@ libgcc routines for ARM cpu. @ Division routines, written by Richard Earnshaw, (rearnsha@armltd.co.uk) /* Copyright (C) 1995-2018 Free Software Foundation, Inc. This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ /* An executable stack is *not* required for these functions. */ #if defined(__ELF__) && defined(__linux__) .section .note.GNU-stack,"",%progbits .previous #endif /* __ELF__ and __linux__ */ #ifdef __ARM_EABI__ /* Some attributes that are common to all routines in this file. */ /* Tag_ABI_align_needed: This code does not require 8-byte alignment from the caller. */ /* .eabi_attribute 24, 0 -- default setting. */ /* Tag_ABI_align_preserved: This code preserves 8-byte alignment in any callee. */ .eabi_attribute 25, 1 #endif /* __ARM_EABI__ */ /* ------------------------------------------------------------------------ */ /* We need to know what prefix to add to function names. */ #ifndef __USER_LABEL_PREFIX__ #error __USER_LABEL_PREFIX__ not defined #endif /* ANSI concatenation macros. */ #define CONCAT1(a, b) CONCAT2(a, b) #define CONCAT2(a, b) a ## b /* Use the right prefix for global labels. */ #define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x) #ifdef __ELF__ #ifdef __thumb__ #define __PLT__ /* Not supported in Thumb assembler (for now). */ #elif defined __vxworks && !defined __PIC__ #define __PLT__ /* Not supported by the kernel loader. */ #else #define __PLT__ (PLT) #endif #define TYPE(x) .type SYM(x),function #define SIZE(x) .size SYM(x), . - SYM(x) #define LSYM(x) .x #else #define __PLT__ #define TYPE(x) #define SIZE(x) #define LSYM(x) x #endif /* Function end macros. Variants for interworking. */ #if defined(__ARM_ARCH_2__) # define __ARM_ARCH__ 2 #endif #if defined(__ARM_ARCH_3__) # define __ARM_ARCH__ 3 #endif #if defined(__ARM_ARCH_3M__) || defined(__ARM_ARCH_4__) \ || defined(__ARM_ARCH_4T__) /* We use __ARM_ARCH__ set to 4 here, but in reality it's any processor with long multiply instructions. That includes v3M. */ # define __ARM_ARCH__ 4 #endif #if defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) \ || defined(__ARM_ARCH_5E__) || defined(__ARM_ARCH_5TE__) \ || defined(__ARM_ARCH_5TEJ__) # define __ARM_ARCH__ 5 #endif #if defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) \ || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) \ || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) \ || defined(__ARM_ARCH_6M__) # define __ARM_ARCH__ 6 #endif #if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) \ || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) \ || defined(__ARM_ARCH_7EM__) # define __ARM_ARCH__ 7 #endif #if defined(__ARM_ARCH_8A__) || defined(__ARM_ARCH_8M_BASE__) \ || defined(__ARM_ARCH_8M_MAIN__) || defined(__ARM_ARCH_8R__) # define __ARM_ARCH__ 8 #endif #ifndef __ARM_ARCH__ #error Unable to determine architecture. #endif /* There are times when we might prefer Thumb1 code even if ARM code is permitted, for example, the code might be smaller, or there might be interworking problems with switching to ARM state if interworking is disabled. */ #if (defined(__thumb__) \ && !defined(__thumb2__) \ && (!defined(__THUMB_INTERWORK__) \ || defined (__OPTIMIZE_SIZE__) \ || !__ARM_ARCH_ISA_ARM)) # define __prefer_thumb__ #endif #if !__ARM_ARCH_ISA_ARM && __ARM_ARCH_ISA_THUMB == 1 #define NOT_ISA_TARGET_32BIT 1 #endif /* How to return from a function call depends on the architecture variant. */ #if (__ARM_ARCH__ > 4) || defined(__ARM_ARCH_4T__) # define RET bx lr # define RETc(x) bx##x lr /* Special precautions for interworking on armv4t. */ # if (__ARM_ARCH__ == 4) /* Always use bx, not ldr pc. */ # if (defined(__thumb__) || defined(__THUMB_INTERWORK__)) # define __INTERWORKING__ # endif /* __THUMB__ || __THUMB_INTERWORK__ */ /* Include thumb stub before arm mode code. */ # if defined(__thumb__) && !defined(__THUMB_INTERWORK__) # define __INTERWORKING_STUBS__ # endif /* __thumb__ && !__THUMB_INTERWORK__ */ #endif /* __ARM_ARCH == 4 */ #else # define RET mov pc, lr # define RETc(x) mov##x pc, lr #endif .macro cfi_pop advance, reg, cfa_offset #ifdef __ELF__ .pushsection .debug_frame .byte 0x4 /* DW_CFA_advance_loc4 */ .4byte \advance .byte (0xc0 | \reg) /* DW_CFA_restore */ .byte 0xe /* DW_CFA_def_cfa_offset */ .uleb128 \cfa_offset .popsection #endif .endm .macro cfi_push advance, reg, offset, cfa_offset #ifdef __ELF__ .pushsection .debug_frame .byte 0x4 /* DW_CFA_advance_loc4 */ .4byte \advance .byte (0x80 | \reg) /* DW_CFA_offset */ .uleb128 (\offset / -4) .byte 0xe /* DW_CFA_def_cfa_offset */ .uleb128 \cfa_offset .popsection #endif .endm .macro cfi_start start_label, end_label #ifdef __ELF__ .pushsection .debug_frame LSYM(Lstart_frame): .4byte LSYM(Lend_cie) - LSYM(Lstart_cie) @ Length of CIE LSYM(Lstart_cie): .4byte 0xffffffff @ CIE Identifier Tag .byte 0x1 @ CIE Version .ascii "\0" @ CIE Augmentation .uleb128 0x1 @ CIE Code Alignment Factor .sleb128 -4 @ CIE Data Alignment Factor .byte 0xe @ CIE RA Column .byte 0xc @ DW_CFA_def_cfa .uleb128 0xd .uleb128 0x0 .align 2 LSYM(Lend_cie): .4byte LSYM(Lend_fde)-LSYM(Lstart_fde) @ FDE Length LSYM(Lstart_fde): .4byte LSYM(Lstart_frame) @ FDE CIE offset .4byte \start_label @ FDE initial location .4byte \end_label-\start_label @ FDE address range .popsection #endif .endm .macro cfi_end end_label #ifdef __ELF__ .pushsection .debug_frame .align 2 LSYM(Lend_fde): .popsection \end_label: #endif .endm /* Don't pass dirn, it's there just to get token pasting right. */ .macro RETLDM regs=, cond=, unwind=, dirn=ia #if defined (__INTERWORKING__) .ifc "\regs","" ldr\cond lr, [sp], #8 .else # if defined(__thumb2__) pop\cond {\regs, lr} # else ldm\cond\dirn sp!, {\regs, lr} # endif .endif .ifnc "\unwind", "" /* Mark LR as restored. */ 97: cfi_pop 97b - \unwind, 0xe, 0x0 .endif bx\cond lr #else /* Caller is responsible for providing IT instruction. */ .ifc "\regs","" ldr\cond pc, [sp], #8 .else # if defined(__thumb2__) pop\cond {\regs, pc} # else ldm\cond\dirn sp!, {\regs, pc} # endif .endif #endif .endm /* The Unified assembly syntax allows the same code to be assembled for both ARM and Thumb-2. However this is only supported by recent gas, so define a set of macros to allow ARM code on older assemblers. */ #if defined(__thumb2__) .macro do_it cond, suffix="" it\suffix \cond .endm .macro shift1 op, arg0, arg1, arg2 \op \arg0, \arg1, \arg2 .endm #define do_push push #define do_pop pop #define COND(op1, op2, cond) op1 ## op2 ## cond /* Perform an arithmetic operation with a variable shift operand. This requires two instructions and a scratch register on Thumb-2. */ .macro shiftop name, dest, src1, src2, shiftop, shiftreg, tmp \shiftop \tmp, \src2, \shiftreg \name \dest, \src1, \tmp .endm #else .macro do_it cond, suffix="" .endm .macro shift1 op, arg0, arg1, arg2 mov \arg0, \arg1, \op \arg2 .endm #define do_push stmfd sp!, #define do_pop ldmfd sp!, #define COND(op1, op2, cond) op1 ## cond ## op2 .macro shiftop name, dest, src1, src2, shiftop, shiftreg, tmp \name \dest, \src1, \src2, \shiftop \shiftreg .endm #endif #ifdef __ARM_EABI__ .macro ARM_LDIV0 name signed cmp r0, #0 .ifc \signed, unsigned movne r0, #0xffffffff .else movgt r0, #0x7fffffff movlt r0, #0x80000000 .endif b SYM (__aeabi_idiv0) __PLT__ .endm #else .macro ARM_LDIV0 name signed str lr, [sp, #-8]! 98: cfi_push 98b - __\name, 0xe, -0x8, 0x8 bl SYM (__div0) __PLT__ mov r0, #0 @ About as wrong as it could be. RETLDM unwind=98b .endm #endif #ifdef __ARM_EABI__ .macro THUMB_LDIV0 name signed #ifdef NOT_ISA_TARGET_32BIT push {r0, lr} mov r0, #0 bl SYM(__aeabi_idiv0) @ We know we are not on armv4t, so pop pc is safe. pop {r1, pc} #elif defined(__thumb2__) .syntax unified .ifc \signed, unsigned cbz r0, 1f mov r0, #0xffffffff 1: .else cmp r0, #0 do_it gt movgt r0, #0x7fffffff do_it lt movlt r0, #0x80000000 .endif b.w SYM(__aeabi_idiv0) __PLT__ #else .align 2 bx pc nop .arm cmp r0, #0 .ifc \signed, unsigned movne r0, #0xffffffff .else movgt r0, #0x7fffffff movlt r0, #0x80000000 .endif b SYM(__aeabi_idiv0) __PLT__ .thumb #endif .endm #else .macro THUMB_LDIV0 name signed push { r1, lr } 98: cfi_push 98b - __\name, 0xe, -0x4, 0x8 bl SYM (__div0) mov r0, #0 @ About as wrong as it could be. #if defined (__INTERWORKING__) pop { r1, r2 } bx r2 #else pop { r1, pc } #endif .endm #endif .macro FUNC_END name SIZE (__\name) .endm .macro DIV_FUNC_END name signed cfi_start __\name, LSYM(Lend_div0) LSYM(Ldiv0): #ifdef __thumb__ THUMB_LDIV0 \name \signed #else ARM_LDIV0 \name \signed #endif cfi_end LSYM(Lend_div0) FUNC_END \name .endm .macro THUMB_FUNC_START name .globl SYM (\name) TYPE (\name) .thumb_func SYM (\name): .endm /* Function start macros. Variants for ARM and Thumb. */ #ifdef __thumb__ #define THUMB_FUNC .thumb_func #define THUMB_CODE .force_thumb # if defined(__thumb2__) #define THUMB_SYNTAX .syntax divided # else #define THUMB_SYNTAX # endif #else #define THUMB_FUNC #define THUMB_CODE #define THUMB_SYNTAX #endif .macro FUNC_START name sp_section= .ifc \sp_section, function_section .section .text.__\name,"ax",%progbits .else .text .endif .globl SYM (__\name) TYPE (__\name) .align 0 THUMB_CODE THUMB_FUNC THUMB_SYNTAX SYM (__\name): .endm .macro ARM_SYM_START name TYPE (\name) .align 0 SYM (\name): .endm .macro SYM_END name SIZE (\name) .endm /* Special function that will always be coded in ARM assembly, even if in Thumb-only compilation. */ #if defined(__thumb2__) /* For Thumb-2 we build everything in thumb mode. */ .macro ARM_FUNC_START name sp_section= FUNC_START \name \sp_section .syntax unified .endm #define EQUIV .thumb_set .macro ARM_CALL name bl __\name .endm #elif defined(__INTERWORKING_STUBS__) .macro ARM_FUNC_START name FUNC_START \name bx pc nop .arm /* A hook to tell gdb that we've switched to ARM mode. Also used to call directly from other local arm routines. */ _L__\name: .endm #define EQUIV .thumb_set /* Branch directly to a function declared with ARM_FUNC_START. Must be called in arm mode. */ .macro ARM_CALL name bl _L__\name .endm #else /* !(__INTERWORKING_STUBS__ || __thumb2__) */ #ifdef NOT_ISA_TARGET_32BIT #define EQUIV .thumb_set #else .macro ARM_FUNC_START name sp_section= .ifc \sp_section, function_section .section .text.__\name,"ax",%progbits .else .text .endif .globl SYM (__\name) TYPE (__\name) .align 0 .arm SYM (__\name): .endm #define EQUIV .set .macro ARM_CALL name bl __\name .endm #endif #endif .macro FUNC_ALIAS new old .globl SYM (__\new) #if defined (__thumb__) .thumb_set SYM (__\new), SYM (__\old) #else .set SYM (__\new), SYM (__\old) #endif .endm #ifndef NOT_ISA_TARGET_32BIT .macro ARM_FUNC_ALIAS new old .globl SYM (__\new) EQUIV SYM (__\new), SYM (__\old) #if defined(__INTERWORKING_STUBS__) .set SYM (_L__\new), SYM (_L__\old) #endif .endm #endif #ifdef __ARMEB__ #define xxh r0 #define xxl r1 #define yyh r2 #define yyl r3 #else #define xxh r1 #define xxl r0 #define yyh r3 #define yyl r2 #endif #ifdef __ARM_EABI__ .macro WEAK name .weak SYM (__\name) .endm #endif #ifdef __thumb__ /* Register aliases. */ work .req r4 @ XXXX is this safe ? dividend .req r0 divisor .req r1 overdone .req r2 result .req r2 curbit .req r3 #endif #if 0 ip .req r12 sp .req r13 lr .req r14 pc .req r15 #endif /* ------------------------------------------------------------------------ */ /* Bodies of the division and modulo routines. */ /* ------------------------------------------------------------------------ */ .macro ARM_DIV_BODY dividend, divisor, result, curbit #if __ARM_ARCH__ >= 5 && ! defined (__OPTIMIZE_SIZE__) #if defined (__thumb2__) clz \curbit, \dividend clz \result, \divisor sub \curbit, \result, \curbit rsb \curbit, \curbit, #31 adr \result, 1f add \curbit, \result, \curbit, lsl #4 mov \result, #0 mov pc, \curbit .p2align 3 1: .set shift, 32 .rept 32 .set shift, shift - 1 cmp.w \dividend, \divisor, lsl #shift nop.n adc.w \result, \result, \result it cs subcs.w \dividend, \dividend, \divisor, lsl #shift .endr #else clz \curbit, \dividend clz \result, \divisor sub \curbit, \result, \curbit rsbs \curbit, \curbit, #31 addne \curbit, \curbit, \curbit, lsl #1 mov \result, #0 addne pc, pc, \curbit, lsl #2 nop .set shift, 32 .rept 32 .set shift, shift - 1 cmp \dividend, \divisor, lsl #shift adc \result, \result, \result subcs \dividend, \dividend, \divisor, lsl #shift .endr #endif #else /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */ #if __ARM_ARCH__ >= 5 clz \curbit, \divisor clz \result, \dividend sub \result, \curbit, \result mov \curbit, #1 mov \divisor, \divisor, lsl \result mov \curbit, \curbit, lsl \result mov \result, #0 #else /* __ARM_ARCH__ < 5 */ @ Initially shift the divisor left 3 bits if possible, @ set curbit accordingly. This allows for curbit to be located @ at the left end of each 4-bit nibbles in the division loop @ to save one loop in most cases. tst \divisor, #0xe0000000 moveq \divisor, \divisor, lsl #3 moveq \curbit, #8 movne \curbit, #1 @ Unless the divisor is very big, shift it up in multiples of @ four bits, since this is the amount of unwinding in the main @ division loop. Continue shifting until the divisor is @ larger than the dividend. 1: cmp \divisor, #0x10000000 cmplo \divisor, \dividend movlo \divisor, \divisor, lsl #4 movlo \curbit, \curbit, lsl #4 blo 1b @ For very big divisors, we must shift it a bit at a time, or @ we will be in danger of overflowing. 1: cmp \divisor, #0x80000000 cmplo \divisor, \dividend movlo \divisor, \divisor, lsl #1 movlo \curbit, \curbit, lsl #1 blo 1b mov \result, #0 #endif /* __ARM_ARCH__ < 5 */ @ Division loop 1: cmp \dividend, \divisor do_it hs, t subhs \dividend, \dividend, \divisor orrhs \result, \result, \curbit cmp \dividend, \divisor, lsr #1 do_it hs, t subhs \dividend, \dividend, \divisor, lsr #1 orrhs \result, \result, \curbit, lsr #1 cmp \dividend, \divisor, lsr #2 do_it hs, t subhs \dividend, \dividend, \divisor, lsr #2 orrhs \result, \result, \curbit, lsr #2 cmp \dividend, \divisor, lsr #3 do_it hs, t subhs \dividend, \dividend, \divisor, lsr #3 orrhs \result, \result, \curbit, lsr #3 cmp \dividend, #0 @ Early termination? do_it ne, t movnes \curbit, \curbit, lsr #4 @ No, any more bits to do? movne \divisor, \divisor, lsr #4 bne 1b #endif /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */ .endm /* ------------------------------------------------------------------------ */ .macro ARM_DIV2_ORDER divisor, order #if __ARM_ARCH__ >= 5 clz \order, \divisor rsb \order, \order, #31 #else cmp \divisor, #(1 << 16) movhs \divisor, \divisor, lsr #16 movhs \order, #16 movlo \order, #0 cmp \divisor, #(1 << 8) movhs \divisor, \divisor, lsr #8 addhs \order, \order, #8 cmp \divisor, #(1 << 4) movhs \divisor, \divisor, lsr #4 addhs \order, \order, #4 cmp \divisor, #(1 << 2) addhi \order, \order, #3 addls \order, \order, \divisor, lsr #1 #endif .endm /* ------------------------------------------------------------------------ */ .macro ARM_MOD_BODY dividend, divisor, order, spare #if __ARM_ARCH__ >= 5 && ! defined (__OPTIMIZE_SIZE__) clz \order, \divisor clz \spare, \dividend sub \order, \order, \spare rsbs \order, \order, #31 addne pc, pc, \order, lsl #3 nop .set shift, 32 .rept 32 .set shift, shift - 1 cmp \dividend, \divisor, lsl #shift subcs \dividend, \dividend, \divisor, lsl #shift .endr #else /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */ #if __ARM_ARCH__ >= 5 clz \order, \divisor clz \spare, \dividend sub \order, \order, \spare mov \divisor, \divisor, lsl \order #else /* __ARM_ARCH__ < 5 */ mov \order, #0 @ Unless the divisor is very big, shift it up in multiples of @ four bits, since this is the amount of unwinding in the main @ division loop. Continue shifting until the divisor is @ larger than the dividend. 1: cmp \divisor, #0x10000000 cmplo \divisor, \dividend movlo \divisor, \divisor, lsl #4 addlo \order, \order, #4 blo 1b @ For very big divisors, we must shift it a bit at a time, or @ we will be in danger of overflowing. 1: cmp \divisor, #0x80000000 cmplo \divisor, \dividend movlo \divisor, \divisor, lsl #1 addlo \order, \order, #1 blo 1b #endif /* __ARM_ARCH__ < 5 */ @ Perform all needed substractions to keep only the reminder. @ Do comparisons in batch of 4 first. subs \order, \order, #3 @ yes, 3 is intended here blt 2f 1: cmp \dividend, \divisor subhs \dividend, \dividend, \divisor cmp \dividend, \divisor, lsr #1 subhs \dividend, \dividend, \divisor, lsr #1 cmp \dividend, \divisor, lsr #2 subhs \dividend, \dividend, \divisor, lsr #2 cmp \dividend, \divisor, lsr #3 subhs \dividend, \dividend, \divisor, lsr #3 cmp \dividend, #1 mov \divisor, \divisor, lsr #4 subges \order, \order, #4 bge 1b tst \order, #3 teqne \dividend, #0 beq 5f @ Either 1, 2 or 3 comparison/substractions are left. 2: cmn \order, #2 blt 4f beq 3f cmp \dividend, \divisor subhs \dividend, \dividend, \divisor mov \divisor, \divisor, lsr #1 3: cmp \dividend, \divisor subhs \dividend, \dividend, \divisor mov \divisor, \divisor, lsr #1 4: cmp \dividend, \divisor subhs \dividend, \dividend, \divisor 5: #endif /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */ .endm /* ------------------------------------------------------------------------ */ .macro THUMB_DIV_MOD_BODY modulo @ Load the constant 0x10000000 into our work register. mov work, #1 lsl work, #28 LSYM(Loop1): @ Unless the divisor is very big, shift it up in multiples of @ four bits, since this is the amount of unwinding in the main @ division loop. Continue shifting until the divisor is @ larger than the dividend. cmp divisor, work bhs LSYM(Lbignum) cmp divisor, dividend bhs LSYM(Lbignum) lsl divisor, #4 lsl curbit, #4 b LSYM(Loop1) LSYM(Lbignum): @ Set work to 0x80000000 lsl work, #3 LSYM(Loop2): @ For very big divisors, we must shift it a bit at a time, or @ we will be in danger of overflowing. cmp divisor, work bhs LSYM(Loop3) cmp divisor, dividend bhs LSYM(Loop3) lsl divisor, #1 lsl curbit, #1 b LSYM(Loop2) LSYM(Loop3): @ Test for possible subtractions ... .if \modulo @ ... On the final pass, this may subtract too much from the dividend, @ so keep track of which subtractions are done, we can fix them up @ afterwards. mov overdone, #0 cmp dividend, divisor blo LSYM(Lover1) sub dividend, dividend, divisor LSYM(Lover1): lsr work, divisor, #1 cmp dividend, work blo LSYM(Lover2) sub dividend, dividend, work mov ip, curbit mov work, #1 ror curbit, work orr overdone, curbit mov curbit, ip LSYM(Lover2): lsr work, divisor, #2 cmp dividend, work blo LSYM(Lover3) sub dividend, dividend, work mov ip, curbit mov work, #2 ror curbit, work orr overdone, curbit mov curbit, ip LSYM(Lover3): lsr work, divisor, #3 cmp dividend, work blo LSYM(Lover4) sub dividend, dividend, work mov ip, curbit mov work, #3 ror curbit, work orr overdone, curbit mov curbit, ip LSYM(Lover4): mov ip, curbit .else @ ... and note which bits are done in the result. On the final pass, @ this may subtract too much from the dividend, but the result will be ok, @ since the "bit" will have been shifted out at the bottom. cmp dividend, divisor blo LSYM(Lover1) sub dividend, dividend, divisor orr result, result, curbit LSYM(Lover1): lsr work, divisor, #1 cmp dividend, work blo LSYM(Lover2) sub dividend, dividend, work lsr work, curbit, #1 orr result, work LSYM(Lover2): lsr work, divisor, #2 cmp dividend, work blo LSYM(Lover3) sub dividend, dividend, work lsr work, curbit, #2 orr result, work LSYM(Lover3): lsr work, divisor, #3 cmp dividend, work blo LSYM(Lover4) sub dividend, dividend, work lsr work, curbit, #3 orr result, work LSYM(Lover4): .endif cmp dividend, #0 @ Early termination? beq LSYM(Lover5) lsr curbit, #4 @ No, any more bits to do? beq LSYM(Lover5) lsr divisor, #4 b LSYM(Loop3) LSYM(Lover5): .if \modulo @ Any subtractions that we should not have done will be recorded in @ the top three bits of "overdone". Exactly which were not needed @ are governed by the position of the bit, stored in ip. mov work, #0xe lsl work, #28 and overdone, work beq LSYM(Lgot_result) @ If we terminated early, because dividend became zero, then the @ bit in ip will not be in the bottom nibble, and we should not @ perform the additions below. We must test for this though @ (rather relying upon the TSTs to prevent the additions) since @ the bit in ip could be in the top two bits which might then match @ with one of the smaller RORs. mov curbit, ip mov work, #0x7 tst curbit, work beq LSYM(Lgot_result) mov curbit, ip mov work, #3 ror curbit, work tst overdone, curbit beq LSYM(Lover6) lsr work, divisor, #3 add dividend, work LSYM(Lover6): mov curbit, ip mov work, #2 ror curbit, work tst overdone, curbit beq LSYM(Lover7) lsr work, divisor, #2 add dividend, work LSYM(Lover7): mov curbit, ip mov work, #1 ror curbit, work tst overdone, curbit beq LSYM(Lgot_result) lsr work, divisor, #1 add dividend, work .endif LSYM(Lgot_result): .endm /* If performance is preferred, the following functions are provided. */ #if defined(__prefer_thumb__) && !defined(__OPTIMIZE_SIZE__) /* Branch to div(n), and jump to label if curbit is lo than divisior. */ .macro BranchToDiv n, label lsr curbit, dividend, \n cmp curbit, divisor blo \label .endm /* Body of div(n). Shift the divisor in n bits and compare the divisor and dividend. Update the dividend as the substruction result. */ .macro DoDiv n lsr curbit, dividend, \n cmp curbit, divisor bcc 1f lsl curbit, divisor, \n sub dividend, dividend, curbit 1: adc result, result .endm /* The body of division with positive divisor. Unless the divisor is very big, shift it up in multiples of four bits, since this is the amount of unwinding in the main division loop. Continue shifting until the divisor is larger than the dividend. */ .macro THUMB1_Div_Positive mov result, #0 BranchToDiv #1, LSYM(Lthumb1_div1) BranchToDiv #4, LSYM(Lthumb1_div4) BranchToDiv #8, LSYM(Lthumb1_div8) BranchToDiv #12, LSYM(Lthumb1_div12) BranchToDiv #16, LSYM(Lthumb1_div16) LSYM(Lthumb1_div_large_positive): mov result, #0xff lsl divisor, divisor, #8 rev result, result lsr curbit, dividend, #16 cmp curbit, divisor blo 1f asr result, #8 lsl divisor, divisor, #8 beq LSYM(Ldivbyzero_waypoint) 1: lsr curbit, dividend, #12 cmp curbit, divisor blo LSYM(Lthumb1_div12) b LSYM(Lthumb1_div16) LSYM(Lthumb1_div_loop): lsr divisor, divisor, #8 LSYM(Lthumb1_div16): Dodiv #15 Dodiv #14 Dodiv #13 Dodiv #12 LSYM(Lthumb1_div12): Dodiv #11 Dodiv #10 Dodiv #9 Dodiv #8 bcs LSYM(Lthumb1_div_loop) LSYM(Lthumb1_div8): Dodiv #7 Dodiv #6 Dodiv #5 LSYM(Lthumb1_div5): Dodiv #4 LSYM(Lthumb1_div4): Dodiv #3 LSYM(Lthumb1_div3): Dodiv #2 LSYM(Lthumb1_div2): Dodiv #1 LSYM(Lthumb1_div1): sub divisor, dividend, divisor bcs 1f cpy divisor, dividend 1: adc result, result cpy dividend, result RET LSYM(Ldivbyzero_waypoint): b LSYM(Ldiv0) .endm /* The body of division with negative divisor. Similar with THUMB1_Div_Positive except that the shift steps are in multiples of six bits. */ .macro THUMB1_Div_Negative lsr result, divisor, #31 beq 1f neg divisor, divisor 1: asr curbit, dividend, #32 bcc 2f neg dividend, dividend 2: eor curbit, result mov result, #0 cpy ip, curbit BranchToDiv #4, LSYM(Lthumb1_div_negative4) BranchToDiv #8, LSYM(Lthumb1_div_negative8) LSYM(Lthumb1_div_large): mov result, #0xfc lsl divisor, divisor, #6 rev result, result lsr curbit, dividend, #8 cmp curbit, divisor blo LSYM(Lthumb1_div_negative8) lsl divisor, divisor, #6 asr result, result, #6 cmp curbit, divisor blo LSYM(Lthumb1_div_negative8) lsl divisor, divisor, #6 asr result, result, #6 cmp curbit, divisor blo LSYM(Lthumb1_div_negative8) lsl divisor, divisor, #6 beq LSYM(Ldivbyzero_negative) asr result, result, #6 b LSYM(Lthumb1_div_negative8) LSYM(Lthumb1_div_negative_loop): lsr divisor, divisor, #6 LSYM(Lthumb1_div_negative8): DoDiv #7 DoDiv #6 DoDiv #5 DoDiv #4 LSYM(Lthumb1_div_negative4): DoDiv #3 DoDiv #2 bcs LSYM(Lthumb1_div_negative_loop) DoDiv #1 sub divisor, dividend, divisor bcs 1f cpy divisor, dividend 1: cpy curbit, ip adc result, result asr curbit, curbit, #1 cpy dividend, result bcc 2f neg dividend, dividend cmp curbit, #0 2: bpl 3f neg divisor, divisor 3: RET LSYM(Ldivbyzero_negative): cpy curbit, ip asr curbit, curbit, #1 bcc LSYM(Ldiv0) neg dividend, dividend .endm #endif /* ARM Thumb version. */ /* ------------------------------------------------------------------------ */ /* Start of the Real Functions */ /* ------------------------------------------------------------------------ */ #ifdef L_udivsi3 #if defined(__prefer_thumb__) FUNC_START udivsi3 FUNC_ALIAS aeabi_uidiv udivsi3 #if defined(__OPTIMIZE_SIZE__) cmp divisor, #0 beq LSYM(Ldiv0) LSYM(udivsi3_skip_div0_test): mov curbit, #1 mov result, #0 push { work } cmp dividend, divisor blo LSYM(Lgot_result) THUMB_DIV_MOD_BODY 0 mov r0, result pop { work } RET /* Implementation of aeabi_uidiv for ARMv6m. This version is only used in ARMv6-M when we need an efficient implementation. */ #else LSYM(udivsi3_skip_div0_test): THUMB1_Div_Positive #endif /* __OPTIMIZE_SIZE__ */ #elif defined(__ARM_ARCH_EXT_IDIV__) ARM_FUNC_START udivsi3 ARM_FUNC_ALIAS aeabi_uidiv udivsi3 cmp r1, #0 beq LSYM(Ldiv0) udiv r0, r0, r1 RET #else /* ARM version/Thumb-2. */ ARM_FUNC_START udivsi3 ARM_FUNC_ALIAS aeabi_uidiv udivsi3 /* Note: if called via udivsi3_skip_div0_test, this will unnecessarily check for division-by-zero a second time. */ LSYM(udivsi3_skip_div0_test): subs r2, r1, #1 do_it eq RETc(eq) bcc LSYM(Ldiv0) cmp r0, r1 bls 11f tst r1, r2 beq 12f ARM_DIV_BODY r0, r1, r2, r3 mov r0, r2 RET 11: do_it eq, e moveq r0, #1 movne r0, #0 RET 12: ARM_DIV2_ORDER r1, r2 mov r0, r0, lsr r2 RET #endif /* ARM version */ DIV_FUNC_END udivsi3 unsigned #if defined(__prefer_thumb__) FUNC_START aeabi_uidivmod cmp r1, #0 beq LSYM(Ldiv0) # if defined(__OPTIMIZE_SIZE__) push {r0, r1, lr} bl LSYM(udivsi3_skip_div0_test) POP {r1, r2, r3} mul r2, r0 sub r1, r1, r2 bx r3 # else /* Both the quotient and remainder are calculated simultaneously in THUMB1_Div_Positive. There is no need to calculate the remainder again here. */ b LSYM(udivsi3_skip_div0_test) RET # endif /* __OPTIMIZE_SIZE__ */ #elif defined(__ARM_ARCH_EXT_IDIV__) ARM_FUNC_START aeabi_uidivmod cmp r1, #0 beq LSYM(Ldiv0) mov r2, r0 udiv r0, r0, r1 mls r1, r0, r1, r2 RET #else ARM_FUNC_START aeabi_uidivmod cmp r1, #0 beq LSYM(Ldiv0) stmfd sp!, { r0, r1, lr } bl LSYM(udivsi3_skip_div0_test) ldmfd sp!, { r1, r2, lr } mul r3, r2, r0 sub r1, r1, r3 RET #endif FUNC_END aeabi_uidivmod #endif /* L_udivsi3 */ /* ------------------------------------------------------------------------ */ #ifdef L_umodsi3 #if defined(__ARM_ARCH_EXT_IDIV__) && __ARM_ARCH_ISA_THUMB != 1 ARM_FUNC_START umodsi3 cmp r1, #0 beq LSYM(Ldiv0) udiv r2, r0, r1 mls r0, r1, r2, r0 RET #elif defined(__thumb__) FUNC_START umodsi3 cmp divisor, #0 beq LSYM(Ldiv0) mov curbit, #1 cmp dividend, divisor bhs LSYM(Lover10) RET LSYM(Lover10): push { work } THUMB_DIV_MOD_BODY 1 pop { work } RET #else /* ARM version. */ FUNC_START umodsi3 subs r2, r1, #1 @ compare divisor with 1 bcc LSYM(Ldiv0) cmpne r0, r1 @ compare dividend with divisor moveq r0, #0 tsthi r1, r2 @ see if divisor is power of 2 andeq r0, r0, r2 RETc(ls) ARM_MOD_BODY r0, r1, r2, r3 RET #endif /* ARM version. */ DIV_FUNC_END umodsi3 unsigned #endif /* L_umodsi3 */ /* ------------------------------------------------------------------------ */ #ifdef L_divsi3 #if defined(__prefer_thumb__) FUNC_START divsi3 FUNC_ALIAS aeabi_idiv divsi3 #if defined(__OPTIMIZE_SIZE__) cmp divisor, #0 beq LSYM(Ldiv0) LSYM(divsi3_skip_div0_test): push { work } mov work, dividend eor work, divisor @ Save the sign of the result. mov ip, work mov curbit, #1 mov result, #0 cmp divisor, #0 bpl LSYM(Lover10) neg divisor, divisor @ Loops below use unsigned. LSYM(Lover10): cmp dividend, #0 bpl LSYM(Lover11) neg dividend, dividend LSYM(Lover11): cmp dividend, divisor blo LSYM(Lgot_result) THUMB_DIV_MOD_BODY 0 mov r0, result mov work, ip cmp work, #0 bpl LSYM(Lover12) neg r0, r0 LSYM(Lover12): pop { work } RET /* Implementation of aeabi_idiv for ARMv6m. This version is only used in ARMv6-M when we need an efficient implementation. */ #else LSYM(divsi3_skip_div0_test): cpy curbit, dividend orr curbit, divisor bmi LSYM(Lthumb1_div_negative) LSYM(Lthumb1_div_positive): THUMB1_Div_Positive LSYM(Lthumb1_div_negative): THUMB1_Div_Negative #endif /* __OPTIMIZE_SIZE__ */ #elif defined(__ARM_ARCH_EXT_IDIV__) ARM_FUNC_START divsi3 ARM_FUNC_ALIAS aeabi_idiv divsi3 cmp r1, #0 beq LSYM(Ldiv0) sdiv r0, r0, r1 RET #else /* ARM/Thumb-2 version. */ ARM_FUNC_START divsi3 ARM_FUNC_ALIAS aeabi_idiv divsi3 cmp r1, #0 beq LSYM(Ldiv0) LSYM(divsi3_skip_div0_test): eor ip, r0, r1 @ save the sign of the result. do_it mi rsbmi r1, r1, #0 @ loops below use unsigned. subs r2, r1, #1 @ division by 1 or -1 ? beq 10f movs r3, r0 do_it mi rsbmi r3, r0, #0 @ positive dividend value cmp r3, r1 bls 11f tst r1, r2 @ divisor is power of 2 ? beq 12f ARM_DIV_BODY r3, r1, r0, r2 cmp ip, #0 do_it mi rsbmi r0, r0, #0 RET 10: teq ip, r0 @ same sign ? do_it mi rsbmi r0, r0, #0 RET 11: do_it lo movlo r0, #0 do_it eq,t moveq r0, ip, asr #31 orreq r0, r0, #1 RET 12: ARM_DIV2_ORDER r1, r2 cmp ip, #0 mov r0, r3, lsr r2 do_it mi rsbmi r0, r0, #0 RET #endif /* ARM version */ DIV_FUNC_END divsi3 signed #if defined(__prefer_thumb__) FUNC_START aeabi_idivmod cmp r1, #0 beq LSYM(Ldiv0) # if defined(__OPTIMIZE_SIZE__) push {r0, r1, lr} bl LSYM(divsi3_skip_div0_test) POP {r1, r2, r3} mul r2, r0 sub r1, r1, r2 bx r3 # else /* Both the quotient and remainder are calculated simultaneously in THUMB1_Div_Positive and THUMB1_Div_Negative. There is no need to calculate the remainder again here. */ b LSYM(divsi3_skip_div0_test) RET # endif /* __OPTIMIZE_SIZE__ */ #elif defined(__ARM_ARCH_EXT_IDIV__) ARM_FUNC_START aeabi_idivmod cmp r1, #0 beq LSYM(Ldiv0) mov r2, r0 sdiv r0, r0, r1 mls r1, r0, r1, r2 RET #else ARM_FUNC_START aeabi_idivmod cmp r1, #0 beq LSYM(Ldiv0) stmfd sp!, { r0, r1, lr } bl LSYM(divsi3_skip_div0_test) ldmfd sp!, { r1, r2, lr } mul r3, r2, r0 sub r1, r1, r3 RET #endif FUNC_END aeabi_idivmod #endif /* L_divsi3 */ /* ------------------------------------------------------------------------ */ #ifdef L_modsi3 #if defined(__ARM_ARCH_EXT_IDIV__) && __ARM_ARCH_ISA_THUMB != 1 ARM_FUNC_START modsi3 cmp r1, #0 beq LSYM(Ldiv0) sdiv r2, r0, r1 mls r0, r1, r2, r0 RET #elif defined(__thumb__) FUNC_START modsi3 mov curbit, #1 cmp divisor, #0 beq LSYM(Ldiv0) bpl LSYM(Lover10) neg divisor, divisor @ Loops below use unsigned. LSYM(Lover10): push { work } @ Need to save the sign of the dividend, unfortunately, we need @ work later on. Must do this after saving the original value of @ the work register, because we will pop this value off first. push { dividend } cmp dividend, #0 bpl LSYM(Lover11) neg dividend, dividend LSYM(Lover11): cmp dividend, divisor blo LSYM(Lgot_result) THUMB_DIV_MOD_BODY 1 pop { work } cmp work, #0 bpl LSYM(Lover12) neg dividend, dividend LSYM(Lover12): pop { work } RET #else /* ARM version. */ FUNC_START modsi3 cmp r1, #0 beq LSYM(Ldiv0) rsbmi r1, r1, #0 @ loops below use unsigned. movs ip, r0 @ preserve sign of dividend rsbmi r0, r0, #0 @ if negative make positive subs r2, r1, #1 @ compare divisor with 1 cmpne r0, r1 @ compare dividend with divisor moveq r0, #0 tsthi r1, r2 @ see if divisor is power of 2 andeq r0, r0, r2 bls 10f ARM_MOD_BODY r0, r1, r2, r3 10: cmp ip, #0 rsbmi r0, r0, #0 RET #endif /* ARM version */ DIV_FUNC_END modsi3 signed #endif /* L_modsi3 */ /* ------------------------------------------------------------------------ */ #ifdef L_dvmd_tls #ifdef __ARM_EABI__ WEAK aeabi_idiv0 WEAK aeabi_ldiv0 FUNC_START aeabi_idiv0 FUNC_START aeabi_ldiv0 RET FUNC_END aeabi_ldiv0 FUNC_END aeabi_idiv0 #else FUNC_START div0 RET FUNC_END div0 #endif #endif /* L_divmodsi_tools */ /* ------------------------------------------------------------------------ */ #ifdef L_dvmd_lnx @ GNU/Linux division-by zero handler. Used in place of L_dvmd_tls /* Constant taken from . */ #define SIGFPE 8 #ifdef __ARM_EABI__ cfi_start __aeabi_ldiv0, LSYM(Lend_aeabi_ldiv0) WEAK aeabi_idiv0 WEAK aeabi_ldiv0 ARM_FUNC_START aeabi_idiv0 ARM_FUNC_START aeabi_ldiv0 do_push {r1, lr} 98: cfi_push 98b - __aeabi_ldiv0, 0xe, -0x4, 0x8 #else cfi_start __div0, LSYM(Lend_div0) ARM_FUNC_START div0 do_push {r1, lr} 98: cfi_push 98b - __div0, 0xe, -0x4, 0x8 #endif mov r0, #SIGFPE bl SYM(raise) __PLT__ RETLDM r1 unwind=98b #ifdef __ARM_EABI__ cfi_end LSYM(Lend_aeabi_ldiv0) FUNC_END aeabi_ldiv0 FUNC_END aeabi_idiv0 #else cfi_end LSYM(Lend_div0) FUNC_END div0 #endif #endif /* L_dvmd_lnx */ #ifdef L_clear_cache #if defined __ARM_EABI__ && defined __linux__ @ EABI GNU/Linux call to cacheflush syscall. ARM_FUNC_START clear_cache do_push {r7} #if __ARM_ARCH__ >= 7 || defined(__ARM_ARCH_6T2__) movw r7, #2 movt r7, #0xf #else mov r7, #0xf0000 add r7, r7, #2 #endif mov r2, #0 swi 0 do_pop {r7} RET FUNC_END clear_cache #else #error "This is only for ARM EABI GNU/Linux" #endif #endif /* L_clear_cache */ /* ------------------------------------------------------------------------ */ /* Dword shift operations. */ /* All the following Dword shift variants rely on the fact that shft xxx, Reg is in fact done as shft xxx, (Reg & 255) so for Reg value in (32...63) and (-1...-31) we will get zero (in the case of logical shifts) or the sign (for asr). */ #ifdef __ARMEB__ #define al r1 #define ah r0 #else #define al r0 #define ah r1 #endif /* Prevent __aeabi double-word shifts from being produced on SymbianOS. */ #ifndef __symbian__ #ifdef L_lshrdi3 FUNC_START lshrdi3 FUNC_ALIAS aeabi_llsr lshrdi3 #ifdef __thumb__ lsr al, r2 mov r3, ah lsr ah, r2 mov ip, r3 sub r2, #32 lsr r3, r2 orr al, r3 neg r2, r2 mov r3, ip lsl r3, r2 orr al, r3 RET #else subs r3, r2, #32 rsb ip, r2, #32 movmi al, al, lsr r2 movpl al, ah, lsr r3 orrmi al, al, ah, lsl ip mov ah, ah, lsr r2 RET #endif FUNC_END aeabi_llsr FUNC_END lshrdi3 #endif #ifdef L_ashrdi3 FUNC_START ashrdi3 FUNC_ALIAS aeabi_lasr ashrdi3 #ifdef __thumb__ lsr al, r2 mov r3, ah asr ah, r2 sub r2, #32 @ If r2 is negative at this point the following step would OR @ the sign bit into all of AL. That's not what we want... bmi 1f mov ip, r3 asr r3, r2 orr al, r3 mov r3, ip 1: neg r2, r2 lsl r3, r2 orr al, r3 RET #else subs r3, r2, #32 rsb ip, r2, #32 movmi al, al, lsr r2 movpl al, ah, asr r3 orrmi al, al, ah, lsl ip mov ah, ah, asr r2 RET #endif FUNC_END aeabi_lasr FUNC_END ashrdi3 #endif #ifdef L_ashldi3 FUNC_START ashldi3 FUNC_ALIAS aeabi_llsl ashldi3 #ifdef __thumb__ lsl ah, r2 mov r3, al lsl al, r2 mov ip, r3 sub r2, #32 lsl r3, r2 orr ah, r3 neg r2, r2 mov r3, ip lsr r3, r2 orr ah, r3 RET #else subs r3, r2, #32 rsb ip, r2, #32 movmi ah, ah, lsl r2 movpl ah, al, lsl r3 orrmi ah, ah, al, lsr ip mov al, al, lsl r2 RET #endif FUNC_END aeabi_llsl FUNC_END ashldi3 #endif #endif /* __symbian__ */ #if (__ARM_ARCH_ISA_THUMB == 2 \ || (__ARM_ARCH_ISA_ARM \ && (__ARM_ARCH__ > 5 \ || (__ARM_ARCH__ == 5 && __ARM_ARCH_ISA_THUMB)))) #define HAVE_ARM_CLZ 1 #endif #ifdef L_clzsi2 #ifdef NOT_ISA_TARGET_32BIT FUNC_START clzsi2 mov r1, #28 mov r3, #1 lsl r3, r3, #16 cmp r0, r3 /* 0x10000 */ bcc 2f lsr r0, r0, #16 sub r1, r1, #16 2: lsr r3, r3, #8 cmp r0, r3 /* #0x100 */ bcc 2f lsr r0, r0, #8 sub r1, r1, #8 2: lsr r3, r3, #4 cmp r0, r3 /* #0x10 */ bcc 2f lsr r0, r0, #4 sub r1, r1, #4 2: adr r2, 1f ldrb r0, [r2, r0] add r0, r0, r1 bx lr .align 2 1: .byte 4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 FUNC_END clzsi2 #else ARM_FUNC_START clzsi2 # if defined(HAVE_ARM_CLZ) clz r0, r0 RET # else mov r1, #28 cmp r0, #0x10000 do_it cs, t movcs r0, r0, lsr #16 subcs r1, r1, #16 cmp r0, #0x100 do_it cs, t movcs r0, r0, lsr #8 subcs r1, r1, #8 cmp r0, #0x10 do_it cs, t movcs r0, r0, lsr #4 subcs r1, r1, #4 adr r2, 1f ldrb r0, [r2, r0] add r0, r0, r1 RET .align 2 1: .byte 4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 # endif /* !HAVE_ARM_CLZ */ FUNC_END clzsi2 #endif #endif /* L_clzsi2 */ #ifdef L_clzdi2 #if !defined(HAVE_ARM_CLZ) # ifdef NOT_ISA_TARGET_32BIT FUNC_START clzdi2 push {r4, lr} # else ARM_FUNC_START clzdi2 do_push {r4, lr} # endif cmp xxh, #0 bne 1f # ifdef __ARMEB__ mov r0, xxl bl __clzsi2 add r0, r0, #32 b 2f 1: bl __clzsi2 # else bl __clzsi2 add r0, r0, #32 b 2f 1: mov r0, xxh bl __clzsi2 # endif 2: # ifdef NOT_ISA_TARGET_32BIT pop {r4, pc} # else RETLDM r4 # endif FUNC_END clzdi2 #else /* HAVE_ARM_CLZ */ ARM_FUNC_START clzdi2 cmp xxh, #0 do_it eq, et clzeq r0, xxl clzne r0, xxh addeq r0, r0, #32 RET FUNC_END clzdi2 #endif #endif /* L_clzdi2 */ #ifdef L_ctzsi2 #ifdef NOT_ISA_TARGET_32BIT FUNC_START ctzsi2 neg r1, r0 and r0, r0, r1 mov r1, #28 mov r3, #1 lsl r3, r3, #16 cmp r0, r3 /* 0x10000 */ bcc 2f lsr r0, r0, #16 sub r1, r1, #16 2: lsr r3, r3, #8 cmp r0, r3 /* #0x100 */ bcc 2f lsr r0, r0, #8 sub r1, r1, #8 2: lsr r3, r3, #4 cmp r0, r3 /* #0x10 */ bcc 2f lsr r0, r0, #4 sub r1, r1, #4 2: adr r2, 1f ldrb r0, [r2, r0] sub r0, r0, r1 bx lr .align 2 1: .byte 27, 28, 29, 29, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 31 FUNC_END ctzsi2 #else ARM_FUNC_START ctzsi2 rsb r1, r0, #0 and r0, r0, r1 # if defined(HAVE_ARM_CLZ) clz r0, r0 rsb r0, r0, #31 RET # else mov r1, #28 cmp r0, #0x10000 do_it cs, t movcs r0, r0, lsr #16 subcs r1, r1, #16 cmp r0, #0x100 do_it cs, t movcs r0, r0, lsr #8 subcs r1, r1, #8 cmp r0, #0x10 do_it cs, t movcs r0, r0, lsr #4 subcs r1, r1, #4 adr r2, 1f ldrb r0, [r2, r0] sub r0, r0, r1 RET .align 2 1: .byte 27, 28, 29, 29, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 31 # endif /* !HAVE_ARM_CLZ */ FUNC_END ctzsi2 #endif #endif /* L_clzsi2 */ /* ------------------------------------------------------------------------ */ /* These next two sections are here despite the fact that they contain Thumb assembler because their presence allows interworked code to be linked even when the GCC library is this one. */ /* Do not build the interworking functions when the target architecture does not support Thumb instructions. (This can be a multilib option). */ #if defined __ARM_ARCH_4T__ || defined __ARM_ARCH_5T__\ || defined __ARM_ARCH_5TE__ || defined __ARM_ARCH_5TEJ__ \ || __ARM_ARCH__ >= 6 #if defined L_call_via_rX /* These labels & instructions are used by the Arm/Thumb interworking code. The address of function to be called is loaded into a register and then one of these labels is called via a BL instruction. This puts the return address into the link register with the bottom bit set, and the code here switches to the correct mode before executing the function. */ .text .align 0 .force_thumb .macro call_via register THUMB_FUNC_START _call_via_\register bx \register nop SIZE (_call_via_\register) .endm call_via r0 call_via r1 call_via r2 call_via r3 call_via r4 call_via r5 call_via r6 call_via r7 call_via r8 call_via r9 call_via sl call_via fp call_via ip call_via sp call_via lr #endif /* L_call_via_rX */ /* Don't bother with the old interworking routines for Thumb-2. */ /* ??? Maybe only omit these on "m" variants. */ #if !defined(__thumb2__) && __ARM_ARCH_ISA_ARM #if defined L_interwork_call_via_rX /* These labels & instructions are used by the Arm/Thumb interworking code, when the target address is in an unknown instruction set. The address of function to be called is loaded into a register and then one of these labels is called via a BL instruction. This puts the return address into the link register with the bottom bit set, and the code here switches to the correct mode before executing the function. Unfortunately the target code cannot be relied upon to return via a BX instruction, so instead we have to store the resturn address on the stack and allow the called function to return here instead. Upon return we recover the real return address and use a BX to get back to Thumb mode. There are three variations of this code. The first, _interwork_call_via_rN(), will push the return address onto the stack and pop it in _arm_return(). It should only be used if all arguments are passed in registers. The second, _interwork_r7_call_via_rN(), instead stores the return address at [r7, #-4]. It is the caller's responsibility to ensure that this address is valid and contains no useful data. The third, _interwork_r11_call_via_rN(), works in the same way but uses r11 instead of r7. It is useful if the caller does not really need a frame pointer. */ .text .align 0 .code 32 .globl _arm_return LSYM(Lstart_arm_return): cfi_start LSYM(Lstart_arm_return) LSYM(Lend_arm_return) cfi_push 0, 0xe, -0x8, 0x8 nop @ This nop is for the benefit of debuggers, so that @ backtraces will use the correct unwind information. _arm_return: RETLDM unwind=LSYM(Lstart_arm_return) cfi_end LSYM(Lend_arm_return) .globl _arm_return_r7 _arm_return_r7: ldr lr, [r7, #-4] bx lr .globl _arm_return_r11 _arm_return_r11: ldr lr, [r11, #-4] bx lr .macro interwork_with_frame frame, register, name, return .code 16 THUMB_FUNC_START \name bx pc nop .code 32 tst \register, #1 streq lr, [\frame, #-4] adreq lr, _arm_return_\frame bx \register SIZE (\name) .endm .macro interwork register .code 16 THUMB_FUNC_START _interwork_call_via_\register bx pc nop .code 32 .globl LSYM(Lchange_\register) LSYM(Lchange_\register): tst \register, #1 streq lr, [sp, #-8]! adreq lr, _arm_return bx \register SIZE (_interwork_call_via_\register) interwork_with_frame r7,\register,_interwork_r7_call_via_\register interwork_with_frame r11,\register,_interwork_r11_call_via_\register .endm interwork r0 interwork r1 interwork r2 interwork r3 interwork r4 interwork r5 interwork r6 interwork r7 interwork r8 interwork r9 interwork sl interwork fp interwork ip interwork sp /* The LR case has to be handled a little differently... */ .code 16 THUMB_FUNC_START _interwork_call_via_lr bx pc nop .code 32 .globl .Lchange_lr .Lchange_lr: tst lr, #1 stmeqdb r13!, {lr, pc} mov ip, lr adreq lr, _arm_return bx ip SIZE (_interwork_call_via_lr) #endif /* L_interwork_call_via_rX */ #endif /* !__thumb2__ */ /* Functions to support compact pic switch tables in thumb1 state. All these routines take an index into the table in r0. The table is at LR & ~1 (but this must be rounded up in the case of 32-bit entires). They are only permitted to clobber r12 and r14 and r0 must be preserved on exit. */ #ifdef L_thumb1_case_sqi .text .align 0 .force_thumb .syntax unified THUMB_FUNC_START __gnu_thumb1_case_sqi push {r1} mov r1, lr lsrs r1, r1, #1 lsls r1, r1, #1 ldrsb r1, [r1, r0] lsls r1, r1, #1 add lr, lr, r1 pop {r1} bx lr SIZE (__gnu_thumb1_case_sqi) #endif #ifdef L_thumb1_case_uqi .text .align 0 .force_thumb .syntax unified THUMB_FUNC_START __gnu_thumb1_case_uqi push {r1} mov r1, lr lsrs r1, r1, #1 lsls r1, r1, #1 ldrb r1, [r1, r0] lsls r1, r1, #1 add lr, lr, r1 pop {r1} bx lr SIZE (__gnu_thumb1_case_uqi) #endif #ifdef L_thumb1_case_shi .text .align 0 .force_thumb .syntax unified THUMB_FUNC_START __gnu_thumb1_case_shi push {r0, r1} mov r1, lr lsrs r1, r1, #1 lsls r0, r0, #1 lsls r1, r1, #1 ldrsh r1, [r1, r0] lsls r1, r1, #1 add lr, lr, r1 pop {r0, r1} bx lr SIZE (__gnu_thumb1_case_shi) #endif #ifdef L_thumb1_case_uhi .text .align 0 .force_thumb .syntax unified THUMB_FUNC_START __gnu_thumb1_case_uhi push {r0, r1} mov r1, lr lsrs r1, r1, #1 lsls r0, r0, #1 lsls r1, r1, #1 ldrh r1, [r1, r0] lsls r1, r1, #1 add lr, lr, r1 pop {r0, r1} bx lr SIZE (__gnu_thumb1_case_uhi) #endif #ifdef L_thumb1_case_si .text .align 0 .force_thumb .syntax unified THUMB_FUNC_START __gnu_thumb1_case_si push {r0, r1} mov r1, lr adds.n r1, r1, #2 /* Align to word. */ lsrs r1, r1, #2 lsls r0, r0, #2 lsls r1, r1, #2 ldr r0, [r1, r0] adds r0, r0, r1 mov lr, r0 pop {r0, r1} mov pc, lr /* We know we were called from thumb code. */ SIZE (__gnu_thumb1_case_si) #endif #endif /* Arch supports thumb. */ .macro CFI_START_FUNCTION .cfi_startproc .cfi_remember_state .endm .macro CFI_END_FUNCTION .cfi_restore_state .cfi_endproc .endm #ifndef __symbian__ /* The condition here must match the one in gcc/config/arm/elf.h. */ #ifndef NOT_ISA_TARGET_32BIT #include "ieee754-df.S" #include "ieee754-sf.S" #include "bpabi.S" #else /* NOT_ISA_TARGET_32BIT */ #include "bpabi-v6m.S" #endif /* NOT_ISA_TARGET_32BIT */ #endif /* !__symbian__ */