Float represent primitive
 * float values.
 *
 * Additionally, this class provides various helper functions and variables
 * related to floats.
 *
 * @author Paul Fisher
 * @author Andrew Haley double may represent
   * is 3.4028235e+38f.
   */
  public static final float MAX_VALUE = 3.4028235e+38f;
  /**
   * The minimum positive value a float may represent
   * is 1.4e-45.
   */
  public static final float MIN_VALUE = 1.4e-45f;
  /**
   * The value of a float representation -1.0/0.0, negative infinity.
   */
  public static final float NEGATIVE_INFINITY = -1.0f/0.0f;
  /**
   * The value of a float representation 1.0/0.0, positive infinity.
   */
  public static final float POSITIVE_INFINITY = 1.0f/0.0f;
  /**
   * All IEEE 754 values of NaN have the same value in Java.
   */
  public static final float NaN = 0.0f/0.0f;
  /**
   * The primitive type float is represented by this 
   * Class object.
   */
  public static final Class TYPE = VMClassLoader.getPrimitiveClass('F');
  /**
   * The immutable value of this Float.
   */
  private final float value;
  private static final long serialVersionUID = -2671257302660747028L;
  static
  {
    if (Configuration.INIT_LOAD_LIBRARY)
      {
	System.loadLibrary ("javalang");
      }
  }
  /**
   * Create a float from the primitive Float
   * specified.
   *
   * @param value the Float argument
   */
  public Float (float value)
  {
    this.value = value;
  }
  /**
   * Create a Float from the primitive double
   * specified.
   *
   * @param value the double argument
   */
  public Float (double value)
  {
    this.value = (float)value;
  }
  /**
   * Create a Float from the specified String.
   *
   * This method calls Float.parseFloat().
   *
   * @exception NumberFormatException when the String cannot
   *            be parsed into a Float.
   * @param s the String to convert
   * @see #parseFloat(java.lang.String)
   */
  public Float (String s) throws NumberFormatException
  {
    this.value = parseFloat (s);
  }
  /**
   * Parse the specified String as a float.
   *
   * The number is really read as n * 10exponent.  The
   * first number is n, and if there is an "E"
   * ("e" is also acceptable), then the integer after that is
   * the exponent.
   * 
   * Here are the possible forms the number can take:
   * 
   * 
| Form | Examples | 
|---|---|
| [+-]<number>[.] | 345., -10, 12 | 
| [+-]<number>.<number> | 40.2, 80.00, -12.30 | 
| [+-]<number>[.]E[+-]<number> | 80E12, -12e+7, 4.E-123 | 
| [+-]<number>.<number>E[+-]<number> | 6.02e-22, -40.2E+6, 12.3e9 | 
[+-]" means either a plus or minus sign may go there, or
   * neither, in which case + is assumed.
   * [.]" means a dot may be placed here, but is optional.
   * <number>" means a string of digits (0-9), basically
   * an integer.  "<number>.<number>" is basically
   * a real number, a floating-point value.
   * 
   * Remember that a float has a limited range.  If the
   * number you specify is greater than Float.MAX_VALUE or less
   * than -Float.MAX_VALUE, it will be set at
   * Float.POSITIVE_INFINITY or
   * Float.NEGATIVE_INFINITY, respectively.
   * 
   *
   * Note also that float does not have perfect precision.  Many
   * numbers cannot be precisely represented.  The number you specify
   * will be rounded to the nearest representable value.
   * Float.MIN_VALUE is the margin of error for float
   * values.
   * 
   * If an unexpected character is found in the String, a
   * NumberFormatException will be thrown.  Spaces are not
   * allowed and will cause this exception to be thrown.
   *
   * @XXX specify where/how we are not in accord with the spec.
   *
   * @param str the String to convert
   * @return the value of the String as a float.
   * @exception NumberFormatException when the string cannot be parsed to a
   *            float.
   * @since JDK 1.2
   * @see #MIN_VALUE
   * @see #MAX_VALUE
   * @see #POSITIVE_INFINITY
   * @see #NEGATIVE_INFINITY
   */
  public static float parseFloat (String s) throws NumberFormatException
  {
    // The spec says that parseFloat() should work like
    // Double.valueOf().  This is equivalent, in our implementation,
    // but more efficient.
    return (float) Double.parseDouble (s);
  }
  /**
   * Convert the float value of this Float
   * to a String.  This method calls
   * Float.toString(float) to do its dirty work.
   *
   * @return the String representation of this Float.
   * @see #toString(float)
   */
  public String toString ()
  {
    return toString (value);
  }
  /**
   * If the Object is not null, is an
   * instanceof Float, and represents
   * the same primitive float value return 
   * true.  Otherwise false is returned.
   * 
   * Note that there are two differences between == and
   * equals(). 0.0f == -0.0f returns true
   * but new Float(0.0f).equals(new Float(-0.0f)) returns
   * false. And Float.NaN == Float.NaN returns
   * false, but
   * new Float(Float.NaN).equals(new Float(Float.NaN)) returns
   * true.
   *
   * @param obj the object to compare to
   * @return whether the objects are semantically equal.
   */
  public boolean equals (Object obj)
  {
    if (!(obj instanceof Float))
      return false;
    float f = ((Float) obj).value;
    // GCJ LOCAL: this implementation is probably faster than
    // Classpath's, especially once we inline floatToIntBits.
    return floatToIntBits (value) == floatToIntBits (f);
    // END GCJ LOCAL
  }
  /**
   * Return a hashcode representing this Object.
   * Float's hash code is calculated by calling the
   * floatToIntBits() function.
   * @return this Object's hash code.
   * @see java.lang.Float.floatToIntBits(float)
   */
  public int hashCode ()
  {
    return floatToIntBits (value);
  }
  /**
   * Return the value of this Double when cast to an 
   * int.
   */
  public int intValue ()
  {
    return (int) value;
  }
  /**
   * Return the value of this Double when cast to a
   * long.
   */
  public long longValue ()
  {
    return (long) value;
  }
  /**
   * Return the value of this Double when cast to a
   * float.
   */
  public float floatValue ()
  {
    return (float) value;
  }
  /**
   * Return the primitive double value represented by this
   * Double.
   */
  public double doubleValue ()
  {
    return (double) value;
  }
  /**
   * Convert the float to a String.
   * 
   *
   * Floating-point string representation is fairly complex: here is a
   * rundown of the possible values.  "[-]" indicates that a
   * negative sign will be printed if the value (or exponent) is negative.
   * "<number>" means a string of digits (0-9).
   * "<digit>" means a single digit (0-9).
   * 
* *
| Value of Float | String Representation | 
|---|---|
| [+-] 0* | [ *-]0.0 | 
| Between [+-] 10-3 and 107* | *[-]number.number | 
| Other numeric value* | *[-]<digit>.<number>E[-]<number> | 
| [+-] infinity* | *[-]Infinity | 
| NaN* | *NaN | 
. and at least one digit printed after
   * it: even if the number is 3, it will be printed as 3.0.
   * After the ".", all digits will be printed except trailing zeros.  No
   * truncation or rounding is done by this function.
   *
   * @XXX specify where we are not in accord with the spec.
   *
   * @param f the float to convert
   * @return the String representing the float.
   */
  public static String toString (float f)
  {
    return Double.toString ((double) f, true);
  }
  /**
   * Return the result of calling new Float(java.lang.String).
   *
   * @param s the String to convert to a Float.
   * @return a new Float representing the String's
   *         numeric value.
   *
   * @exception NumberFormatException thrown if String cannot
   * be parsed as a double.
   * @see #Float(java.lang.String)
   * @see #parseFloat(java.lang.String)
   */
  public static Float valueOf (String s) throws NumberFormatException
  {
    return new Float (s);
  }
  /**
   * Return true if the value of this Float
   * is the same as NaN, otherwise return false.
   * @return whether this Float is NaN.
   */
  public boolean isNaN ()
  {
    return isNaN (value);
  }
  /**
   * Return true if the float has the same
   * value as NaN, otherwise return false.
   *
   * @param v the float to compare
   * @return whether the argument is NaN.
   */
  public static boolean isNaN (float v)
  {
    // This works since NaN != NaN is the only reflexive inequality
    // comparison which returns true.
    return v != v;
  }
  /**
   * Return true if the value of this Float
   * is the same as NEGATIVE_INFINITY or 
   * POSITIVE_INFINITY, otherwise return false.
   *
   * @return whether this Float is (-/+) infinity.
   */
  public boolean isInfinite ()
  {
    return isInfinite (value);
  }
  /**
   * Return true if the float has a value 
   * equal to either NEGATIVE_INFINITY or 
   * POSITIVE_INFINITY, otherwise return false.
   *
   * @param v the float to compare
   * @return whether the argument is (-/+) infinity.
   */
  public static boolean isInfinite (float v)
  {
    return (v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY);
  }
  /**
   * Return the int bits of the specified float.
   * The result of this function can be used as the argument to
   * Float.intBitsToFloat(long) to obtain the
   * original float value.
   *
   * @param value the float to convert
   * @return the bits of the float.
   */
  public static native int floatToIntBits (float value);
  /**
   * Return the int bits of the specified float.
   * The result of this function can be used as the argument to
   * Float.intBitsToFloat(long) to obtain the
   * original float value.  The difference between
   * this function and floatToIntBits is that this
   * function does not collapse NaN values.
   *
   * @param value the float to convert
   * @return the bits of the float.
   */
  public static native int floatToRawIntBits (float value);
  /**
   * Return the float represented by the long
   * bits specified.
   *
   * @param bits the long bits representing a double
   * @return the float represented by the bits.
   */
  public static native float intBitsToFloat (int bits);
  /**
   * Returns 0 if the float value of the argument is 
   * equal to the value of this Float.  Returns a number
   * less than zero if the value of this Float is less 
   * than the Float value of the argument, and returns a 
   * number greater than zero if the value of this Float 
   * is greater than the float value of the argument.
   * Float.NaN is greater than any number other than itself, 
   * even Float.POSITIVE_INFINITY.
   * 0.0 is greater than -0.0.
   *
   * @param f the Float to compare to.
   * @return  0 if the Floats are the same, < 0 if this
   *          Float is less than the Float in
   *          in question, or > 0 if it is greater.
   *
   * @since 1.2
   */
  public int compareTo (Float f)
  {
    return compare (value, f.value);
  }
  /**
   * Returns 0 if the first argument is equal to the second argument.
   * Returns a number less than zero if the first argument is less than the
   * second argument, and returns a number greater than zero if the first
   * argument is greater than the second argument.
   * Float.NaN is greater than any number other than itself, 
   * even Float.POSITIVE_INFINITY.
   * 0.0 is greater than -0.0.
   *
   * @param x the first float to compare.
   * @param y the second float to compare.
   * @return  0 if the arguments are the same, < 0 if the
   *          first argument is less than the second argument in
   *          in question, or > 0 if it is greater.
   * @since 1.4
   */
  public static int compare (float x, float y)
  {
    if (isNaN (x))
      return isNaN (y) ? 0 : 1;
    if (isNaN (y))
      return -1;
    // recall that 0.0 == -0.0, so we convert to infinities and try again
    if (x == 0 && y == 0)
      return (int) (1 / x - 1 / y);
    if (x == y)
      return 0;
    return x > y ? 1 : -1;
  }
  /**
   * Compares the specified Object to this Float
   * if and only if the Object is an instanceof 
   * Float.
   * Otherwise it throws a ClassCastException
   *
   * @param o the Object to compare to.
   * @return  0 if the Floats are the same, < 0 if this
   *          Float is less than the Float in
   *          in question, or > 0 if it is greater.
   * @throws ClassCastException if the argument is not a Float
   *
   * @since 1.2
   */
  public int compareTo (Object o)
  {
    return compareTo ((Float) o);
  }
}