/* mips16 floating point support code Copyright (C) 1996-2013 Free Software Foundation, Inc. Contributed by Cygnus Support This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #ifdef __mips_micromips /* DO NOTHING */ #else /* This file contains mips16 floating point support functions. These functions are called by mips16 code to handle floating point when -msoft-float is not used. They accept the arguments and return values using the soft-float calling convention, but do the actual operation using the hard floating point instructions. */ #if defined _MIPS_SIM && (_MIPS_SIM == _ABIO32 || _MIPS_SIM == _ABIO64) /* This file contains 32-bit assembly code. */ .set nomips16 /* Start a function. */ #define STARTFN(NAME) .globl NAME; .ent NAME; NAME: /* Finish a function. */ #define ENDFN(NAME) .end NAME /* ARG1 The FPR that holds the first floating-point argument. ARG2 The FPR that holds the second floating-point argument. RET The FPR that holds a floating-point return value. */ #define RET $f0 #define ARG1 $f12 #ifdef __mips64 #define ARG2 $f13 #else #define ARG2 $f14 #endif /* Set 64-bit register GPR so that its high 32 bits contain HIGH_FPR and so that its low 32 bits contain LOW_FPR. */ #define MERGE_GPRf(GPR, HIGH_FPR, LOW_FPR) \ .set noat; \ mfc1 $1, LOW_FPR; \ mfc1 GPR, HIGH_FPR; \ dsll $1, $1, 32; \ dsll GPR, GPR, 32; \ dsrl $1, $1, 32; \ or GPR, GPR, $1; \ .set at /* Move the high 32 bits of GPR to HIGH_FPR and the low 32 bits of GPR to LOW_FPR. */ #define MERGE_GPRt(GPR, HIGH_FPR, LOW_FPR) \ .set noat; \ dsrl $1, GPR, 32; \ mtc1 GPR, LOW_FPR; \ mtc1 $1, HIGH_FPR; \ .set at /* Jump to T, and use "OPCODE, OP2" to implement a delayed move. */ #define DELAYt(T, OPCODE, OP2) \ .set noreorder; \ jr T; \ OPCODE, OP2; \ .set reorder /* Use "OPCODE. OP2" and jump to T. */ #define DELAYf(T, OPCODE, OP2) OPCODE, OP2; jr T /* MOVE_SF_BYTE0(D) Move the first single-precision floating-point argument between GPRs and FPRs. MOVE_SI_BYTE0(D) Likewise the first single-precision integer argument. MOVE_SF_BYTE4(D) Move the second single-precision floating-point argument between GPRs and FPRs, given that the first argument occupies 4 bytes. MOVE_SF_BYTE8(D) Move the second single-precision floating-point argument between GPRs and FPRs, given that the first argument occupies 8 bytes. MOVE_DF_BYTE0(D) Move the first double-precision floating-point argument between GPRs and FPRs. MOVE_DF_BYTE8(D) Likewise the second double-precision floating-point argument. MOVE_SF_RET(D, T) Likewise a single-precision floating-point return value, then jump to T. MOVE_SC_RET(D, T) Likewise a complex single-precision floating-point return value. MOVE_DF_RET(D, T) Likewise a double-precision floating-point return value. MOVE_DC_RET(D, T) Likewise a complex double-precision floating-point return value. MOVE_SI_RET(D, T) Likewise a single-precision integer return value. The D argument is "t" to move to FPRs and "f" to move from FPRs. The return macros may assume that the target of the jump does not use a floating-point register. */ #define MOVE_SF_RET(D, T) DELAY##D (T, m##D##c1 $2,$f0) #define MOVE_SI_RET(D, T) DELAY##D (T, m##D##c1 $2,$f0) #if defined(__mips64) && defined(__MIPSEB__) #define MOVE_SC_RET(D, T) MERGE_GPR##D ($2, $f0, $f1); jr T #elif defined(__mips64) /* The high 32 bits of $2 correspond to the second word in memory; i.e. the imaginary part. */ #define MOVE_SC_RET(D, T) MERGE_GPR##D ($2, $f1, $f0); jr T #elif __mips_fpr == 64 #define MOVE_SC_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##c1 $3,$f1) #else #define MOVE_SC_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##c1 $3,$f2) #endif #if defined(__mips64) #define MOVE_SF_BYTE0(D) m##D##c1 $4,$f12 #define MOVE_SF_BYTE4(D) m##D##c1 $5,$f13 #define MOVE_SF_BYTE8(D) m##D##c1 $5,$f13 #else #define MOVE_SF_BYTE0(D) m##D##c1 $4,$f12 #define MOVE_SF_BYTE4(D) m##D##c1 $5,$f14 #define MOVE_SF_BYTE8(D) m##D##c1 $6,$f14 #endif #define MOVE_SI_BYTE0(D) MOVE_SF_BYTE0(D) #if defined(__mips64) #define MOVE_DF_BYTE0(D) dm##D##c1 $4,$f12 #define MOVE_DF_BYTE8(D) dm##D##c1 $5,$f13 #define MOVE_DF_RET(D, T) DELAY##D (T, dm##D##c1 $2,$f0) #define MOVE_DC_RET(D, T) dm##D##c1 $3,$f1; MOVE_DF_RET (D, T) #elif __mips_fpr == 64 && defined(__MIPSEB__) #define MOVE_DF_BYTE0(D) m##D##c1 $5,$f12; m##D##hc1 $4,$f12 #define MOVE_DF_BYTE8(D) m##D##c1 $7,$f14; m##D##hc1 $6,$f14 #define MOVE_DF_RET(D, T) m##D##c1 $3,$f0; DELAY##D (T, m##D##hc1 $2,$f0) #define MOVE_DC_RET(D, T) m##D##c1 $5,$f1; m##D##hc1 $4,$f1; MOVE_DF_RET (D, T) #elif __mips_fpr == 64 #define MOVE_DF_BYTE0(D) m##D##c1 $4,$f12; m##D##hc1 $5,$f12 #define MOVE_DF_BYTE8(D) m##D##c1 $6,$f14; m##D##hc1 $7,$f14 #define MOVE_DF_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##hc1 $3,$f0) #define MOVE_DC_RET(D, T) m##D##c1 $4,$f1; m##D##hc1 $5,$f1; MOVE_DF_RET (D, T) #elif defined(__MIPSEB__) /* FPRs are little-endian. */ #define MOVE_DF_BYTE0(D) m##D##c1 $4,$f13; m##D##c1 $5,$f12 #define MOVE_DF_BYTE8(D) m##D##c1 $6,$f15; m##D##c1 $7,$f14 #define MOVE_DF_RET(D, T) m##D##c1 $2,$f1; DELAY##D (T, m##D##c1 $3,$f0) #define MOVE_DC_RET(D, T) m##D##c1 $4,$f3; m##D##c1 $5,$f2; MOVE_DF_RET (D, T) #else #define MOVE_DF_BYTE0(D) m##D##c1 $4,$f12; m##D##c1 $5,$f13 #define MOVE_DF_BYTE8(D) m##D##c1 $6,$f14; m##D##c1 $7,$f15 #define MOVE_DF_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##c1 $3,$f1) #define MOVE_DC_RET(D, T) m##D##c1 $4,$f2; m##D##c1 $5,$f3; MOVE_DF_RET (D, T) #endif /* Single-precision math. */ /* Define a function NAME that loads two single-precision values, performs FPU operation OPCODE on them, and returns the single- precision result. */ #define OPSF3(NAME, OPCODE) \ STARTFN (NAME); \ MOVE_SF_BYTE0 (t); \ MOVE_SF_BYTE4 (t); \ OPCODE RET,ARG1,ARG2; \ MOVE_SF_RET (f, $31); \ ENDFN (NAME) #ifdef L_m16addsf3 OPSF3 (__mips16_addsf3, add.s) #endif #ifdef L_m16subsf3 OPSF3 (__mips16_subsf3, sub.s) #endif #ifdef L_m16mulsf3 OPSF3 (__mips16_mulsf3, mul.s) #endif #ifdef L_m16divsf3 OPSF3 (__mips16_divsf3, div.s) #endif /* Define a function NAME that loads a single-precision value, performs FPU operation OPCODE on it, and returns the single- precision result. */ #define OPSF2(NAME, OPCODE) \ STARTFN (NAME); \ MOVE_SF_BYTE0 (t); \ OPCODE RET,ARG1; \ MOVE_SF_RET (f, $31); \ ENDFN (NAME) #ifdef L_m16negsf2 OPSF2 (__mips16_negsf2, neg.s) #endif #ifdef L_m16abssf2 OPSF2 (__mips16_abssf2, abs.s) #endif /* Single-precision comparisons. */ /* Define a function NAME that loads two single-precision values, performs floating point comparison OPCODE, and returns TRUE or FALSE depending on the result. */ #define CMPSF(NAME, OPCODE, TRUE, FALSE) \ STARTFN (NAME); \ MOVE_SF_BYTE0 (t); \ MOVE_SF_BYTE4 (t); \ OPCODE ARG1,ARG2; \ li $2,TRUE; \ bc1t 1f; \ li $2,FALSE; \ 1:; \ j $31; \ ENDFN (NAME) /* Like CMPSF, but reverse the comparison operands. */ #define REVCMPSF(NAME, OPCODE, TRUE, FALSE) \ STARTFN (NAME); \ MOVE_SF_BYTE0 (t); \ MOVE_SF_BYTE4 (t); \ OPCODE ARG2,ARG1; \ li $2,TRUE; \ bc1t 1f; \ li $2,FALSE; \ 1:; \ j $31; \ ENDFN (NAME) #ifdef L_m16eqsf2 CMPSF (__mips16_eqsf2, c.eq.s, 0, 1) #endif #ifdef L_m16nesf2 CMPSF (__mips16_nesf2, c.eq.s, 0, 1) #endif #ifdef L_m16gtsf2 REVCMPSF (__mips16_gtsf2, c.lt.s, 1, 0) #endif #ifdef L_m16gesf2 REVCMPSF (__mips16_gesf2, c.le.s, 0, -1) #endif #ifdef L_m16lesf2 CMPSF (__mips16_lesf2, c.le.s, 0, 1) #endif #ifdef L_m16ltsf2 CMPSF (__mips16_ltsf2, c.lt.s, -1, 0) #endif #ifdef L_m16unordsf2 CMPSF(__mips16_unordsf2, c.un.s, 1, 0) #endif /* Single-precision conversions. */ #ifdef L_m16fltsisf STARTFN (__mips16_floatsisf) MOVE_SF_BYTE0 (t) cvt.s.w RET,ARG1 MOVE_SF_RET (f, $31) ENDFN (__mips16_floatsisf) #endif #ifdef L_m16fltunsisf STARTFN (__mips16_floatunsisf) .set noreorder bltz $4,1f MOVE_SF_BYTE0 (t) .set reorder cvt.s.w RET,ARG1 MOVE_SF_RET (f, $31) 1: and $2,$4,1 srl $3,$4,1 or $2,$2,$3 mtc1 $2,RET cvt.s.w RET,RET add.s RET,RET,RET MOVE_SF_RET (f, $31) ENDFN (__mips16_floatunsisf) #endif #ifdef L_m16fix_truncsfsi STARTFN (__mips16_fix_truncsfsi) MOVE_SF_BYTE0 (t) trunc.w.s RET,ARG1,$4 MOVE_SI_RET (f, $31) ENDFN (__mips16_fix_truncsfsi) #endif #if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT) /* Double-precision math. */ /* Define a function NAME that loads two double-precision values, performs FPU operation OPCODE on them, and returns the double- precision result. */ #define OPDF3(NAME, OPCODE) \ STARTFN (NAME); \ MOVE_DF_BYTE0 (t); \ MOVE_DF_BYTE8 (t); \ OPCODE RET,ARG1,ARG2; \ MOVE_DF_RET (f, $31); \ ENDFN (NAME) #ifdef L_m16adddf3 OPDF3 (__mips16_adddf3, add.d) #endif #ifdef L_m16subdf3 OPDF3 (__mips16_subdf3, sub.d) #endif #ifdef L_m16muldf3 OPDF3 (__mips16_muldf3, mul.d) #endif #ifdef L_m16divdf3 OPDF3 (__mips16_divdf3, div.d) #endif /* Define a function NAME that loads a double-precision value, performs FPU operation OPCODE on it, and returns the double- precision result. */ #define OPDF2(NAME, OPCODE) \ STARTFN (NAME); \ MOVE_DF_BYTE0 (t); \ OPCODE RET,ARG1; \ MOVE_DF_RET (f, $31); \ ENDFN (NAME) #ifdef L_m16negdf2 OPDF2 (__mips16_negdf2, neg.d) #endif #ifdef L_m16absdf2 OPDF2 (__mips16_absdf2, abs.d) #endif /* Conversions between single and double precision. */ #ifdef L_m16extsfdf2 STARTFN (__mips16_extendsfdf2) MOVE_SF_BYTE0 (t) cvt.d.s RET,ARG1 MOVE_DF_RET (f, $31) ENDFN (__mips16_extendsfdf2) #endif #ifdef L_m16trdfsf2 STARTFN (__mips16_truncdfsf2) MOVE_DF_BYTE0 (t) cvt.s.d RET,ARG1 MOVE_SF_RET (f, $31) ENDFN (__mips16_truncdfsf2) #endif /* Double-precision comparisons. */ /* Define a function NAME that loads two double-precision values, performs floating point comparison OPCODE, and returns TRUE or FALSE depending on the result. */ #define CMPDF(NAME, OPCODE, TRUE, FALSE) \ STARTFN (NAME); \ MOVE_DF_BYTE0 (t); \ MOVE_DF_BYTE8 (t); \ OPCODE ARG1,ARG2; \ li $2,TRUE; \ bc1t 1f; \ li $2,FALSE; \ 1:; \ j $31; \ ENDFN (NAME) /* Like CMPDF, but reverse the comparison operands. */ #define REVCMPDF(NAME, OPCODE, TRUE, FALSE) \ STARTFN (NAME); \ MOVE_DF_BYTE0 (t); \ MOVE_DF_BYTE8 (t); \ OPCODE ARG2,ARG1; \ li $2,TRUE; \ bc1t 1f; \ li $2,FALSE; \ 1:; \ j $31; \ ENDFN (NAME) #ifdef L_m16eqdf2 CMPDF (__mips16_eqdf2, c.eq.d, 0, 1) #endif #ifdef L_m16nedf2 CMPDF (__mips16_nedf2, c.eq.d, 0, 1) #endif #ifdef L_m16gtdf2 REVCMPDF (__mips16_gtdf2, c.lt.d, 1, 0) #endif #ifdef L_m16gedf2 REVCMPDF (__mips16_gedf2, c.le.d, 0, -1) #endif #ifdef L_m16ledf2 CMPDF (__mips16_ledf2, c.le.d, 0, 1) #endif #ifdef L_m16ltdf2 CMPDF (__mips16_ltdf2, c.lt.d, -1, 0) #endif #ifdef L_m16unorddf2 CMPDF(__mips16_unorddf2, c.un.d, 1, 0) #endif /* Double-precision conversions. */ #ifdef L_m16fltsidf STARTFN (__mips16_floatsidf) MOVE_SI_BYTE0 (t) cvt.d.w RET,ARG1 MOVE_DF_RET (f, $31) ENDFN (__mips16_floatsidf) #endif #ifdef L_m16fltunsidf STARTFN (__mips16_floatunsidf) MOVE_SI_BYTE0 (t) cvt.d.w RET,ARG1 bgez $4,1f li.d ARG1, 4.294967296e+9 add.d RET, RET, ARG1 1: MOVE_DF_RET (f, $31) ENDFN (__mips16_floatunsidf) #endif #ifdef L_m16fix_truncdfsi STARTFN (__mips16_fix_truncdfsi) MOVE_DF_BYTE0 (t) trunc.w.d RET,ARG1,$4 MOVE_SI_RET (f, $31) ENDFN (__mips16_fix_truncdfsi) #endif #endif /* !__mips_single_float */ /* Define a function NAME that moves a return value of mode MODE from FPRs to GPRs. */ #define RET_FUNCTION(NAME, MODE) \ STARTFN (NAME); \ MOVE_##MODE##_RET (t, $31); \ ENDFN (NAME) #ifdef L_m16retsf RET_FUNCTION (__mips16_ret_sf, SF) #endif #ifdef L_m16retsc RET_FUNCTION (__mips16_ret_sc, SC) #endif #if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT) #ifdef L_m16retdf RET_FUNCTION (__mips16_ret_df, DF) #endif #ifdef L_m16retdc RET_FUNCTION (__mips16_ret_dc, DC) #endif #endif /* !__mips_single_float */ /* STUB_ARGS_X copies the arguments from GPRs to FPRs for argument code X. X is calculated as ARG1 + ARG2 * 4, where ARG1 and ARG2 classify the first and second arguments as follows: 1: a single-precision argument 2: a double-precision argument 0: no argument, or not one of the above. */ #define STUB_ARGS_0 /* () */ #define STUB_ARGS_1 MOVE_SF_BYTE0 (t) /* (sf) */ #define STUB_ARGS_5 MOVE_SF_BYTE0 (t); MOVE_SF_BYTE4 (t) /* (sf, sf) */ #define STUB_ARGS_9 MOVE_SF_BYTE0 (t); MOVE_DF_BYTE8 (t) /* (sf, df) */ #define STUB_ARGS_2 MOVE_DF_BYTE0 (t) /* (df) */ #define STUB_ARGS_6 MOVE_DF_BYTE0 (t); MOVE_SF_BYTE8 (t) /* (df, sf) */ #define STUB_ARGS_10 MOVE_DF_BYTE0 (t); MOVE_DF_BYTE8 (t) /* (df, df) */ /* These functions are used by 16-bit code when calling via a function pointer. They must copy the floating point arguments from the GPRs to FPRs and then call function $2. */ #define CALL_STUB_NO_RET(NAME, CODE) \ STARTFN (NAME); \ STUB_ARGS_##CODE; \ .set noreorder; \ jr $2; \ move $25,$2; \ .set reorder; \ ENDFN (NAME) #ifdef L_m16stub1 CALL_STUB_NO_RET (__mips16_call_stub_1, 1) #endif #ifdef L_m16stub5 CALL_STUB_NO_RET (__mips16_call_stub_5, 5) #endif #if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT) #ifdef L_m16stub2 CALL_STUB_NO_RET (__mips16_call_stub_2, 2) #endif #ifdef L_m16stub6 CALL_STUB_NO_RET (__mips16_call_stub_6, 6) #endif #ifdef L_m16stub9 CALL_STUB_NO_RET (__mips16_call_stub_9, 9) #endif #ifdef L_m16stub10 CALL_STUB_NO_RET (__mips16_call_stub_10, 10) #endif #endif /* !__mips_single_float */ /* Now we have the same set of functions, except that this time the function being called returns an SFmode, SCmode, DFmode or DCmode value; we need to instantiate a set for each case. The calling function will arrange to preserve $18, so these functions are free to use it to hold the return address. Note that we do not know whether the function we are calling is 16 bit or 32 bit. However, it does not matter, because 16-bit functions always return floating point values in both the gp and the fp regs. It would be possible to check whether the function being called is 16 bits, in which case the copy is unnecessary; however, it's faster to always do the copy. */ #define CALL_STUB_RET(NAME, CODE, MODE) \ STARTFN (NAME); \ .cfi_startproc; \ /* Create a fake CFA 4 bytes below the stack pointer. */ \ .cfi_def_cfa 29,-4; \ /* "Save" $sp in itself so we don't use the fake CFA. \ This is: DW_CFA_val_expression r29, { DW_OP_reg29 }. */ \ .cfi_escape 0x16,29,1,0x6d; \ move $18,$31; \ .cfi_register 31,18; \ STUB_ARGS_##CODE; \ .set noreorder; \ jalr $2; \ move $25,$2; \ .set reorder; \ MOVE_##MODE##_RET (f, $18); \ .cfi_endproc; \ ENDFN (NAME) /* First, instantiate the single-float set. */ #ifdef L_m16stubsf0 CALL_STUB_RET (__mips16_call_stub_sf_0, 0, SF) #endif #ifdef L_m16stubsf1 CALL_STUB_RET (__mips16_call_stub_sf_1, 1, SF) #endif #ifdef L_m16stubsf5 CALL_STUB_RET (__mips16_call_stub_sf_5, 5, SF) #endif #if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT) #ifdef L_m16stubsf2 CALL_STUB_RET (__mips16_call_stub_sf_2, 2, SF) #endif #ifdef L_m16stubsf6 CALL_STUB_RET (__mips16_call_stub_sf_6, 6, SF) #endif #ifdef L_m16stubsf9 CALL_STUB_RET (__mips16_call_stub_sf_9, 9, SF) #endif #ifdef L_m16stubsf10 CALL_STUB_RET (__mips16_call_stub_sf_10, 10, SF) #endif #endif /* !__mips_single_float */ /* Now we have the same set of functions again, except that this time the function being called returns an DFmode value. */ #if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT) #ifdef L_m16stubdf0 CALL_STUB_RET (__mips16_call_stub_df_0, 0, DF) #endif #ifdef L_m16stubdf1 CALL_STUB_RET (__mips16_call_stub_df_1, 1, DF) #endif #ifdef L_m16stubdf5 CALL_STUB_RET (__mips16_call_stub_df_5, 5, DF) #endif #ifdef L_m16stubdf2 CALL_STUB_RET (__mips16_call_stub_df_2, 2, DF) #endif #ifdef L_m16stubdf6 CALL_STUB_RET (__mips16_call_stub_df_6, 6, DF) #endif #ifdef L_m16stubdf9 CALL_STUB_RET (__mips16_call_stub_df_9, 9, DF) #endif #ifdef L_m16stubdf10 CALL_STUB_RET (__mips16_call_stub_df_10, 10, DF) #endif #endif /* !__mips_single_float */ /* Ho hum. Here we have the same set of functions again, this time for when the function being called returns an SCmode value. */ #ifdef L_m16stubsc0 CALL_STUB_RET (__mips16_call_stub_sc_0, 0, SC) #endif #ifdef L_m16stubsc1 CALL_STUB_RET (__mips16_call_stub_sc_1, 1, SC) #endif #ifdef L_m16stubsc5 CALL_STUB_RET (__mips16_call_stub_sc_5, 5, SC) #endif #if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT) #ifdef L_m16stubsc2 CALL_STUB_RET (__mips16_call_stub_sc_2, 2, SC) #endif #ifdef L_m16stubsc6 CALL_STUB_RET (__mips16_call_stub_sc_6, 6, SC) #endif #ifdef L_m16stubsc9 CALL_STUB_RET (__mips16_call_stub_sc_9, 9, SC) #endif #ifdef L_m16stubsc10 CALL_STUB_RET (__mips16_call_stub_sc_10, 10, SC) #endif #endif /* !__mips_single_float */ /* Finally, another set of functions for DCmode. */ #if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT) #ifdef L_m16stubdc0 CALL_STUB_RET (__mips16_call_stub_dc_0, 0, DC) #endif #ifdef L_m16stubdc1 CALL_STUB_RET (__mips16_call_stub_dc_1, 1, DC) #endif #ifdef L_m16stubdc5 CALL_STUB_RET (__mips16_call_stub_dc_5, 5, DC) #endif #ifdef L_m16stubdc2 CALL_STUB_RET (__mips16_call_stub_dc_2, 2, DC) #endif #ifdef L_m16stubdc6 CALL_STUB_RET (__mips16_call_stub_dc_6, 6, DC) #endif #ifdef L_m16stubdc9 CALL_STUB_RET (__mips16_call_stub_dc_9, 9, DC) #endif #ifdef L_m16stubdc10 CALL_STUB_RET (__mips16_call_stub_dc_10, 10, DC) #endif #endif /* !__mips_single_float */ #endif #endif /* __mips_micromips */