// interpret.cc - Code for the interpreter /* Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation This file is part of libgcj. This software is copyrighted work licensed under the terms of the Libgcj License. Please consult the file "LIBGCJ_LICENSE" for details. */ /* Author: Kresten Krab Thorup */ #include #include #pragma implementation "java-interp.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INTERPRETER // Execution engine for interpreted code. _Jv_InterpreterEngine _Jv_soleInterpreterEngine; #include using namespace gcj; static void throw_internal_error (char *msg) __attribute__ ((__noreturn__)); static void throw_incompatible_class_change_error (jstring msg) __attribute__ ((__noreturn__)); #ifndef HANDLE_SEGV static void throw_null_pointer_exception () __attribute__ ((__noreturn__)); #endif static void throw_class_format_error (jstring msg) __attribute__ ((__noreturn__)); static void throw_class_format_error (char *msg) __attribute__ ((__noreturn__)); #ifdef DIRECT_THREADED // Lock to ensure that methods are not compiled concurrently. // We could use a finer-grained lock here, however it is not safe to use // the Class monitor as user code in another thread could hold it. static _Jv_Mutex_t compile_mutex; void _Jv_InitInterpreter() { _Jv_MutexInit (&compile_mutex); } #else void _Jv_InitInterpreter() {} #endif extern "C" double __ieee754_fmod (double,double); static inline void dupx (_Jv_word *sp, int n, int x) { // first "slide" n+x elements n to the right int top = n-1; for (int i = 0; i < n+x; i++) { sp[(top-i)] = sp[(top-i)-n]; } // next, copy the n top elements, n+x down for (int i = 0; i < n; i++) { sp[top-(n+x)-i] = sp[top-i]; } } // Used to convert from floating types to integral types. template static inline TO convert (FROM val, TO min, TO max) { TO ret; if (val >= (FROM) max) ret = max; else if (val <= (FROM) min) ret = min; else if (val != val) ret = 0; else ret = (TO) val; return ret; } #define PUSHA(V) (sp++)->o = (V) #define PUSHI(V) (sp++)->i = (V) #define PUSHF(V) (sp++)->f = (V) #if SIZEOF_VOID_P == 8 # define PUSHL(V) (sp->l = (V), sp += 2) # define PUSHD(V) (sp->d = (V), sp += 2) #else # define PUSHL(V) do { _Jv_word2 w2; w2.l=(V); \ (sp++)->ia[0] = w2.ia[0]; \ (sp++)->ia[0] = w2.ia[1]; } while (0) # define PUSHD(V) do { _Jv_word2 w2; w2.d=(V); \ (sp++)->ia[0] = w2.ia[0]; \ (sp++)->ia[0] = w2.ia[1]; } while (0) #endif #define POPA() ((--sp)->o) #define POPI() ((jint) (--sp)->i) // cast since it may be promoted #define POPF() ((jfloat) (--sp)->f) #if SIZEOF_VOID_P == 8 # define POPL() (sp -= 2, (jlong) sp->l) # define POPD() (sp -= 2, (jdouble) sp->d) #else # define POPL() ({ _Jv_word2 w2; \ w2.ia[1] = (--sp)->ia[0]; \ w2.ia[0] = (--sp)->ia[0]; w2.l; }) # define POPD() ({ _Jv_word2 w2; \ w2.ia[1] = (--sp)->ia[0]; \ w2.ia[0] = (--sp)->ia[0]; w2.d; }) #endif #define LOADA(I) (sp++)->o = locals[I].o #define LOADI(I) (sp++)->i = locals[I].i #define LOADF(I) (sp++)->f = locals[I].f #if SIZEOF_VOID_P == 8 # define LOADL(I) (sp->l = locals[I].l, sp += 2) # define LOADD(I) (sp->d = locals[I].d, sp += 2) #else # define LOADL(I) do { jint __idx = (I); \ (sp++)->ia[0] = locals[__idx].ia[0]; \ (sp++)->ia[0] = locals[__idx+1].ia[0]; \ } while (0) # define LOADD(I) LOADL(I) #endif #define STOREA(I) locals[I].o = (--sp)->o #define STOREI(I) locals[I].i = (--sp)->i #define STOREF(I) locals[I].f = (--sp)->f #if SIZEOF_VOID_P == 8 # define STOREL(I) (sp -= 2, locals[I].l = sp->l) # define STORED(I) (sp -= 2, locals[I].d = sp->d) #else # define STOREL(I) do { jint __idx = (I); \ locals[__idx+1].ia[0] = (--sp)->ia[0]; \ locals[__idx].ia[0] = (--sp)->ia[0]; \ } while (0) # define STORED(I) STOREL(I) #endif #define PEEKI(I) (locals+(I))->i #define PEEKA(I) (locals+(I))->o #define POKEI(I,V) ((locals+(I))->i = (V)) #define BINOPI(OP) { \ jint value2 = POPI(); \ jint value1 = POPI(); \ PUSHI(value1 OP value2); \ } #define BINOPF(OP) { \ jfloat value2 = POPF(); \ jfloat value1 = POPF(); \ PUSHF(value1 OP value2); \ } #define BINOPL(OP) { \ jlong value2 = POPL(); \ jlong value1 = POPL(); \ PUSHL(value1 OP value2); \ } #define BINOPD(OP) { \ jdouble value2 = POPD(); \ jdouble value1 = POPD(); \ PUSHD(value1 OP value2); \ } static inline jint get1s(unsigned char* loc) { return *(signed char*)loc; } static inline jint get1u(unsigned char* loc) { return *loc; } static inline jint get2s(unsigned char* loc) { return (((jint)*(signed char*)loc) << 8) | ((jint)*(loc+1)); } static inline jint get2u(unsigned char* loc) { return (((jint)(*loc)) << 8) | ((jint)*(loc+1)); } static jint get4(unsigned char* loc) { return (((jint)(loc[0])) << 24) | (((jint)(loc[1])) << 16) | (((jint)(loc[2])) << 8) | (((jint)(loc[3])) << 0); } #define SAVE_PC() frame_desc.pc = pc #ifdef HANDLE_SEGV #define NULLCHECK(X) SAVE_PC() #define NULLARRAYCHECK(X) SAVE_PC() #else #define NULLCHECK(X) \ do { SAVE_PC(); if ((X)==NULL) throw_null_pointer_exception (); } while (0) #define NULLARRAYCHECK(X) \ do { SAVE_PC(); if ((X)==NULL) { throw_null_pointer_exception (); } } while (0) #endif #define ARRAYBOUNDSCHECK(array, index) \ do \ { \ if (((unsigned) index) >= (unsigned) (array->length)) \ _Jv_ThrowBadArrayIndex (index); \ } \ while (0) void _Jv_InterpMethod::run_normal (ffi_cif *, void* ret, ffi_raw * args, void* __this) { _Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this; run (ret, args, _this); } void _Jv_InterpMethod::run_synch_object (ffi_cif *, void* ret, ffi_raw * args, void* __this) { _Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this; jobject rcv = (jobject) args[0].ptr; JvSynchronize mutex (rcv); run (ret, args, _this); } void _Jv_InterpMethod::run_class (ffi_cif *, void* ret, ffi_raw * args, void* __this) { _Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this; _Jv_InitClass (_this->defining_class); run (ret, args, _this); } void _Jv_InterpMethod::run_synch_class (ffi_cif *, void* ret, ffi_raw * args, void* __this) { _Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this; jclass sync = _this->defining_class; _Jv_InitClass (sync); JvSynchronize mutex (sync); run (ret, args, _this); } #ifdef DIRECT_THREADED // "Compile" a method by turning it from bytecode to direct-threaded // code. void _Jv_InterpMethod::compile (const void * const *insn_targets) { insn_slot *insns = NULL; int next = 0; unsigned char *codestart = bytecode (); unsigned char *end = codestart + code_length; _Jv_word *pool_data = defining_class->constants.data; #define SET_ONE(Field, Value) \ do \ { \ if (first_pass) \ ++next; \ else \ insns[next++].Field = Value; \ } \ while (0) #define SET_INSN(Value) SET_ONE (insn, (void *) Value) #define SET_INT(Value) SET_ONE (int_val, Value) #define SET_DATUM(Value) SET_ONE (datum, Value) // Map from bytecode PC to slot in INSNS. int *pc_mapping = (int *) __builtin_alloca (sizeof (int) * code_length); for (int i = 0; i < code_length; ++i) pc_mapping[i] = -1; for (int i = 0; i < 2; ++i) { jboolean first_pass = i == 0; if (! first_pass) { insns = (insn_slot *) _Jv_AllocBytes (sizeof (insn_slot) * next); next = 0; } unsigned char *pc = codestart; while (pc < end) { int base_pc_val = pc - codestart; if (first_pass) pc_mapping[base_pc_val] = next; java_opcode opcode = (java_opcode) *pc++; // Just elide NOPs. if (opcode == op_nop) continue; SET_INSN (insn_targets[opcode]); switch (opcode) { case op_nop: case op_aconst_null: case op_iconst_m1: case op_iconst_0: case op_iconst_1: case op_iconst_2: case op_iconst_3: case op_iconst_4: case op_iconst_5: case op_lconst_0: case op_lconst_1: case op_fconst_0: case op_fconst_1: case op_fconst_2: case op_dconst_0: case op_dconst_1: case op_iload_0: case op_iload_1: case op_iload_2: case op_iload_3: case op_lload_0: case op_lload_1: case op_lload_2: case op_lload_3: case op_fload_0: case op_fload_1: case op_fload_2: case op_fload_3: case op_dload_0: case op_dload_1: case op_dload_2: case op_dload_3: case op_aload_0: case op_aload_1: case op_aload_2: case op_aload_3: case op_iaload: case op_laload: case op_faload: case op_daload: case op_aaload: case op_baload: case op_caload: case op_saload: case op_istore_0: case op_istore_1: case op_istore_2: case op_istore_3: case op_lstore_0: case op_lstore_1: case op_lstore_2: case op_lstore_3: case op_fstore_0: case op_fstore_1: case op_fstore_2: case op_fstore_3: case op_dstore_0: case op_dstore_1: case op_dstore_2: case op_dstore_3: case op_astore_0: case op_astore_1: case op_astore_2: case op_astore_3: case op_iastore: case op_lastore: case op_fastore: case op_dastore: case op_aastore: case op_bastore: case op_castore: case op_sastore: case op_pop: case op_pop2: case op_dup: case op_dup_x1: case op_dup_x2: case op_dup2: case op_dup2_x1: case op_dup2_x2: case op_swap: case op_iadd: case op_isub: case op_imul: case op_idiv: case op_irem: case op_ishl: case op_ishr: case op_iushr: case op_iand: case op_ior: case op_ixor: case op_ladd: case op_lsub: case op_lmul: case op_ldiv: case op_lrem: case op_lshl: case op_lshr: case op_lushr: case op_land: case op_lor: case op_lxor: case op_fadd: case op_fsub: case op_fmul: case op_fdiv: case op_frem: case op_dadd: case op_dsub: case op_dmul: case op_ddiv: case op_drem: case op_ineg: case op_i2b: case op_i2c: case op_i2s: case op_lneg: case op_fneg: case op_dneg: case op_i2l: case op_i2f: case op_i2d: case op_l2i: case op_l2f: case op_l2d: case op_f2i: case op_f2l: case op_f2d: case op_d2i: case op_d2l: case op_d2f: case op_lcmp: case op_fcmpl: case op_fcmpg: case op_dcmpl: case op_dcmpg: case op_monitorenter: case op_monitorexit: case op_ireturn: case op_lreturn: case op_freturn: case op_dreturn: case op_areturn: case op_return: case op_athrow: case op_arraylength: // No argument, nothing else to do. break; case op_bipush: SET_INT (get1s (pc)); ++pc; break; case op_ldc: { int index = get1u (pc); ++pc; SET_DATUM (pool_data[index].o); } break; case op_ret: case op_iload: case op_lload: case op_fload: case op_dload: case op_aload: case op_istore: case op_lstore: case op_fstore: case op_dstore: case op_astore: case op_newarray: SET_INT (get1u (pc)); ++pc; break; case op_iinc: SET_INT (get1u (pc)); SET_INT (get1s (pc + 1)); pc += 2; break; case op_ldc_w: { int index = get2u (pc); pc += 2; SET_DATUM (pool_data[index].o); } break; case op_ldc2_w: { int index = get2u (pc); pc += 2; SET_DATUM (&pool_data[index]); } break; case op_sipush: SET_INT (get2s (pc)); pc += 2; break; case op_new: case op_getstatic: case op_getfield: case op_putfield: case op_putstatic: case op_anewarray: case op_instanceof: case op_checkcast: case op_invokespecial: case op_invokestatic: case op_invokevirtual: SET_INT (get2u (pc)); pc += 2; break; case op_multianewarray: SET_INT (get2u (pc)); SET_INT (get1u (pc + 2)); pc += 3; break; case op_jsr: case op_ifeq: case op_ifne: case op_iflt: case op_ifge: case op_ifgt: case op_ifle: case op_if_icmpeq: case op_if_icmpne: case op_if_icmplt: case op_if_icmpge: case op_if_icmpgt: case op_if_icmple: case op_if_acmpeq: case op_if_acmpne: case op_ifnull: case op_ifnonnull: case op_goto: { int offset = get2s (pc); pc += 2; int new_pc = base_pc_val + offset; bool orig_was_goto = opcode == op_goto; // Thread jumps. We limit the loop count; this lets // us avoid infinite loops if the bytecode contains // such. `10' is arbitrary. int count = 10; while (codestart[new_pc] == op_goto && count-- > 0) new_pc += get2s (&codestart[new_pc + 1]); // If the jump takes us to a `return' instruction and // the original branch was an unconditional goto, then // we hoist the return. opcode = (java_opcode) codestart[new_pc]; if (orig_was_goto && (opcode == op_ireturn || opcode == op_lreturn || opcode == op_freturn || opcode == op_dreturn || opcode == op_areturn || opcode == op_return)) { --next; SET_INSN (insn_targets[opcode]); } else SET_DATUM (&insns[pc_mapping[new_pc]]); } break; case op_tableswitch: { while ((pc - codestart) % 4 != 0) ++pc; jint def = get4 (pc); SET_DATUM (&insns[pc_mapping[base_pc_val + def]]); pc += 4; int low = get4 (pc); SET_INT (low); pc += 4; int high = get4 (pc); SET_INT (high); pc += 4; for (int i = low; i <= high; ++i) { SET_DATUM (&insns[pc_mapping[base_pc_val + get4 (pc)]]); pc += 4; } } break; case op_lookupswitch: { while ((pc - codestart) % 4 != 0) ++pc; jint def = get4 (pc); SET_DATUM (&insns[pc_mapping[base_pc_val + def]]); pc += 4; jint npairs = get4 (pc); pc += 4; SET_INT (npairs); while (npairs-- > 0) { jint match = get4 (pc); jint offset = get4 (pc + 4); SET_INT (match); SET_DATUM (&insns[pc_mapping[base_pc_val + offset]]); pc += 8; } } break; case op_invokeinterface: { jint index = get2u (pc); pc += 2; // We ignore the next two bytes. pc += 2; SET_INT (index); } break; case op_wide: { opcode = (java_opcode) get1u (pc); pc += 1; jint val = get2u (pc); pc += 2; // We implement narrow and wide instructions using the // same code in the interpreter. So we rewrite the // instruction slot here. if (! first_pass) insns[next - 1].insn = (void *) insn_targets[opcode]; SET_INT (val); if (opcode == op_iinc) { SET_INT (get2s (pc)); pc += 2; } } break; case op_jsr_w: case op_goto_w: { jint offset = get4 (pc); pc += 4; SET_DATUM (&insns[pc_mapping[base_pc_val + offset]]); } break; // Some "can't happen" cases that we include for // error-checking purposes. case op_putfield_1: case op_putfield_2: case op_putfield_4: case op_putfield_8: case op_putfield_a: case op_putstatic_1: case op_putstatic_2: case op_putstatic_4: case op_putstatic_8: case op_putstatic_a: case op_getfield_1: case op_getfield_2s: case op_getfield_2u: case op_getfield_4: case op_getfield_8: case op_getfield_a: case op_getstatic_1: case op_getstatic_2s: case op_getstatic_2u: case op_getstatic_4: case op_getstatic_8: case op_getstatic_a: default: // Fail somehow. break; } } } // Now update exceptions. _Jv_InterpException *exc = exceptions (); for (int i = 0; i < exc_count; ++i) { exc[i].start_pc.p = &insns[pc_mapping[exc[i].start_pc.i]]; exc[i].end_pc.p = &insns[pc_mapping[exc[i].end_pc.i]]; exc[i].handler_pc.p = &insns[pc_mapping[exc[i].handler_pc.i]]; jclass handler = (_Jv_Linker::resolve_pool_entry (defining_class, exc[i].handler_type.i)).clazz; exc[i].handler_type.p = handler; } // Translate entries in the LineNumberTable from bytecode PC's to direct // threaded interpreter instruction values. for (int i = 0; i < line_table_len; i++) { int byte_pc = line_table[i].bytecode_pc; // It isn't worth throwing an exception if this table is // corrupted, but at the same time we don't want a crash. if (byte_pc < 0 || byte_pc >= code_length) byte_pc = 0; line_table[i].pc = &insns[pc_mapping[byte_pc]]; } prepared = insns; } #endif /* DIRECT_THREADED */ void _Jv_InterpMethod::run (void *retp, ffi_raw *args, _Jv_InterpMethod *meth) { using namespace java::lang::reflect; // FRAME_DESC registers this particular invocation as the top-most // interpreter frame. This lets the stack tracing code (for // Throwable) print information about the method being interpreted // rather than about the interpreter itself. FRAME_DESC has a // destructor so it cleans up automatically when the interpreter // returns. java::lang::Thread *thread = java::lang::Thread::currentThread(); _Jv_InterpFrame frame_desc (meth, (_Jv_InterpFrame **) &thread->interp_frame); _Jv_word stack[meth->max_stack]; _Jv_word *sp = stack; _Jv_word locals[meth->max_locals]; /* Go straight at it! the ffi raw format matches the internal stack representation exactly. At least, that's the idea. */ memcpy ((void*) locals, (void*) args, meth->args_raw_size); _Jv_word *pool_data = meth->defining_class->constants.data; /* These three are temporaries for common code used by several instructions. */ void (*fun)(); _Jv_ResolvedMethod* rmeth; int tmpval; #define INSN_LABEL(op) &&insn_##op static const void *const insn_target[] = { INSN_LABEL(nop), INSN_LABEL(aconst_null), INSN_LABEL(iconst_m1), INSN_LABEL(iconst_0), INSN_LABEL(iconst_1), INSN_LABEL(iconst_2), INSN_LABEL(iconst_3), INSN_LABEL(iconst_4), INSN_LABEL(iconst_5), INSN_LABEL(lconst_0), INSN_LABEL(lconst_1), INSN_LABEL(fconst_0), INSN_LABEL(fconst_1), INSN_LABEL(fconst_2), INSN_LABEL(dconst_0), INSN_LABEL(dconst_1), INSN_LABEL(bipush), INSN_LABEL(sipush), INSN_LABEL(ldc), INSN_LABEL(ldc_w), INSN_LABEL(ldc2_w), INSN_LABEL(iload), INSN_LABEL(lload), INSN_LABEL(fload), INSN_LABEL(dload), INSN_LABEL(aload), INSN_LABEL(iload_0), INSN_LABEL(iload_1), INSN_LABEL(iload_2), INSN_LABEL(iload_3), INSN_LABEL(lload_0), INSN_LABEL(lload_1), INSN_LABEL(lload_2), INSN_LABEL(lload_3), INSN_LABEL(fload_0), INSN_LABEL(fload_1), INSN_LABEL(fload_2), INSN_LABEL(fload_3), INSN_LABEL(dload_0), INSN_LABEL(dload_1), INSN_LABEL(dload_2), INSN_LABEL(dload_3), INSN_LABEL(aload_0), INSN_LABEL(aload_1), INSN_LABEL(aload_2), INSN_LABEL(aload_3), INSN_LABEL(iaload), INSN_LABEL(laload), INSN_LABEL(faload), INSN_LABEL(daload), INSN_LABEL(aaload), INSN_LABEL(baload), INSN_LABEL(caload), INSN_LABEL(saload), INSN_LABEL(istore), INSN_LABEL(lstore), INSN_LABEL(fstore), INSN_LABEL(dstore), INSN_LABEL(astore), INSN_LABEL(istore_0), INSN_LABEL(istore_1), INSN_LABEL(istore_2), INSN_LABEL(istore_3), INSN_LABEL(lstore_0), INSN_LABEL(lstore_1), INSN_LABEL(lstore_2), INSN_LABEL(lstore_3), INSN_LABEL(fstore_0), INSN_LABEL(fstore_1), INSN_LABEL(fstore_2), INSN_LABEL(fstore_3), INSN_LABEL(dstore_0), INSN_LABEL(dstore_1), INSN_LABEL(dstore_2), INSN_LABEL(dstore_3), INSN_LABEL(astore_0), INSN_LABEL(astore_1), INSN_LABEL(astore_2), INSN_LABEL(astore_3), INSN_LABEL(iastore), INSN_LABEL(lastore), INSN_LABEL(fastore), INSN_LABEL(dastore), INSN_LABEL(aastore), INSN_LABEL(bastore), INSN_LABEL(castore), INSN_LABEL(sastore), INSN_LABEL(pop), INSN_LABEL(pop2), INSN_LABEL(dup), INSN_LABEL(dup_x1), INSN_LABEL(dup_x2), INSN_LABEL(dup2), INSN_LABEL(dup2_x1), INSN_LABEL(dup2_x2), INSN_LABEL(swap), INSN_LABEL(iadd), INSN_LABEL(ladd), INSN_LABEL(fadd), INSN_LABEL(dadd), INSN_LABEL(isub), INSN_LABEL(lsub), INSN_LABEL(fsub), INSN_LABEL(dsub), INSN_LABEL(imul), INSN_LABEL(lmul), INSN_LABEL(fmul), INSN_LABEL(dmul), INSN_LABEL(idiv), INSN_LABEL(ldiv), INSN_LABEL(fdiv), INSN_LABEL(ddiv), INSN_LABEL(irem), INSN_LABEL(lrem), INSN_LABEL(frem), INSN_LABEL(drem), INSN_LABEL(ineg), INSN_LABEL(lneg), INSN_LABEL(fneg), INSN_LABEL(dneg), INSN_LABEL(ishl), INSN_LABEL(lshl), INSN_LABEL(ishr), INSN_LABEL(lshr), INSN_LABEL(iushr), INSN_LABEL(lushr), INSN_LABEL(iand), INSN_LABEL(land), INSN_LABEL(ior), INSN_LABEL(lor), INSN_LABEL(ixor), INSN_LABEL(lxor), INSN_LABEL(iinc), INSN_LABEL(i2l), INSN_LABEL(i2f), INSN_LABEL(i2d), INSN_LABEL(l2i), INSN_LABEL(l2f), INSN_LABEL(l2d), INSN_LABEL(f2i), INSN_LABEL(f2l), INSN_LABEL(f2d), INSN_LABEL(d2i), INSN_LABEL(d2l), INSN_LABEL(d2f), INSN_LABEL(i2b), INSN_LABEL(i2c), INSN_LABEL(i2s), INSN_LABEL(lcmp), INSN_LABEL(fcmpl), INSN_LABEL(fcmpg), INSN_LABEL(dcmpl), INSN_LABEL(dcmpg), INSN_LABEL(ifeq), INSN_LABEL(ifne), INSN_LABEL(iflt), INSN_LABEL(ifge), INSN_LABEL(ifgt), INSN_LABEL(ifle), INSN_LABEL(if_icmpeq), INSN_LABEL(if_icmpne), INSN_LABEL(if_icmplt), INSN_LABEL(if_icmpge), INSN_LABEL(if_icmpgt), INSN_LABEL(if_icmple), INSN_LABEL(if_acmpeq), INSN_LABEL(if_acmpne), INSN_LABEL(goto), INSN_LABEL(jsr), INSN_LABEL(ret), INSN_LABEL(tableswitch), INSN_LABEL(lookupswitch), INSN_LABEL(ireturn), INSN_LABEL(lreturn), INSN_LABEL(freturn), INSN_LABEL(dreturn), INSN_LABEL(areturn), INSN_LABEL(return), INSN_LABEL(getstatic), INSN_LABEL(putstatic), INSN_LABEL(getfield), INSN_LABEL(putfield), INSN_LABEL(invokevirtual), INSN_LABEL(invokespecial), INSN_LABEL(invokestatic), INSN_LABEL(invokeinterface), 0, /* Unused. */ INSN_LABEL(new), INSN_LABEL(newarray), INSN_LABEL(anewarray), INSN_LABEL(arraylength), INSN_LABEL(athrow), INSN_LABEL(checkcast), INSN_LABEL(instanceof), INSN_LABEL(monitorenter), INSN_LABEL(monitorexit), #ifdef DIRECT_THREADED 0, // wide #else INSN_LABEL(wide), #endif INSN_LABEL(multianewarray), INSN_LABEL(ifnull), INSN_LABEL(ifnonnull), INSN_LABEL(goto_w), INSN_LABEL(jsr_w), 0 }; pc_t pc; #ifdef DIRECT_THREADED #define NEXT_INSN goto *((pc++)->insn) #define INTVAL() ((pc++)->int_val) #define AVAL() ((pc++)->datum) #define GET1S() INTVAL () #define GET2S() INTVAL () #define GET1U() INTVAL () #define GET2U() INTVAL () #define AVAL1U() AVAL () #define AVAL2U() AVAL () #define AVAL2UP() AVAL () #define SKIP_GOTO ++pc #define GOTO_VAL() (insn_slot *) pc->datum #define PCVAL(unionval) unionval.p #define AMPAMP(label) &&label // Compile if we must. NOTE: Double-check locking. if (meth->prepared == NULL) { _Jv_MutexLock (&compile_mutex); if (meth->prepared == NULL) meth->compile (insn_target); _Jv_MutexUnlock (&compile_mutex); } pc = (insn_slot *) meth->prepared; #else #define NEXT_INSN goto *(insn_target[*pc++]) #define GET1S() get1s (pc++) #define GET2S() (pc += 2, get2s (pc- 2)) #define GET1U() get1u (pc++) #define GET2U() (pc += 2, get2u (pc - 2)) #define AVAL1U() ({ int index = get1u (pc++); pool_data[index].o; }) #define AVAL2U() ({ int index = get2u (pc); pc += 2; pool_data[index].o; }) #define AVAL2UP() ({ int index = get2u (pc); pc += 2; &pool_data[index]; }) #define SKIP_GOTO pc += 2 #define GOTO_VAL() pc - 1 + get2s (pc) #define PCVAL(unionval) unionval.i #define AMPAMP(label) NULL pc = bytecode (); #endif /* DIRECT_THREADED */ #define TAKE_GOTO pc = GOTO_VAL () try { // We keep nop around. It is used if we're interpreting the // bytecodes and not doing direct threading. insn_nop: NEXT_INSN; /* The first few instructions here are ordered according to their frequency, in the hope that this will improve code locality a little. */ insn_aload_0: // 0x2a LOADA (0); NEXT_INSN; insn_iload: // 0x15 LOADI (GET1U ()); NEXT_INSN; insn_iload_1: // 0x1b LOADI (1); NEXT_INSN; insn_invokevirtual: // 0xb6 { int index = GET2U (); /* _Jv_Linker::resolve_pool_entry returns immediately if the * value already is resolved. If we want to clutter up the * code here to gain a little performance, then we can check * the corresponding bit JV_CONSTANT_ResolvedFlag in the tag * directly. For now, I don't think it is worth it. */ SAVE_PC(); rmeth = (_Jv_Linker::resolve_pool_entry (meth->defining_class, index)).rmethod; sp -= rmeth->stack_item_count; // We don't use NULLCHECK here because we can't rely on that // working if the method is final. So instead we do an // explicit test. if (! sp[0].o) { //printf("invokevirtual pc = %p/%i\n", pc, meth->get_pc_val(pc)); throw new java::lang::NullPointerException; } if (rmeth->vtable_index == -1) { // final methods do not appear in the vtable, // if it does not appear in the superclass. fun = (void (*)()) rmeth->method->ncode; } else { jobject rcv = sp[0].o; _Jv_VTable *table = *(_Jv_VTable**) rcv; fun = (void (*)()) table->get_method (rmeth->vtable_index); } #ifdef DIRECT_THREADED // Rewrite instruction so that we use a faster pre-resolved // method. pc[-2].insn = &&invokevirtual_resolved; pc[-1].datum = rmeth; #endif /* DIRECT_THREADED */ } goto perform_invoke; #ifdef DIRECT_THREADED invokevirtual_resolved: { rmeth = (_Jv_ResolvedMethod *) AVAL (); sp -= rmeth->stack_item_count; // We don't use NULLCHECK here because we can't rely on that // working if the method is final. So instead we do an // explicit test. if (! sp[0].o) { SAVE_PC(); throw new java::lang::NullPointerException; } if (rmeth->vtable_index == -1) { // final methods do not appear in the vtable, // if it does not appear in the superclass. fun = (void (*)()) rmeth->method->ncode; } else { jobject rcv = sp[0].o; _Jv_VTable *table = *(_Jv_VTable**) rcv; fun = (void (*)()) table->get_method (rmeth->vtable_index); } } goto perform_invoke; #endif /* DIRECT_THREADED */ perform_invoke: { SAVE_PC(); /* here goes the magic again... */ ffi_cif *cif = &rmeth->cif; ffi_raw *raw = (ffi_raw*) sp; _Jv_value rvalue; #if FFI_NATIVE_RAW_API /* We assume that this is only implemented if it's correct */ /* to use it here. On a 64 bit machine, it never is. */ ffi_raw_call (cif, fun, (void*)&rvalue, raw); #else ffi_java_raw_call (cif, fun, (void*)&rvalue, raw); #endif int rtype = cif->rtype->type; /* the likelyhood of object, int, or void return is very high, * so those are checked before the switch */ if (rtype == FFI_TYPE_POINTER) { PUSHA (rvalue.object_value); } else if (rtype == FFI_TYPE_SINT32) { PUSHI (rvalue.int_value); } else if (rtype == FFI_TYPE_VOID) { /* skip */ } else { switch (rtype) { case FFI_TYPE_SINT8: PUSHI ((jbyte)(rvalue.int_value & 0xff)); break; case FFI_TYPE_SINT16: PUSHI ((jshort)(rvalue.int_value & 0xffff)); break; case FFI_TYPE_UINT16: PUSHI (rvalue.int_value & 0xffff); break; case FFI_TYPE_FLOAT: PUSHF (rvalue.float_value); break; case FFI_TYPE_DOUBLE: PUSHD (rvalue.double_value); break; case FFI_TYPE_SINT64: PUSHL (rvalue.long_value); break; default: throw_internal_error ("unknown return type in invokeXXX"); } } } NEXT_INSN; insn_aconst_null: PUSHA (NULL); NEXT_INSN; insn_iconst_m1: PUSHI (-1); NEXT_INSN; insn_iconst_0: PUSHI (0); NEXT_INSN; insn_iconst_1: PUSHI (1); NEXT_INSN; insn_iconst_2: PUSHI (2); NEXT_INSN; insn_iconst_3: PUSHI (3); NEXT_INSN; insn_iconst_4: PUSHI (4); NEXT_INSN; insn_iconst_5: PUSHI (5); NEXT_INSN; insn_lconst_0: PUSHL (0); NEXT_INSN; insn_lconst_1: PUSHL (1); NEXT_INSN; insn_fconst_0: PUSHF (0); NEXT_INSN; insn_fconst_1: PUSHF (1); NEXT_INSN; insn_fconst_2: PUSHF (2); NEXT_INSN; insn_dconst_0: PUSHD (0); NEXT_INSN; insn_dconst_1: PUSHD (1); NEXT_INSN; insn_bipush: // For direct threaded, bipush and sipush are the same. #ifndef DIRECT_THREADED PUSHI (GET1S ()); NEXT_INSN; #endif /* DIRECT_THREADED */ insn_sipush: PUSHI (GET2S ()); NEXT_INSN; insn_ldc: // For direct threaded, ldc and ldc_w are the same. #ifndef DIRECT_THREADED PUSHA ((jobject) AVAL1U ()); NEXT_INSN; #endif /* DIRECT_THREADED */ insn_ldc_w: PUSHA ((jobject) AVAL2U ()); NEXT_INSN; insn_ldc2_w: { void *where = AVAL2UP (); memcpy (sp, where, 2*sizeof (_Jv_word)); sp += 2; } NEXT_INSN; insn_lload: LOADL (GET1U ()); NEXT_INSN; insn_fload: LOADF (GET1U ()); NEXT_INSN; insn_dload: LOADD (GET1U ()); NEXT_INSN; insn_aload: LOADA (GET1U ()); NEXT_INSN; insn_iload_0: LOADI (0); NEXT_INSN; insn_iload_2: LOADI (2); NEXT_INSN; insn_iload_3: LOADI (3); NEXT_INSN; insn_lload_0: LOADL (0); NEXT_INSN; insn_lload_1: LOADL (1); NEXT_INSN; insn_lload_2: LOADL (2); NEXT_INSN; insn_lload_3: LOADL (3); NEXT_INSN; insn_fload_0: LOADF (0); NEXT_INSN; insn_fload_1: LOADF (1); NEXT_INSN; insn_fload_2: LOADF (2); NEXT_INSN; insn_fload_3: LOADF (3); NEXT_INSN; insn_dload_0: LOADD (0); NEXT_INSN; insn_dload_1: LOADD (1); NEXT_INSN; insn_dload_2: LOADD (2); NEXT_INSN; insn_dload_3: LOADD (3); NEXT_INSN; insn_aload_1: LOADA(1); NEXT_INSN; insn_aload_2: LOADA(2); NEXT_INSN; insn_aload_3: LOADA(3); NEXT_INSN; insn_iaload: { jint index = POPI(); jintArray arr = (jintArray) POPA(); NULLARRAYCHECK (arr); ARRAYBOUNDSCHECK (arr, index); PUSHI( elements(arr)[index] ); } NEXT_INSN; insn_laload: { jint index = POPI(); jlongArray arr = (jlongArray) POPA(); NULLARRAYCHECK (arr); ARRAYBOUNDSCHECK (arr, index); PUSHL( elements(arr)[index] ); } NEXT_INSN; insn_faload: { jint index = POPI(); jfloatArray arr = (jfloatArray) POPA(); NULLARRAYCHECK (arr); ARRAYBOUNDSCHECK (arr, index); PUSHF( elements(arr)[index] ); } NEXT_INSN; insn_daload: { jint index = POPI(); jdoubleArray arr = (jdoubleArray) POPA(); NULLARRAYCHECK (arr); ARRAYBOUNDSCHECK (arr, index); PUSHD( elements(arr)[index] ); } NEXT_INSN; insn_aaload: { jint index = POPI(); jobjectArray arr = (jobjectArray) POPA(); NULLARRAYCHECK (arr); ARRAYBOUNDSCHECK (arr, index); PUSHA( elements(arr)[index] ); } NEXT_INSN; insn_baload: { jint index = POPI(); jbyteArray arr = (jbyteArray) POPA(); NULLARRAYCHECK (arr); ARRAYBOUNDSCHECK (arr, index); PUSHI( elements(arr)[index] ); } NEXT_INSN; insn_caload: { jint index = POPI(); jcharArray arr = (jcharArray) POPA(); NULLARRAYCHECK (arr); ARRAYBOUNDSCHECK (arr, index); PUSHI( elements(arr)[index] ); } NEXT_INSN; insn_saload: { jint index = POPI(); jshortArray arr = (jshortArray) POPA(); NULLARRAYCHECK (arr); ARRAYBOUNDSCHECK (arr, index); PUSHI( elements(arr)[index] ); } NEXT_INSN; insn_istore: STOREI (GET1U ()); NEXT_INSN; insn_lstore: STOREL (GET1U ()); NEXT_INSN; insn_fstore: STOREF (GET1U ()); NEXT_INSN; insn_dstore: STORED (GET1U ()); NEXT_INSN; insn_astore: STOREA (GET1U ()); NEXT_INSN; insn_istore_0: STOREI (0); NEXT_INSN; insn_istore_1: STOREI (1); NEXT_INSN; insn_istore_2: STOREI (2); NEXT_INSN; insn_istore_3: STOREI (3); NEXT_INSN; insn_lstore_0: STOREL (0); NEXT_INSN; insn_lstore_1: STOREL (1); NEXT_INSN; insn_lstore_2: STOREL (2); NEXT_INSN; insn_lstore_3: STOREL (3); NEXT_INSN; insn_fstore_0: STOREF (0); NEXT_INSN; insn_fstore_1: STOREF (1); NEXT_INSN; insn_fstore_2: STOREF (2); NEXT_INSN; insn_fstore_3: STOREF (3); NEXT_INSN; insn_dstore_0: STORED (0); NEXT_INSN; insn_dstore_1: STORED (1); NEXT_INSN; insn_dstore_2: STORED (2); NEXT_INSN; insn_dstore_3: STORED (3); NEXT_INSN; insn_astore_0: STOREA(0); NEXT_INSN; insn_astore_1: STOREA(1); NEXT_INSN; insn_astore_2: STOREA(2); NEXT_INSN; insn_astore_3: STOREA(3); NEXT_INSN; insn_iastore: { jint value = POPI(); jint index = POPI(); jintArray arr = (jintArray) POPA(); NULLARRAYCHECK (arr); ARRAYBOUNDSCHECK (arr, index); elements(arr)[index] = value; } NEXT_INSN; insn_lastore: { jlong value = POPL(); jint index = POPI(); jlongArray arr = (jlongArray) POPA(); NULLARRAYCHECK (arr); ARRAYBOUNDSCHECK (arr, index); elements(arr)[index] = value; } NEXT_INSN; insn_fastore: { jfloat value = POPF(); jint index = POPI(); jfloatArray arr = (jfloatArray) POPA(); NULLARRAYCHECK (arr); ARRAYBOUNDSCHECK (arr, index); elements(arr)[index] = value; } NEXT_INSN; insn_dastore: { jdouble value = POPD(); jint index = POPI(); jdoubleArray arr = (jdoubleArray) POPA(); NULLARRAYCHECK (arr); ARRAYBOUNDSCHECK (arr, index); elements(arr)[index] = value; } NEXT_INSN; insn_aastore: { jobject value = POPA(); jint index = POPI(); jobjectArray arr = (jobjectArray) POPA(); NULLARRAYCHECK (arr); ARRAYBOUNDSCHECK (arr, index); _Jv_CheckArrayStore (arr, value); elements(arr)[index] = value; } NEXT_INSN; insn_bastore: { jbyte value = (jbyte) POPI(); jint index = POPI(); jbyteArray arr = (jbyteArray) POPA(); NULLARRAYCHECK (arr); ARRAYBOUNDSCHECK (arr, index); elements(arr)[index] = value; } NEXT_INSN; insn_castore: { jchar value = (jchar) POPI(); jint index = POPI(); jcharArray arr = (jcharArray) POPA(); NULLARRAYCHECK (arr); ARRAYBOUNDSCHECK (arr, index); elements(arr)[index] = value; } NEXT_INSN; insn_sastore: { jshort value = (jshort) POPI(); jint index = POPI(); jshortArray arr = (jshortArray) POPA(); NULLARRAYCHECK (arr); ARRAYBOUNDSCHECK (arr, index); elements(arr)[index] = value; } NEXT_INSN; insn_pop: sp -= 1; NEXT_INSN; insn_pop2: sp -= 2; NEXT_INSN; insn_dup: sp[0] = sp[-1]; sp += 1; NEXT_INSN; insn_dup_x1: dupx (sp, 1, 1); sp+=1; NEXT_INSN; insn_dup_x2: dupx (sp, 1, 2); sp+=1; NEXT_INSN; insn_dup2: sp[0] = sp[-2]; sp[1] = sp[-1]; sp += 2; NEXT_INSN; insn_dup2_x1: dupx (sp, 2, 1); sp+=2; NEXT_INSN; insn_dup2_x2: dupx (sp, 2, 2); sp+=2; NEXT_INSN; insn_swap: { jobject tmp1 = POPA(); jobject tmp2 = POPA(); PUSHA (tmp1); PUSHA (tmp2); } NEXT_INSN; insn_iadd: BINOPI(+); NEXT_INSN; insn_ladd: BINOPL(+); NEXT_INSN; insn_fadd: BINOPF(+); NEXT_INSN; insn_dadd: BINOPD(+); NEXT_INSN; insn_isub: BINOPI(-); NEXT_INSN; insn_lsub: BINOPL(-); NEXT_INSN; insn_fsub: BINOPF(-); NEXT_INSN; insn_dsub: BINOPD(-); NEXT_INSN; insn_imul: BINOPI(*); NEXT_INSN; insn_lmul: BINOPL(*); NEXT_INSN; insn_fmul: BINOPF(*); NEXT_INSN; insn_dmul: BINOPD(*); NEXT_INSN; insn_idiv: { jint value2 = POPI(); jint value1 = POPI(); jint res = _Jv_divI (value1, value2); PUSHI (res); } NEXT_INSN; insn_ldiv: { jlong value2 = POPL(); jlong value1 = POPL(); jlong res = _Jv_divJ (value1, value2); PUSHL (res); } NEXT_INSN; insn_fdiv: { jfloat value2 = POPF(); jfloat value1 = POPF(); jfloat res = value1 / value2; PUSHF (res); } NEXT_INSN; insn_ddiv: { jdouble value2 = POPD(); jdouble value1 = POPD(); jdouble res = value1 / value2; PUSHD (res); } NEXT_INSN; insn_irem: { jint value2 = POPI(); jint value1 = POPI(); jint res = _Jv_remI (value1, value2); PUSHI (res); } NEXT_INSN; insn_lrem: { jlong value2 = POPL(); jlong value1 = POPL(); jlong res = _Jv_remJ (value1, value2); PUSHL (res); } NEXT_INSN; insn_frem: { jfloat value2 = POPF(); jfloat value1 = POPF(); jfloat res = __ieee754_fmod (value1, value2); PUSHF (res); } NEXT_INSN; insn_drem: { jdouble value2 = POPD(); jdouble value1 = POPD(); jdouble res = __ieee754_fmod (value1, value2); PUSHD (res); } NEXT_INSN; insn_ineg: { jint value = POPI(); PUSHI (value * -1); } NEXT_INSN; insn_lneg: { jlong value = POPL(); PUSHL (value * -1); } NEXT_INSN; insn_fneg: { jfloat value = POPF(); PUSHF (value * -1); } NEXT_INSN; insn_dneg: { jdouble value = POPD(); PUSHD (value * -1); } NEXT_INSN; insn_ishl: { jint shift = (POPI() & 0x1f); jint value = POPI(); PUSHI (value << shift); } NEXT_INSN; insn_lshl: { jint shift = (POPI() & 0x3f); jlong value = POPL(); PUSHL (value << shift); } NEXT_INSN; insn_ishr: { jint shift = (POPI() & 0x1f); jint value = POPI(); PUSHI (value >> shift); } NEXT_INSN; insn_lshr: { jint shift = (POPI() & 0x3f); jlong value = POPL(); PUSHL (value >> shift); } NEXT_INSN; insn_iushr: { jint shift = (POPI() & 0x1f); _Jv_uint value = (_Jv_uint) POPI(); PUSHI ((jint) (value >> shift)); } NEXT_INSN; insn_lushr: { jint shift = (POPI() & 0x3f); _Jv_ulong value = (_Jv_ulong) POPL(); PUSHL ((jlong) (value >> shift)); } NEXT_INSN; insn_iand: BINOPI (&); NEXT_INSN; insn_land: BINOPL (&); NEXT_INSN; insn_ior: BINOPI (|); NEXT_INSN; insn_lor: BINOPL (|); NEXT_INSN; insn_ixor: BINOPI (^); NEXT_INSN; insn_lxor: BINOPL (^); NEXT_INSN; insn_iinc: { jint index = GET1U (); jint amount = GET1S (); locals[index].i += amount; } NEXT_INSN; insn_i2l: {jlong value = POPI(); PUSHL (value);} NEXT_INSN; insn_i2f: {jfloat value = POPI(); PUSHF (value);} NEXT_INSN; insn_i2d: {jdouble value = POPI(); PUSHD (value);} NEXT_INSN; insn_l2i: {jint value = POPL(); PUSHI (value);} NEXT_INSN; insn_l2f: {jfloat value = POPL(); PUSHF (value);} NEXT_INSN; insn_l2d: {jdouble value = POPL(); PUSHD (value);} NEXT_INSN; insn_f2i: { using namespace java::lang; jint value = convert (POPF (), Integer::MIN_VALUE, Integer::MAX_VALUE); PUSHI(value); } NEXT_INSN; insn_f2l: { using namespace java::lang; jlong value = convert (POPF (), Long::MIN_VALUE, Long::MAX_VALUE); PUSHL(value); } NEXT_INSN; insn_f2d: { jdouble value = POPF (); PUSHD(value); } NEXT_INSN; insn_d2i: { using namespace java::lang; jint value = convert (POPD (), Integer::MIN_VALUE, Integer::MAX_VALUE); PUSHI(value); } NEXT_INSN; insn_d2l: { using namespace java::lang; jlong value = convert (POPD (), Long::MIN_VALUE, Long::MAX_VALUE); PUSHL(value); } NEXT_INSN; insn_d2f: { jfloat value = POPD (); PUSHF(value); } NEXT_INSN; insn_i2b: { jbyte value = POPI (); PUSHI(value); } NEXT_INSN; insn_i2c: { jchar value = POPI (); PUSHI(value); } NEXT_INSN; insn_i2s: { jshort value = POPI (); PUSHI(value); } NEXT_INSN; insn_lcmp: { jlong value2 = POPL (); jlong value1 = POPL (); if (value1 > value2) { PUSHI (1); } else if (value1 == value2) { PUSHI (0); } else { PUSHI (-1); } } NEXT_INSN; insn_fcmpl: tmpval = -1; goto fcmp; insn_fcmpg: tmpval = 1; fcmp: { jfloat value2 = POPF (); jfloat value1 = POPF (); if (value1 > value2) PUSHI (1); else if (value1 == value2) PUSHI (0); else if (value1 < value2) PUSHI (-1); else PUSHI (tmpval); } NEXT_INSN; insn_dcmpl: tmpval = -1; goto dcmp; insn_dcmpg: tmpval = 1; dcmp: { jdouble value2 = POPD (); jdouble value1 = POPD (); if (value1 > value2) PUSHI (1); else if (value1 == value2) PUSHI (0); else if (value1 < value2) PUSHI (-1); else PUSHI (tmpval); } NEXT_INSN; insn_ifeq: { if (POPI() == 0) TAKE_GOTO; else SKIP_GOTO; } NEXT_INSN; insn_ifne: { if (POPI() != 0) TAKE_GOTO; else SKIP_GOTO; } NEXT_INSN; insn_iflt: { if (POPI() < 0) TAKE_GOTO; else SKIP_GOTO; } NEXT_INSN; insn_ifge: { if (POPI() >= 0) TAKE_GOTO; else SKIP_GOTO; } NEXT_INSN; insn_ifgt: { if (POPI() > 0) TAKE_GOTO; else SKIP_GOTO; } NEXT_INSN; insn_ifle: { if (POPI() <= 0) TAKE_GOTO; else SKIP_GOTO; } NEXT_INSN; insn_if_icmpeq: { jint value2 = POPI(); jint value1 = POPI(); if (value1 == value2) TAKE_GOTO; else SKIP_GOTO; } NEXT_INSN; insn_if_icmpne: { jint value2 = POPI(); jint value1 = POPI(); if (value1 != value2) TAKE_GOTO; else SKIP_GOTO; } NEXT_INSN; insn_if_icmplt: { jint value2 = POPI(); jint value1 = POPI(); if (value1 < value2) TAKE_GOTO; else SKIP_GOTO; } NEXT_INSN; insn_if_icmpge: { jint value2 = POPI(); jint value1 = POPI(); if (value1 >= value2) TAKE_GOTO; else SKIP_GOTO; } NEXT_INSN; insn_if_icmpgt: { jint value2 = POPI(); jint value1 = POPI(); if (value1 > value2) TAKE_GOTO; else SKIP_GOTO; } NEXT_INSN; insn_if_icmple: { jint value2 = POPI(); jint value1 = POPI(); if (value1 <= value2) TAKE_GOTO; else SKIP_GOTO; } NEXT_INSN; insn_if_acmpeq: { jobject value2 = POPA(); jobject value1 = POPA(); if (value1 == value2) TAKE_GOTO; else SKIP_GOTO; } NEXT_INSN; insn_if_acmpne: { jobject value2 = POPA(); jobject value1 = POPA(); if (value1 != value2) TAKE_GOTO; else SKIP_GOTO; } NEXT_INSN; insn_goto_w: #ifndef DIRECT_THREADED // For direct threaded, goto and goto_w are the same. pc = pc - 1 + get4 (pc); NEXT_INSN; #endif /* DIRECT_THREADED */ insn_goto: TAKE_GOTO; NEXT_INSN; insn_jsr_w: #ifndef DIRECT_THREADED // For direct threaded, jsr and jsr_w are the same. { pc_t next = pc - 1 + get4 (pc); pc += 4; PUSHA ((jobject) pc); pc = next; } NEXT_INSN; #endif /* DIRECT_THREADED */ insn_jsr: { pc_t next = GOTO_VAL(); SKIP_GOTO; PUSHA ((jobject) pc); pc = next; } NEXT_INSN; insn_ret: { jint index = GET1U (); pc = (pc_t) PEEKA (index); } NEXT_INSN; insn_tableswitch: { #ifdef DIRECT_THREADED void *def = (pc++)->datum; int index = POPI(); jint low = INTVAL (); jint high = INTVAL (); if (index < low || index > high) pc = (insn_slot *) def; else pc = (insn_slot *) ((pc + index - low)->datum); #else pc_t base_pc = pc - 1; int index = POPI (); pc_t base = (pc_t) bytecode (); while ((pc - base) % 4 != 0) ++pc; jint def = get4 (pc); jint low = get4 (pc + 4); jint high = get4 (pc + 8); if (index < low || index > high) pc = base_pc + def; else pc = base_pc + get4 (pc + 4 * (index - low + 3)); #endif /* DIRECT_THREADED */ } NEXT_INSN; insn_lookupswitch: { #ifdef DIRECT_THREADED void *def = (pc++)->insn; int index = POPI(); jint npairs = INTVAL (); int max = npairs - 1; int min = 0; // Simple binary search... while (min < max) { int half = (min + max) / 2; int match = pc[2 * half].int_val; if (index == match) { // Found it. pc = (insn_slot *) pc[2 * half + 1].datum; NEXT_INSN; } else if (index < match) // We can use HALF - 1 here because we check again on // loop exit. max = half - 1; else // We can use HALF + 1 here because we check again on // loop exit. min = half + 1; } if (index == pc[2 * min].int_val) pc = (insn_slot *) pc[2 * min + 1].datum; else pc = (insn_slot *) def; #else unsigned char *base_pc = pc-1; int index = POPI(); unsigned char* base = bytecode (); while ((pc-base) % 4 != 0) ++pc; jint def = get4 (pc); jint npairs = get4 (pc+4); int max = npairs-1; int min = 0; // Simple binary search... while (min < max) { int half = (min+max)/2; int match = get4 (pc+ 4*(2 + 2*half)); if (index == match) min = max = half; else if (index < match) // We can use HALF - 1 here because we check again on // loop exit. max = half - 1; else // We can use HALF + 1 here because we check again on // loop exit. min = half + 1; } if (index == get4 (pc+ 4*(2 + 2*min))) pc = base_pc + get4 (pc+ 4*(2 + 2*min + 1)); else pc = base_pc + def; #endif /* DIRECT_THREADED */ } NEXT_INSN; insn_areturn: *(jobject *) retp = POPA (); return; insn_lreturn: *(jlong *) retp = POPL (); return; insn_freturn: *(jfloat *) retp = POPF (); return; insn_dreturn: *(jdouble *) retp = POPD (); return; insn_ireturn: *(jint *) retp = POPI (); return; insn_return: return; insn_getstatic: { jint fieldref_index = GET2U (); SAVE_PC(); // Constant pool resolution could throw. _Jv_Linker::resolve_pool_entry (meth->defining_class, fieldref_index); _Jv_Field *field = pool_data[fieldref_index].field; if ((field->flags & Modifier::STATIC) == 0) throw_incompatible_class_change_error (JvNewStringLatin1 ("field no longer static")); jclass type = field->type; // We rewrite the instruction once we discover what it refers // to. void *newinsn = NULL; if (type->isPrimitive ()) { switch (type->size_in_bytes) { case 1: PUSHI (*field->u.byte_addr); newinsn = AMPAMP (getstatic_resolved_1); break; case 2: if (type == JvPrimClass (char)) { PUSHI (*field->u.char_addr); newinsn = AMPAMP (getstatic_resolved_char); } else { PUSHI (*field->u.short_addr); newinsn = AMPAMP (getstatic_resolved_short); } break; case 4: PUSHI(*field->u.int_addr); newinsn = AMPAMP (getstatic_resolved_4); break; case 8: PUSHL(*field->u.long_addr); newinsn = AMPAMP (getstatic_resolved_8); break; } } else { PUSHA(*field->u.object_addr); newinsn = AMPAMP (getstatic_resolved_obj); } #ifdef DIRECT_THREADED pc[-2].insn = newinsn; pc[-1].datum = field->u.addr; #endif /* DIRECT_THREADED */ } NEXT_INSN; #ifdef DIRECT_THREADED getstatic_resolved_1: PUSHI (*(jbyte *) AVAL ()); NEXT_INSN; getstatic_resolved_char: PUSHI (*(jchar *) AVAL ()); NEXT_INSN; getstatic_resolved_short: PUSHI (*(jshort *) AVAL ()); NEXT_INSN; getstatic_resolved_4: PUSHI (*(jint *) AVAL ()); NEXT_INSN; getstatic_resolved_8: PUSHL (*(jlong *) AVAL ()); NEXT_INSN; getstatic_resolved_obj: PUSHA (*(jobject *) AVAL ()); NEXT_INSN; #endif /* DIRECT_THREADED */ insn_getfield: { jint fieldref_index = GET2U (); _Jv_Linker::resolve_pool_entry (meth->defining_class, fieldref_index); _Jv_Field *field = pool_data[fieldref_index].field; if ((field->flags & Modifier::STATIC) != 0) throw_incompatible_class_change_error (JvNewStringLatin1 ("field is static")); jclass type = field->type; jint field_offset = field->u.boffset; if (field_offset > 0xffff) throw new java::lang::VirtualMachineError; jobject obj = POPA(); NULLCHECK(obj); void *newinsn = NULL; _Jv_value *val = (_Jv_value *) ((char *)obj + field_offset); if (type->isPrimitive ()) { switch (type->size_in_bytes) { case 1: PUSHI (val->byte_value); newinsn = AMPAMP (getfield_resolved_1); break; case 2: if (type == JvPrimClass (char)) { PUSHI (val->char_value); newinsn = AMPAMP (getfield_resolved_char); } else { PUSHI (val->short_value); newinsn = AMPAMP (getfield_resolved_short); } break; case 4: PUSHI (val->int_value); newinsn = AMPAMP (getfield_resolved_4); break; case 8: PUSHL (val->long_value); newinsn = AMPAMP (getfield_resolved_8); break; } } else { PUSHA (val->object_value); newinsn = AMPAMP (getfield_resolved_obj); } #ifdef DIRECT_THREADED pc[-2].insn = newinsn; pc[-1].int_val = field_offset; #endif /* DIRECT_THREADED */ } NEXT_INSN; #ifdef DIRECT_THREADED getfield_resolved_1: { char *obj = (char *) POPA (); NULLCHECK (obj); PUSHI (*(jbyte *) (obj + INTVAL ())); } NEXT_INSN; getfield_resolved_char: { char *obj = (char *) POPA (); NULLCHECK (obj); PUSHI (*(jchar *) (obj + INTVAL ())); } NEXT_INSN; getfield_resolved_short: { char *obj = (char *) POPA (); NULLCHECK (obj); PUSHI (*(jshort *) (obj + INTVAL ())); } NEXT_INSN; getfield_resolved_4: { char *obj = (char *) POPA (); NULLCHECK (obj); PUSHI (*(jint *) (obj + INTVAL ())); } NEXT_INSN; getfield_resolved_8: { char *obj = (char *) POPA (); NULLCHECK (obj); PUSHL (*(jlong *) (obj + INTVAL ())); } NEXT_INSN; getfield_resolved_obj: { char *obj = (char *) POPA (); NULLCHECK (obj); PUSHA (*(jobject *) (obj + INTVAL ())); } NEXT_INSN; #endif /* DIRECT_THREADED */ insn_putstatic: { jint fieldref_index = GET2U (); _Jv_Linker::resolve_pool_entry (meth->defining_class, fieldref_index); _Jv_Field *field = pool_data[fieldref_index].field; jclass type = field->type; // ResolvePoolEntry cannot check this if ((field->flags & Modifier::STATIC) == 0) throw_incompatible_class_change_error (JvNewStringLatin1 ("field no longer static")); void *newinsn = NULL; if (type->isPrimitive ()) { switch (type->size_in_bytes) { case 1: { jint value = POPI(); *field->u.byte_addr = value; newinsn = AMPAMP (putstatic_resolved_1); break; } case 2: { jint value = POPI(); *field->u.char_addr = value; newinsn = AMPAMP (putstatic_resolved_2); break; } case 4: { jint value = POPI(); *field->u.int_addr = value; newinsn = AMPAMP (putstatic_resolved_4); break; } case 8: { jlong value = POPL(); *field->u.long_addr = value; newinsn = AMPAMP (putstatic_resolved_8); break; } } } else { jobject value = POPA(); *field->u.object_addr = value; newinsn = AMPAMP (putstatic_resolved_obj); } #ifdef DIRECT_THREADED pc[-2].insn = newinsn; pc[-1].datum = field->u.addr; #endif /* DIRECT_THREADED */ } NEXT_INSN; #ifdef DIRECT_THREADED putstatic_resolved_1: *(jbyte *) AVAL () = POPI (); NEXT_INSN; putstatic_resolved_2: *(jchar *) AVAL () = POPI (); NEXT_INSN; putstatic_resolved_4: *(jint *) AVAL () = POPI (); NEXT_INSN; putstatic_resolved_8: *(jlong *) AVAL () = POPL (); NEXT_INSN; putstatic_resolved_obj: *(jobject *) AVAL () = POPA (); NEXT_INSN; #endif /* DIRECT_THREADED */ insn_putfield: { jint fieldref_index = GET2U (); _Jv_Linker::resolve_pool_entry (meth->defining_class, fieldref_index); _Jv_Field *field = pool_data[fieldref_index].field; jclass type = field->type; if ((field->flags & Modifier::STATIC) != 0) throw_incompatible_class_change_error (JvNewStringLatin1 ("field is static")); jint field_offset = field->u.boffset; if (field_offset > 0xffff) throw new java::lang::VirtualMachineError; void *newinsn = NULL; if (type->isPrimitive ()) { switch (type->size_in_bytes) { case 1: { jint value = POPI(); jobject obj = POPA(); NULLCHECK(obj); *(jbyte*) ((char*)obj + field_offset) = value; newinsn = AMPAMP (putfield_resolved_1); break; } case 2: { jint value = POPI(); jobject obj = POPA(); NULLCHECK(obj); *(jchar*) ((char*)obj + field_offset) = value; newinsn = AMPAMP (putfield_resolved_2); break; } case 4: { jint value = POPI(); jobject obj = POPA(); NULLCHECK(obj); *(jint*) ((char*)obj + field_offset) = value; newinsn = AMPAMP (putfield_resolved_4); break; } case 8: { jlong value = POPL(); jobject obj = POPA(); NULLCHECK(obj); *(jlong*) ((char*)obj + field_offset) = value; newinsn = AMPAMP (putfield_resolved_8); break; } } } else { jobject value = POPA(); jobject obj = POPA(); NULLCHECK(obj); *(jobject*) ((char*)obj + field_offset) = value; newinsn = AMPAMP (putfield_resolved_obj); } #ifdef DIRECT_THREADED pc[-2].insn = newinsn; pc[-1].int_val = field_offset; #endif /* DIRECT_THREADED */ } NEXT_INSN; #ifdef DIRECT_THREADED putfield_resolved_1: { jint val = POPI (); char *obj = (char *) POPA (); NULLCHECK (obj); *(jbyte *) (obj + INTVAL ()) = val; } NEXT_INSN; putfield_resolved_2: { jint val = POPI (); char *obj = (char *) POPA (); NULLCHECK (obj); *(jchar *) (obj + INTVAL ()) = val; } NEXT_INSN; putfield_resolved_4: { jint val = POPI (); char *obj = (char *) POPA (); NULLCHECK (obj); *(jint *) (obj + INTVAL ()) = val; } NEXT_INSN; putfield_resolved_8: { jlong val = POPL (); char *obj = (char *) POPA (); NULLCHECK (obj); *(jlong *) (obj + INTVAL ()) = val; } NEXT_INSN; putfield_resolved_obj: { jobject val = POPA (); char *obj = (char *) POPA (); NULLCHECK (obj); *(jobject *) (obj + INTVAL ()) = val; } NEXT_INSN; #endif /* DIRECT_THREADED */ insn_invokespecial: { int index = GET2U (); rmeth = (_Jv_Linker::resolve_pool_entry (meth->defining_class, index)).rmethod; sp -= rmeth->stack_item_count; // We don't use NULLCHECK here because we can't rely on that // working for . So instead we do an explicit test. if (! sp[0].o) { SAVE_PC(); throw new java::lang::NullPointerException; } fun = (void (*)()) rmeth->method->ncode; #ifdef DIRECT_THREADED // Rewrite instruction so that we use a faster pre-resolved // method. pc[-2].insn = &&invokespecial_resolved; pc[-1].datum = rmeth; #endif /* DIRECT_THREADED */ } goto perform_invoke; #ifdef DIRECT_THREADED invokespecial_resolved: { rmeth = (_Jv_ResolvedMethod *) AVAL (); sp -= rmeth->stack_item_count; // We don't use NULLCHECK here because we can't rely on that // working for . So instead we do an explicit test. if (! sp[0].o) { SAVE_PC(); throw new java::lang::NullPointerException; } fun = (void (*)()) rmeth->method->ncode; } goto perform_invoke; #endif /* DIRECT_THREADED */ insn_invokestatic: { int index = GET2U (); rmeth = (_Jv_Linker::resolve_pool_entry (meth->defining_class, index)).rmethod; sp -= rmeth->stack_item_count; fun = (void (*)()) rmeth->method->ncode; #ifdef DIRECT_THREADED // Rewrite instruction so that we use a faster pre-resolved // method. pc[-2].insn = &&invokestatic_resolved; pc[-1].datum = rmeth; #endif /* DIRECT_THREADED */ } goto perform_invoke; #ifdef DIRECT_THREADED invokestatic_resolved: { rmeth = (_Jv_ResolvedMethod *) AVAL (); sp -= rmeth->stack_item_count; fun = (void (*)()) rmeth->method->ncode; } goto perform_invoke; #endif /* DIRECT_THREADED */ insn_invokeinterface: { int index = GET2U (); rmeth = (_Jv_Linker::resolve_pool_entry (meth->defining_class, index)).rmethod; sp -= rmeth->stack_item_count; jobject rcv = sp[0].o; NULLCHECK (rcv); fun = (void (*)()) _Jv_LookupInterfaceMethod (rcv->getClass (), rmeth->method->name, rmeth->method->signature); #ifdef DIRECT_THREADED // Rewrite instruction so that we use a faster pre-resolved // method. pc[-2].insn = &&invokeinterface_resolved; pc[-1].datum = rmeth; #else // Skip dummy bytes. pc += 2; #endif /* DIRECT_THREADED */ } goto perform_invoke; #ifdef DIRECT_THREADED invokeinterface_resolved: { rmeth = (_Jv_ResolvedMethod *) AVAL (); sp -= rmeth->stack_item_count; jobject rcv = sp[0].o; NULLCHECK (rcv); fun = (void (*)()) _Jv_LookupInterfaceMethod (rcv->getClass (), rmeth->method->name, rmeth->method->signature); } goto perform_invoke; #endif /* DIRECT_THREADED */ insn_new: { int index = GET2U (); jclass klass = (_Jv_Linker::resolve_pool_entry (meth->defining_class, index)).clazz; jobject res = _Jv_AllocObject (klass); PUSHA (res); #ifdef DIRECT_THREADED pc[-2].insn = &&new_resolved; pc[-1].datum = klass; #endif /* DIRECT_THREADED */ } NEXT_INSN; #ifdef DIRECT_THREADED new_resolved: { jclass klass = (jclass) AVAL (); jobject res = _Jv_AllocObject (klass); PUSHA (res); } NEXT_INSN; #endif /* DIRECT_THREADED */ insn_newarray: { int atype = GET1U (); int size = POPI(); jobject result = _Jv_NewArray (atype, size); PUSHA (result); } NEXT_INSN; insn_anewarray: { int index = GET2U (); jclass klass = (_Jv_Linker::resolve_pool_entry (meth->defining_class, index)).clazz; int size = POPI(); jobject result = _Jv_NewObjectArray (size, klass, 0); PUSHA (result); #ifdef DIRECT_THREADED pc[-2].insn = &&anewarray_resolved; pc[-1].datum = klass; #endif /* DIRECT_THREADED */ } NEXT_INSN; #ifdef DIRECT_THREADED anewarray_resolved: { jclass klass = (jclass) AVAL (); int size = POPI (); jobject result = _Jv_NewObjectArray (size, klass, 0); PUSHA (result); } NEXT_INSN; #endif /* DIRECT_THREADED */ insn_arraylength: { __JArray *arr = (__JArray*)POPA(); NULLARRAYCHECK (arr); PUSHI (arr->length); } NEXT_INSN; insn_athrow: { jobject value = POPA(); throw static_cast(value); } NEXT_INSN; insn_checkcast: { SAVE_PC(); jobject value = POPA(); jint index = GET2U (); jclass to = (_Jv_Linker::resolve_pool_entry (meth->defining_class, index)).clazz; if (value != NULL && ! to->isInstance (value)) throw new java::lang::ClassCastException (to->getName()); PUSHA (value); #ifdef DIRECT_THREADED pc[-2].insn = &&checkcast_resolved; pc[-1].datum = to; #endif /* DIRECT_THREADED */ } NEXT_INSN; #ifdef DIRECT_THREADED checkcast_resolved: { SAVE_PC(); jobject value = POPA (); jclass to = (jclass) AVAL (); if (value != NULL && ! to->isInstance (value)) throw new java::lang::ClassCastException (to->getName()); PUSHA (value); } NEXT_INSN; #endif /* DIRECT_THREADED */ insn_instanceof: { SAVE_PC(); jobject value = POPA(); jint index = GET2U (); jclass to = (_Jv_Linker::resolve_pool_entry (meth->defining_class, index)).clazz; PUSHI (to->isInstance (value)); #ifdef DIRECT_THREADED pc[-2].insn = &&instanceof_resolved; pc[-1].datum = to; #endif /* DIRECT_THREADED */ } NEXT_INSN; #ifdef DIRECT_THREADED instanceof_resolved: { jobject value = POPA (); jclass to = (jclass) AVAL (); PUSHI (to->isInstance (value)); } NEXT_INSN; #endif /* DIRECT_THREADED */ insn_monitorenter: { jobject value = POPA(); NULLCHECK(value); _Jv_MonitorEnter (value); } NEXT_INSN; insn_monitorexit: { jobject value = POPA(); NULLCHECK(value); _Jv_MonitorExit (value); } NEXT_INSN; insn_ifnull: { jobject val = POPA(); if (val == NULL) TAKE_GOTO; else SKIP_GOTO; } NEXT_INSN; insn_ifnonnull: { jobject val = POPA(); if (val != NULL) TAKE_GOTO; else SKIP_GOTO; } NEXT_INSN; insn_multianewarray: { int kind_index = GET2U (); int dim = GET1U (); jclass type = (_Jv_Linker::resolve_pool_entry (meth->defining_class, kind_index)).clazz; jint *sizes = (jint*) __builtin_alloca (sizeof (jint)*dim); for (int i = dim - 1; i >= 0; i--) { sizes[i] = POPI (); } jobject res = _Jv_NewMultiArray (type,dim, sizes); PUSHA (res); } NEXT_INSN; #ifndef DIRECT_THREADED insn_wide: { jint the_mod_op = get1u (pc++); jint wide = get2u (pc); pc += 2; switch (the_mod_op) { case op_istore: STOREI (wide); NEXT_INSN; case op_fstore: STOREF (wide); NEXT_INSN; case op_astore: STOREA (wide); NEXT_INSN; case op_lload: LOADL (wide); NEXT_INSN; case op_dload: LOADD (wide); NEXT_INSN; case op_iload: LOADI (wide); NEXT_INSN; case op_fload: LOADF (wide); NEXT_INSN; case op_aload: LOADA (wide); NEXT_INSN; case op_lstore: STOREL (wide); NEXT_INSN; case op_dstore: STORED (wide); NEXT_INSN; case op_ret: pc = (unsigned char*) PEEKA (wide); NEXT_INSN; case op_iinc: { jint amount = get2s (pc); pc += 2; jint value = PEEKI (wide); POKEI (wide, value+amount); } NEXT_INSN; default: throw_internal_error ("illegal bytecode modified by wide"); } } #endif /* DIRECT_THREADED */ } catch (java::lang::Throwable *ex) { #ifdef DIRECT_THREADED void *logical_pc = (void *) ((insn_slot *) pc - 1); #else int logical_pc = pc - 1 - bytecode (); #endif _Jv_InterpException *exc = meth->exceptions (); jclass exc_class = ex->getClass (); for (int i = 0; i < meth->exc_count; i++) { if (PCVAL (exc[i].start_pc) <= logical_pc && logical_pc < PCVAL (exc[i].end_pc)) { #ifdef DIRECT_THREADED jclass handler = (jclass) exc[i].handler_type.p; #else jclass handler = NULL; if (exc[i].handler_type.i != 0) handler = (_Jv_Linker::resolve_pool_entry (defining_class, exc[i].handler_type.i)).clazz; #endif /* DIRECT_THREADED */ if (handler == NULL || handler->isAssignableFrom (exc_class)) { #ifdef DIRECT_THREADED pc = (insn_slot *) exc[i].handler_pc.p; #else pc = bytecode () + exc[i].handler_pc.i; #endif /* DIRECT_THREADED */ sp = stack; sp++->o = ex; // Push exception. NEXT_INSN; } } } // No handler, so re-throw. throw ex; } } static void throw_internal_error (char *msg) { throw new java::lang::InternalError (JvNewStringLatin1 (msg)); } static void throw_incompatible_class_change_error (jstring msg) { throw new java::lang::IncompatibleClassChangeError (msg); } #ifndef HANDLE_SEGV static java::lang::NullPointerException *null_pointer_exc; static void throw_null_pointer_exception () { if (null_pointer_exc == NULL) null_pointer_exc = new java::lang::NullPointerException; throw null_pointer_exc; } #endif /* Look up source code line number for given bytecode (or direct threaded interpreter) PC. */ int _Jv_InterpMethod::get_source_line(pc_t mpc) { int line = line_table_len > 0 ? line_table[0].line : -1; for (int i = 1; i < line_table_len; i++) if (line_table[i].pc > mpc) break; else line = line_table[i].line; return line; } /** Do static initialization for fields with a constant initializer */ void _Jv_InitField (jobject obj, jclass klass, int index) { using namespace java::lang::reflect; if (obj != 0 && klass == 0) klass = obj->getClass (); if (!_Jv_IsInterpretedClass (klass)) return; _Jv_InterpClass *iclass = (_Jv_InterpClass*)klass->aux_info; _Jv_Field * field = (&klass->fields[0]) + index; if (index > klass->field_count) throw_internal_error ("field out of range"); int init = iclass->field_initializers[index]; if (init == 0) return; _Jv_Constants *pool = &klass->constants; int tag = pool->tags[init]; if (! field->isResolved ()) throw_internal_error ("initializing unresolved field"); if (obj==0 && ((field->flags & Modifier::STATIC) == 0)) throw_internal_error ("initializing non-static field with no object"); void *addr = 0; if ((field->flags & Modifier::STATIC) != 0) addr = (void*) field->u.addr; else addr = (void*) (((char*)obj) + field->u.boffset); switch (tag) { case JV_CONSTANT_String: { jstring str; str = _Jv_NewStringUtf8Const (pool->data[init].utf8); pool->data[init].string = str; pool->tags[init] = JV_CONSTANT_ResolvedString; } /* fall through */ case JV_CONSTANT_ResolvedString: if (! (field->type == &java::lang::String::class$ || field->type == &java::lang::Class::class$)) throw_class_format_error ("string initialiser to non-string field"); *(jstring*)addr = pool->data[init].string; break; case JV_CONSTANT_Integer: { int value = pool->data[init].i; if (field->type == JvPrimClass (boolean)) *(jboolean*)addr = (jboolean)value; else if (field->type == JvPrimClass (byte)) *(jbyte*)addr = (jbyte)value; else if (field->type == JvPrimClass (char)) *(jchar*)addr = (jchar)value; else if (field->type == JvPrimClass (short)) *(jshort*)addr = (jshort)value; else if (field->type == JvPrimClass (int)) *(jint*)addr = (jint)value; else throw_class_format_error ("erroneous field initializer"); } break; case JV_CONSTANT_Long: if (field->type != JvPrimClass (long)) throw_class_format_error ("erroneous field initializer"); *(jlong*)addr = _Jv_loadLong (&pool->data[init]); break; case JV_CONSTANT_Float: if (field->type != JvPrimClass (float)) throw_class_format_error ("erroneous field initializer"); *(jfloat*)addr = pool->data[init].f; break; case JV_CONSTANT_Double: if (field->type != JvPrimClass (double)) throw_class_format_error ("erroneous field initializer"); *(jdouble*)addr = _Jv_loadDouble (&pool->data[init]); break; default: throw_class_format_error ("erroneous field initializer"); } } inline static unsigned char* skip_one_type (unsigned char* ptr) { int ch = *ptr++; while (ch == '[') { ch = *ptr++; } if (ch == 'L') { do { ch = *ptr++; } while (ch != ';'); } return ptr; } static ffi_type* get_ffi_type_from_signature (unsigned char* ptr) { switch (*ptr) { case 'L': case '[': return &ffi_type_pointer; break; case 'Z': // On some platforms a bool is a byte, on others an int. if (sizeof (jboolean) == sizeof (jbyte)) return &ffi_type_sint8; else { JvAssert (sizeof (jbyte) == sizeof (jint)); return &ffi_type_sint32; } break; case 'B': return &ffi_type_sint8; break; case 'C': return &ffi_type_uint16; break; case 'S': return &ffi_type_sint16; break; case 'I': return &ffi_type_sint32; break; case 'J': return &ffi_type_sint64; break; case 'F': return &ffi_type_float; break; case 'D': return &ffi_type_double; break; case 'V': return &ffi_type_void; break; } throw_internal_error ("unknown type in signature"); } /* this function yields the number of actual arguments, that is, if the * function is non-static, then one is added to the number of elements * found in the signature */ int _Jv_count_arguments (_Jv_Utf8Const *signature, jboolean staticp) { unsigned char *ptr = (unsigned char*) signature->chars(); int arg_count = staticp ? 0 : 1; /* first, count number of arguments */ // skip '(' ptr++; // count args while (*ptr != ')') { ptr = skip_one_type (ptr); arg_count += 1; } return arg_count; } /* This beast will build a cif, given the signature. Memory for * the cif itself and for the argument types must be allocated by the * caller. */ static int init_cif (_Jv_Utf8Const* signature, int arg_count, jboolean staticp, ffi_cif *cif, ffi_type **arg_types, ffi_type **rtype_p) { unsigned char *ptr = (unsigned char*) signature->chars(); int arg_index = 0; // arg number int item_count = 0; // stack-item count // setup receiver if (!staticp) { arg_types[arg_index++] = &ffi_type_pointer; item_count += 1; } // skip '(' ptr++; // assign arg types while (*ptr != ')') { arg_types[arg_index++] = get_ffi_type_from_signature (ptr); if (*ptr == 'J' || *ptr == 'D') item_count += 2; else item_count += 1; ptr = skip_one_type (ptr); } // skip ')' ptr++; ffi_type *rtype = get_ffi_type_from_signature (ptr); ptr = skip_one_type (ptr); if (ptr != (unsigned char*)signature->chars() + signature->len()) throw_internal_error ("did not find end of signature"); if (ffi_prep_cif (cif, FFI_DEFAULT_ABI, arg_count, rtype, arg_types) != FFI_OK) throw_internal_error ("ffi_prep_cif failed"); if (rtype_p != NULL) *rtype_p = rtype; return item_count; } #if FFI_NATIVE_RAW_API # define FFI_PREP_RAW_CLOSURE ffi_prep_raw_closure # define FFI_RAW_SIZE ffi_raw_size #else # define FFI_PREP_RAW_CLOSURE ffi_prep_java_raw_closure # define FFI_RAW_SIZE ffi_java_raw_size #endif /* we put this one here, and not in interpret.cc because it * calls the utility routines _Jv_count_arguments * which are static to this module. The following struct defines the * layout we use for the stubs, it's only used in the ncode method. */ typedef struct { ffi_raw_closure closure; ffi_cif cif; ffi_type *arg_types[0]; } ncode_closure; typedef void (*ffi_closure_fun) (ffi_cif*,void*,ffi_raw*,void*); void * _Jv_InterpMethod::ncode () { using namespace java::lang::reflect; if (self->ncode != 0) return self->ncode; jboolean staticp = (self->accflags & Modifier::STATIC) != 0; int arg_count = _Jv_count_arguments (self->signature, staticp); ncode_closure *closure = (ncode_closure*)_Jv_AllocBytes (sizeof (ncode_closure) + arg_count * sizeof (ffi_type*)); init_cif (self->signature, arg_count, staticp, &closure->cif, &closure->arg_types[0], NULL); ffi_closure_fun fun; args_raw_size = FFI_RAW_SIZE (&closure->cif); JvAssert ((self->accflags & Modifier::NATIVE) == 0); if ((self->accflags & Modifier::SYNCHRONIZED) != 0) { if (staticp) fun = (ffi_closure_fun)&_Jv_InterpMethod::run_synch_class; else fun = (ffi_closure_fun)&_Jv_InterpMethod::run_synch_object; } else { if (staticp) fun = (ffi_closure_fun)&_Jv_InterpMethod::run_class; else fun = (ffi_closure_fun)&_Jv_InterpMethod::run_normal; } FFI_PREP_RAW_CLOSURE (&closure->closure, &closure->cif, fun, (void*)this); self->ncode = (void*)closure; return self->ncode; } void * _Jv_JNIMethod::ncode () { using namespace java::lang::reflect; if (self->ncode != 0) return self->ncode; jboolean staticp = (self->accflags & Modifier::STATIC) != 0; int arg_count = _Jv_count_arguments (self->signature, staticp); ncode_closure *closure = (ncode_closure*)_Jv_AllocBytes (sizeof (ncode_closure) + arg_count * sizeof (ffi_type*)); ffi_type *rtype; init_cif (self->signature, arg_count, staticp, &closure->cif, &closure->arg_types[0], &rtype); ffi_closure_fun fun; args_raw_size = FFI_RAW_SIZE (&closure->cif); // Initialize the argument types and CIF that represent the actual // underlying JNI function. int extra_args = 1; if ((self->accflags & Modifier::STATIC)) ++extra_args; jni_arg_types = (ffi_type **) _Jv_AllocBytes ((extra_args + arg_count) * sizeof (ffi_type *)); int offset = 0; jni_arg_types[offset++] = &ffi_type_pointer; if ((self->accflags & Modifier::STATIC)) jni_arg_types[offset++] = &ffi_type_pointer; memcpy (&jni_arg_types[offset], &closure->arg_types[0], arg_count * sizeof (ffi_type *)); if (ffi_prep_cif (&jni_cif, _Jv_platform_ffi_abi, extra_args + arg_count, rtype, jni_arg_types) != FFI_OK) throw_internal_error ("ffi_prep_cif failed for JNI function"); JvAssert ((self->accflags & Modifier::NATIVE) != 0); // FIXME: for now we assume that all native methods for // interpreted code use JNI. fun = (ffi_closure_fun) &_Jv_JNIMethod::call; FFI_PREP_RAW_CLOSURE (&closure->closure, &closure->cif, fun, (void*) this); self->ncode = (void *) closure; return self->ncode; } static void throw_class_format_error (jstring msg) { throw (msg ? new java::lang::ClassFormatError (msg) : new java::lang::ClassFormatError); } static void throw_class_format_error (char *msg) { throw_class_format_error (JvNewStringLatin1 (msg)); } void _Jv_InterpreterEngine::do_verify (jclass klass) { _Jv_InterpClass *iclass = (_Jv_InterpClass *) klass->aux_info; for (int i = 0; i < klass->method_count; i++) { using namespace java::lang::reflect; _Jv_MethodBase *imeth = iclass->interpreted_methods[i]; _Jv_ushort accflags = klass->methods[i].accflags; if ((accflags & (Modifier::NATIVE | Modifier::ABSTRACT)) == 0) { _Jv_InterpMethod *im = reinterpret_cast<_Jv_InterpMethod *> (imeth); _Jv_VerifyMethod (im); } } } void _Jv_InterpreterEngine::do_create_ncode (jclass klass) { _Jv_InterpClass *iclass = (_Jv_InterpClass *) klass->aux_info; for (int i = 0; i < klass->method_count; i++) { // Just skip abstract methods. This is particularly important // because we don't resize the interpreted_methods array when // miranda methods are added to it. if ((klass->methods[i].accflags & java::lang::reflect::Modifier::ABSTRACT) != 0) continue; _Jv_MethodBase *imeth = iclass->interpreted_methods[i]; if ((klass->methods[i].accflags & java::lang::reflect::Modifier::NATIVE) != 0) { // You might think we could use a virtual `ncode' method in // the _Jv_MethodBase and unify the native and non-native // cases. Well, we can't, because we don't allocate these // objects using `new', and thus they don't get a vtable. _Jv_JNIMethod *jnim = reinterpret_cast<_Jv_JNIMethod *> (imeth); klass->methods[i].ncode = jnim->ncode (); } else if (imeth != 0) // it could be abstract { _Jv_InterpMethod *im = reinterpret_cast<_Jv_InterpMethod *> (imeth); klass->methods[i].ncode = im->ncode (); } } } void _Jv_InterpreterEngine::do_allocate_static_fields (jclass klass, int static_size) { _Jv_InterpClass *iclass = (_Jv_InterpClass *) klass->aux_info; char *static_data = (char *) _Jv_AllocBytes (static_size); for (int i = 0; i < klass->field_count; i++) { _Jv_Field *field = &klass->fields[i]; if ((field->flags & java::lang::reflect::Modifier::STATIC) != 0) { field->u.addr = static_data + field->u.boffset; if (iclass->field_initializers[i] != 0) { _Jv_Linker::resolve_field (field, klass->loader); _Jv_InitField (0, klass, i); } } } // Now we don't need the field_initializers anymore, so let the // collector get rid of it. iclass->field_initializers = 0; } _Jv_ResolvedMethod * _Jv_InterpreterEngine::do_resolve_method (_Jv_Method *method, jclass klass, jboolean staticp, jint vtable_index) { int arg_count = _Jv_count_arguments (method->signature, staticp); _Jv_ResolvedMethod* result = (_Jv_ResolvedMethod*) _Jv_AllocBytes (sizeof (_Jv_ResolvedMethod) + arg_count*sizeof (ffi_type*)); result->stack_item_count = init_cif (method->signature, arg_count, staticp, &result->cif, &result->arg_types[0], NULL); result->vtable_index = vtable_index; result->method = method; result->klass = klass; return result; } void _Jv_InterpreterEngine::do_post_miranda_hook (jclass klass) { _Jv_InterpClass *iclass = (_Jv_InterpClass *) klass->aux_info; for (int i = 0; i < klass->method_count; i++) { // Just skip abstract methods. This is particularly important // because we don't resize the interpreted_methods array when // miranda methods are added to it. if ((klass->methods[i].accflags & java::lang::reflect::Modifier::ABSTRACT) != 0) continue; // Miranda method additions mean that the `methods' array moves. // We cache a pointer into this array, so we have to update. iclass->interpreted_methods[i]->self = &klass->methods[i]; } } #endif // INTERPRETER