/* Software floating-point emulation. Compute powers of 10 into _BitInt. Copyright (C) 2023 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "soft-fp.h" #include "bitint.h" #ifdef __BITINT_MAXWIDTH__ # define BIL_VAL(x) ((UBILtype) (x)) # if BIL_TYPE_SIZE == 64 # define BIL_PAIR(x, y) ((BIL_VAL (x) << 32) | BIL_VAL (y)) # define BIL_OFF(x, y) (x) # elif BIL_TYPE_SIZE == 32 # if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ # define BIL_PAIR(x, y) BIL_VAL (x), BIL_VAL (y) # else # define BIL_PAIR(x, y) BIL_VAL (y), BIL_VAL (x) # endif # define BIL_OFF(x, y) (y) # else # error Unsupported _BitInt limb size # endif #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ # define BIL_SET2(a, b) a, b # define BIL_SET3(a, b, c) a, b, c # define BIL_SET4(a, b, c, d) a, b, c, d # define BIL_SET5(a, b, c, d, e) a, b, c, d, e # define BIL_SET6(a, b, c, d, e, f) a, b, c, d, e, f # define BIL_SET7(a, b, c, d, e, f, g) a, b, c, d, e, f, g # define BIL_SET8(a, b, c, d, e, f, g, h) a, b, c, d, e, f, g, h # define BIL_SET9(a, b, c, d, e, f, g, h, i) a, b, c, d, e, f, g, h, i # define BIL_SET10(a, b, c, d, e, f, g, h, i, j) a, b, c, d, e, f, g, h, i, j # define BIL_SET11(a, b, c, d, e, f, g, h, i, j, k) \ a, b, c, d, e, f, g, h, i, j, k # define BIL_SET12(a, b, c, d, e, f, g, h, i, j, k, l) \ a, b, c, d, e, f, g, h, i, j, k, l # define BIL_SET13(a, b, c, d, e, f, g, h, i, j, k, l, m) \ a, b, c, d, e, f, g, h, i, j, k, l, m # define BIL_SET14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) \ a, b, c, d, e, f, g, h, i, j, k, l, m, n # define BIL_SET15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) \ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o #else # define BIL_SET2(a, b) b, a # define BIL_SET3(a, b, c) c, b, a # define BIL_SET4(a, b, c, d) d, c, b, a # define BIL_SET5(a, b, c, d, e) e, d, c, b, a # define BIL_SET6(a, b, c, d, e, f) f, e, d, c, b, a # define BIL_SET7(a, b, c, d, e, f, g) g, f, e, d, c, b, a # define BIL_SET8(a, b, c, d, e, f, g, h) h, g, f, e, d, c, b, a # define BIL_SET9(a, b, c, d, e, f, g, h, i) i, h, g, f, e, d, c, b, a # define BIL_SET10(a, b, c, d, e, f, g, h, i, j) j, i, h, g, f, e, d, c, b, a # define BIL_SET11(a, b, c, d, e, f, g, h, i, j, k) \ k, j, i, h, g, f, e, d, c, b, a # define BIL_SET12(a, b, c, d, e, f, g, h, i, j, k, l) \ l, k, j, i, h, g, f, e, d, c, b, a # define BIL_SET13(a, b, c, d, e, f, g, h, i, j, k, l, m) \ m, l, k, j, i, h, g, f, e, d, c, b, a # define BIL_SET14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) \ n, m, l, k, j, i, h, g, f, e, d, c, b, a # define BIL_SET15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) \ o, n, m, l, k, j, i, h, g, f, e, d, c, b, a #endif #include "bitintpow10.h" /* Set r (_BitInt limbs with rprec bits) to pow10 (n), where n is in [0, 6111]. Returns number of least significant limbs with just 0s in it. */ USItype __bid_pow10bitint (UBILtype *r, SItype rprec, USItype n) { USItype rn = ((USItype) rprec + BIL_TYPE_SIZE - 1) / BIL_TYPE_SIZE; if (n <= 256) { /* No need to multiply anything, just copy it from pow10_limbs array. */ USItype low_zeros = (n / 64) * (64 / BIL_TYPE_SIZE); UBILtype *p = &pow10_limbs[pow10_offs[n]]; USItype cnt = pow10_offs[n + 1] - pow10_offs[n]; if (low_zeros) __builtin_memset (r + BITINT_END (rn - low_zeros, 0), '\0', low_zeros * sizeof (UBILtype)); __builtin_memcpy (r + BITINT_END (rn - low_zeros - cnt, low_zeros), p, cnt * sizeof (UBILtype)); if (rn > low_zeros + cnt) __builtin_memset (r + BITINT_END (0, low_zeros + cnt), '\0', (rn - low_zeros - cnt) * sizeof (UBILtype)); return low_zeros; } else { USItype m = n / 256; n &= 255; USItype low_zeros = ((n / 64) + (m * 4)) * (64 / BIL_TYPE_SIZE); UBILtype *pm = &pow10_limbs[pow10_offs[m + 255]]; USItype cntm = pow10_offs[m + 256] - pow10_offs[m + 255]; UBILtype *pn = &pow10_limbs[pow10_offs[n]]; USItype cntn = pow10_offs[n + 1] - pow10_offs[n]; if (low_zeros) __builtin_memset (r + BITINT_END (rn - low_zeros, 0), '\0', low_zeros * sizeof (UBILtype)); __mulbitint3 (r + BITINT_END (0, low_zeros), rprec - low_zeros * BIL_TYPE_SIZE, pm, cntm * BIL_TYPE_SIZE, pn, cntn * BIL_TYPE_SIZE); return low_zeros; } } #endif