/* Implementation of the degree trignometric functions COSD, SIND, TAND. Copyright (C) 2020-2021 Free Software Foundation, Inc. Contributed by Steven G. Kargl and Fritz Reese This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ /* This file is included from both the FE and the runtime library code. Operations are generalized using GMP/MPFR functions. When included from libgfortran, these should be overridden using macros which will use native operations conforming to the same API. From the FE, the GMP/MPFR functions can be used as-is. The following macros are used and must be defined, unless listed as [optional]: FTYPE Type name for the real-valued parameter. Variables of this type are constructed/destroyed using mpfr_init() and mpfr_clear. RETTYPE Return type of the functions. RETURN(x) Insert code to return a value. The parameter x is the result variable, which was also the input parameter. ITYPE Type name for integer types. SIND, COSD, TRIGD Names for the degree-valued trig functions defined by this module. ENABLE_SIND, ENABLE_COSD, ENABLE_TAND Whether the degree-valued trig functions can be enabled. ERROR_RETURN(f, k, x) If ENABLE_D is not defined, this is substituted to assert an error condition for function f, kind k, and parameter x. The function argument is one of {sind, cosd, tand}. ISFINITE(x) Whether x is a regular number or zero (not inf or NaN). D2R(x) Convert x from radians to degrees. SET_COSD30(x) Set x to COSD(30), or equivalently, SIND(60). TINY_LITERAL [optional] Value subtracted from 1 to cause raise INEXACT for COSD(x) for x << 1. If not set, COSD(x) for x <= COSD_SMALL_LITERAL simply returns 1. COSD_SMALL_LITERAL [optional] Value such that x <= COSD_SMALL_LITERAL implies COSD(x) = 1 to within the precision of FTYPE. If not set, this condition is not checked. SIND_SMALL_LITERAL [optional] Value such that x <= SIND_SMALL_LITERAL implies SIND(x) = D2R(x) to within the precision of FTYPE. If not set, this condition is not checked. */ #ifdef SIND /* Compute sind(x) = sin(x * pi / 180). */ RETTYPE SIND (FTYPE x) { #ifdef ENABLE_SIND if (ISFINITE (x)) { FTYPE s, one; /* sin(-x) = - sin(x). */ mpfr_init (s); mpfr_init_set_ui (one, 1, GFC_RND_MODE); mpfr_copysign (s, one, x, GFC_RND_MODE); mpfr_clear (one); #ifdef SIND_SMALL_LITERAL /* sin(x) = x as x -> 0; but only for some precisions. */ FTYPE ax; mpfr_init (ax); mpfr_abs (ax, x, GFC_RND_MODE); if (mpfr_cmp_ld (ax, SIND_SMALL_LITERAL) < 0) { D2R (x); mpfr_clear (ax); return x; } mpfr_swap (x, ax); mpfr_clear (ax); #else mpfr_abs (x, x, GFC_RND_MODE); #endif /* SIND_SMALL_LITERAL */ /* Reduce angle to x in [0,360]. */ FTYPE period; mpfr_init_set_ui (period, 360, GFC_RND_MODE); mpfr_fmod (x, x, period, GFC_RND_MODE); mpfr_clear (period); /* Special cases with exact results. */ ITYPE n; mpz_init (n); if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 30)) { /* Flip sign for odd n*pi (x is % 360 so this is only for 180). This respects sgn(sin(x)) = sgn(d/dx sin(x)) = sgn(cos(x)). */ if (mpz_divisible_ui_p (n, 180)) { mpfr_set_ui (x, 0, GFC_RND_MODE); if (mpz_cmp_ui (n, 180) == 0) mpfr_neg (s, s, GFC_RND_MODE); } else if (mpz_divisible_ui_p (n, 90)) mpfr_set_si (x, (mpz_cmp_ui (n, 90) == 0 ? 1 : -1), GFC_RND_MODE); else if (mpz_divisible_ui_p (n, 60)) { SET_COSD30 (x); if (mpz_cmp_ui (n, 180) >= 0) mpfr_neg (x, x, GFC_RND_MODE); } else mpfr_set_ld (x, (mpz_cmp_ui (n, 180) < 0 ? 0.5L : -0.5L), GFC_RND_MODE); } /* Fold [0,360] into the range [0,45], and compute either SIN() or COS() depending on symmetry of shifting into the [0,45] range. */ else { bool fold_cos = false; if (mpfr_cmp_ui (x, 180) <= 0) { if (mpfr_cmp_ui (x, 90) <= 0) { if (mpfr_cmp_ui (x, 45) > 0) { /* x = COS(D2R(90 - x)) */ mpfr_ui_sub (x, 90, x, GFC_RND_MODE); fold_cos = true; } } else { if (mpfr_cmp_ui (x, 135) <= 0) { mpfr_sub_ui (x, x, 90, GFC_RND_MODE); fold_cos = true; } else mpfr_ui_sub (x, 180, x, GFC_RND_MODE); } } else if (mpfr_cmp_ui (x, 270) <= 0) { if (mpfr_cmp_ui (x, 225) <= 0) mpfr_sub_ui (x, x, 180, GFC_RND_MODE); else { mpfr_ui_sub (x, 270, x, GFC_RND_MODE); fold_cos = true; } mpfr_neg (s, s, GFC_RND_MODE); } else { if (mpfr_cmp_ui (x, 315) <= 0) { mpfr_sub_ui (x, x, 270, GFC_RND_MODE); fold_cos = true; } else mpfr_ui_sub (x, 360, x, GFC_RND_MODE); mpfr_neg (s, s, GFC_RND_MODE); } D2R (x); if (fold_cos) mpfr_cos (x, x, GFC_RND_MODE); else mpfr_sin (x, x, GFC_RND_MODE); } mpfr_mul (x, x, s, GFC_RND_MODE); mpz_clear (n); mpfr_clear (s); } /* Return NaN for +-Inf and NaN and raise exception. */ else mpfr_sub (x, x, x, GFC_RND_MODE); RETURN (x); #else ERROR_RETURN(sind, KIND, x); #endif // ENABLE_SIND } #endif // SIND #ifdef COSD /* Compute cosd(x) = cos(x * pi / 180). */ RETTYPE COSD (FTYPE x) { #ifdef ENABLE_COSD #if defined(TINY_LITERAL) && defined(COSD_SMALL_LITERAL) static const volatile FTYPE tiny = TINY_LITERAL; #endif if (ISFINITE (x)) { #ifdef COSD_SMALL_LITERAL FTYPE ax; mpfr_init (ax); mpfr_abs (ax, x, GFC_RND_MODE); /* No spurious underflows!. In radians, cos(x) = 1-x*x/2 as x -> 0. */ if (mpfr_cmp_ld (ax, COSD_SMALL_LITERAL) <= 0) { mpfr_set_ui (x, 1, GFC_RND_MODE); #ifdef TINY_LITERAL /* Cause INEXACT. */ if (!mpfr_zero_p (ax)) mpfr_sub_d (x, x, tiny, GFC_RND_MODE); #endif mpfr_clear (ax); return x; } mpfr_swap (x, ax); mpfr_clear (ax); #else mpfr_abs (x, x, GFC_RND_MODE); #endif /* COSD_SMALL_LITERAL */ /* Reduce angle to ax in [0,360]. */ FTYPE period; mpfr_init_set_ui (period, 360, GFC_RND_MODE); mpfr_fmod (x, x, period, GFC_RND_MODE); mpfr_clear (period); /* Special cases with exact results. Return negative zero for cosd(270) for consistency with libm cos(). */ ITYPE n; mpz_init (n); if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 30)) { if (mpz_divisible_ui_p (n, 180)) mpfr_set_si (x, (mpz_cmp_ui (n, 180) == 0 ? -1 : 1), GFC_RND_MODE); else if (mpz_divisible_ui_p (n, 90)) mpfr_set_zero (x, 0); else if (mpz_divisible_ui_p (n, 60)) { mpfr_set_ld (x, 0.5, GFC_RND_MODE); if (mpz_cmp_ui (n, 60) != 0 && mpz_cmp_ui (n, 300) != 0) mpfr_neg (x, x, GFC_RND_MODE); } else { SET_COSD30 (x); if (mpz_cmp_ui (n, 30) != 0 && mpz_cmp_ui (n, 330) != 0) mpfr_neg (x, x, GFC_RND_MODE); } } /* Fold [0,360] into the range [0,45], and compute either SIN() or COS() depending on symmetry of shifting into the [0,45] range. */ else { bool neg = false; bool fold_sin = false; if (mpfr_cmp_ui (x, 180) <= 0) { if (mpfr_cmp_ui (x, 90) <= 0) { if (mpfr_cmp_ui (x, 45) > 0) { mpfr_ui_sub (x, 90, x, GFC_RND_MODE); fold_sin = true; } } else { if (mpfr_cmp_ui (x, 135) <= 0) { mpfr_sub_ui (x, x, 90, GFC_RND_MODE); fold_sin = true; } else mpfr_ui_sub (x, 180, x, GFC_RND_MODE); neg = true; } } else if (mpfr_cmp_ui (x, 270) <= 0) { if (mpfr_cmp_ui (x, 225) <= 0) mpfr_sub_ui (x, x, 180, GFC_RND_MODE); else { mpfr_ui_sub (x, 270, x, GFC_RND_MODE); fold_sin = true; } neg = true; } else { if (mpfr_cmp_ui (x, 315) <= 0) { mpfr_sub_ui (x, x, 270, GFC_RND_MODE); fold_sin = true; } else mpfr_ui_sub (x, 360, x, GFC_RND_MODE); } D2R (x); if (fold_sin) mpfr_sin (x, x, GFC_RND_MODE); else mpfr_cos (x, x, GFC_RND_MODE); if (neg) mpfr_neg (x, x, GFC_RND_MODE); } mpz_clear (n); } /* Return NaN for +-Inf and NaN and raise exception. */ else mpfr_sub (x, x, x, GFC_RND_MODE); RETURN (x); #else ERROR_RETURN(cosd, KIND, x); #endif // ENABLE_COSD } #endif // COSD #ifdef TAND /* Compute tand(x) = tan(x * pi / 180). */ RETTYPE TAND (FTYPE x) { #ifdef ENABLE_TAND if (ISFINITE (x)) { FTYPE s, one; /* tan(-x) = - tan(x). */ mpfr_init (s); mpfr_init_set_ui (one, 1, GFC_RND_MODE); mpfr_copysign (s, one, x, GFC_RND_MODE); mpfr_clear (one); #ifdef SIND_SMALL_LITERAL /* tan(x) = x as x -> 0; but only for some precisions. */ FTYPE ax; mpfr_init (ax); mpfr_abs (ax, x, GFC_RND_MODE); if (mpfr_cmp_ld (ax, SIND_SMALL_LITERAL) < 0) { D2R (x); mpfr_clear (ax); return x; } mpfr_swap (x, ax); mpfr_clear (ax); #else mpfr_abs (x, x, GFC_RND_MODE); #endif /* SIND_SMALL_LITERAL */ /* Reduce angle to x in [0,360]. */ FTYPE period; mpfr_init_set_ui (period, 360, GFC_RND_MODE); mpfr_fmod (x, x, period, GFC_RND_MODE); mpfr_clear (period); /* Special cases with exact results. */ ITYPE n; mpz_init (n); if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 45)) { if (mpz_divisible_ui_p (n, 180)) mpfr_set_zero (x, 0); /* Though mathematically NaN is more appropriate for tan(n*90), returning +/-Inf offers the advantage that 1/tan(n*90) returns 0, which is mathematically sound. In fact we rely on this behavior to implement COTAND(x) = 1 / TAND(x). */ else if (mpz_divisible_ui_p (n, 90)) mpfr_set_inf (x, mpz_cmp_ui (n, 90) == 0 ? 0 : 1); else { mpfr_set_ui (x, 1, GFC_RND_MODE); if (mpz_cmp_ui (n, 45) != 0 && mpz_cmp_ui (n, 225) != 0) mpfr_neg (x, x, GFC_RND_MODE); } } else { /* Fold [0,360] into the range [0,90], and compute TAN(). */ if (mpfr_cmp_ui (x, 180) <= 0) { if (mpfr_cmp_ui (x, 90) > 0) { mpfr_ui_sub (x, 180, x, GFC_RND_MODE); mpfr_neg (s, s, GFC_RND_MODE); } } else { if (mpfr_cmp_ui (x, 270) <= 0) { mpfr_sub_ui (x, x, 180, GFC_RND_MODE); } else { mpfr_ui_sub (x, 360, x, GFC_RND_MODE); mpfr_neg (s, s, GFC_RND_MODE); } } D2R (x); mpfr_tan (x, x, GFC_RND_MODE); } mpfr_mul (x, x, s, GFC_RND_MODE); mpz_clear (n); mpfr_clear (s); } /* Return NaN for +-Inf and NaN and raise exception. */ else mpfr_sub (x, x, x, GFC_RND_MODE); RETURN (x); #else ERROR_RETURN(tand, KIND, x); #endif // ENABLE_TAND } #endif // TAND /* vim: set ft=c: */