/* Special implementation of the SPREAD intrinsic Copyright (C) 2008-2024 Free Software Foundation, Inc. Contributed by Thomas Koenig , based on spread_generic.c written by Paul Brook This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Ligbfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #include #if defined (HAVE_GFC_REAL_10) void spread_r10 (gfc_array_r10 *ret, const gfc_array_r10 *source, const index_type along, const index_type pncopies) { /* r.* indicates the return array. */ index_type rstride[GFC_MAX_DIMENSIONS]; index_type rstride0; index_type rdelta = 0; index_type rrank; index_type rs; GFC_REAL_10 *rptr; GFC_REAL_10 * restrict dest; /* s.* indicates the source array. */ index_type sstride[GFC_MAX_DIMENSIONS]; index_type sstride0; index_type srank; const GFC_REAL_10 *sptr; index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type n; index_type dim; index_type ncopies; srank = GFC_DESCRIPTOR_RANK(source); sstride[0] = 0; /* Avoid warnings if not initialized. */ rrank = srank + 1; if (rrank > GFC_MAX_DIMENSIONS) runtime_error ("return rank too large in spread()"); if (along > rrank) runtime_error ("dim outside of rank in spread()"); ncopies = pncopies; if (ret->base_addr == NULL) { size_t ub, stride; /* The front end has signalled that we need to populate the return array descriptor. */ ret->dtype.rank = rrank; dim = 0; rs = 1; for (n = 0; n < rrank; n++) { stride = rs; if (n == along - 1) { ub = ncopies - 1; rdelta = rs; rs *= ncopies; } else { count[dim] = 0; extent[dim] = GFC_DESCRIPTOR_EXTENT(source,dim); sstride[dim] = GFC_DESCRIPTOR_STRIDE(source,dim); rstride[dim] = rs; ub = extent[dim] - 1; rs *= extent[dim]; dim++; } GFC_DIMENSION_SET(ret->dim[n], 0, ub, stride); } ret->offset = 0; /* xmallocarray allocates a single byte for zero size. */ ret->base_addr = xmallocarray (rs, sizeof(GFC_REAL_10)); if (rs <= 0) return; } else { int zero_sized; zero_sized = 0; dim = 0; if (GFC_DESCRIPTOR_RANK(ret) != rrank) runtime_error ("rank mismatch in spread()"); if (unlikely (compile_options.bounds_check)) { for (n = 0; n < rrank; n++) { index_type ret_extent; ret_extent = GFC_DESCRIPTOR_EXTENT(ret,n); if (n == along - 1) { rdelta = GFC_DESCRIPTOR_STRIDE(ret,n); if (ret_extent != ncopies) runtime_error("Incorrect extent in return value of SPREAD" " intrinsic in dimension %ld: is %ld," " should be %ld", (long int) n+1, (long int) ret_extent, (long int) ncopies); } else { count[dim] = 0; extent[dim] = GFC_DESCRIPTOR_EXTENT(source,dim); if (ret_extent != extent[dim]) runtime_error("Incorrect extent in return value of SPREAD" " intrinsic in dimension %ld: is %ld," " should be %ld", (long int) n+1, (long int) ret_extent, (long int) extent[dim]); if (extent[dim] <= 0) zero_sized = 1; sstride[dim] = GFC_DESCRIPTOR_STRIDE(source,dim); rstride[dim] = GFC_DESCRIPTOR_STRIDE(ret,n); dim++; } } } else { for (n = 0; n < rrank; n++) { if (n == along - 1) { rdelta = GFC_DESCRIPTOR_STRIDE(ret,n); } else { count[dim] = 0; extent[dim] = GFC_DESCRIPTOR_EXTENT(source,dim); if (extent[dim] <= 0) zero_sized = 1; sstride[dim] = GFC_DESCRIPTOR_STRIDE(source,dim); rstride[dim] = GFC_DESCRIPTOR_STRIDE(ret,n); dim++; } } } if (zero_sized) return; if (sstride[0] == 0) sstride[0] = 1; } sstride0 = sstride[0]; rstride0 = rstride[0]; rptr = ret->base_addr; sptr = source->base_addr; while (sptr) { /* Spread this element. */ dest = rptr; for (n = 0; n < ncopies; n++) { *dest = *sptr; dest += rdelta; } /* Advance to the next element. */ sptr += sstride0; rptr += rstride0; count[0]++; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ sptr -= sstride[n] * extent[n]; rptr -= rstride[n] * extent[n]; n++; if (n >= srank) { /* Break out of the loop. */ sptr = NULL; break; } else { count[n]++; sptr += sstride[n]; rptr += rstride[n]; } } } } /* This version of spread_internal treats the special case of a scalar source. This is much simpler than the more general case above. */ void spread_scalar_r10 (gfc_array_r10 *ret, const GFC_REAL_10 *source, const index_type along, const index_type ncopies) { GFC_REAL_10 * restrict dest; index_type stride; if (GFC_DESCRIPTOR_RANK (ret) != 1) runtime_error ("incorrect destination rank in spread()"); if (along > 1) runtime_error ("dim outside of rank in spread()"); if (ret->base_addr == NULL) { ret->base_addr = xmallocarray (ncopies, sizeof (GFC_REAL_10)); ret->offset = 0; GFC_DIMENSION_SET(ret->dim[0], 0, ncopies - 1, 1); } else { if (ncopies - 1 > (GFC_DESCRIPTOR_EXTENT(ret,0) - 1) / GFC_DESCRIPTOR_STRIDE(ret,0)) runtime_error ("dim too large in spread()"); } dest = ret->base_addr; stride = GFC_DESCRIPTOR_STRIDE(ret,0); for (index_type n = 0; n < ncopies; n++) { *dest = *source; dest += stride; } } #endif