/* runtime.h -- runtime support for Go. Copyright 2009 The Go Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "config.h" #include "go-assert.h" #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_SYS_MMAN_H #include #endif #include "array.h" #include "go-alloc.h" #include "go-panic.h" #include "go-string.h" /* This file supports C files copied from the 6g runtime library. This is a version of the 6g runtime.h rewritten for gccgo's version of the code. */ typedef signed int int8 __attribute__ ((mode (QI))); typedef unsigned int uint8 __attribute__ ((mode (QI))); typedef signed int int16 __attribute__ ((mode (HI))); typedef unsigned int uint16 __attribute__ ((mode (HI))); typedef signed int int32 __attribute__ ((mode (SI))); typedef unsigned int uint32 __attribute__ ((mode (SI))); typedef signed int int64 __attribute__ ((mode (DI))); typedef unsigned int uint64 __attribute__ ((mode (DI))); typedef float float32 __attribute__ ((mode (SF))); typedef double float64 __attribute__ ((mode (DF))); typedef unsigned int uintptr __attribute__ ((mode (pointer))); /* Defined types. */ typedef uint8 bool; typedef uint8 byte; typedef struct Func Func; typedef struct G G; typedef union Lock Lock; typedef struct M M; typedef union Note Note; typedef struct SigTab SigTab; typedef struct MCache MCache; typedef struct FixAlloc FixAlloc; typedef struct Hchan Hchan; typedef struct Timers Timers; typedef struct Timer Timer; typedef struct __go_open_array Slice; typedef struct __go_string String; typedef struct __go_interface Iface; typedef struct __go_empty_interface Eface; typedef struct __go_type_descriptor Type; typedef struct __go_defer_stack Defer; typedef struct __go_panic_stack Panic; typedef struct __go_func_type FuncType; typedef struct __go_map_type MapType; /* * per-cpu declaration. */ extern M* runtime_m(void); extern G* runtime_g(void); extern M runtime_m0; extern G runtime_g0; /* * defined constants */ enum { // G status // // If you add to this list, add to the list // of "okay during garbage collection" status // in mgc0.c too. Gidle, Grunnable, Grunning, Gsyscall, Gwaiting, Gmoribund, Gdead, }; enum { true = 1, false = 0, }; /* * structures */ union Lock { uint32 key; // futex-based impl M* waitm; // linked list of waiting M's (sema-based impl) }; union Note { uint32 key; // futex-based impl M* waitm; // waiting M (sema-based impl) }; struct G { Defer* defer; Panic* panic; void* exception; // current exception being thrown bool is_foreign; // whether current exception from other language void *gcstack; // if status==Gsyscall, gcstack = stackbase to use during gc uintptr gcstack_size; void* gcnext_segment; void* gcnext_sp; void* gcinitial_sp; jmp_buf gcregs; byte* entry; // initial function G* alllink; // on allg void* param; // passed parameter on wakeup bool fromgogo; // reached from gogo int16 status; int32 goid; uint32 selgen; // valid sudog pointer const char* waitreason; // if status==Gwaiting G* schedlink; bool readyonstop; bool ispanic; M* m; // for debuggers, but offset not hard-coded M* lockedm; M* idlem; // int32 sig; int32 writenbuf; byte* writebuf; // uintptr sigcode0; // uintptr sigcode1; // uintptr sigpc; uintptr gopc; // pc of go statement that created this goroutine ucontext_t context; void* stack_context[10]; }; struct M { G* g0; // goroutine with scheduling stack G* gsignal; // signal-handling G G* curg; // current running goroutine int32 id; int32 mallocing; int32 gcing; int32 locks; int32 nomemprof; int32 waitnextg; int32 dying; int32 profilehz; int32 helpgc; uint32 fastrand; Note havenextg; G* nextg; M* alllink; // on allm M* schedlink; MCache *mcache; G* lockedg; G* idleg; uintptr createstack[32]; // Stack that created this thread. M* nextwaitm; // next M waiting for lock uintptr waitsema; // semaphore for parking on locks uint32 waitsemacount; uint32 waitsemalock; }; struct SigTab { int32 sig; int32 flags; }; enum { SigNotify = 1<<0, // let signal.Notify have signal, even if from kernel SigKill = 1<<1, // if signal.Notify doesn't take it, exit quietly SigThrow = 1<<2, // if signal.Notify doesn't take it, exit loudly SigPanic = 1<<3, // if the signal is from the kernel, panic SigDefault = 1<<4, // if the signal isn't explicitly requested, don't monitor it }; #ifndef NSIG #define NSIG 32 #endif // NOTE(rsc): keep in sync with extern.go:/type.Func. // Eventually, the loaded symbol table should be closer to this form. struct Func { String name; uintptr entry; // entry pc }; /* Macros. */ #ifdef GOOS_windows enum { Windows = 1 }; #else enum { Windows = 0 }; #endif struct Timers { Lock; G *timerproc; bool sleeping; bool rescheduling; Note waitnote; Timer **t; int32 len; int32 cap; }; // Package time knows the layout of this structure. // If this struct changes, adjust ../time/sleep.go:/runtimeTimer. struct Timer { int32 i; // heap index // Timer wakes up at when, and then at when+period, ... (period > 0 only) // each time calling f(now, arg) in the timer goroutine, so f must be // a well-behaved function and not block. int64 when; int64 period; void (*f)(int64, Eface); Eface arg; }; /* * defined macros * you need super-gopher-guru privilege * to add this list. */ #define nelem(x) (sizeof(x)/sizeof((x)[0])) #define nil ((void*)0) #define USED(v) ((void) v) /* * external data */ G* runtime_allg; G* runtime_lastg; M* runtime_allm; extern int32 runtime_gomaxprocs; extern bool runtime_singleproc; extern uint32 runtime_panicking; extern int32 runtime_gcwaiting; // gc is waiting to run int32 runtime_ncpu; /* * common functions and data */ int32 runtime_findnull(const byte*); /* * very low level c-called */ void runtime_args(int32, byte**); void runtime_osinit(); void runtime_goargs(void); void runtime_goenvs(void); void runtime_goenvs_unix(void); void runtime_throw(const char*) __attribute__ ((noreturn)); void runtime_panicstring(const char*) __attribute__ ((noreturn)); void* runtime_mal(uintptr); void runtime_schedinit(void); void runtime_initsig(void); void runtime_sigenable(uint32 sig); String runtime_gostringnocopy(const byte*); void* runtime_mstart(void*); G* runtime_malg(int32, byte**, size_t*); void runtime_minit(void); void runtime_mallocinit(void); void runtime_gosched(void); void runtime_tsleep(int64); M* runtime_newm(void); void runtime_goexit(void); void runtime_entersyscall(void) __asm__("libgo_syscall.syscall.Entersyscall"); void runtime_exitsyscall(void) __asm__("libgo_syscall.syscall.Exitsyscall"); void siginit(void); bool __go_sigsend(int32 sig); int32 runtime_callers(int32, uintptr*, int32); int64 runtime_nanotime(void); int64 runtime_cputicks(void); void runtime_stoptheworld(void); void runtime_starttheworld(bool); extern uint32 runtime_worldsema; G* __go_go(void (*pfn)(void*), void*); /* * mutual exclusion locks. in the uncontended case, * as fast as spin locks (just a few user-level instructions), * but on the contention path they sleep in the kernel. * a zeroed Lock is unlocked (no need to initialize each lock). */ void runtime_lock(Lock*); void runtime_unlock(Lock*); /* * sleep and wakeup on one-time events. * before any calls to notesleep or notewakeup, * must call noteclear to initialize the Note. * then, exactly one thread can call notesleep * and exactly one thread can call notewakeup (once). * once notewakeup has been called, the notesleep * will return. future notesleep will return immediately. * subsequent noteclear must be called only after * previous notesleep has returned, e.g. it's disallowed * to call noteclear straight after notewakeup. * * notetsleep is like notesleep but wakes up after * a given number of nanoseconds even if the event * has not yet happened. if a goroutine uses notetsleep to * wake up early, it must wait to call noteclear until it * can be sure that no other goroutine is calling * notewakeup. */ void runtime_noteclear(Note*); void runtime_notesleep(Note*); void runtime_notewakeup(Note*); void runtime_notetsleep(Note*, int64); /* * low-level synchronization for implementing the above */ uintptr runtime_semacreate(void); int32 runtime_semasleep(int64); void runtime_semawakeup(M*); // or void runtime_futexsleep(uint32*, uint32, int64); void runtime_futexwakeup(uint32*, uint32); /* * low level C-called */ #define runtime_mmap mmap #define runtime_munmap munmap #define runtime_madvise madvise #define runtime_memclr(buf, size) __builtin_memset((buf), 0, (size)) #define runtime_getcallerpc(p) __builtin_return_address(0) #ifdef __rtems__ void __wrap_rtems_task_variable_add(void **); #endif /* * runtime go-called */ void runtime_panic(Eface); struct __go_func_type; void reflect_call(const struct __go_func_type *, const void *, _Bool, _Bool, void **, void **) asm ("libgo_reflect.reflect.call"); /* Functions. */ #define runtime_panic __go_panic #define runtime_printf printf #define runtime_malloc(s) __go_alloc(s) #define runtime_free(p) __go_free(p) #define runtime_strcmp(s1, s2) __builtin_strcmp((s1), (s2)) #define runtime_mcmp(a, b, s) __builtin_memcmp((a), (b), (s)) #define runtime_memmove(a, b, s) __builtin_memmove((a), (b), (s)) #define runtime_exit(s) exit(s) MCache* runtime_allocmcache(void); void free(void *v); #define runtime_cas(pval, old, new) __sync_bool_compare_and_swap (pval, old, new) #define runtime_casp(pval, old, new) __sync_bool_compare_and_swap (pval, old, new) #define runtime_xadd(p, v) __sync_add_and_fetch (p, v) #define runtime_xchg(p, v) __atomic_exchange_n (p, v, __ATOMIC_SEQ_CST) #define runtime_atomicload(p) __atomic_load_n (p, __ATOMIC_SEQ_CST) #define runtime_atomicstore(p, v) __atomic_store_n (p, v, __ATOMIC_SEQ_CST) #define runtime_atomicloadp(p) __atomic_load_n (p, __ATOMIC_SEQ_CST) #define runtime_atomicstorep(p, v) __atomic_store_n (p, v, __ATOMIC_SEQ_CST) struct __go_func_type; bool runtime_addfinalizer(void*, void(*fn)(void*), const struct __go_func_type *); #define runtime_getcallersp(p) __builtin_frame_address(1) int32 runtime_mcount(void); int32 runtime_gcount(void); void runtime_dopanic(int32) __attribute__ ((noreturn)); void runtime_startpanic(void); void runtime_ready(G*); const byte* runtime_getenv(const char*); int32 runtime_atoi(const byte*); uint32 runtime_fastrand1(void); void runtime_sigprof(uint8 *pc, uint8 *sp, uint8 *lr, G *gp); void runtime_resetcpuprofiler(int32); void runtime_setcpuprofilerate(void(*)(uintptr*, int32), int32); void runtime_usleep(uint32); /* * runtime c-called (but written in Go) */ void runtime_printany(Eface) __asm__("libgo_runtime.runtime.Printany"); void runtime_newTypeAssertionError(const String*, const String*, const String*, const String*, Eface*) __asm__("libgo_runtime.runtime.NewTypeAssertionError"); void runtime_newErrorString(String, Eface*) __asm__("libgo_runtime.runtime.NewErrorString"); /* * wrapped for go users */ void runtime_semacquire(uint32 volatile *); void runtime_semrelease(uint32 volatile *); int32 runtime_gomaxprocsfunc(int32 n); void runtime_procyield(uint32); void runtime_osyield(void); void runtime_LockOSThread(void) __asm__("libgo_runtime.runtime.LockOSThread"); void runtime_UnlockOSThread(void) __asm__("libgo_runtime.runtime.UnlockOSThread"); uintptr runtime_memlimit(void); // If appropriate, ask the operating system to control whether this // thread should receive profiling signals. This is only necessary on OS X. // An operating system should not deliver a profiling signal to a // thread that is not actually executing (what good is that?), but that's // what OS X prefers to do. When profiling is turned on, we mask // away the profiling signal when threads go to sleep, so that OS X // is forced to deliver the signal to a thread that's actually running. // This is a no-op on other systems. void runtime_setprof(bool); void runtime_time_scan(void (*)(byte*, int64)); void runtime_setsig(int32, bool, bool); #define runtime_setitimer setitimer void runtime_check(void); // A list of global variables that the garbage collector must scan. struct root_list { struct root_list *next; struct root { void *decl; size_t size; } roots[]; }; void __go_register_gc_roots(struct root_list*); // Size of stack space allocated using Go's allocator. // This will be 0 when using split stacks, as in that case // the stacks are allocated by the splitstack library. extern uintptr runtime_stacks_sys;