// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build aix darwin dragonfly freebsd hurd netbsd openbsd solaris package syscall import ( "unsafe" ) type SysProcAttr struct { Chroot string // Chroot. Credential *Credential // Credential. Ptrace bool // Enable tracing. Setsid bool // Create session. Setpgid bool // Set process group ID to Pgid, or, if Pgid == 0, to new pid. Setctty bool // Set controlling terminal to fd Ctty Noctty bool // Detach fd 0 from controlling terminal Ctty int // Controlling TTY fd Foreground bool // Place child's process group in foreground. (Implies Setpgid. Uses Ctty as fd of controlling TTY) Pgid int // Child's process group ID if Setpgid. } // Implemented in runtime package. func runtime_BeforeFork() func runtime_AfterFork() func runtime_AfterForkInChild() // Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child. // If a dup or exec fails, write the errno error to pipe. // (Pipe is close-on-exec so if exec succeeds, it will be closed.) // In the child, this function must not acquire any locks, because // they might have been locked at the time of the fork. This means // no rescheduling, no malloc calls, and no new stack segments. // For the same reason compiler does not race instrument it. // The calls to RawSyscall are okay because they are assembly // functions that do not grow the stack. //go:norace func forkAndExecInChild(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid int, err Errno) { // Declare all variables at top in case any // declarations require heap allocation (e.g., err1). var ( r1 Pid_t err1 Errno nextfd int i int ) // guard against side effects of shuffling fds below. // Make sure that nextfd is beyond any currently open files so // that we can't run the risk of overwriting any of them. fd := make([]int, len(attr.Files)) nextfd = len(attr.Files) for i, ufd := range attr.Files { if nextfd < int(ufd) { nextfd = int(ufd) } fd[i] = int(ufd) } nextfd++ // About to call fork. // No more allocation or calls of non-assembly functions. runtime_BeforeFork() r1, err1 = raw_fork() if err1 != 0 { runtime_AfterFork() return 0, err1 } if r1 != 0 { // parent; return PID runtime_AfterFork() return int(r1), 0 } // Fork succeeded, now in child. runtime_AfterForkInChild() // Enable tracing if requested. if sys.Ptrace { err1 = raw_ptrace(_PTRACE_TRACEME, 0, nil, nil) if err1 != 0 { goto childerror } } // Session ID if sys.Setsid { err1 = raw_setsid() if err1 != 0 { goto childerror } } // Set process group if sys.Setpgid || sys.Foreground { // Place child in process group. err1 = raw_setpgid(0, sys.Pgid) if err1 != 0 { goto childerror } } if sys.Foreground { pgrp := Pid_t(sys.Pgid) if pgrp == 0 { pgrp = raw_getpid() } // Place process group in foreground. _, err1 = raw_ioctl_ptr(sys.Ctty, TIOCSPGRP, unsafe.Pointer(&pgrp)) if err1 != 0 { goto childerror } } // Chroot if chroot != nil { err1 = raw_chroot(chroot) if err1 != 0 { goto childerror } } // User and groups if cred := sys.Credential; cred != nil { ngroups := len(cred.Groups) var groups *Gid_t if ngroups > 0 { gids := make([]Gid_t, ngroups) for i, v := range cred.Groups { gids[i] = Gid_t(v) } groups = &gids[0] } if !cred.NoSetGroups { err2 := setgroups(ngroups, groups) if err2 == nil { err1 = 0 } else { err1 = err2.(Errno) } if err1 != 0 { goto childerror } } err2 := Setgid(int(cred.Gid)) if err2 != nil { err1 = err2.(Errno) goto childerror } err2 = Setuid(int(cred.Uid)) if err2 != nil { err1 = err2.(Errno) goto childerror } } // Chdir if dir != nil { err1 = raw_chdir(dir) if err1 != 0 { goto childerror } } // Pass 1: look for fd[i] < i and move those up above len(fd) // so that pass 2 won't stomp on an fd it needs later. if pipe < nextfd { err1 = raw_dup2(pipe, nextfd) if err1 != 0 { goto childerror } raw_fcntl(nextfd, F_SETFD, FD_CLOEXEC) pipe = nextfd nextfd++ } for i = 0; i < len(fd); i++ { if fd[i] >= 0 && fd[i] < int(i) { if nextfd == pipe { // don't stomp on pipe nextfd++ } err1 = raw_dup2(fd[i], nextfd) if err1 != 0 { goto childerror } raw_fcntl(nextfd, F_SETFD, FD_CLOEXEC) fd[i] = nextfd nextfd++ } } // Pass 2: dup fd[i] down onto i. for i = 0; i < len(fd); i++ { if fd[i] == -1 { raw_close(i) continue } if fd[i] == int(i) { // dup2(i, i) won't clear close-on-exec flag on Linux, // probably not elsewhere either. _, err1 = raw_fcntl(fd[i], F_SETFD, 0) if err1 != 0 { goto childerror } continue } // The new fd is created NOT close-on-exec, // which is exactly what we want. err1 = raw_dup2(fd[i], i) if err1 != 0 { goto childerror } } // By convention, we don't close-on-exec the fds we are // started with, so if len(fd) < 3, close 0, 1, 2 as needed. // Programs that know they inherit fds >= 3 will need // to set them close-on-exec. for i = len(fd); i < 3; i++ { raw_close(i) } // Detach fd 0 from tty if sys.Noctty { _, err1 = raw_ioctl(0, TIOCNOTTY, 0) if err1 != 0 { goto childerror } } // Set the controlling TTY to Ctty if sys.Setctty { if TIOCSCTTY == 0 { err1 = ENOSYS goto childerror } _, err1 = raw_ioctl(sys.Ctty, TIOCSCTTY, 0) if err1 != 0 { goto childerror } } // Time to exec. err1 = raw_execve(argv0, &argv[0], &envv[0]) childerror: // send error code on pipe raw_write(pipe, (*byte)(unsafe.Pointer(&err1)), int(unsafe.Sizeof(err1))) for { raw_exit(253) } }