/* OpenACC Runtime initialization routines Copyright (C) 2013-2019 Free Software Foundation, Inc. Contributed by Mentor Embedded. This file is part of the GNU Offloading and Multi Processing Library (libgomp). Libgomp is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. Libgomp is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "openacc.h" #include "libgomp.h" #include "gomp-constants.h" #include "oacc-int.h" #include #include /* Return block containing [H->S), or NULL if not contained. The device lock for DEV must be locked on entry, and remains locked on exit. */ static splay_tree_key lookup_host (struct gomp_device_descr *dev, void *h, size_t s) { struct splay_tree_key_s node; splay_tree_key key; node.host_start = (uintptr_t) h; node.host_end = (uintptr_t) h + s; key = splay_tree_lookup (&dev->mem_map, &node); return key; } /* Return block containing [D->S), or NULL if not contained. The list isn't ordered by device address, so we have to iterate over the whole array. This is not expected to be a common operation. The device lock associated with TGT must be locked on entry, and remains locked on exit. */ static splay_tree_key lookup_dev (struct target_mem_desc *tgt, void *d, size_t s) { int i; struct target_mem_desc *t; if (!tgt) return NULL; for (t = tgt; t != NULL; t = t->prev) { if (t->tgt_start <= (uintptr_t) d && t->tgt_end >= (uintptr_t) d + s) break; } if (!t) return NULL; for (i = 0; i < t->list_count; i++) { void * offset; splay_tree_key k = &t->array[i].key; offset = d - t->tgt_start + k->tgt_offset; if (k->host_start + offset <= (void *) k->host_end) return k; } return NULL; } /* OpenACC is silent on how memory exhaustion is indicated. We return NULL. */ void * acc_malloc (size_t s) { if (!s) return NULL; goacc_lazy_initialize (); struct goacc_thread *thr = goacc_thread (); assert (thr->dev); if (thr->dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM) return malloc (s); acc_prof_info prof_info; acc_api_info api_info; bool profiling_p = GOACC_PROFILING_SETUP_P (thr, &prof_info, &api_info); void *res = thr->dev->alloc_func (thr->dev->target_id, s); if (profiling_p) { thr->prof_info = NULL; thr->api_info = NULL; } return res; } /* OpenACC 2.0a (3.2.16) doesn't specify what to do in the event the device address is mapped. We choose to check if it mapped, and if it is, to unmap it. */ void acc_free (void *d) { splay_tree_key k; if (!d) return; struct goacc_thread *thr = goacc_thread (); assert (thr && thr->dev); struct gomp_device_descr *acc_dev = thr->dev; if (acc_dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM) return free (d); acc_prof_info prof_info; acc_api_info api_info; bool profiling_p = GOACC_PROFILING_SETUP_P (thr, &prof_info, &api_info); gomp_mutex_lock (&acc_dev->lock); /* We don't have to call lazy open here, as the ptr value must have been returned by acc_malloc. It's not permitted to pass NULL in (unless you got that null from acc_malloc). */ if ((k = lookup_dev (acc_dev->openacc.data_environ, d, 1))) { void *offset; offset = d - k->tgt->tgt_start + k->tgt_offset; gomp_mutex_unlock (&acc_dev->lock); acc_unmap_data ((void *)(k->host_start + offset)); } else gomp_mutex_unlock (&acc_dev->lock); if (!acc_dev->free_func (acc_dev->target_id, d)) gomp_fatal ("error in freeing device memory in %s", __FUNCTION__); if (profiling_p) { thr->prof_info = NULL; thr->api_info = NULL; } } static void memcpy_tofrom_device (bool from, void *d, void *h, size_t s, int async, const char *libfnname) { /* No need to call lazy open here, as the device pointer must have been obtained from a routine that did that. */ struct goacc_thread *thr = goacc_thread (); assert (thr && thr->dev); if (thr->dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM) { if (from) memmove (h, d, s); else memmove (d, h, s); return; } acc_prof_info prof_info; acc_api_info api_info; bool profiling_p = GOACC_PROFILING_SETUP_P (thr, &prof_info, &api_info); if (profiling_p) { prof_info.async = async; prof_info.async_queue = prof_info.async; } goacc_aq aq = get_goacc_asyncqueue (async); if (from) gomp_copy_dev2host (thr->dev, aq, h, d, s); else gomp_copy_host2dev (thr->dev, aq, d, h, s, /* TODO: cbuf? */ NULL); if (profiling_p) { thr->prof_info = NULL; thr->api_info = NULL; } } void acc_memcpy_to_device (void *d, void *h, size_t s) { memcpy_tofrom_device (false, d, h, s, acc_async_sync, __FUNCTION__); } void acc_memcpy_to_device_async (void *d, void *h, size_t s, int async) { memcpy_tofrom_device (false, d, h, s, async, __FUNCTION__); } void acc_memcpy_from_device (void *h, void *d, size_t s) { memcpy_tofrom_device (true, d, h, s, acc_async_sync, __FUNCTION__); } void acc_memcpy_from_device_async (void *h, void *d, size_t s, int async) { memcpy_tofrom_device (true, d, h, s, async, __FUNCTION__); } /* Return the device pointer that corresponds to host data H. Or NULL if no mapping. */ void * acc_deviceptr (void *h) { splay_tree_key n; void *d; void *offset; goacc_lazy_initialize (); struct goacc_thread *thr = goacc_thread (); struct gomp_device_descr *dev = thr->dev; if (thr->dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM) return h; /* In the following, no OpenACC Profiling Interface events can possibly be generated. */ gomp_mutex_lock (&dev->lock); n = lookup_host (dev, h, 1); if (!n) { gomp_mutex_unlock (&dev->lock); return NULL; } offset = h - n->host_start; d = n->tgt->tgt_start + n->tgt_offset + offset; gomp_mutex_unlock (&dev->lock); return d; } /* Return the host pointer that corresponds to device data D. Or NULL if no mapping. */ void * acc_hostptr (void *d) { splay_tree_key n; void *h; void *offset; goacc_lazy_initialize (); struct goacc_thread *thr = goacc_thread (); struct gomp_device_descr *acc_dev = thr->dev; if (thr->dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM) return d; /* In the following, no OpenACC Profiling Interface events can possibly be generated. */ gomp_mutex_lock (&acc_dev->lock); n = lookup_dev (acc_dev->openacc.data_environ, d, 1); if (!n) { gomp_mutex_unlock (&acc_dev->lock); return NULL; } offset = d - n->tgt->tgt_start + n->tgt_offset; h = n->host_start + offset; gomp_mutex_unlock (&acc_dev->lock); return h; } /* Return 1 if host data [H,+S] is present on the device. */ int acc_is_present (void *h, size_t s) { splay_tree_key n; if (!s || !h) return 0; goacc_lazy_initialize (); struct goacc_thread *thr = goacc_thread (); struct gomp_device_descr *acc_dev = thr->dev; if (thr->dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM) return h != NULL; /* In the following, no OpenACC Profiling Interface events can possibly be generated. */ gomp_mutex_lock (&acc_dev->lock); n = lookup_host (acc_dev, h, s); if (n && ((uintptr_t)h < n->host_start || (uintptr_t)h + s > n->host_end || s > n->host_end - n->host_start)) n = NULL; gomp_mutex_unlock (&acc_dev->lock); return n != NULL; } /* Create a mapping for host [H,+S] -> device [D,+S] */ void acc_map_data (void *h, void *d, size_t s) { struct target_mem_desc *tgt = NULL; size_t mapnum = 1; void *hostaddrs = h; void *devaddrs = d; size_t sizes = s; unsigned short kinds = GOMP_MAP_ALLOC; goacc_lazy_initialize (); struct goacc_thread *thr = goacc_thread (); struct gomp_device_descr *acc_dev = thr->dev; if (acc_dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM) { if (d != h) gomp_fatal ("cannot map data on shared-memory system"); } else { struct goacc_thread *thr = goacc_thread (); if (!d || !h || !s) gomp_fatal ("[%p,+%d]->[%p,+%d] is a bad map", (void *)h, (int)s, (void *)d, (int)s); acc_prof_info prof_info; acc_api_info api_info; bool profiling_p = GOACC_PROFILING_SETUP_P (thr, &prof_info, &api_info); gomp_mutex_lock (&acc_dev->lock); if (lookup_host (acc_dev, h, s)) { gomp_mutex_unlock (&acc_dev->lock); gomp_fatal ("host address [%p, +%d] is already mapped", (void *)h, (int)s); } if (lookup_dev (thr->dev->openacc.data_environ, d, s)) { gomp_mutex_unlock (&acc_dev->lock); gomp_fatal ("device address [%p, +%d] is already mapped", (void *)d, (int)s); } gomp_mutex_unlock (&acc_dev->lock); tgt = gomp_map_vars (acc_dev, mapnum, &hostaddrs, &devaddrs, &sizes, &kinds, true, GOMP_MAP_VARS_OPENACC); tgt->list[0].key->refcount = REFCOUNT_INFINITY; if (profiling_p) { thr->prof_info = NULL; thr->api_info = NULL; } } gomp_mutex_lock (&acc_dev->lock); tgt->prev = acc_dev->openacc.data_environ; acc_dev->openacc.data_environ = tgt; gomp_mutex_unlock (&acc_dev->lock); } void acc_unmap_data (void *h) { struct goacc_thread *thr = goacc_thread (); struct gomp_device_descr *acc_dev = thr->dev; /* No need to call lazy open, as the address must have been mapped. */ /* This is a no-op on shared-memory targets. */ if (acc_dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM) return; acc_prof_info prof_info; acc_api_info api_info; bool profiling_p = GOACC_PROFILING_SETUP_P (thr, &prof_info, &api_info); size_t host_size; gomp_mutex_lock (&acc_dev->lock); splay_tree_key n = lookup_host (acc_dev, h, 1); struct target_mem_desc *t; if (!n) { gomp_mutex_unlock (&acc_dev->lock); gomp_fatal ("%p is not a mapped block", (void *)h); } host_size = n->host_end - n->host_start; if (n->host_start != (uintptr_t) h) { gomp_mutex_unlock (&acc_dev->lock); gomp_fatal ("[%p,%d] surrounds %p", (void *) n->host_start, (int) host_size, (void *) h); } /* Mark for removal. */ n->refcount = 1; t = n->tgt; if (t->refcount == 2) { struct target_mem_desc *tp; /* This is the last reference, so pull the descriptor off the chain. This avoids gomp_unmap_vars via gomp_unmap_tgt from freeing the device memory. */ t->tgt_end = 0; t->to_free = 0; for (tp = NULL, t = acc_dev->openacc.data_environ; t != NULL; tp = t, t = t->prev) if (n->tgt == t) { if (tp) tp->prev = t->prev; else acc_dev->openacc.data_environ = t->prev; break; } } gomp_mutex_unlock (&acc_dev->lock); gomp_unmap_vars (t, true); if (profiling_p) { thr->prof_info = NULL; thr->api_info = NULL; } } #define FLAG_PRESENT (1 << 0) #define FLAG_CREATE (1 << 1) #define FLAG_COPY (1 << 2) static void * present_create_copy (unsigned f, void *h, size_t s, int async) { void *d; splay_tree_key n; if (!h || !s) gomp_fatal ("[%p,+%d] is a bad range", (void *)h, (int)s); goacc_lazy_initialize (); struct goacc_thread *thr = goacc_thread (); struct gomp_device_descr *acc_dev = thr->dev; if (acc_dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM) return h; acc_prof_info prof_info; acc_api_info api_info; bool profiling_p = GOACC_PROFILING_SETUP_P (thr, &prof_info, &api_info); if (profiling_p) { prof_info.async = async; prof_info.async_queue = prof_info.async; } gomp_mutex_lock (&acc_dev->lock); n = lookup_host (acc_dev, h, s); if (n) { /* Present. */ d = (void *) (n->tgt->tgt_start + n->tgt_offset); if (!(f & FLAG_PRESENT)) { gomp_mutex_unlock (&acc_dev->lock); gomp_fatal ("[%p,+%d] already mapped to [%p,+%d]", (void *)h, (int)s, (void *)d, (int)s); } if ((h + s) > (void *)n->host_end) { gomp_mutex_unlock (&acc_dev->lock); gomp_fatal ("[%p,+%d] not mapped", (void *)h, (int)s); } if (n->refcount != REFCOUNT_INFINITY) { n->refcount++; n->dynamic_refcount++; } gomp_mutex_unlock (&acc_dev->lock); } else if (!(f & FLAG_CREATE)) { gomp_mutex_unlock (&acc_dev->lock); gomp_fatal ("[%p,+%d] not mapped", (void *)h, (int)s); } else { struct target_mem_desc *tgt; size_t mapnum = 1; unsigned short kinds; void *hostaddrs = h; if (f & FLAG_COPY) kinds = GOMP_MAP_TO; else kinds = GOMP_MAP_ALLOC; gomp_mutex_unlock (&acc_dev->lock); goacc_aq aq = get_goacc_asyncqueue (async); tgt = gomp_map_vars_async (acc_dev, aq, mapnum, &hostaddrs, NULL, &s, &kinds, true, GOMP_MAP_VARS_OPENACC); /* Initialize dynamic refcount. */ tgt->list[0].key->dynamic_refcount = 1; gomp_mutex_lock (&acc_dev->lock); d = tgt->to_free; tgt->prev = acc_dev->openacc.data_environ; acc_dev->openacc.data_environ = tgt; gomp_mutex_unlock (&acc_dev->lock); } if (profiling_p) { thr->prof_info = NULL; thr->api_info = NULL; } return d; } void * acc_create (void *h, size_t s) { return present_create_copy (FLAG_PRESENT | FLAG_CREATE, h, s, acc_async_sync); } void acc_create_async (void *h, size_t s, int async) { present_create_copy (FLAG_PRESENT | FLAG_CREATE, h, s, async); } /* acc_present_or_create used to be what acc_create is now. */ /* acc_pcreate is acc_present_or_create by a different name. */ #ifdef HAVE_ATTRIBUTE_ALIAS strong_alias (acc_create, acc_present_or_create) strong_alias (acc_create, acc_pcreate) #else void * acc_present_or_create (void *h, size_t s) { return acc_create (h, s); } void * acc_pcreate (void *h, size_t s) { return acc_create (h, s); } #endif void * acc_copyin (void *h, size_t s) { return present_create_copy (FLAG_PRESENT | FLAG_CREATE | FLAG_COPY, h, s, acc_async_sync); } void acc_copyin_async (void *h, size_t s, int async) { present_create_copy (FLAG_PRESENT | FLAG_CREATE | FLAG_COPY, h, s, async); } /* acc_present_or_copyin used to be what acc_copyin is now. */ /* acc_pcopyin is acc_present_or_copyin by a different name. */ #ifdef HAVE_ATTRIBUTE_ALIAS strong_alias (acc_copyin, acc_present_or_copyin) strong_alias (acc_copyin, acc_pcopyin) #else void * acc_present_or_copyin (void *h, size_t s) { return acc_copyin (h, s); } void * acc_pcopyin (void *h, size_t s) { return acc_copyin (h, s); } #endif #define FLAG_COPYOUT (1 << 0) #define FLAG_FINALIZE (1 << 1) static void delete_copyout (unsigned f, void *h, size_t s, int async, const char *libfnname) { size_t host_size; splay_tree_key n; void *d; struct goacc_thread *thr = goacc_thread (); struct gomp_device_descr *acc_dev = thr->dev; if (acc_dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM) return; acc_prof_info prof_info; acc_api_info api_info; bool profiling_p = GOACC_PROFILING_SETUP_P (thr, &prof_info, &api_info); if (profiling_p) { prof_info.async = async; prof_info.async_queue = prof_info.async; } gomp_mutex_lock (&acc_dev->lock); n = lookup_host (acc_dev, h, s); /* No need to call lazy open, as the data must already have been mapped. */ if (!n) { gomp_mutex_unlock (&acc_dev->lock); gomp_fatal ("[%p,%d] is not mapped", (void *)h, (int)s); } d = (void *) (n->tgt->tgt_start + n->tgt_offset + (uintptr_t) h - n->host_start); host_size = n->host_end - n->host_start; if (n->host_start != (uintptr_t) h || host_size != s) { gomp_mutex_unlock (&acc_dev->lock); gomp_fatal ("[%p,%d] surrounds2 [%p,+%d]", (void *) n->host_start, (int) host_size, (void *) h, (int) s); } if (n->refcount == REFCOUNT_INFINITY) { n->refcount = 0; n->dynamic_refcount = 0; } if (n->refcount < n->dynamic_refcount) { gomp_mutex_unlock (&acc_dev->lock); gomp_fatal ("Dynamic reference counting assert fail\n"); } if (f & FLAG_FINALIZE) { n->refcount -= n->dynamic_refcount; n->dynamic_refcount = 0; } else if (n->dynamic_refcount) { n->dynamic_refcount--; n->refcount--; } if (n->refcount == 0) { if (n->tgt->refcount == 2) { struct target_mem_desc *tp, *t; for (tp = NULL, t = acc_dev->openacc.data_environ; t != NULL; tp = t, t = t->prev) if (n->tgt == t) { if (tp) tp->prev = t->prev; else acc_dev->openacc.data_environ = t->prev; break; } } if (f & FLAG_COPYOUT) { goacc_aq aq = get_goacc_asyncqueue (async); gomp_copy_dev2host (acc_dev, aq, h, d, s); } gomp_remove_var (acc_dev, n); } gomp_mutex_unlock (&acc_dev->lock); if (profiling_p) { thr->prof_info = NULL; thr->api_info = NULL; } } void acc_delete (void *h , size_t s) { delete_copyout (0, h, s, acc_async_sync, __FUNCTION__); } void acc_delete_async (void *h , size_t s, int async) { delete_copyout (0, h, s, async, __FUNCTION__); } void acc_delete_finalize (void *h , size_t s) { delete_copyout (FLAG_FINALIZE, h, s, acc_async_sync, __FUNCTION__); } void acc_delete_finalize_async (void *h , size_t s, int async) { delete_copyout (FLAG_FINALIZE, h, s, async, __FUNCTION__); } void acc_copyout (void *h, size_t s) { delete_copyout (FLAG_COPYOUT, h, s, acc_async_sync, __FUNCTION__); } void acc_copyout_async (void *h, size_t s, int async) { delete_copyout (FLAG_COPYOUT, h, s, async, __FUNCTION__); } void acc_copyout_finalize (void *h, size_t s) { delete_copyout (FLAG_COPYOUT | FLAG_FINALIZE, h, s, acc_async_sync, __FUNCTION__); } void acc_copyout_finalize_async (void *h, size_t s, int async) { delete_copyout (FLAG_COPYOUT | FLAG_FINALIZE, h, s, async, __FUNCTION__); } static void update_dev_host (int is_dev, void *h, size_t s, int async) { splay_tree_key n; void *d; goacc_lazy_initialize (); struct goacc_thread *thr = goacc_thread (); struct gomp_device_descr *acc_dev = thr->dev; if (acc_dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM) return; acc_prof_info prof_info; acc_api_info api_info; bool profiling_p = GOACC_PROFILING_SETUP_P (thr, &prof_info, &api_info); if (profiling_p) { prof_info.async = async; prof_info.async_queue = prof_info.async; } gomp_mutex_lock (&acc_dev->lock); n = lookup_host (acc_dev, h, s); if (!n) { gomp_mutex_unlock (&acc_dev->lock); gomp_fatal ("[%p,%d] is not mapped", h, (int)s); } d = (void *) (n->tgt->tgt_start + n->tgt_offset + (uintptr_t) h - n->host_start); goacc_aq aq = get_goacc_asyncqueue (async); if (is_dev) gomp_copy_host2dev (acc_dev, aq, d, h, s, /* TODO: cbuf? */ NULL); else gomp_copy_dev2host (acc_dev, aq, h, d, s); gomp_mutex_unlock (&acc_dev->lock); if (profiling_p) { thr->prof_info = NULL; thr->api_info = NULL; } } void acc_update_device (void *h, size_t s) { update_dev_host (1, h, s, acc_async_sync); } void acc_update_device_async (void *h, size_t s, int async) { update_dev_host (1, h, s, async); } void acc_update_self (void *h, size_t s) { update_dev_host (0, h, s, acc_async_sync); } void acc_update_self_async (void *h, size_t s, int async) { update_dev_host (0, h, s, async); } void gomp_acc_insert_pointer (size_t mapnum, void **hostaddrs, size_t *sizes, void *kinds, int async) { struct target_mem_desc *tgt; struct goacc_thread *thr = goacc_thread (); struct gomp_device_descr *acc_dev = thr->dev; if (acc_is_present (*hostaddrs, *sizes)) { splay_tree_key n; gomp_mutex_lock (&acc_dev->lock); n = lookup_host (acc_dev, *hostaddrs, *sizes); gomp_mutex_unlock (&acc_dev->lock); tgt = n->tgt; for (size_t i = 0; i < tgt->list_count; i++) if (tgt->list[i].key == n) { for (size_t j = 0; j < mapnum; j++) if (i + j < tgt->list_count && tgt->list[i + j].key) { tgt->list[i + j].key->refcount++; tgt->list[i + j].key->dynamic_refcount++; } return; } /* Should not reach here. */ gomp_fatal ("Dynamic refcount incrementing failed for pointer/pset"); } gomp_debug (0, " %s: prepare mappings\n", __FUNCTION__); goacc_aq aq = get_goacc_asyncqueue (async); tgt = gomp_map_vars_async (acc_dev, aq, mapnum, hostaddrs, NULL, sizes, kinds, true, GOMP_MAP_VARS_OPENACC); gomp_debug (0, " %s: mappings prepared\n", __FUNCTION__); /* Initialize dynamic refcount. */ tgt->list[0].key->dynamic_refcount = 1; gomp_mutex_lock (&acc_dev->lock); tgt->prev = acc_dev->openacc.data_environ; acc_dev->openacc.data_environ = tgt; gomp_mutex_unlock (&acc_dev->lock); } void gomp_acc_remove_pointer (void *h, size_t s, bool force_copyfrom, int async, int finalize, int mapnum) { struct goacc_thread *thr = goacc_thread (); struct gomp_device_descr *acc_dev = thr->dev; splay_tree_key n; struct target_mem_desc *t; int minrefs = (mapnum == 1) ? 2 : 3; if (!acc_is_present (h, s)) return; gomp_mutex_lock (&acc_dev->lock); n = lookup_host (acc_dev, h, 1); if (!n) { gomp_mutex_unlock (&acc_dev->lock); gomp_fatal ("%p is not a mapped block", (void *)h); } gomp_debug (0, " %s: restore mappings\n", __FUNCTION__); t = n->tgt; if (n->refcount < n->dynamic_refcount) { gomp_mutex_unlock (&acc_dev->lock); gomp_fatal ("Dynamic reference counting assert fail\n"); } if (finalize) { n->refcount -= n->dynamic_refcount; n->dynamic_refcount = 0; } else if (n->dynamic_refcount) { n->dynamic_refcount--; n->refcount--; } gomp_mutex_unlock (&acc_dev->lock); if (n->refcount == 0) { if (t->refcount == minrefs) { /* This is the last reference, so pull the descriptor off the chain. This prevents gomp_unmap_vars via gomp_unmap_tgt from freeing the device memory. */ struct target_mem_desc *tp; for (tp = NULL, t = acc_dev->openacc.data_environ; t != NULL; tp = t, t = t->prev) { if (n->tgt == t) { if (tp) tp->prev = t->prev; else acc_dev->openacc.data_environ = t->prev; break; } } } /* Set refcount to 1 to allow gomp_unmap_vars to unmap it. */ n->refcount = 1; t->refcount = minrefs; for (size_t i = 0; i < t->list_count; i++) if (t->list[i].key == n) { t->list[i].copy_from = force_copyfrom ? 1 : 0; break; } /* If running synchronously, unmap immediately. */ if (async < acc_async_noval) gomp_unmap_vars (t, true); else { goacc_aq aq = get_goacc_asyncqueue (async); gomp_unmap_vars_async (t, true, aq); } } gomp_mutex_unlock (&acc_dev->lock); gomp_debug (0, " %s: mappings restored\n", __FUNCTION__); }