// Written in the D programming language. /** This module contains the $(LREF Complex) type, which is used to represent _complex numbers, along with related mathematical operations and functions. $(LREF Complex) will eventually $(DDLINK deprecate, Deprecated Features, replace) the built-in types $(D cfloat), $(D cdouble), $(D creal), $(D ifloat), $(D idouble), and $(D ireal). Authors: Lars Tandle Kyllingstad, Don Clugston Copyright: Copyright (c) 2010, Lars T. Kyllingstad. License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0) Source: $(PHOBOSSRC std/_complex.d) */ module std.complex; import std.traits; /** Helper function that returns a _complex number with the specified real and imaginary parts. Params: R = (template parameter) type of real part of complex number I = (template parameter) type of imaginary part of complex number re = real part of complex number to be constructed im = (optional) imaginary part of complex number, 0 if omitted. Returns: $(D Complex) instance with real and imaginary parts set to the values provided as input. If neither $(D re) nor $(D im) are floating-point numbers, the return type will be $(D Complex!double). Otherwise, the return type is deduced using $(D std.traits.CommonType!(R, I)). */ auto complex(R)(R re) @safe pure nothrow @nogc if (is(R : double)) { static if (isFloatingPoint!R) return Complex!R(re, 0); else return Complex!double(re, 0); } /// ditto auto complex(R, I)(R re, I im) @safe pure nothrow @nogc if (is(R : double) && is(I : double)) { static if (isFloatingPoint!R || isFloatingPoint!I) return Complex!(CommonType!(R, I))(re, im); else return Complex!double(re, im); } /// @safe pure nothrow unittest { auto a = complex(1.0); static assert(is(typeof(a) == Complex!double)); assert(a.re == 1.0); assert(a.im == 0.0); auto b = complex(2.0L); static assert(is(typeof(b) == Complex!real)); assert(b.re == 2.0L); assert(b.im == 0.0L); auto c = complex(1.0, 2.0); static assert(is(typeof(c) == Complex!double)); assert(c.re == 1.0); assert(c.im == 2.0); auto d = complex(3.0, 4.0L); static assert(is(typeof(d) == Complex!real)); assert(d.re == 3.0); assert(d.im == 4.0L); auto e = complex(1); static assert(is(typeof(e) == Complex!double)); assert(e.re == 1); assert(e.im == 0); auto f = complex(1L, 2); static assert(is(typeof(f) == Complex!double)); assert(f.re == 1L); assert(f.im == 2); auto g = complex(3, 4.0L); static assert(is(typeof(g) == Complex!real)); assert(g.re == 3); assert(g.im == 4.0L); } /** A complex number parametrised by a type $(D T), which must be either $(D float), $(D double) or $(D real). */ struct Complex(T) if (isFloatingPoint!T) { import std.format : FormatSpec; import std.range.primitives : isOutputRange; /** The real part of the number. */ T re; /** The imaginary part of the number. */ T im; /** Converts the complex number to a string representation. The second form of this function is usually not called directly; instead, it is used via $(REF format, std,string), as shown in the examples below. Supported format characters are 'e', 'f', 'g', 'a', and 's'. See the $(MREF std, format) and $(REF format, std,string) documentation for more information. */ string toString() const @safe /* TODO: pure nothrow */ { import std.exception : assumeUnique; char[] buf; buf.reserve(100); auto fmt = FormatSpec!char("%s"); toString((const(char)[] s) { buf ~= s; }, fmt); static trustedAssumeUnique(T)(T t) @trusted { return assumeUnique(t); } return trustedAssumeUnique(buf); } static if (is(T == double)) /// @safe unittest { auto c = complex(1.2, 3.4); // Vanilla toString formatting: assert(c.toString() == "1.2+3.4i"); // Formatting with std.string.format specs: the precision and width // specifiers apply to both the real and imaginary parts of the // complex number. import std.format : format; assert(format("%.2f", c) == "1.20+3.40i"); assert(format("%4.1f", c) == " 1.2+ 3.4i"); } /// ditto void toString(Writer, Char)(scope Writer w, FormatSpec!Char formatSpec) const if (isOutputRange!(Writer, const(Char)[])) { import std.format : formatValue; import std.math : signbit; import std.range.primitives : put; formatValue(w, re, formatSpec); if (signbit(im) == 0) put(w, "+"); formatValue(w, im, formatSpec); put(w, "i"); } @safe pure nothrow @nogc: /** Construct a complex number with the specified real and imaginary parts. In the case where a single argument is passed that is not complex, the imaginary part of the result will be zero. */ this(R : T)(Complex!R z) { re = z.re; im = z.im; } /// ditto this(Rx : T, Ry : T)(Rx x, Ry y) { re = x; im = y; } /// ditto this(R : T)(R r) { re = r; im = 0; } // ASSIGNMENT OPERATORS // this = complex ref Complex opAssign(R : T)(Complex!R z) { re = z.re; im = z.im; return this; } // this = numeric ref Complex opAssign(R : T)(R r) { re = r; im = 0; return this; } // COMPARISON OPERATORS // this == complex bool opEquals(R : T)(Complex!R z) const { return re == z.re && im == z.im; } // this == numeric bool opEquals(R : T)(R r) const { return re == r && im == 0; } // UNARY OPERATORS // +complex Complex opUnary(string op)() const if (op == "+") { return this; } // -complex Complex opUnary(string op)() const if (op == "-") { return Complex(-re, -im); } // BINARY OPERATORS // complex op complex Complex!(CommonType!(T,R)) opBinary(string op, R)(Complex!R z) const { alias C = typeof(return); auto w = C(this.re, this.im); return w.opOpAssign!(op)(z); } // complex op numeric Complex!(CommonType!(T,R)) opBinary(string op, R)(R r) const if (isNumeric!R) { alias C = typeof(return); auto w = C(this.re, this.im); return w.opOpAssign!(op)(r); } // numeric + complex, numeric * complex Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const if ((op == "+" || op == "*") && (isNumeric!R)) { return opBinary!(op)(r); } // numeric - complex Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const if (op == "-" && isNumeric!R) { return Complex(r - re, -im); } // numeric / complex Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const if (op == "/" && isNumeric!R) { import std.math : fabs; typeof(return) w = void; if (fabs(re) < fabs(im)) { immutable ratio = re/im; immutable rdivd = r/(re*ratio + im); w.re = rdivd*ratio; w.im = -rdivd; } else { immutable ratio = im/re; immutable rdivd = r/(re + im*ratio); w.re = rdivd; w.im = -rdivd*ratio; } return w; } // numeric ^^ complex Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R lhs) const if (op == "^^" && isNumeric!R) { import std.math : cos, exp, log, sin, PI; Unqual!(CommonType!(T, R)) ab = void, ar = void; if (lhs >= 0) { // r = lhs // theta = 0 ab = lhs ^^ this.re; ar = log(lhs) * this.im; } else { // r = -lhs // theta = PI ab = (-lhs) ^^ this.re * exp(-PI * this.im); ar = PI * this.re + log(-lhs) * this.im; } return typeof(return)(ab * cos(ar), ab * sin(ar)); } // OP-ASSIGN OPERATORS // complex += complex, complex -= complex ref Complex opOpAssign(string op, C)(C z) if ((op == "+" || op == "-") && is(C R == Complex!R)) { mixin ("re "~op~"= z.re;"); mixin ("im "~op~"= z.im;"); return this; } // complex *= complex ref Complex opOpAssign(string op, C)(C z) if (op == "*" && is(C R == Complex!R)) { auto temp = re*z.re - im*z.im; im = im*z.re + re*z.im; re = temp; return this; } // complex /= complex ref Complex opOpAssign(string op, C)(C z) if (op == "/" && is(C R == Complex!R)) { import std.math : fabs; if (fabs(z.re) < fabs(z.im)) { immutable ratio = z.re/z.im; immutable denom = z.re*ratio + z.im; immutable temp = (re*ratio + im)/denom; im = (im*ratio - re)/denom; re = temp; } else { immutable ratio = z.im/z.re; immutable denom = z.re + z.im*ratio; immutable temp = (re + im*ratio)/denom; im = (im - re*ratio)/denom; re = temp; } return this; } // complex ^^= complex ref Complex opOpAssign(string op, C)(C z) if (op == "^^" && is(C R == Complex!R)) { import std.math : exp, log, cos, sin; immutable r = abs(this); immutable t = arg(this); immutable ab = r^^z.re * exp(-t*z.im); immutable ar = t*z.re + log(r)*z.im; re = ab*cos(ar); im = ab*sin(ar); return this; } // complex += numeric, complex -= numeric ref Complex opOpAssign(string op, U : T)(U a) if (op == "+" || op == "-") { mixin ("re "~op~"= a;"); return this; } // complex *= numeric, complex /= numeric ref Complex opOpAssign(string op, U : T)(U a) if (op == "*" || op == "/") { mixin ("re "~op~"= a;"); mixin ("im "~op~"= a;"); return this; } // complex ^^= real ref Complex opOpAssign(string op, R)(R r) if (op == "^^" && isFloatingPoint!R) { import std.math : cos, sin; immutable ab = abs(this)^^r; immutable ar = arg(this)*r; re = ab*cos(ar); im = ab*sin(ar); return this; } // complex ^^= int ref Complex opOpAssign(string op, U)(U i) if (op == "^^" && isIntegral!U) { switch (i) { case 0: re = 1.0; im = 0.0; break; case 1: // identity; do nothing break; case 2: this *= this; break; case 3: auto z = this; this *= z; this *= z; break; default: this ^^= cast(real) i; } return this; } } @safe pure nothrow unittest { import std.complex; import std.math; enum EPS = double.epsilon; auto c1 = complex(1.0, 1.0); // Check unary operations. auto c2 = Complex!double(0.5, 2.0); assert(c2 == +c2); assert((-c2).re == -(c2.re)); assert((-c2).im == -(c2.im)); assert(c2 == -(-c2)); // Check complex-complex operations. auto cpc = c1 + c2; assert(cpc.re == c1.re + c2.re); assert(cpc.im == c1.im + c2.im); auto cmc = c1 - c2; assert(cmc.re == c1.re - c2.re); assert(cmc.im == c1.im - c2.im); auto ctc = c1 * c2; assert(approxEqual(abs(ctc), abs(c1)*abs(c2), EPS)); assert(approxEqual(arg(ctc), arg(c1)+arg(c2), EPS)); auto cdc = c1 / c2; assert(approxEqual(abs(cdc), abs(c1)/abs(c2), EPS)); assert(approxEqual(arg(cdc), arg(c1)-arg(c2), EPS)); auto cec = c1^^c2; assert(approxEqual(cec.re, 0.11524131979943839881, EPS)); assert(approxEqual(cec.im, 0.21870790452746026696, EPS)); // Check complex-real operations. double a = 123.456; auto cpr = c1 + a; assert(cpr.re == c1.re + a); assert(cpr.im == c1.im); auto cmr = c1 - a; assert(cmr.re == c1.re - a); assert(cmr.im == c1.im); auto ctr = c1 * a; assert(ctr.re == c1.re*a); assert(ctr.im == c1.im*a); auto cdr = c1 / a; assert(approxEqual(abs(cdr), abs(c1)/a, EPS)); assert(approxEqual(arg(cdr), arg(c1), EPS)); auto cer = c1^^3.0; assert(approxEqual(abs(cer), abs(c1)^^3, EPS)); assert(approxEqual(arg(cer), arg(c1)*3, EPS)); auto rpc = a + c1; assert(rpc == cpr); auto rmc = a - c1; assert(rmc.re == a-c1.re); assert(rmc.im == -c1.im); auto rtc = a * c1; assert(rtc == ctr); auto rdc = a / c1; assert(approxEqual(abs(rdc), a/abs(c1), EPS)); assert(approxEqual(arg(rdc), -arg(c1), EPS)); rdc = a / c2; assert(approxEqual(abs(rdc), a/abs(c2), EPS)); assert(approxEqual(arg(rdc), -arg(c2), EPS)); auto rec1a = 1.0 ^^ c1; assert(rec1a.re == 1.0); assert(rec1a.im == 0.0); auto rec2a = 1.0 ^^ c2; assert(rec2a.re == 1.0); assert(rec2a.im == 0.0); auto rec1b = (-1.0) ^^ c1; assert(approxEqual(abs(rec1b), std.math.exp(-PI * c1.im), EPS)); auto arg1b = arg(rec1b); /* The argument _should_ be PI, but floating-point rounding error * means that in fact the imaginary part is very slightly negative. */ assert(approxEqual(arg1b, PI, EPS) || approxEqual(arg1b, -PI, EPS)); auto rec2b = (-1.0) ^^ c2; assert(approxEqual(abs(rec2b), std.math.exp(-2 * PI), EPS)); assert(approxEqual(arg(rec2b), PI_2, EPS)); auto rec3a = 0.79 ^^ complex(6.8, 5.7); auto rec3b = complex(0.79, 0.0) ^^ complex(6.8, 5.7); assert(approxEqual(rec3a.re, rec3b.re, EPS)); assert(approxEqual(rec3a.im, rec3b.im, EPS)); auto rec4a = (-0.79) ^^ complex(6.8, 5.7); auto rec4b = complex(-0.79, 0.0) ^^ complex(6.8, 5.7); assert(approxEqual(rec4a.re, rec4b.re, EPS)); assert(approxEqual(rec4a.im, rec4b.im, EPS)); auto rer = a ^^ complex(2.0, 0.0); auto rcheck = a ^^ 2.0; static assert(is(typeof(rcheck) == double)); assert(feqrel(rer.re, rcheck) == double.mant_dig); assert(isIdentical(rer.re, rcheck)); assert(rer.im == 0.0); auto rer2 = (-a) ^^ complex(2.0, 0.0); rcheck = (-a) ^^ 2.0; assert(feqrel(rer2.re, rcheck) == double.mant_dig); assert(isIdentical(rer2.re, rcheck)); assert(approxEqual(rer2.im, 0.0, EPS)); auto rer3 = (-a) ^^ complex(-2.0, 0.0); rcheck = (-a) ^^ (-2.0); assert(feqrel(rer3.re, rcheck) == double.mant_dig); assert(isIdentical(rer3.re, rcheck)); assert(approxEqual(rer3.im, 0.0, EPS)); auto rer4 = a ^^ complex(-2.0, 0.0); rcheck = a ^^ (-2.0); assert(feqrel(rer4.re, rcheck) == double.mant_dig); assert(isIdentical(rer4.re, rcheck)); assert(rer4.im == 0.0); // Check Complex-int operations. foreach (i; 0 .. 6) { auto cei = c1^^i; assert(approxEqual(abs(cei), abs(c1)^^i, EPS)); // Use cos() here to deal with arguments that go outside // the (-pi,pi] interval (only an issue for i>3). assert(approxEqual(std.math.cos(arg(cei)), std.math.cos(arg(c1)*i), EPS)); } // Check operations between different complex types. auto cf = Complex!float(1.0, 1.0); auto cr = Complex!real(1.0, 1.0); auto c1pcf = c1 + cf; auto c1pcr = c1 + cr; static assert(is(typeof(c1pcf) == Complex!double)); static assert(is(typeof(c1pcr) == Complex!real)); assert(c1pcf.re == c1pcr.re); assert(c1pcf.im == c1pcr.im); auto c1c = c1; auto c2c = c2; c1c /= c1; assert(approxEqual(c1c.re, 1.0, EPS)); assert(approxEqual(c1c.im, 0.0, EPS)); c1c = c1; c1c /= c2; assert(approxEqual(c1c.re, 0.588235, EPS)); assert(approxEqual(c1c.im, -0.352941, EPS)); c2c /= c1; assert(approxEqual(c2c.re, 1.25, EPS)); assert(approxEqual(c2c.im, 0.75, EPS)); c2c = c2; c2c /= c2; assert(approxEqual(c2c.re, 1.0, EPS)); assert(approxEqual(c2c.im, 0.0, EPS)); } @safe pure nothrow unittest { // Initialization Complex!double a = 1; assert(a.re == 1 && a.im == 0); Complex!double b = 1.0; assert(b.re == 1.0 && b.im == 0); Complex!double c = Complex!real(1.0, 2); assert(c.re == 1.0 && c.im == 2); } @safe pure nothrow unittest { // Assignments and comparisons Complex!double z; z = 1; assert(z == 1); assert(z.re == 1.0 && z.im == 0.0); z = 2.0; assert(z == 2.0); assert(z.re == 2.0 && z.im == 0.0); z = 1.0L; assert(z == 1.0L); assert(z.re == 1.0 && z.im == 0.0); auto w = Complex!real(1.0, 1.0); z = w; assert(z == w); assert(z.re == 1.0 && z.im == 1.0); auto c = Complex!float(2.0, 2.0); z = c; assert(z == c); assert(z.re == 2.0 && z.im == 2.0); } /* Makes Complex!(Complex!T) fold to Complex!T. The rationale for this is that just like the real line is a subspace of the complex plane, the complex plane is a subspace of itself. Example of usage: --- Complex!T addI(T)(T x) { return x + Complex!T(0.0, 1.0); } --- The above will work if T is both real and complex. */ template Complex(T) if (is(T R == Complex!R)) { alias Complex = T; } @safe pure nothrow unittest { static assert(is(Complex!(Complex!real) == Complex!real)); Complex!T addI(T)(T x) { return x + Complex!T(0.0, 1.0); } auto z1 = addI(1.0); assert(z1.re == 1.0 && z1.im == 1.0); enum one = Complex!double(1.0, 0.0); auto z2 = addI(one); assert(z1 == z2); } /** Params: z = A complex number. Returns: The absolute value (or modulus) of `z`. */ T abs(T)(Complex!T z) @safe pure nothrow @nogc { import std.math : hypot; return hypot(z.re, z.im); } /// @safe pure nothrow unittest { static import std.math; assert(abs(complex(1.0)) == 1.0); assert(abs(complex(0.0, 1.0)) == 1.0); assert(abs(complex(1.0L, -2.0L)) == std.math.sqrt(5.0L)); } /++ Params: z = A complex number. x = A real number. Returns: The squared modulus of `z`. For genericity, if called on a real number, returns its square. +/ T sqAbs(T)(Complex!T z) @safe pure nothrow @nogc { return z.re*z.re + z.im*z.im; } /// @safe pure nothrow unittest { import std.math; assert(sqAbs(complex(0.0)) == 0.0); assert(sqAbs(complex(1.0)) == 1.0); assert(sqAbs(complex(0.0, 1.0)) == 1.0); assert(approxEqual(sqAbs(complex(1.0L, -2.0L)), 5.0L)); assert(approxEqual(sqAbs(complex(-3.0L, 1.0L)), 10.0L)); assert(approxEqual(sqAbs(complex(1.0f,-1.0f)), 2.0f)); } /// ditto T sqAbs(T)(T x) @safe pure nothrow @nogc if (isFloatingPoint!T) { return x*x; } @safe pure nothrow unittest { import std.math; assert(sqAbs(0.0) == 0.0); assert(sqAbs(-1.0) == 1.0); assert(approxEqual(sqAbs(-3.0L), 9.0L)); assert(approxEqual(sqAbs(-5.0f), 25.0f)); } /** Params: z = A complex number. Returns: The argument (or phase) of `z`. */ T arg(T)(Complex!T z) @safe pure nothrow @nogc { import std.math : atan2; return atan2(z.im, z.re); } /// @safe pure nothrow unittest { import std.math; assert(arg(complex(1.0)) == 0.0); assert(arg(complex(0.0L, 1.0L)) == PI_2); assert(arg(complex(1.0L, 1.0L)) == PI_4); } /** Params: z = A complex number. Returns: The complex conjugate of `z`. */ Complex!T conj(T)(Complex!T z) @safe pure nothrow @nogc { return Complex!T(z.re, -z.im); } /// @safe pure nothrow unittest { assert(conj(complex(1.0)) == complex(1.0)); assert(conj(complex(1.0, 2.0)) == complex(1.0, -2.0)); } /** Constructs a complex number given its absolute value and argument. Params: modulus = The modulus argument = The argument Returns: The complex number with the given modulus and argument. */ Complex!(CommonType!(T, U)) fromPolar(T, U)(T modulus, U argument) @safe pure nothrow @nogc { import std.math : sin, cos; return Complex!(CommonType!(T,U)) (modulus*cos(argument), modulus*sin(argument)); } /// @safe pure nothrow unittest { import std.math; auto z = fromPolar(std.math.sqrt(2.0), PI_4); assert(approxEqual(z.re, 1.0L, real.epsilon)); assert(approxEqual(z.im, 1.0L, real.epsilon)); } /** Trigonometric functions on complex numbers. Params: z = A complex number. Returns: The sine and cosine of `z`, respectively. */ Complex!T sin(T)(Complex!T z) @safe pure nothrow @nogc { import std.math : expi, coshisinh; auto cs = expi(z.re); auto csh = coshisinh(z.im); return typeof(return)(cs.im * csh.re, cs.re * csh.im); } /// @safe pure nothrow unittest { static import std.math; import std.math : feqrel; assert(sin(complex(0.0)) == 0.0); assert(sin(complex(2.0, 0)) == std.math.sin(2.0)); auto c1 = sin(complex(2.0L, 0)); auto c2 = complex(std.math.sin(2.0L), 0); assert(feqrel(c1.re, c2.re) >= real.mant_dig - 1 && feqrel(c1.im, c2.im) >= real.mant_dig - 1); } /// ditto Complex!T cos(T)(Complex!T z) @safe pure nothrow @nogc { import std.math : expi, coshisinh; auto cs = expi(z.re); auto csh = coshisinh(z.im); return typeof(return)(cs.re * csh.re, - cs.im * csh.im); } /// @safe pure nothrow unittest { static import std.math; import std.math : feqrel; assert(cos(complex(0.0)) == 1.0); assert(cos(complex(1.3)) == std.math.cos(1.3)); auto c1 = cos(complex(0, 5.2L)); auto c2 = complex(std.math.cosh(5.2L), 0.0L); assert(feqrel(c1.re, c2.re) >= real.mant_dig - 1 && feqrel(c1.im, c2.im) >= real.mant_dig - 1); auto c3 = cos(complex(1.3L)); auto c4 = complex(std.math.cos(1.3L), 0.0L); assert(feqrel(c3.re, c4.re) >= real.mant_dig - 1 && feqrel(c3.im, c4.im) >= real.mant_dig - 1); } /** Params: y = A real number. Returns: The value of cos(y) + i sin(y). Note: $(D expi) is included here for convenience and for easy migration of code that uses $(REF _expi, std,math). Unlike $(REF _expi, std,math), which uses the x87 $(I fsincos) instruction when possible, this function is no faster than calculating cos(y) and sin(y) separately. */ Complex!real expi(real y) @trusted pure nothrow @nogc { import std.math : cos, sin; return Complex!real(cos(y), sin(y)); } /// @safe pure nothrow unittest { static import std.math; assert(expi(1.3e5L) == complex(std.math.cos(1.3e5L), std.math.sin(1.3e5L))); assert(expi(0.0L) == 1.0L); auto z1 = expi(1.234); auto z2 = std.math.expi(1.234); assert(z1.re == z2.re && z1.im == z2.im); } /** Params: z = A complex number. Returns: The square root of `z`. */ Complex!T sqrt(T)(Complex!T z) @safe pure nothrow @nogc { static import std.math; typeof(return) c; real x,y,w,r; if (z == 0) { c = typeof(return)(0, 0); } else { real z_re = z.re; real z_im = z.im; x = std.math.fabs(z_re); y = std.math.fabs(z_im); if (x >= y) { r = y / x; w = std.math.sqrt(x) * std.math.sqrt(0.5 * (1 + std.math.sqrt(1 + r * r))); } else { r = x / y; w = std.math.sqrt(y) * std.math.sqrt(0.5 * (r + std.math.sqrt(1 + r * r))); } if (z_re >= 0) { c = typeof(return)(w, z_im / (w + w)); } else { if (z_im < 0) w = -w; c = typeof(return)(z_im / (w + w), w); } } return c; } /// @safe pure nothrow unittest { static import std.math; assert(sqrt(complex(0.0)) == 0.0); assert(sqrt(complex(1.0L, 0)) == std.math.sqrt(1.0L)); assert(sqrt(complex(-1.0L, 0)) == complex(0, 1.0L)); } @safe pure nothrow unittest { import std.math : approxEqual; auto c1 = complex(1.0, 1.0); auto c2 = Complex!double(0.5, 2.0); auto c1s = sqrt(c1); assert(approxEqual(c1s.re, 1.09868411)); assert(approxEqual(c1s.im, 0.45508986)); auto c2s = sqrt(c2); assert(approxEqual(c2s.re, 1.1317134)); assert(approxEqual(c2s.im, 0.8836155)); } // Issue 10881: support %f formatting of complex numbers @safe unittest { import std.format : format; auto x = complex(1.2, 3.4); assert(format("%.2f", x) == "1.20+3.40i"); auto y = complex(1.2, -3.4); assert(format("%.2f", y) == "1.20-3.40i"); } @safe unittest { // Test wide string formatting import std.format; wstring wformat(T)(string format, Complex!T c) { import std.array : appender; auto w = appender!wstring(); auto n = formattedWrite(w, format, c); return w.data; } auto x = complex(1.2, 3.4); assert(wformat("%.2f", x) == "1.20+3.40i"w); } @safe unittest { // Test ease of use (vanilla toString() should be supported) assert(complex(1.2, 3.4).toString() == "1.2+3.4i"); }