Technically the memoized function should be pure because $(D memoize) assumes it will always return the same result for a given tuple of arguments. However, $(D memoize) does not enforce that because sometimes it is useful to memoize an impure function, too. */ template memoize(alias fun) { import std.traits : ReturnType; // alias Args = Parameters!fun; // Bugzilla 13580 ReturnType!fun memoize(Parameters!fun args) { alias Args = Parameters!fun; import std.typecons : Tuple; static ReturnType!fun[Tuple!Args] memo; auto t = Tuple!Args(args); if (auto p = t in memo) return *p; return memo[t] = fun(args); } } /// ditto template memoize(alias fun, uint maxSize) { import std.traits : ReturnType; // alias Args = Parameters!fun; // Bugzilla 13580 ReturnType!fun memoize(Parameters!fun args) { import std.traits : hasIndirections; import std.typecons : tuple; static struct Value { Parameters!fun args; ReturnType!fun res; } static Value[] memo; static size_t[] initialized; if (!memo.length) { import core.memory : GC; // Ensure no allocation overflows static assert(maxSize < size_t.max / Value.sizeof); static assert(maxSize < size_t.max - (8 * size_t.sizeof - 1)); enum attr = GC.BlkAttr.NO_INTERIOR | (hasIndirections!Value ? 0 : GC.BlkAttr.NO_SCAN); memo = (cast(Value*) GC.malloc(Value.sizeof * maxSize, attr))[0 .. maxSize]; enum nwords = (maxSize + 8 * size_t.sizeof - 1) / (8 * size_t.sizeof); initialized = (cast(size_t*) GC.calloc(nwords * size_t.sizeof, attr | GC.BlkAttr.NO_SCAN))[0 .. nwords]; } import core.bitop : bt, bts; import std.conv : emplace; size_t hash; foreach (ref arg; args) hash = hashOf(arg, hash); // cuckoo hashing immutable idx1 = hash % maxSize; if (!bt(initialized.ptr, idx1)) { emplace(&memo[idx1], args, fun(args)); bts(initialized.ptr, idx1); // only set to initialized after setting args and value (bugzilla 14025) return memo[idx1].res; } else if (memo[idx1].args == args) return memo[idx1].res; // FNV prime immutable idx2 = (hash * 16_777_619) % maxSize; if (!bt(initialized.ptr, idx2)) { emplace(&memo[idx2], memo[idx1]); bts(initialized.ptr, idx2); // only set to initialized after setting args and value (bugzilla 14025) } else if (memo[idx2].args == args) return memo[idx2].res; else if (idx1 != idx2) memo[idx2] = memo[idx1]; memo[idx1] = Value(args, fun(args)); return memo[idx1].res; } } /** * To _memoize a recursive function, simply insert the memoized call in lieu of the plain recursive call. * For example, to transform the exponential-time Fibonacci implementation into a linear-time computation: */ @safe unittest { ulong fib(ulong n) @safe { return n < 2 ? n : memoize!fib(n - 2) + memoize!fib(n - 1); } assert(fib(10) == 55); } /** * To improve the speed of the factorial function, */ @safe unittest { ulong fact(ulong n) @safe { return n < 2 ? 1 : n * memoize!fact(n - 1); } assert(fact(10) == 3628800); } /** * This memoizes all values of $(D fact) up to the largest argument. To only cache the final * result, move $(D memoize) outside the function as shown below. */ @safe unittest { ulong factImpl(ulong n) @safe { return n < 2 ? 1 : n * factImpl(n - 1); } alias fact = memoize!factImpl; assert(fact(10) == 3628800); } /** * When the $(D maxSize) parameter is specified, memoize will used * a fixed size hash table to limit the number of cached entries. */ @system unittest // not @safe due to memoize { ulong fact(ulong n) { // Memoize no more than 8 values return n < 2 ? 1 : n * memoize!(fact, 8)(n - 1); } assert(fact(8) == 40320); // using more entries than maxSize will overwrite existing entries assert(fact(10) == 3628800); } @system unittest // not @safe due to memoize { import core.math : sqrt; alias msqrt = memoize!(function double(double x) { return sqrt(x); }); auto y = msqrt(2.0); assert(y == msqrt(2.0)); y = msqrt(4.0); assert(y == sqrt(4.0)); // alias mrgb2cmyk = memoize!rgb2cmyk; // auto z = mrgb2cmyk([43, 56, 76]); // assert(z == mrgb2cmyk([43, 56, 76])); //alias mfib = memoize!fib; static ulong fib(ulong n) @safe { alias mfib = memoize!fib; return n < 2 ? 1 : mfib(n - 2) + mfib(n - 1); } auto z = fib(10); assert(z == 89); static ulong fact(ulong n) @safe { alias mfact = memoize!fact; return n < 2 ? 1 : n * mfact(n - 1); } assert(fact(10) == 3628800); // Issue 12568 static uint len2(const string s) { // Error alias mLen2 = memoize!len2; if (s.length == 0) return 0; else return 1 + mLen2(s[1 .. $]); } int _func(int x) @safe { return 1; } alias func = memoize!(_func, 10); assert(func(int.init) == 1); assert(func(int.init) == 1); } // 16079: memoize should work with arrays @safe unittest { int executed = 0; T median(T)(const T[] nums) { import std.algorithm.sorting : sort; executed++; auto arr = nums.dup; arr.sort(); if (arr.length % 2) return arr[$ / 2]; else return (arr[$ / 2 - 1] + arr[$ / 2]) / 2; } alias fastMedian = memoize!(median!int); assert(fastMedian([7, 5, 3]) == 5); assert(fastMedian([7, 5, 3]) == 5); assert(executed == 1); } // 16079: memoize should work with structs @safe unittest { int executed = 0; T pickFirst(T)(T first) { executed++; return first; } struct Foo { int k; } Foo A = Foo(3); alias first = memoize!(pickFirst!Foo); assert(first(Foo(3)) == A); assert(first(Foo(3)) == A); assert(executed == 1); } // 16079: memoize should work with classes @safe unittest { int executed = 0; T pickFirst(T)(T first) { executed++; return first; } class Bar { size_t k; this(size_t k) { this.k = k; } override size_t toHash() { return k; } override bool opEquals(Object o) { auto b = cast(Bar) o; return b && k == b.k; } } alias firstClass = memoize!(pickFirst!Bar); assert(firstClass(new Bar(3)).k == 3); assert(firstClass(new Bar(3)).k == 3); assert(executed == 1); } private struct DelegateFaker(F) { import std.typecons : FuncInfo, MemberFunctionGenerator; // for @safe static F castToF(THIS)(THIS x) @trusted { return cast(F) x; } /* * What all the stuff below does is this: *-------------------- * struct DelegateFaker(F) { * extern(linkage) * [ref] ReturnType!F doIt(Parameters!F args) [@attributes] * { * auto fp = cast(F) &this; * return fp(args); * } * } *-------------------- */ // We will use MemberFunctionGenerator in std.typecons. This is a policy // configuration for generating the doIt(). template GeneratingPolicy() { // Inform the genereator that we only have type information. enum WITHOUT_SYMBOL = true; // Generate the function body of doIt(). template generateFunctionBody(unused...) { enum generateFunctionBody = // [ref] ReturnType doIt(Parameters args) @attributes q{ // When this function gets called, the this pointer isn't // really a this pointer (no instance even really exists), but // a function pointer that points to the function to be called. // Cast it to the correct type and call it. auto fp = castToF(&this); return fp(args); }; } } // Type information used by the generated code. alias FuncInfo_doIt = FuncInfo!(F); // Generate the member function doIt(). mixin( MemberFunctionGenerator!(GeneratingPolicy!()) .generateFunction!("FuncInfo_doIt", "doIt", F) ); } /** * Convert a callable to a delegate with the same parameter list and * return type, avoiding heap allocations and use of auxiliary storage. * * Example: * ---- * void doStuff() { * writeln("Hello, world."); * } * * void runDelegate(void delegate() myDelegate) { * myDelegate(); * } * * auto delegateToPass = toDelegate(&doStuff); * runDelegate(delegateToPass); // Calls doStuff, prints "Hello, world." * ---- * * BUGS: * $(UL * $(LI Does not work with $(D @safe) functions.) * $(LI Ignores C-style / D-style variadic arguments.) * ) */ auto toDelegate(F)(auto ref F fp) if (isCallable!(F)) { static if (is(F == delegate)) { return fp; } else static if (is(typeof(&F.opCall) == delegate) || (is(typeof(&F.opCall) V : V*) && is(V == function))) { return toDelegate(&fp.opCall); } else { alias DelType = typeof(&(new DelegateFaker!(F)).doIt); static struct DelegateFields { union { DelType del; //pragma(msg, typeof(del)); struct { void* contextPtr; void* funcPtr; } } } // fp is stored in the returned delegate's context pointer. // The returned delegate's function pointer points to // DelegateFaker.doIt. DelegateFields df; df.contextPtr = cast(void*) fp; DelegateFaker!(F) dummy; auto dummyDel = &dummy.doIt; df.funcPtr = dummyDel.funcptr; return df.del; } } /// @system unittest { static int inc(ref uint num) { num++; return 8675309; } uint myNum = 0; auto incMyNumDel = toDelegate(&inc); auto returnVal = incMyNumDel(myNum); assert(myNum == 1); } @system unittest // not @safe due to toDelegate { static int inc(ref uint num) { num++; return 8675309; } uint myNum = 0; auto incMyNumDel = toDelegate(&inc); int delegate(ref uint) dg = incMyNumDel; auto returnVal = incMyNumDel(myNum); assert(myNum == 1); interface I { int opCall(); } class C: I { int opCall() { inc(myNum); return myNum;} } auto c = new C; auto i = cast(I) c; auto getvalc = toDelegate(c); assert(getvalc() == 2); auto getvali = toDelegate(i); assert(getvali() == 3); struct S1 { int opCall() { inc(myNum); return myNum; } } static assert(!is(typeof(&s1.opCall) == delegate)); S1 s1; auto getvals1 = toDelegate(s1); assert(getvals1() == 4); struct S2 { static int opCall() { return 123456; } } static assert(!is(typeof(&S2.opCall) == delegate)); S2 s2; auto getvals2 =&S2.opCall; assert(getvals2() == 123456); /* test for attributes */ { static int refvar = 0xDeadFace; static ref int func_ref() { return refvar; } static int func_pure() pure { return 1; } static int func_nothrow() nothrow { return 2; } static int func_property() @property { return 3; } static int func_safe() @safe { return 4; } static int func_trusted() @trusted { return 5; } static int func_system() @system { return 6; } static int func_pure_nothrow() pure nothrow { return 7; } static int func_pure_nothrow_safe() pure nothrow @safe { return 8; } auto dg_ref = toDelegate(&func_ref); int delegate() pure dg_pure = toDelegate(&func_pure); int delegate() nothrow dg_nothrow = toDelegate(&func_nothrow); int delegate() @property dg_property = toDelegate(&func_property); int delegate() @safe dg_safe = toDelegate(&func_safe); int delegate() @trusted dg_trusted = toDelegate(&func_trusted); int delegate() @system dg_system = toDelegate(&func_system); int delegate() pure nothrow dg_pure_nothrow = toDelegate(&func_pure_nothrow); int delegate() @safe pure nothrow dg_pure_nothrow_safe = toDelegate(&func_pure_nothrow_safe); //static assert(is(typeof(dg_ref) == ref int delegate())); // [BUG@DMD] assert(dg_ref() == refvar); assert(dg_pure() == 1); assert(dg_nothrow() == 2); assert(dg_property() == 3); assert(dg_safe() == 4); assert(dg_trusted() == 5); assert(dg_system() == 6); assert(dg_pure_nothrow() == 7); assert(dg_pure_nothrow_safe() == 8); } /* test for linkage */ { struct S { extern(C) static void xtrnC() {} extern(D) static void xtrnD() {} } auto dg_xtrnC = toDelegate(&S.xtrnC); auto dg_xtrnD = toDelegate(&S.xtrnD); static assert(! is(typeof(dg_xtrnC) == typeof(dg_xtrnD))); } } /** Forwards function arguments with saving ref-ness. */ template forward(args...) { static if (args.length) { import std.algorithm.mutation : move; alias arg = args[0]; static if (__traits(isRef, arg)) alias fwd = arg; else @property fwd()(){ return move(arg); } alias forward = AliasSeq!(fwd, forward!(args[1..$])); } else alias forward = AliasSeq!(); } /// @safe unittest { class C { static int foo(int n) { return 1; } static int foo(ref int n) { return 2; } } int bar()(auto ref int x) { return C.foo(forward!x); } assert(bar(1) == 1); int i; assert(bar(i) == 2); } /// @safe unittest { void foo(int n, ref string s) { s = null; foreach (i; 0 .. n) s ~= "Hello"; } // forwards all arguments which are bound to parameter tuple void bar(Args...)(auto ref Args args) { return foo(forward!args); } // forwards all arguments with swapping order void baz(Args...)(auto ref Args args) { return foo(forward!args[$/2..$], forward!args[0..$/2]); } string s; bar(1, s); assert(s == "Hello"); baz(s, 2); assert(s == "HelloHello"); } @safe unittest { auto foo(TL...)(auto ref TL args) { string result = ""; foreach (i, _; args) { //pragma(msg, "[",i,"] ", __traits(isRef, args[i]) ? "L" : "R"); result ~= __traits(isRef, args[i]) ? "L" : "R"; } return result; } string bar(TL...)(auto ref TL args) { return foo(forward!args); } string baz(TL...)(auto ref TL args) { int x; return foo(forward!args[3], forward!args[2], 1, forward!args[1], forward!args[0], x); } struct S {} S makeS(){ return S(); } int n; string s; assert(bar(S(), makeS(), n, s) == "RRLL"); assert(baz(S(), makeS(), n, s) == "LLRRRL"); } @safe unittest { ref int foo(return ref int a) { return a; } ref int bar(Args)(auto ref Args args) { return foo(forward!args); } static assert(!__traits(compiles, { auto x1 = bar(3); })); // case of NG int value = 3; auto x2 = bar(value); // case of OK }