// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package bytes implements functions for the manipulation of byte slices. // It is analogous to the facilities of the strings package. package bytes import ( "internal/bytealg" "unicode" "unicode/utf8" ) // Equal reports whether a and b // are the same length and contain the same bytes. // A nil argument is equivalent to an empty slice. func Equal(a, b []byte) bool { // Neither cmd/compile nor gccgo allocates for these string conversions. return string(a) == string(b) } // Compare returns an integer comparing two byte slices lexicographically. // The result will be 0 if a==b, -1 if a < b, and +1 if a > b. // A nil argument is equivalent to an empty slice. func Compare(a, b []byte) int { return bytealg.Compare(a, b) } // explode splits s into a slice of UTF-8 sequences, one per Unicode code point (still slices of bytes), // up to a maximum of n byte slices. Invalid UTF-8 sequences are chopped into individual bytes. func explode(s []byte, n int) [][]byte { if n <= 0 { n = len(s) } a := make([][]byte, n) var size int na := 0 for len(s) > 0 { if na+1 >= n { a[na] = s na++ break } _, size = utf8.DecodeRune(s) a[na] = s[0:size:size] s = s[size:] na++ } return a[0:na] } // Count counts the number of non-overlapping instances of sep in s. // If sep is an empty slice, Count returns 1 + the number of UTF-8-encoded code points in s. func Count(s, sep []byte) int { // special case if len(sep) == 0 { return utf8.RuneCount(s) + 1 } if len(sep) == 1 { return bytealg.Count(s, sep[0]) } n := 0 for { i := Index(s, sep) if i == -1 { return n } n++ s = s[i+len(sep):] } } // Contains reports whether subslice is within b. func Contains(b, subslice []byte) bool { return Index(b, subslice) != -1 } // ContainsAny reports whether any of the UTF-8-encoded code points in chars are within b. func ContainsAny(b []byte, chars string) bool { return IndexAny(b, chars) >= 0 } // ContainsRune reports whether the rune is contained in the UTF-8-encoded byte slice b. func ContainsRune(b []byte, r rune) bool { return IndexRune(b, r) >= 0 } // IndexByte returns the index of the first instance of c in b, or -1 if c is not present in b. func IndexByte(b []byte, c byte) int { return bytealg.IndexByte(b, c) } func indexBytePortable(s []byte, c byte) int { for i, b := range s { if b == c { return i } } return -1 } // LastIndex returns the index of the last instance of sep in s, or -1 if sep is not present in s. func LastIndex(s, sep []byte) int { n := len(sep) switch { case n == 0: return len(s) case n == 1: return LastIndexByte(s, sep[0]) case n == len(s): if Equal(s, sep) { return 0 } return -1 case n > len(s): return -1 } // Rabin-Karp search from the end of the string hashss, pow := hashStrRev(sep) last := len(s) - n var h uint32 for i := len(s) - 1; i >= last; i-- { h = h*primeRK + uint32(s[i]) } if h == hashss && Equal(s[last:], sep) { return last } for i := last - 1; i >= 0; i-- { h *= primeRK h += uint32(s[i]) h -= pow * uint32(s[i+n]) if h == hashss && Equal(s[i:i+n], sep) { return i } } return -1 } // LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s. func LastIndexByte(s []byte, c byte) int { for i := len(s) - 1; i >= 0; i-- { if s[i] == c { return i } } return -1 } // IndexRune interprets s as a sequence of UTF-8-encoded code points. // It returns the byte index of the first occurrence in s of the given rune. // It returns -1 if rune is not present in s. // If r is utf8.RuneError, it returns the first instance of any // invalid UTF-8 byte sequence. func IndexRune(s []byte, r rune) int { switch { case 0 <= r && r < utf8.RuneSelf: return IndexByte(s, byte(r)) case r == utf8.RuneError: for i := 0; i < len(s); { r1, n := utf8.DecodeRune(s[i:]) if r1 == utf8.RuneError { return i } i += n } return -1 case !utf8.ValidRune(r): return -1 default: var b [utf8.UTFMax]byte n := utf8.EncodeRune(b[:], r) return Index(s, b[:n]) } } // IndexAny interprets s as a sequence of UTF-8-encoded Unicode code points. // It returns the byte index of the first occurrence in s of any of the Unicode // code points in chars. It returns -1 if chars is empty or if there is no code // point in common. func IndexAny(s []byte, chars string) int { if chars == "" { // Avoid scanning all of s. return -1 } if len(s) > 8 { if as, isASCII := makeASCIISet(chars); isASCII { for i, c := range s { if as.contains(c) { return i } } return -1 } } var width int for i := 0; i < len(s); i += width { r := rune(s[i]) if r < utf8.RuneSelf { width = 1 } else { r, width = utf8.DecodeRune(s[i:]) } for _, ch := range chars { if r == ch { return i } } } return -1 } // LastIndexAny interprets s as a sequence of UTF-8-encoded Unicode code // points. It returns the byte index of the last occurrence in s of any of // the Unicode code points in chars. It returns -1 if chars is empty or if // there is no code point in common. func LastIndexAny(s []byte, chars string) int { if chars == "" { // Avoid scanning all of s. return -1 } if len(s) > 8 { if as, isASCII := makeASCIISet(chars); isASCII { for i := len(s) - 1; i >= 0; i-- { if as.contains(s[i]) { return i } } return -1 } } for i := len(s); i > 0; { r, size := utf8.DecodeLastRune(s[:i]) i -= size for _, c := range chars { if r == c { return i } } } return -1 } // Generic split: splits after each instance of sep, // including sepSave bytes of sep in the subslices. func genSplit(s, sep []byte, sepSave, n int) [][]byte { if n == 0 { return nil } if len(sep) == 0 { return explode(s, n) } if n < 0 { n = Count(s, sep) + 1 } a := make([][]byte, n) n-- i := 0 for i < n { m := Index(s, sep) if m < 0 { break } a[i] = s[: m+sepSave : m+sepSave] s = s[m+len(sep):] i++ } a[i] = s return a[:i+1] } // SplitN slices s into subslices separated by sep and returns a slice of // the subslices between those separators. // If sep is empty, SplitN splits after each UTF-8 sequence. // The count determines the number of subslices to return: // n > 0: at most n subslices; the last subslice will be the unsplit remainder. // n == 0: the result is nil (zero subslices) // n < 0: all subslices func SplitN(s, sep []byte, n int) [][]byte { return genSplit(s, sep, 0, n) } // SplitAfterN slices s into subslices after each instance of sep and // returns a slice of those subslices. // If sep is empty, SplitAfterN splits after each UTF-8 sequence. // The count determines the number of subslices to return: // n > 0: at most n subslices; the last subslice will be the unsplit remainder. // n == 0: the result is nil (zero subslices) // n < 0: all subslices func SplitAfterN(s, sep []byte, n int) [][]byte { return genSplit(s, sep, len(sep), n) } // Split slices s into all subslices separated by sep and returns a slice of // the subslices between those separators. // If sep is empty, Split splits after each UTF-8 sequence. // It is equivalent to SplitN with a count of -1. func Split(s, sep []byte) [][]byte { return genSplit(s, sep, 0, -1) } // SplitAfter slices s into all subslices after each instance of sep and // returns a slice of those subslices. // If sep is empty, SplitAfter splits after each UTF-8 sequence. // It is equivalent to SplitAfterN with a count of -1. func SplitAfter(s, sep []byte) [][]byte { return genSplit(s, sep, len(sep), -1) } var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1} // Fields interprets s as a sequence of UTF-8-encoded code points. // It splits the slice s around each instance of one or more consecutive white space // characters, as defined by unicode.IsSpace, returning a slice of subslices of s or an // empty slice if s contains only white space. func Fields(s []byte) [][]byte { // First count the fields. // This is an exact count if s is ASCII, otherwise it is an approximation. n := 0 wasSpace := 1 // setBits is used to track which bits are set in the bytes of s. setBits := uint8(0) for i := 0; i < len(s); i++ { r := s[i] setBits |= r isSpace := int(asciiSpace[r]) n += wasSpace & ^isSpace wasSpace = isSpace } if setBits >= utf8.RuneSelf { // Some runes in the input slice are not ASCII. return FieldsFunc(s, unicode.IsSpace) } // ASCII fast path a := make([][]byte, n) na := 0 fieldStart := 0 i := 0 // Skip spaces in the front of the input. for i < len(s) && asciiSpace[s[i]] != 0 { i++ } fieldStart = i for i < len(s) { if asciiSpace[s[i]] == 0 { i++ continue } a[na] = s[fieldStart:i:i] na++ i++ // Skip spaces in between fields. for i < len(s) && asciiSpace[s[i]] != 0 { i++ } fieldStart = i } if fieldStart < len(s) { // Last field might end at EOF. a[na] = s[fieldStart:len(s):len(s)] } return a } // FieldsFunc interprets s as a sequence of UTF-8-encoded code points. // It splits the slice s at each run of code points c satisfying f(c) and // returns a slice of subslices of s. If all code points in s satisfy f(c), or // len(s) == 0, an empty slice is returned. // FieldsFunc makes no guarantees about the order in which it calls f(c). // If f does not return consistent results for a given c, FieldsFunc may crash. func FieldsFunc(s []byte, f func(rune) bool) [][]byte { // A span is used to record a slice of s of the form s[start:end]. // The start index is inclusive and the end index is exclusive. type span struct { start int end int } spans := make([]span, 0, 32) // Find the field start and end indices. wasField := false fromIndex := 0 for i := 0; i < len(s); { size := 1 r := rune(s[i]) if r >= utf8.RuneSelf { r, size = utf8.DecodeRune(s[i:]) } if f(r) { if wasField { spans = append(spans, span{start: fromIndex, end: i}) wasField = false } } else { if !wasField { fromIndex = i wasField = true } } i += size } // Last field might end at EOF. if wasField { spans = append(spans, span{fromIndex, len(s)}) } // Create subslices from recorded field indices. a := make([][]byte, len(spans)) for i, span := range spans { a[i] = s[span.start:span.end:span.end] } return a } // Join concatenates the elements of s to create a new byte slice. The separator // sep is placed between elements in the resulting slice. func Join(s [][]byte, sep []byte) []byte { if len(s) == 0 { return []byte{} } if len(s) == 1 { // Just return a copy. return append([]byte(nil), s[0]...) } n := len(sep) * (len(s) - 1) for _, v := range s { n += len(v) } b := make([]byte, n) bp := copy(b, s[0]) for _, v := range s[1:] { bp += copy(b[bp:], sep) bp += copy(b[bp:], v) } return b } // HasPrefix tests whether the byte slice s begins with prefix. func HasPrefix(s, prefix []byte) bool { return len(s) >= len(prefix) && Equal(s[0:len(prefix)], prefix) } // HasSuffix tests whether the byte slice s ends with suffix. func HasSuffix(s, suffix []byte) bool { return len(s) >= len(suffix) && Equal(s[len(s)-len(suffix):], suffix) } // Map returns a copy of the byte slice s with all its characters modified // according to the mapping function. If mapping returns a negative value, the character is // dropped from the byte slice with no replacement. The characters in s and the // output are interpreted as UTF-8-encoded code points. func Map(mapping func(r rune) rune, s []byte) []byte { // In the worst case, the slice can grow when mapped, making // things unpleasant. But it's so rare we barge in assuming it's // fine. It could also shrink but that falls out naturally. maxbytes := len(s) // length of b nbytes := 0 // number of bytes encoded in b b := make([]byte, maxbytes) for i := 0; i < len(s); { wid := 1 r := rune(s[i]) if r >= utf8.RuneSelf { r, wid = utf8.DecodeRune(s[i:]) } r = mapping(r) if r >= 0 { rl := utf8.RuneLen(r) if rl < 0 { rl = len(string(utf8.RuneError)) } if nbytes+rl > maxbytes { // Grow the buffer. maxbytes = maxbytes*2 + utf8.UTFMax nb := make([]byte, maxbytes) copy(nb, b[0:nbytes]) b = nb } nbytes += utf8.EncodeRune(b[nbytes:maxbytes], r) } i += wid } return b[0:nbytes] } // Repeat returns a new byte slice consisting of count copies of b. // // It panics if count is negative or if // the result of (len(b) * count) overflows. func Repeat(b []byte, count int) []byte { if count == 0 { return []byte{} } // Since we cannot return an error on overflow, // we should panic if the repeat will generate // an overflow. // See Issue golang.org/issue/16237. if count < 0 { panic("bytes: negative Repeat count") } else if len(b)*count/count != len(b) { panic("bytes: Repeat count causes overflow") } nb := make([]byte, len(b)*count) bp := copy(nb, b) for bp < len(nb) { copy(nb[bp:], nb[:bp]) bp *= 2 } return nb } // ToUpper returns a copy of the byte slice s with all Unicode letters mapped to // their upper case. func ToUpper(s []byte) []byte { isASCII, hasLower := true, false for i := 0; i < len(s); i++ { c := s[i] if c >= utf8.RuneSelf { isASCII = false break } hasLower = hasLower || ('a' <= c && c <= 'z') } if isASCII { // optimize for ASCII-only byte slices. if !hasLower { // Just return a copy. return append([]byte(""), s...) } b := make([]byte, len(s)) for i := 0; i < len(s); i++ { c := s[i] if 'a' <= c && c <= 'z' { c -= 'a' - 'A' } b[i] = c } return b } return Map(unicode.ToUpper, s) } // ToLower returns a copy of the byte slice s with all Unicode letters mapped to // their lower case. func ToLower(s []byte) []byte { isASCII, hasUpper := true, false for i := 0; i < len(s); i++ { c := s[i] if c >= utf8.RuneSelf { isASCII = false break } hasUpper = hasUpper || ('A' <= c && c <= 'Z') } if isASCII { // optimize for ASCII-only byte slices. if !hasUpper { return append([]byte(""), s...) } b := make([]byte, len(s)) for i := 0; i < len(s); i++ { c := s[i] if 'A' <= c && c <= 'Z' { c += 'a' - 'A' } b[i] = c } return b } return Map(unicode.ToLower, s) } // ToTitle treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their title case. func ToTitle(s []byte) []byte { return Map(unicode.ToTitle, s) } // ToUpperSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their // upper case, giving priority to the special casing rules. func ToUpperSpecial(c unicode.SpecialCase, s []byte) []byte { return Map(c.ToUpper, s) } // ToLowerSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their // lower case, giving priority to the special casing rules. func ToLowerSpecial(c unicode.SpecialCase, s []byte) []byte { return Map(c.ToLower, s) } // ToTitleSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their // title case, giving priority to the special casing rules. func ToTitleSpecial(c unicode.SpecialCase, s []byte) []byte { return Map(c.ToTitle, s) } // ToValidUTF8 treats s as UTF-8-encoded bytes and returns a copy with each run of bytes // representing invalid UTF-8 replaced with the bytes in replacement, which may be empty. func ToValidUTF8(s, replacement []byte) []byte { b := make([]byte, 0, len(s)+len(replacement)) invalid := false // previous byte was from an invalid UTF-8 sequence for i := 0; i < len(s); { c := s[i] if c < utf8.RuneSelf { i++ invalid = false b = append(b, byte(c)) continue } _, wid := utf8.DecodeRune(s[i:]) if wid == 1 { i++ if !invalid { invalid = true b = append(b, replacement...) } continue } invalid = false b = append(b, s[i:i+wid]...) i += wid } return b } // isSeparator reports whether the rune could mark a word boundary. // TODO: update when package unicode captures more of the properties. func isSeparator(r rune) bool { // ASCII alphanumerics and underscore are not separators if r <= 0x7F { switch { case '0' <= r && r <= '9': return false case 'a' <= r && r <= 'z': return false case 'A' <= r && r <= 'Z': return false case r == '_': return false } return true } // Letters and digits are not separators if unicode.IsLetter(r) || unicode.IsDigit(r) { return false } // Otherwise, all we can do for now is treat spaces as separators. return unicode.IsSpace(r) } // Title treats s as UTF-8-encoded bytes and returns a copy with all Unicode letters that begin // words mapped to their title case. // // BUG(rsc): The rule Title uses for word boundaries does not handle Unicode punctuation properly. func Title(s []byte) []byte { // Use a closure here to remember state. // Hackish but effective. Depends on Map scanning in order and calling // the closure once per rune. prev := ' ' return Map( func(r rune) rune { if isSeparator(prev) { prev = r return unicode.ToTitle(r) } prev = r return r }, s) } // TrimLeftFunc treats s as UTF-8-encoded bytes and returns a subslice of s by slicing off // all leading UTF-8-encoded code points c that satisfy f(c). func TrimLeftFunc(s []byte, f func(r rune) bool) []byte { i := indexFunc(s, f, false) if i == -1 { return nil } return s[i:] } // TrimRightFunc returns a subslice of s by slicing off all trailing // UTF-8-encoded code points c that satisfy f(c). func TrimRightFunc(s []byte, f func(r rune) bool) []byte { i := lastIndexFunc(s, f, false) if i >= 0 && s[i] >= utf8.RuneSelf { _, wid := utf8.DecodeRune(s[i:]) i += wid } else { i++ } return s[0:i] } // TrimFunc returns a subslice of s by slicing off all leading and trailing // UTF-8-encoded code points c that satisfy f(c). func TrimFunc(s []byte, f func(r rune) bool) []byte { return TrimRightFunc(TrimLeftFunc(s, f), f) } // TrimPrefix returns s without the provided leading prefix string. // If s doesn't start with prefix, s is returned unchanged. func TrimPrefix(s, prefix []byte) []byte { if HasPrefix(s, prefix) { return s[len(prefix):] } return s } // TrimSuffix returns s without the provided trailing suffix string. // If s doesn't end with suffix, s is returned unchanged. func TrimSuffix(s, suffix []byte) []byte { if HasSuffix(s, suffix) { return s[:len(s)-len(suffix)] } return s } // IndexFunc interprets s as a sequence of UTF-8-encoded code points. // It returns the byte index in s of the first Unicode // code point satisfying f(c), or -1 if none do. func IndexFunc(s []byte, f func(r rune) bool) int { return indexFunc(s, f, true) } // LastIndexFunc interprets s as a sequence of UTF-8-encoded code points. // It returns the byte index in s of the last Unicode // code point satisfying f(c), or -1 if none do. func LastIndexFunc(s []byte, f func(r rune) bool) int { return lastIndexFunc(s, f, true) } // indexFunc is the same as IndexFunc except that if // truth==false, the sense of the predicate function is // inverted. func indexFunc(s []byte, f func(r rune) bool, truth bool) int { start := 0 for start < len(s) { wid := 1 r := rune(s[start]) if r >= utf8.RuneSelf { r, wid = utf8.DecodeRune(s[start:]) } if f(r) == truth { return start } start += wid } return -1 } // lastIndexFunc is the same as LastIndexFunc except that if // truth==false, the sense of the predicate function is // inverted. func lastIndexFunc(s []byte, f func(r rune) bool, truth bool) int { for i := len(s); i > 0; { r, size := rune(s[i-1]), 1 if r >= utf8.RuneSelf { r, size = utf8.DecodeLastRune(s[0:i]) } i -= size if f(r) == truth { return i } } return -1 } // asciiSet is a 32-byte value, where each bit represents the presence of a // given ASCII character in the set. The 128-bits of the lower 16 bytes, // starting with the least-significant bit of the lowest word to the // most-significant bit of the highest word, map to the full range of all // 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed, // ensuring that any non-ASCII character will be reported as not in the set. type asciiSet [8]uint32 // makeASCIISet creates a set of ASCII characters and reports whether all // characters in chars are ASCII. func makeASCIISet(chars string) (as asciiSet, ok bool) { for i := 0; i < len(chars); i++ { c := chars[i] if c >= utf8.RuneSelf { return as, false } as[c>>5] |= 1 << uint(c&31) } return as, true } // contains reports whether c is inside the set. func (as *asciiSet) contains(c byte) bool { return (as[c>>5] & (1 << uint(c&31))) != 0 } func makeCutsetFunc(cutset string) func(r rune) bool { if len(cutset) == 1 && cutset[0] < utf8.RuneSelf { return func(r rune) bool { return r == rune(cutset[0]) } } if as, isASCII := makeASCIISet(cutset); isASCII { return func(r rune) bool { return r < utf8.RuneSelf && as.contains(byte(r)) } } return func(r rune) bool { for _, c := range cutset { if c == r { return true } } return false } } // Trim returns a subslice of s by slicing off all leading and // trailing UTF-8-encoded code points contained in cutset. func Trim(s []byte, cutset string) []byte { return TrimFunc(s, makeCutsetFunc(cutset)) } // TrimLeft returns a subslice of s by slicing off all leading // UTF-8-encoded code points contained in cutset. func TrimLeft(s []byte, cutset string) []byte { return TrimLeftFunc(s, makeCutsetFunc(cutset)) } // TrimRight returns a subslice of s by slicing off all trailing // UTF-8-encoded code points that are contained in cutset. func TrimRight(s []byte, cutset string) []byte { return TrimRightFunc(s, makeCutsetFunc(cutset)) } // TrimSpace returns a subslice of s by slicing off all leading and // trailing white space, as defined by Unicode. func TrimSpace(s []byte) []byte { // Fast path for ASCII: look for the first ASCII non-space byte start := 0 for ; start < len(s); start++ { c := s[start] if c >= utf8.RuneSelf { // If we run into a non-ASCII byte, fall back to the // slower unicode-aware method on the remaining bytes return TrimFunc(s[start:], unicode.IsSpace) } if asciiSpace[c] == 0 { break } } // Now look for the first ASCII non-space byte from the end stop := len(s) for ; stop > start; stop-- { c := s[stop-1] if c >= utf8.RuneSelf { return TrimFunc(s[start:stop], unicode.IsSpace) } if asciiSpace[c] == 0 { break } } // At this point s[start:stop] starts and ends with an ASCII // non-space bytes, so we're done. Non-ASCII cases have already // been handled above. if start == stop { // Special case to preserve previous TrimLeftFunc behavior, // returning nil instead of empty slice if all spaces. return nil } return s[start:stop] } // Runes interprets s as a sequence of UTF-8-encoded code points. // It returns a slice of runes (Unicode code points) equivalent to s. func Runes(s []byte) []rune { t := make([]rune, utf8.RuneCount(s)) i := 0 for len(s) > 0 { r, l := utf8.DecodeRune(s) t[i] = r i++ s = s[l:] } return t } // Replace returns a copy of the slice s with the first n // non-overlapping instances of old replaced by new. // If old is empty, it matches at the beginning of the slice // and after each UTF-8 sequence, yielding up to k+1 replacements // for a k-rune slice. // If n < 0, there is no limit on the number of replacements. func Replace(s, old, new []byte, n int) []byte { m := 0 if n != 0 { // Compute number of replacements. m = Count(s, old) } if m == 0 { // Just return a copy. return append([]byte(nil), s...) } if n < 0 || m < n { n = m } // Apply replacements to buffer. t := make([]byte, len(s)+n*(len(new)-len(old))) w := 0 start := 0 for i := 0; i < n; i++ { j := start if len(old) == 0 { if i > 0 { _, wid := utf8.DecodeRune(s[start:]) j += wid } } else { j += Index(s[start:], old) } w += copy(t[w:], s[start:j]) w += copy(t[w:], new) start = j + len(old) } w += copy(t[w:], s[start:]) return t[0:w] } // ReplaceAll returns a copy of the slice s with all // non-overlapping instances of old replaced by new. // If old is empty, it matches at the beginning of the slice // and after each UTF-8 sequence, yielding up to k+1 replacements // for a k-rune slice. func ReplaceAll(s, old, new []byte) []byte { return Replace(s, old, new, -1) } // EqualFold reports whether s and t, interpreted as UTF-8 strings, // are equal under Unicode case-folding, which is a more general // form of case-insensitivity. func EqualFold(s, t []byte) bool { for len(s) != 0 && len(t) != 0 { // Extract first rune from each. var sr, tr rune if s[0] < utf8.RuneSelf { sr, s = rune(s[0]), s[1:] } else { r, size := utf8.DecodeRune(s) sr, s = r, s[size:] } if t[0] < utf8.RuneSelf { tr, t = rune(t[0]), t[1:] } else { r, size := utf8.DecodeRune(t) tr, t = r, t[size:] } // If they match, keep going; if not, return false. // Easy case. if tr == sr { continue } // Make sr < tr to simplify what follows. if tr < sr { tr, sr = sr, tr } // Fast check for ASCII. if tr < utf8.RuneSelf { // ASCII only, sr/tr must be upper/lower case if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' { continue } return false } // General case. SimpleFold(x) returns the next equivalent rune > x // or wraps around to smaller values. r := unicode.SimpleFold(sr) for r != sr && r < tr { r = unicode.SimpleFold(r) } if r == tr { continue } return false } // One string is empty. Are both? return len(s) == len(t) } // Index returns the index of the first instance of sep in s, or -1 if sep is not present in s. func Index(s, sep []byte) int { n := len(sep) switch { case n == 0: return 0 case n == 1: return IndexByte(s, sep[0]) case n == len(s): if Equal(sep, s) { return 0 } return -1 case n > len(s): return -1 case n <= bytealg.MaxLen: // Use brute force when s and sep both are small if len(s) <= bytealg.MaxBruteForce { return bytealg.Index(s, sep) } c0 := sep[0] c1 := sep[1] i := 0 t := len(s) - n + 1 fails := 0 for i < t { if s[i] != c0 { // IndexByte is faster than bytealg.Index, so use it as long as // we're not getting lots of false positives. o := IndexByte(s[i:t], c0) if o < 0 { return -1 } i += o } if s[i+1] == c1 && Equal(s[i:i+n], sep) { return i } fails++ i++ // Switch to bytealg.Index when IndexByte produces too many false positives. if fails > bytealg.Cutover(i) { r := bytealg.Index(s[i:], sep) if r >= 0 { return r + i } return -1 } } return -1 } c0 := sep[0] c1 := sep[1] i := 0 fails := 0 t := len(s) - n + 1 for i < t { if s[i] != c0 { o := IndexByte(s[i:t], c0) if o < 0 { break } i += o } if s[i+1] == c1 && Equal(s[i:i+n], sep) { return i } i++ fails++ if fails >= 4+i>>4 && i < t { // Give up on IndexByte, it isn't skipping ahead // far enough to be better than Rabin-Karp. // Experiments (using IndexPeriodic) suggest // the cutover is about 16 byte skips. // TODO: if large prefixes of sep are matching // we should cutover at even larger average skips, // because Equal becomes that much more expensive. // This code does not take that effect into account. j := indexRabinKarp(s[i:], sep) if j < 0 { return -1 } return i + j } } return -1 } func indexRabinKarp(s, sep []byte) int { // Rabin-Karp search hashsep, pow := hashStr(sep) n := len(sep) var h uint32 for i := 0; i < n; i++ { h = h*primeRK + uint32(s[i]) } if h == hashsep && Equal(s[:n], sep) { return 0 } for i := n; i < len(s); { h *= primeRK h += uint32(s[i]) h -= pow * uint32(s[i-n]) i++ if h == hashsep && Equal(s[i-n:i], sep) { return i - n } } return -1 } // primeRK is the prime base used in Rabin-Karp algorithm. const primeRK = 16777619 // hashStr returns the hash and the appropriate multiplicative // factor for use in Rabin-Karp algorithm. func hashStr(sep []byte) (uint32, uint32) { hash := uint32(0) for i := 0; i < len(sep); i++ { hash = hash*primeRK + uint32(sep[i]) } var pow, sq uint32 = 1, primeRK for i := len(sep); i > 0; i >>= 1 { if i&1 != 0 { pow *= sq } sq *= sq } return hash, pow } // hashStrRev returns the hash of the reverse of sep and the // appropriate multiplicative factor for use in Rabin-Karp algorithm. func hashStrRev(sep []byte) (uint32, uint32) { hash := uint32(0) for i := len(sep) - 1; i >= 0; i-- { hash = hash*primeRK + uint32(sep[i]) } var pow, sq uint32 = 1, primeRK for i := len(sep); i > 0; i >>= 1 { if i&1 != 0 { pow *= sq } sq *= sq } return hash, pow }