// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package ycbcr provides images from the Y'CbCr color model. // // JPEG, VP8, the MPEG family and other codecs use this color model. Such // codecs often use the terms YUV and Y'CbCr interchangeably, but strictly // speaking, the term YUV applies only to analog video signals. // // Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly // different formulae for converting between the two. This package follows // the JFIF specification at http://www.w3.org/Graphics/JPEG/jfif3.pdf. package ycbcr import ( "image" "image/color" ) // RGBToYCbCr converts an RGB triple to a YCbCr triple. All components lie // within the range [0, 255]. func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) { // The JFIF specification says: // Y' = 0.2990*R + 0.5870*G + 0.1140*B // Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128 // Cr = 0.5000*R - 0.4187*G - 0.0813*B + 128 // http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'. r1 := int(r) g1 := int(g) b1 := int(b) yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16 cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16 cr := (32768*r1 - 27440*g1 - 5328*b1 + 257<<15) >> 16 if yy < 0 { yy = 0 } else if yy > 255 { yy = 255 } if cb < 0 { cb = 0 } else if cb > 255 { cb = 255 } if cr < 0 { cr = 0 } else if cr > 255 { cr = 255 } return uint8(yy), uint8(cb), uint8(cr) } // YCbCrToRGB converts a YCbCr triple to an RGB triple. All components lie // within the range [0, 255]. func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) { // The JFIF specification says: // R = Y' + 1.40200*(Cr-128) // G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128) // B = Y' + 1.77200*(Cb-128) // http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'. yy1 := int(y)<<16 + 1<<15 cb1 := int(cb) - 128 cr1 := int(cr) - 128 r := (yy1 + 91881*cr1) >> 16 g := (yy1 - 22554*cb1 - 46802*cr1) >> 16 b := (yy1 + 116130*cb1) >> 16 if r < 0 { r = 0 } else if r > 255 { r = 255 } if g < 0 { g = 0 } else if g > 255 { g = 255 } if b < 0 { b = 0 } else if b > 255 { b = 255 } return uint8(r), uint8(g), uint8(b) } // YCbCrColor represents a fully opaque 24-bit Y'CbCr color, having 8 bits for // each of one luma and two chroma components. type YCbCrColor struct { Y, Cb, Cr uint8 } func (c YCbCrColor) RGBA() (uint32, uint32, uint32, uint32) { r, g, b := YCbCrToRGB(c.Y, c.Cb, c.Cr) return uint32(r) * 0x101, uint32(g) * 0x101, uint32(b) * 0x101, 0xffff } func toYCbCrColor(c color.Color) color.Color { if _, ok := c.(YCbCrColor); ok { return c } r, g, b, _ := c.RGBA() y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8)) return YCbCrColor{y, u, v} } // YCbCrColorModel is the color model for YCbCrColor. var YCbCrColorModel color.Model = color.ModelFunc(toYCbCrColor) // SubsampleRatio is the chroma subsample ratio used in a YCbCr image. type SubsampleRatio int const ( SubsampleRatio444 SubsampleRatio = iota SubsampleRatio422 SubsampleRatio420 ) // YCbCr is an in-memory image of YCbCr colors. There is one Y sample per pixel, // but each Cb and Cr sample can span one or more pixels. // YStride is the Y slice index delta between vertically adjacent pixels. // CStride is the Cb and Cr slice index delta between vertically adjacent pixels // that map to separate chroma samples. // It is not an absolute requirement, but YStride and len(Y) are typically // multiples of 8, and: // For 4:4:4, CStride == YStride/1 && len(Cb) == len(Cr) == len(Y)/1. // For 4:2:2, CStride == YStride/2 && len(Cb) == len(Cr) == len(Y)/2. // For 4:2:0, CStride == YStride/2 && len(Cb) == len(Cr) == len(Y)/4. type YCbCr struct { Y []uint8 Cb []uint8 Cr []uint8 YStride int CStride int SubsampleRatio SubsampleRatio Rect image.Rectangle } func (p *YCbCr) ColorModel() color.Model { return YCbCrColorModel } func (p *YCbCr) Bounds() image.Rectangle { return p.Rect } func (p *YCbCr) At(x, y int) color.Color { if !(image.Point{x, y}.In(p.Rect)) { return YCbCrColor{} } switch p.SubsampleRatio { case SubsampleRatio422: i := x / 2 return YCbCrColor{ p.Y[y*p.YStride+x], p.Cb[y*p.CStride+i], p.Cr[y*p.CStride+i], } case SubsampleRatio420: i, j := x/2, y/2 return YCbCrColor{ p.Y[y*p.YStride+x], p.Cb[j*p.CStride+i], p.Cr[j*p.CStride+i], } } // Default to 4:4:4 subsampling. return YCbCrColor{ p.Y[y*p.YStride+x], p.Cb[y*p.CStride+x], p.Cr[y*p.CStride+x], } } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *YCbCr) SubImage(r image.Rectangle) image.Image { q := new(YCbCr) *q = *p q.Rect = q.Rect.Intersect(r) return q } func (p *YCbCr) Opaque() bool { return true }