Integer represent primitive
 * int values.
 *
 * Additionally, this class provides various helper functions and variables
 * related to ints.
 *
 * @author Paul Fisher
 * @author John Keiser
 * @author Warren Levy
 * @author Eric Blake (ebb9@email.byu.edu)
 * @author Tom Tromey (tromey@redhat.com)
 * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
 * @author Ian Rogers
 * @since 1.0
 * @status updated to 1.5
 */
public final class Integer extends Number implements Comparableint can represent is -2147483648 (or
   * -231).
   */
  public static final int MIN_VALUE = 0x80000000;
  /**
   * The maximum value an int can represent is 2147483647 (or
   * 231 - 1).
   */
  public static final int MAX_VALUE = 0x7fffffff;
  /**
   * The primitive type int is represented by this
   * Class object.
   * @since 1.1
   */
  public static final Classint.
   * @since 1.5
   */
  public static final int SIZE = 32;
  // This caches some Integer values, and is used by boxing
  // conversions via valueOf().  We must cache at least -128..127;
  // these constants control how much we actually cache.
  private static final int MIN_CACHE = -128;
  private static final int MAX_CACHE = 127;
  private static final Integer[] intCache = new Integer[MAX_CACHE - MIN_CACHE + 1];
  static
  {
    for (int i=MIN_CACHE; i <= MAX_CACHE; i++)
      intCache[i - MIN_CACHE] = new Integer(i);
  }
  /**
   * The immutable value of this Integer.
   *
   * @serial the wrapped int
   */
  private final int value;
  /**
   * Create an Integer object representing the value of the
   * int argument.
   *
   * @param value the value to use
   */
  public Integer(int value)
  {
    this.value = value;
  }
  /**
   * Create an Integer object representing the value of the
   * argument after conversion to an int.
   *
   * @param s the string to convert
   * @throws NumberFormatException if the String does not contain an int
   * @see #valueOf(String)
   */
  public Integer(String s)
  {
    value = parseInt(s, 10, false);
  }
  /**
   * Return the size of a string large enough to hold the given number
   *
   * @param num the number we want the string length for (must be positive)
   * @param radix the radix (base) that will be used for the string
   * @return a size sufficient for a string of num
   */
  private static int stringSize(int num, int radix) {
    int exp;
    if (radix < 4)
      {
        exp = 1;
      }
    else if (radix < 8)
      {
        exp = 2;
      }
    else if (radix < 16)
      {
        exp = 3;
      }
    else if (radix < 32)
      {
        exp = 4;
      }
    else
      {
        exp = 5;
      }
    int size=0;
    do
      {
        num >>>= exp;
        size++;
      }
    while(num != 0);
    return size;
  }
  /**
   * Converts the int to a String using
   * the specified radix (base). If the radix exceeds
   * Character.MIN_RADIX or Character.MAX_RADIX, 10
   * is used instead. If the result is negative, the leading character is
   * '-' ('\\u002D'). The remaining characters come from
   * Character.forDigit(digit, radix) ('0'-'9','a'-'z').
   *
   * @param num the int to convert to String
   * @param radix the radix (base) to use in the conversion
   * @return the String representation of the argument
   */
  public static String toString(int num, int radix)
  {
    if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
      radix = 10;
    // Is the value negative?
    boolean isNeg = num < 0;
    // Is the string a single character?
    if (!isNeg && num < radix)
      return new String(digits, num, 1, true);
    // Compute string size and allocate buffer
    // account for a leading '-' if the value is negative
    int size;
    int i;
    char[] buffer;
    if (isNeg)
      {
        num = -num;
        // When the value is MIN_VALUE, it overflows when made positive
        if (num < 0)
	  {
            i = size = stringSize(MAX_VALUE, radix) + 2;
            buffer = new char[size];
	    buffer[--i] = digits[(int) (-(num + radix) % radix)];
	    num = -(num / radix);
	  }
        else
          {
            i = size = stringSize(num, radix) + 1;
            buffer = new char[size];
          }
      }
    else
      {
        i = size = stringSize(num, radix);
        buffer = new char[size];
      }
    do
      {
        buffer[--i] = digits[num % radix];
        num /= radix;
      }
    while (num > 0);
    if (isNeg)
      buffer[--i] = '-';
    // Package constructor avoids an array copy.
    return new String(buffer, i, size - i, true);
  }
  /**
   * Converts the int to a String assuming it is
   * unsigned in base 16.
   *
   * @param i the int to convert to String
   * @return the String representation of the argument
   */
  public static String toHexString(int i)
  {
    return toUnsignedString(i, 4);
  }
  /**
   * Converts the int to a String assuming it is
   * unsigned in base 8.
   *
   * @param i the int to convert to String
   * @return the String representation of the argument
   */
  public static String toOctalString(int i)
  {
    return toUnsignedString(i, 3);
  }
  /**
   * Converts the int to a String assuming it is
   * unsigned in base 2.
   *
   * @param i the int to convert to String
   * @return the String representation of the argument
   */
  public static String toBinaryString(int i)
  {
    return toUnsignedString(i, 1);
  }
  /**
   * Converts the int to a String and assumes
   * a radix of 10.
   *
   * @param i the int to convert to String
   * @return the String representation of the argument
   * @see #toString(int, int)
   */
  public static String toString(int i)
  {
    // This is tricky: in libgcj, String.valueOf(int) is a fast native
    // implementation.  In Classpath it just calls back to
    // Integer.toString(int, int).
    return String.valueOf(i);
  }
  /**
   * Converts the specified String into an int
   * using the specified radix (base). The string must not be null
   * or empty. It may begin with an optional '-', which will negate the answer,
   * provided that there are also valid digits. Each digit is parsed as if by
   * Character.digit(d, radix), and must be in the range
   * 0 to radix - 1. Finally, the result must be
   * within MIN_VALUE to MAX_VALUE, inclusive.
   * Unlike Double.parseDouble, you may not have a leading '+'.
   *
   * @param str the String to convert
   * @param radix the radix (base) to use in the conversion
   * @return the String argument converted to int
   * @throws NumberFormatException if s cannot be parsed as an
   *         int
   */
  public static int parseInt(String str, int radix)
  {
    return parseInt(str, radix, false);
  }
  /**
   * Converts the specified String into an int.
   * This function assumes a radix of 10.
   *
   * @param s the String to convert
   * @return the int value of s
   * @throws NumberFormatException if s cannot be parsed as an
   *         int
   * @see #parseInt(String, int)
   */
  public static int parseInt(String s)
  {
    return parseInt(s, 10, false);
  }
  /**
   * Creates a new Integer object using the String
   * and specified radix (base).
   *
   * @param s the String to convert
   * @param radix the radix (base) to convert with
   * @return the new Integer
   * @throws NumberFormatException if s cannot be parsed as an
   *         int
   * @see #parseInt(String, int)
   */
  public static Integer valueOf(String s, int radix)
  {
    return valueOf(parseInt(s, radix, false));
  }
  /**
   * Creates a new Integer object using the String,
   * assuming a radix of 10.
   *
   * @param s the String to convert
   * @return the new Integer
   * @throws NumberFormatException if s cannot be parsed as an
   *         int
   * @see #Integer(String)
   * @see #parseInt(String)
   */
  public static Integer valueOf(String s)
  {
    return valueOf(parseInt(s, 10, false));
  }
  /**
   * Returns an Integer object wrapping the value.
   * In contrast to the Integer constructor, this method
   * will cache some values.  It is used by boxing conversion.
   *
   * @param val the value to wrap
   * @return the Integer
   */
  public static Integer valueOf(int val)
  {
    if (val < MIN_CACHE || val > MAX_CACHE)
      return new Integer(val);
    else
      return intCache[val - MIN_CACHE];
  }
  /**
   * Return the value of this Integer as a byte.
   *
   * @return the byte value
   */
  public byte byteValue()
  {
    return (byte) value;
  }
  /**
   * Return the value of this Integer as a short.
   *
   * @return the short value
   */
  public short shortValue()
  {
    return (short) value;
  }
  /**
   * Return the value of this Integer.
   * @return the int value
   */
  public int intValue()
  {
    return value;
  }
  /**
   * Return the value of this Integer as a long.
   *
   * @return the long value
   */
  public long longValue()
  {
    return value;
  }
  /**
   * Return the value of this Integer as a float.
   *
   * @return the float value
   */
  public float floatValue()
  {
    return value;
  }
  /**
   * Return the value of this Integer as a double.
   *
   * @return the double value
   */
  public double doubleValue()
  {
    return value;
  }
  /**
   * Converts the Integer value to a String and
   * assumes a radix of 10.
   *
   * @return the String representation
   */
  public String toString()
  {
    return String.valueOf(value);
  }
  /**
   * Return a hashcode representing this Object. Integer's hash
   * code is simply its value.
   *
   * @return this Object's hash code
   */
  public int hashCode()
  {
    return value;
  }
  /**
   * Returns true if obj is an instance of
   * Integer and represents the same int value.
   *
   * @param obj the object to compare
   * @return whether these Objects are semantically equal
   */
  public boolean equals(Object obj)
  {
    return obj instanceof Integer && value == ((Integer) obj).value;
  }
  /**
   * Get the specified system property as an Integer. The
   * decode() method will be used to interpret the value of
   * the property.
   *
   * @param nm the name of the system property
   * @return the system property as an Integer, or null if the
   *         property is not found or cannot be decoded
   * @throws SecurityException if accessing the system property is forbidden
   * @see System#getProperty(String)
   * @see #decode(String)
   */
  public static Integer getInteger(String nm)
  {
    return getInteger(nm, null);
  }
  /**
   * Get the specified system property as an Integer, or use a
   * default int value if the property is not found or is not
   * decodable. The decode() method will be used to interpret
   * the value of the property.
   *
   * @param nm the name of the system property
   * @param val the default value
   * @return the value of the system property, or the default
   * @throws SecurityException if accessing the system property is forbidden
   * @see System#getProperty(String)
   * @see #decode(String)
   */
  public static Integer getInteger(String nm, int val)
  {
    Integer result = getInteger(nm, null);
    return result == null ? valueOf(val) : result;
  }
  /**
   * Get the specified system property as an Integer, or use a
   * default Integer value if the property is not found or is
   * not decodable. The decode() method will be used to
   * interpret the value of the property.
   *
   * @param nm the name of the system property
   * @param def the default value
   * @return the value of the system property, or the default
   * @throws SecurityException if accessing the system property is forbidden
   * @see System#getProperty(String)
   * @see #decode(String)
   */
  public static Integer getInteger(String nm, Integer def)
  {
    if (nm == null || "".equals(nm))
      return def;
    nm = System.getProperty(nm);
    if (nm == null)
      return def;
    try
      {
        return decode(nm);
      }
    catch (NumberFormatException e)
      {
        return def;
      }
  }
  /**
   * Convert the specified String into an Integer.
   * The String may represent decimal, hexadecimal, or
   * octal numbers.
   *
   * The extended BNF grammar is as follows:
   * 
* DecodableString: * ( [* Finally, the value must be in the range-] DecimalNumber ) * | ( [-] (0x|0X* |#) HexDigit { HexDigit } ) * | ( [-]0{ OctalDigit } ) * DecimalNumber: * DecimalDigit except '0' { DecimalDigit } * DecimalDigit: * Character.digit(d, 10) has value 0 to 9 * OctalDigit: * Character.digit(d, 8) has value 0 to 7 * DecimalDigit: * Character.digit(d, 16) has value 0 to 15 *
MIN_VALUE to
   * MAX_VALUE, or an exception is thrown.
   *
   * @param str the String to interpret
   * @return the value of the String as an Integer
   * @throws NumberFormatException if s cannot be parsed as a
   *         int
   * @throws NullPointerException if s is null
   * @since 1.2
   */
  public static Integer decode(String str)
  {
    return valueOf(parseInt(str, 10, true));
  }
  /**
   * Compare two Integers numerically by comparing their int
   * values. The result is positive if the first is greater, negative if the
   * second is greater, and 0 if the two are equal.
   *
   * @param i the Integer to compare
   * @return the comparison
   * @since 1.2
   */
  public int compareTo(Integer i)
  {
    if (value == i.value)
      return 0;
    // Returns just -1 or 1 on inequality; doing math might overflow.
    return value > i.value ? 1 : -1;
  }
  /**
   * Return the number of bits set in x.
   * @param x value to examine
   * @since 1.5
   */
  public static int bitCount(int x)
  {
    // Successively collapse alternating bit groups into a sum.
    x = ((x >> 1) & 0x55555555) + (x & 0x55555555);
    x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
    x = ((x >> 4) & 0x0f0f0f0f) + (x & 0x0f0f0f0f);
    x = ((x >> 8) & 0x00ff00ff) + (x & 0x00ff00ff);
    return ((x >> 16) & 0x0000ffff) + (x & 0x0000ffff);
  }
  /**
   * Rotate x to the left by distance bits.
   * @param x the value to rotate
   * @param distance the number of bits by which to rotate
   * @since 1.5
   */
  public static int rotateLeft(int x, int distance)
  {
    // This trick works because the shift operators implicitly mask
    // the shift count.
    return (x << distance) | (x >>> - distance);
  }
  /**
   * Rotate x to the right by distance bits.
   * @param x the value to rotate
   * @param distance the number of bits by which to rotate
   * @since 1.5
   */
  public static int rotateRight(int x, int distance)
  {
    // This trick works because the shift operators implicitly mask
    // the shift count.
    return (x << - distance) | (x >>> distance);
  }
  /**
   * Find the highest set bit in value, and return a new value
   * with only that bit set.
   * @param value the value to examine
   * @since 1.5
   */
  public static int highestOneBit(int value)
  {
    value |= value >>> 1;
    value |= value >>> 2;
    value |= value >>> 4;
    value |= value >>> 8;
    value |= value >>> 16;
    return value ^ (value >>> 1);
  }
  /**
   * Return the number of leading zeros in value.
   * @param value the value to examine
   * @since 1.5
   */
  public static int numberOfLeadingZeros(int value)
  {
    value |= value >>> 1;
    value |= value >>> 2;
    value |= value >>> 4;
    value |= value >>> 8;
    value |= value >>> 16;
    return bitCount(~value);
  }
  /**
   * Find the lowest set bit in value, and return a new value
   * with only that bit set.
   * @param value the value to examine
   * @since 1.5
   */
  public static int lowestOneBit(int value)
  {
    // Classic assembly trick.
    return value & - value;
  }
  /**
   * Find the number of trailing zeros in value.
   * @param value the value to examine
   * @since 1.5
   */
  public static int numberOfTrailingZeros(int value)
  {
    return bitCount((value & -value) - 1);
  }
  /**
   * Return 1 if x is positive, -1 if it is negative, and 0 if it is
   * zero.
   * @param x the value to examine
   * @since 1.5
   */
  public static int signum(int x)
  {
    return (x >> 31) | (-x >>> 31);
    // The LHS propagates the sign bit through every bit in the word;
    // if X < 0, every bit is set to 1, else 0.  if X > 0, the RHS
    // negates x and shifts the resulting 1 in the sign bit to the
    // LSB, leaving every other bit 0.
    // Hacker's Delight, Section 2-7
  }
  /**
   * Reverse the bytes in val.
   * @since 1.5
   */
  public static int reverseBytes(int val)
  {
    return (  ((val >> 24) & 0xff)
	    | ((val >> 8) & 0xff00)
	    | ((val << 8) & 0xff0000)
	    | ((val << 24) & 0xff000000));
  }
  /**
   * Reverse the bits in val.
   * @since 1.5
   */
  public static int reverse(int val)
  {
    // Successively swap alternating bit groups.
    val = ((val >> 1) & 0x55555555) + ((val << 1) & ~0x55555555);
    val = ((val >> 2) & 0x33333333) + ((val << 2) & ~0x33333333);
    val = ((val >> 4) & 0x0f0f0f0f) + ((val << 4) & ~0x0f0f0f0f);
    val = ((val >> 8) & 0x00ff00ff) + ((val << 8) & ~0x00ff00ff);
    return ((val >> 16) & 0x0000ffff) + ((val << 16) & ~0x0000ffff);
  }
  /**
   * Helper for converting unsigned numbers to String.
   *
   * @param num the number
   * @param exp log2(digit) (ie. 1, 3, or 4 for binary, oct, hex)
   */
  // Package visible for use by Long.
  static String toUnsignedString(int num, int exp)
  {
    // Compute string length
    int size = 1;
    int copy = num >>> exp;
    while (copy != 0)
      {
        size++;
        copy >>>= exp;
      }
    // Quick path for single character strings
    if (size == 1)
      return new String(digits, num, 1, true);
    // Encode into buffer
    int mask = (1 << exp) - 1;
    char[] buffer = new char[size];
    int i = size;
    do
      {
        buffer[--i] = digits[num & mask];
        num >>>= exp;
      }
    while (num != 0);
    // Package constructor avoids an array copy.
    return new String(buffer, i, size - i, true);
  }
  /**
   * Helper for parsing ints, used by Integer, Short, and Byte.
   *
   * @param str the string to parse
   * @param radix the radix to use, must be 10 if decode is true
   * @param decode if called from decode
   * @return the parsed int value
   * @throws NumberFormatException if there is an error
   * @throws NullPointerException if decode is true and str if null
   * @see #parseInt(String, int)
   * @see #decode(String)
   * @see Byte#parseByte(String, int)
   * @see Short#parseShort(String, int)
   */
  static int parseInt(String str, int radix, boolean decode)
  {
    if (! decode && str == null)
      throw new NumberFormatException();
    int index = 0;
    int len = str.length();
    boolean isNeg = false;
    if (len == 0)
      throw new NumberFormatException("string length is null");
    int ch = str.charAt(index);
    if (ch == '-')
      {
        if (len == 1)
	  throw new NumberFormatException("pure '-'");
        isNeg = true;
        ch = str.charAt(++index);
      }
    else if (ch == '+')
      {
	if (len == 1)
	  throw new NumberFormatException("pure '+'");
	ch = str.charAt(++index);
      }
    if (decode)
      {
        if (ch == '0')
          {
            if (++index == len)
              return 0;
            if ((str.charAt(index) & ~('x' ^ 'X')) == 'X')
              {
                radix = 16;
                index++;
              }
            else
              radix = 8;
          }
        else if (ch == '#')
          {
            radix = 16;
            index++;
          }
      }
    if (index == len)
      throw new NumberFormatException("non terminated number: " + str);
    int max = MAX_VALUE / radix;
    // We can't directly write `max = (MAX_VALUE + 1) / radix'.
    // So instead we fake it.
    if (isNeg && MAX_VALUE % radix == radix - 1)
      ++max;
    int val = 0;
    while (index < len)
      {
	if (val < 0 || val > max)
	  throw new NumberFormatException("number overflow (pos=" + index + ") : " + str);
        ch = Character.digit(str.charAt(index++), radix);
        val = val * radix + ch;
        if (ch < 0 || (val < 0 && (! isNeg || val != MIN_VALUE)))
          throw new NumberFormatException("invalid character at position " + index + " in " + str);
      }
    return isNeg ? -val : val;
  }
}