/* Implementation of the MINLOC intrinsic
Copyright (C) 2017-2024 Free Software Foundation, Inc.
Contributed by Thomas Koenig
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
. */
#include "libgfortran.h"
#include
#include
#include
#include
#if defined (HAVE_GFC_UINTEGER_4) && defined (HAVE_GFC_INTEGER_8)
#define HAVE_BACK_ARG 1
static inline int
compare_fcn (const GFC_UINTEGER_4 *a, const GFC_UINTEGER_4 *b, gfc_charlen_type n)
{
if (sizeof (GFC_UINTEGER_4) == 1)
return memcmp (a, b, n);
else
return memcmp_char4 (a, b, n);
}
extern void minloc0_8_s4 (gfc_array_i8 * const restrict retarray,
gfc_array_s4 * const restrict array, GFC_LOGICAL_4 back, gfc_charlen_type len);
export_proto(minloc0_8_s4);
void
minloc0_8_s4 (gfc_array_i8 * const restrict retarray,
gfc_array_s4 * const restrict array, GFC_LOGICAL_4 back, gfc_charlen_type len)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride;
const GFC_UINTEGER_4 *base;
GFC_INTEGER_8 * restrict dest;
index_type rank;
index_type n;
rank = GFC_DESCRIPTOR_RANK (array);
if (rank <= 0)
runtime_error ("Rank of array needs to be > 0");
if (retarray->base_addr == NULL)
{
GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
retarray->dtype.rank = 1;
retarray->offset = 0;
retarray->base_addr = xmallocarray (rank, sizeof (GFC_INTEGER_8));
}
else
{
if (unlikely (compile_options.bounds_check))
bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
"MINLOC");
}
dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
dest = retarray->base_addr;
for (n = 0; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len;
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
count[n] = 0;
if (extent[n] <= 0)
{
/* Set the return value. */
for (n = 0; n < rank; n++)
dest[n * dstride] = 0;
return;
}
}
base = array->base_addr;
/* Initialize the return value. */
for (n = 0; n < rank; n++)
dest[n * dstride] = 1;
{
const GFC_UINTEGER_4 *minval;
minval = NULL;
while (base)
{
do
{
/* Implementation start. */
if (minval == NULL || (back ? compare_fcn (base, minval, len) <= 0 :
compare_fcn (base, minval, len) < 0))
{
minval = base;
for (n = 0; n < rank; n++)
dest[n * dstride] = count[n] + 1;
}
/* Implementation end. */
/* Advance to the next element. */
base += sstride[0];
}
while (++count[0] != extent[0]);
n = 0;
do
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
n++;
if (n >= rank)
{
/* Break out of the loop. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
}
}
while (count[n] == extent[n]);
}
}
}
extern void mminloc0_8_s4 (gfc_array_i8 * const restrict,
gfc_array_s4 * const restrict, gfc_array_l1 * const restrict , GFC_LOGICAL_4 back,
gfc_charlen_type len);
export_proto(mminloc0_8_s4);
void
mminloc0_8_s4 (gfc_array_i8 * const restrict retarray,
gfc_array_s4 * const restrict array,
gfc_array_l1 * const restrict mask, GFC_LOGICAL_4 back,
gfc_charlen_type len)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type mstride[GFC_MAX_DIMENSIONS];
index_type dstride;
GFC_INTEGER_8 *dest;
const GFC_UINTEGER_4 *base;
GFC_LOGICAL_1 *mbase;
int rank;
index_type n;
int mask_kind;
if (mask == NULL)
{
#ifdef HAVE_BACK_ARG
minloc0_8_s4 (retarray, array, back, len);
#else
minloc0_8_s4 (retarray, array, len);
#endif
return;
}
rank = GFC_DESCRIPTOR_RANK (array);
if (rank <= 0)
runtime_error ("Rank of array needs to be > 0");
if (retarray->base_addr == NULL)
{
GFC_DIMENSION_SET(retarray->dim[0], 0, rank - 1, 1);
retarray->dtype.rank = 1;
retarray->offset = 0;
retarray->base_addr = xmallocarray (rank, sizeof (GFC_INTEGER_8));
}
else
{
if (unlikely (compile_options.bounds_check))
{
bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
"MINLOC");
bounds_equal_extents ((array_t *) mask, (array_t *) array,
"MASK argument", "MINLOC");
}
}
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
mbase = mask->base_addr;
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
else
runtime_error ("Funny sized logical array");
dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
dest = retarray->base_addr;
for (n = 0; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len;
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
count[n] = 0;
if (extent[n] <= 0)
{
/* Set the return value. */
for (n = 0; n < rank; n++)
dest[n * dstride] = 0;
return;
}
}
base = array->base_addr;
/* Initialize the return value. */
for (n = 0; n < rank; n++)
dest[n * dstride] = 0;
{
const GFC_UINTEGER_4 *minval;
minval = NULL;
while (base)
{
do
{
/* Implementation start. */
if (*mbase &&
(minval == NULL || (back ? compare_fcn (base, minval, len) <= 0 :
compare_fcn (base, minval, len) < 0)))
{
minval = base;
for (n = 0; n < rank; n++)
dest[n * dstride] = count[n] + 1;
}
/* Implementation end. */
/* Advance to the next element. */
base += sstride[0];
mbase += mstride[0];
}
while (++count[0] != extent[0]);
n = 0;
do
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
mbase -= mstride[n] * extent[n];
n++;
if (n >= rank)
{
/* Break out of the loop. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
mbase += mstride[n];
}
}
while (count[n] == extent[n]);
}
}
}
extern void sminloc0_8_s4 (gfc_array_i8 * const restrict,
gfc_array_s4 * const restrict, GFC_LOGICAL_4 *, GFC_LOGICAL_4 back,
gfc_charlen_type len);
export_proto(sminloc0_8_s4);
void
sminloc0_8_s4 (gfc_array_i8 * const restrict retarray,
gfc_array_s4 * const restrict array,
GFC_LOGICAL_4 * mask, GFC_LOGICAL_4 back,
gfc_charlen_type len)
{
index_type rank;
index_type dstride;
index_type n;
GFC_INTEGER_8 *dest;
if (mask == NULL || *mask)
{
#ifdef HAVE_BACK_ARG
minloc0_8_s4 (retarray, array, back, len);
#else
minloc0_8_s4 (retarray, array, len);
#endif
return;
}
rank = GFC_DESCRIPTOR_RANK (array);
if (rank <= 0)
runtime_error ("Rank of array needs to be > 0");
if (retarray->base_addr == NULL)
{
GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
retarray->dtype.rank = 1;
retarray->offset = 0;
retarray->base_addr = xmallocarray (rank, sizeof (GFC_INTEGER_8));
}
else if (unlikely (compile_options.bounds_check))
{
bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
"MINLOC");
}
dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
dest = retarray->base_addr;
for (n = 0; n