/* Map (unsigned int) keys to (source file, line, column) triples. Copyright (C) 2001-2023 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING3. If not see . In other words, you are welcome to use, share and improve this program. You are forbidden to forbid anyone else to use, share and improve what you give them. Help stamp out software-hoarding! */ #ifndef LIBCPP_LINE_MAP_H #define LIBCPP_LINE_MAP_H #include #ifndef GTY #define GTY(x) /* nothing */ #endif /* Both gcc and emacs number source *lines* starting at 1, but they have differing conventions for *columns*. GCC uses a 1-based convention for source columns, whereas Emacs's M-x column-number-mode uses a 0-based convention. For example, an error in the initial, left-hand column of source line 3 is reported by GCC as: some-file.c:3:1: error: ...etc... On navigating to the location of that error in Emacs (e.g. via "next-error"), the locus is reported in the Mode Line (assuming M-x column-number-mode) as: some-file.c 10% (3, 0) i.e. "3:1:" in GCC corresponds to "(3, 0)" in Emacs. */ /* The type of line numbers. */ typedef unsigned int linenum_type; /* A type for doing arithmetic on line numbers. */ typedef long long linenum_arith_t; /* A function for for use by qsort for comparing line numbers. */ inline int compare (linenum_type lhs, linenum_type rhs) { /* Avoid truncation issues by using linenum_arith_t for the comparison, and only consider the sign of the result. */ linenum_arith_t diff = (linenum_arith_t)lhs - (linenum_arith_t)rhs; if (diff) return diff > 0 ? 1 : -1; return 0; } /* Reason for creating a new line map with linemap_add. */ enum lc_reason { LC_ENTER = 0, /* Begin #include. */ LC_LEAVE, /* Return to including file. */ LC_RENAME, /* Other reason for name change. */ LC_RENAME_VERBATIM, /* Likewise, but "" != stdin. */ LC_ENTER_MACRO, /* Begin macro expansion. */ LC_MODULE, /* A (C++) Module. */ /* FIXME: add support for stringize and paste. */ LC_HWM /* High Water Mark. */ }; /* The typedef "location_t" is a key within the location database, identifying a source location or macro expansion, along with range information, and (optionally) a pointer for use by gcc. This key only has meaning in relation to a line_maps instance. Within gcc there is a single line_maps instance: "line_table", declared in gcc/input.h and defined in gcc/input.cc. The values of the keys are intended to be internal to libcpp, but for ease-of-understanding the implementation, they are currently assigned as follows: Actual | Value | Meaning -----------+-------------------------------+------------------------------- 0x00000000 | UNKNOWN_LOCATION (gcc/input.h)| Unknown/invalid location. -----------+-------------------------------+------------------------------- 0x00000001 | BUILTINS_LOCATION | The location for declarations | (gcc/input.h) | in "" -----------+-------------------------------+------------------------------- 0x00000002 | RESERVED_LOCATION_COUNT | The first location to be | (also | handed out, and the | ordmap[0]->start_location) | first line in ordmap 0 -----------+-------------------------------+------------------------------- | ordmap[1]->start_location | First line in ordmap 1 | ordmap[1]->start_location+32 | First column in that line | (assuming range_bits == 5) | | ordmap[1]->start_location+64 | 2nd column in that line | ordmap[1]->start_location+4096| Second line in ordmap 1 | (assuming column_bits == 12) | | Subsequent lines are offset by (1 << column_bits), | e.g. 4096 for 12 bits, with a column value of 0 representing | "the whole line". | | Within a line, the low "range_bits" (typically 5) are used for | storing short ranges, so that there's an offset of | (1 << range_bits) between individual columns within a line, | typically 32. | The low range_bits store the offset of the end point from the | start point, and the start point is found by masking away | the range bits. | | For example: | ordmap[1]->start_location+64 "2nd column in that line" | above means a caret at that location, with a range | starting and finishing at the same place (the range bits | are 0), a range of length 1. | | By contrast: | ordmap[1]->start_location+68 | has range bits 0x4, meaning a caret with a range starting at | that location, but with endpoint 4 columns further on: a range | of length 5. | | Ranges that have caret != start, or have an endpoint too | far away to fit in range_bits are instead stored as ad-hoc | locations. Hence for range_bits == 5 we can compactly store | tokens of length <= 32 without needing to use the ad-hoc | table. | | This packing scheme means we effectively have | (column_bits - range_bits) | of bits for the columns, typically (12 - 5) = 7, for 128 | columns; longer line widths are accomodated by starting a | new ordmap with a higher column_bits. | | ordmap[2]->start_location-1 | Final location in ordmap 1 -----------+-------------------------------+------------------------------- | ordmap[2]->start_location | First line in ordmap 2 | ordmap[3]->start_location-1 | Final location in ordmap 2 -----------+-------------------------------+------------------------------- | | (etc) -----------+-------------------------------+------------------------------- | ordmap[n-1]->start_location | First line in final ord map | | (etc) | set->highest_location - 1 | Final location in that ordmap -----------+-------------------------------+------------------------------- | set->highest_location | Location of the where the next | | ordinary linemap would start -----------+-------------------------------+------------------------------- | | | VVVVVVVVVVVVVVVVVVVVVVVVVVV | Ordinary maps grow this way | | (unallocated integers) | 0x60000000 | LINE_MAP_MAX_LOCATION_WITH_COLS | Beyond this point, ordinary linemaps have 0 bits per column: | each increment of the value corresponds to a new source line. | 0x70000000 | LINE_MAP_MAX_LOCATION | Beyond the point, we give up on ordinary maps; attempts to | create locations in them lead to UNKNOWN_LOCATION (0). | | (unallocated integers) | | Macro maps grow this way | ^^^^^^^^^^^^^^^^^^^^^^^^ | | -----------+-------------------------------+------------------------------- | LINEMAPS_MACRO_LOWEST_LOCATION| Locations within macro maps | macromap[m-1]->start_location | Start of last macro map | | -----------+-------------------------------+------------------------------- | macromap[m-2]->start_location | Start of penultimate macro map -----------+-------------------------------+------------------------------- | macromap[1]->start_location | Start of macro map 1 -----------+-------------------------------+------------------------------- | macromap[0]->start_location | Start of macro map 0 0x7fffffff | MAX_LOCATION_T | Also used as a mask for | | accessing the ad-hoc data table -----------+-------------------------------+------------------------------- 0x80000000 | Start of ad-hoc values; the lower 31 bits are used as an index ... | into the line_table->location_adhoc_data_map.data array. 0xffffffff | UINT_MAX | -----------+-------------------------------+------------------------------- Examples of location encoding. Packed ranges ============= Consider encoding the location of a token "foo", seen underlined here on line 523, within an ordinary line_map that starts at line 500: 11111111112 12345678901234567890 522 523 return foo + bar; ^~~ 524 The location's caret and start are both at line 523, column 11; the location's finish is on the same line, at column 13 (an offset of 2 columns, for length 3). Line 523 is offset 23 from the starting line of the ordinary line_map. caret == start, and the offset of the finish fits within 5 bits, so this can be stored as a packed range. This is encoded as: ordmap->start + (line_offset << ordmap->m_column_and_range_bits) + (column << ordmap->m_range_bits) + (range_offset); i.e. (for line offset 23, column 11, range offset 2): ordmap->start + (23 << 12) + (11 << 5) + 2; i.e.: ordmap->start + 0x17162 assuming that the line_map uses the default of 7 bits for columns and 5 bits for packed range (giving 12 bits for m_column_and_range_bits). "Pure" locations ================ These are a special case of the above, where caret == start == finish They are stored as packed ranges with offset == 0. For example, the location of the "f" of "foo" could be stored as above, but with range offset 0, giving: ordmap->start + (23 << 12) + (11 << 5) + 0; i.e.: ordmap->start + 0x17160 Unoptimized ranges ================== Consider encoding the location of the binary expression below: 11111111112 12345678901234567890 522 523 return foo + bar; ~~~~^~~~~ 524 The location's caret is at the "+", line 523 column 15, but starts earlier, at the "f" of "foo" at column 11. The finish is at the "r" of "bar" at column 19. This can't be stored as a packed range since start != caret. Hence it is stored as an ad-hoc location e.g. 0x80000003. Stripping off the top bit gives us an index into the ad-hoc lookaside table: line_table->location_adhoc_data_map.data[0x3] from which the caret, start and finish can be looked up, encoded as "pure" locations: start == ordmap->start + (23 << 12) + (11 << 5) == ordmap->start + 0x17160 (as above; the "f" of "foo") caret == ordmap->start + (23 << 12) + (15 << 5) == ordmap->start + 0x171e0 finish == ordmap->start + (23 << 12) + (19 << 5) == ordmap->start + 0x17260 To further see how location_t works in practice, see the worked example in libcpp/location-example.txt. */ typedef unsigned int location_t; /* Do not track column numbers higher than this one. As a result, the range of column_bits is [12, 18] (or 0 if column numbers are disabled). */ const unsigned int LINE_MAP_MAX_COLUMN_NUMBER = (1U << 12); /* Do not pack ranges if locations get higher than this. If you change this, update: gcc.dg/plugin/location-overflow-test-*.c. */ const location_t LINE_MAP_MAX_LOCATION_WITH_PACKED_RANGES = 0x50000000; /* Do not track column numbers if locations get higher than this. If you change this, update: gcc.dg/plugin/location-overflow-test-*.c. */ const location_t LINE_MAP_MAX_LOCATION_WITH_COLS = 0x60000000; /* Highest possible source location encoded within an ordinary map. */ const location_t LINE_MAP_MAX_LOCATION = 0x70000000; /* A range of source locations. Ranges are closed: m_start is the first location within the range, m_finish is the last location within the range. We may need a more compact way to store these, but for now, let's do it the simple way, as a pair. */ struct GTY(()) source_range { location_t m_start; location_t m_finish; /* We avoid using constructors, since various structs that don't yet have constructors will embed instances of source_range. */ /* Make a source_range from a location_t. */ static source_range from_location (location_t loc) { source_range result; result.m_start = loc; result.m_finish = loc; return result; } /* Make a source_range from a pair of location_t. */ static source_range from_locations (location_t start, location_t finish) { source_range result; result.m_start = start; result.m_finish = finish; return result; } }; /* Memory allocation function typedef. Works like xrealloc. */ typedef void *(*line_map_realloc) (void *, size_t); /* Memory allocator function that returns the actual allocated size, for a given requested allocation. */ typedef size_t (*line_map_round_alloc_size_func) (size_t); /* A line_map encodes a sequence of locations. There are two kinds of maps. Ordinary maps and macro expansion maps, a.k.a macro maps. A macro map encodes source locations of tokens that are part of a macro replacement-list, at a macro expansion point. E.g, in: #define PLUS(A,B) A + B No macro map is going to be created there, because we are not at a macro expansion point. We are at a macro /definition/ point. So the locations of the tokens of the macro replacement-list (i.e, A + B) will be locations in an ordinary map, not a macro map. On the other hand, if we later do: int a = PLUS (1,2); The invocation of PLUS here is a macro expansion. So we are at a macro expansion point. The preprocessor expands PLUS (1,2) and replaces it with the tokens of its replacement-list: 1 + 2. A macro map is going to be created to hold (or rather to map, haha ...) the locations of the tokens 1, + and 2. The macro map also records the location of the expansion point of PLUS. That location is mapped in the map that is active right before the location of the invocation of PLUS. */ /* This contains GTY mark-up to support precompiled headers. line_map is an abstract class, only derived objects exist. */ struct GTY((tag ("0"), desc ("MAP_ORDINARY_P (&%h) ? 1 : 2"))) line_map { location_t start_location; /* Size and alignment is (usually) 4 bytes. */ }; /* An ordinary line map encodes physical source locations. Those physical source locations are called "spelling locations". Physical source file TO_FILE at line TO_LINE at column 0 is represented by the logical START_LOCATION. TO_LINE+L at column C is represented by START_LOCATION+(L*(1<column_and_range_bits (e.g. 12)-->| +-------------------------+-----------------------+-------------------+ | | column_and_range_bits | map->range_bits | | | - range_bits | | +-------------------------+-----------------------+-------------------+ | row bits | effective column bits | short range bits | | | (e.g. 7) | (e.g. 5) | +-------------------------+-----------------------+-------------------+ */ unsigned int m_range_bits : 8; /* Pointer alignment boundary on both 32 and 64-bit systems. */ const char *to_file; linenum_type to_line; /* Location from whence this line map was included. For regular #includes, this location will be the last location of a map. For outermost file, this is 0. For modules it could be anywhere within a map. */ location_t included_from; /* Size is 20 or 24 bytes, no padding */ }; /* This is the highest possible source location encoded within an ordinary or macro map. */ const location_t MAX_LOCATION_T = 0x7FFFFFFF; struct cpp_hashnode; /* A macro line map encodes location of tokens coming from a macro expansion. The offset from START_LOCATION is used to index into MACRO_LOCATIONS; this holds the original location of the token. */ struct GTY((tag ("2"))) line_map_macro : public line_map { /* Get the location of the expansion point of this macro map. */ location_t get_expansion_point_location () const { return m_expansion; } /* Base is 4 bytes. */ /* The number of tokens inside the replacement-list of MACRO. */ unsigned int n_tokens; /* Pointer alignment boundary. */ /* The cpp macro whose expansion gave birth to this macro map. */ struct cpp_hashnode * GTY ((nested_ptr (union tree_node, "%h ? CPP_HASHNODE (GCC_IDENT_TO_HT_IDENT (%h)) : NULL", "%h ? HT_IDENT_TO_GCC_IDENT (HT_NODE (%h)) : NULL"))) macro; /* This array of location is actually an array of pairs of locations. The elements inside it thus look like: x0,y0, x1,y1, x2,y2, ...., xn,yn. where n == n_tokens; Remember that these xI,yI are collected when libcpp is about to expand a given macro. yI is the location in the macro definition, either of the token itself or of a macro parameter that it replaces. Imagine this: #define PLUS(A, B) A + B <--- #1 int a = PLUS (1,2); <--- #2 There is a macro map for the expansion of PLUS in #2. PLUS is expanded into its expansion-list. The expansion-list is the replacement-list of PLUS where the macro parameters are replaced with their arguments. So the replacement-list of PLUS is made of the tokens: A, +, B and the expansion-list is made of the tokens: 1, +, 2 Let's consider the case of token "+". Its y1 [yI for I == 1] is its spelling location in #1. y0 (thus for token "1") is the spelling location of A in #1. And y2 (of token "2") is the spelling location of B in #1. When the token is /not/ an argument for a macro, xI is the same location as yI. Otherwise, xI is the location of the token outside this macro expansion. If this macro was expanded from another macro expansion, xI is a virtual location representing the token in that macro expansion; otherwise, it is the spelling location of the token. Note that a virtual location is a location returned by linemap_add_macro_token. It encodes the relevant locations (x,y pairs) of that token across the macro expansions from which it (the token) might come from. In the example above x1 (for token "+") is going to be the same as y1. x0 is the spelling location for the argument token "1", and x2 is the spelling location for the argument token "2". */ location_t * GTY((atomic)) macro_locations; /* This is the location of the expansion point of the current macro map. It's the location of the macro name. That location is held by the map that was current right before the current one. It could have been either a macro or an ordinary map, depending on if we are in a nested expansion context not. */ location_t m_expansion; /* Size is 20 or 32 (4 bytes padding on 64-bit). */ }; #if CHECKING_P && (GCC_VERSION >= 2007) /* Assertion macro to be used in line-map code. */ #define linemap_assert(EXPR) \ do { \ if (! (EXPR)) \ abort (); \ } while (0) /* Assert that becomes a conditional expression when checking is disabled at compilation time. Use this for conditions that should not happen but if they happen, it is better to handle them gracefully rather than crash randomly later. Usage: if (linemap_assert_fails(EXPR)) handle_error(); */ #define linemap_assert_fails(EXPR) __extension__ \ ({linemap_assert (EXPR); false;}) #else /* Include EXPR, so that unused variable warnings do not occur. */ #define linemap_assert(EXPR) ((void)(0 && (EXPR))) #define linemap_assert_fails(EXPR) (! (EXPR)) #endif /* Get whether location LOC is an ordinary location. */ inline bool IS_ORDINARY_LOC (location_t loc) { return loc < LINE_MAP_MAX_LOCATION; } /* Get whether location LOC is an ad-hoc location. */ inline bool IS_ADHOC_LOC (location_t loc) { return loc > MAX_LOCATION_T; } /* Categorize line map kinds. */ inline bool MAP_ORDINARY_P (const line_map *map) { return IS_ORDINARY_LOC (map->start_location); } /* Return TRUE if MAP encodes locations coming from a macro replacement-list at macro expansion point. */ bool linemap_macro_expansion_map_p (const line_map *); /* Assert that MAP encodes locations of tokens that are not part of the replacement-list of a macro expansion, downcasting from line_map * to line_map_ordinary *. */ inline line_map_ordinary * linemap_check_ordinary (line_map *map) { linemap_assert (MAP_ORDINARY_P (map)); return (line_map_ordinary *)map; } /* Assert that MAP encodes locations of tokens that are not part of the replacement-list of a macro expansion, downcasting from const line_map * to const line_map_ordinary *. */ inline const line_map_ordinary * linemap_check_ordinary (const line_map *map) { linemap_assert (MAP_ORDINARY_P (map)); return (const line_map_ordinary *)map; } /* Assert that MAP is a macro expansion and downcast to the appropriate subclass. */ inline line_map_macro *linemap_check_macro (line_map *map) { linemap_assert (!MAP_ORDINARY_P (map)); return (line_map_macro *)map; } /* Assert that MAP is a macro expansion and downcast to the appropriate subclass. */ inline const line_map_macro * linemap_check_macro (const line_map *map) { linemap_assert (!MAP_ORDINARY_P (map)); return (const line_map_macro *)map; } /* Read the start location of MAP. */ inline location_t MAP_START_LOCATION (const line_map *map) { return map->start_location; } /* Get the starting line number of ordinary map MAP. */ inline linenum_type ORDINARY_MAP_STARTING_LINE_NUMBER (const line_map_ordinary *ord_map) { return ord_map->to_line; } /* Return a positive value if map encodes locations from a system header, 0 otherwise. Returns 1 if ordinary map MAP encodes locations in a system header and 2 if it encodes locations in a C system header that therefore needs to be extern "C" protected in C++. */ inline unsigned char ORDINARY_MAP_IN_SYSTEM_HEADER_P (const line_map_ordinary *ord_map) { return ord_map->sysp; } /* TRUE if this line map is for a module (not a source file). */ inline bool MAP_MODULE_P (const line_map *map) { return (MAP_ORDINARY_P (map) && linemap_check_ordinary (map)->reason == LC_MODULE); } /* Get the filename of ordinary map MAP. */ inline const char * ORDINARY_MAP_FILE_NAME (const line_map_ordinary *ord_map) { return ord_map->to_file; } /* Get the cpp macro whose expansion gave birth to macro map MAP. */ inline cpp_hashnode * MACRO_MAP_MACRO (const line_map_macro *macro_map) { return macro_map->macro; } /* Get the number of tokens inside the replacement-list of the macro that led to macro map MAP. */ inline unsigned int MACRO_MAP_NUM_MACRO_TOKENS (const line_map_macro *macro_map) { return macro_map->n_tokens; } /* Get the array of pairs of locations within macro map MAP. See the declaration of line_map_macro for more information. */ inline location_t * MACRO_MAP_LOCATIONS (const line_map_macro *macro_map) { return macro_map->macro_locations; } /* The abstraction of a set of location maps. There can be several types of location maps. This abstraction contains the attributes that are independent from the type of the map. Essentially this is just a vector of T_linemap_subclass, which can only ever grow in size. */ struct GTY(()) maps_info_ordinary { /* This array contains the "ordinary" line maps, for all events other than macro expansion (e.g. when a new preprocessing unit starts or ends). */ line_map_ordinary * GTY ((length ("%h.used"))) maps; /* The total number of allocated maps. */ unsigned int allocated; /* The number of elements used in maps. This number is smaller or equal to ALLOCATED. */ unsigned int used; /* The index of the last ordinary map that was looked up with linemap_lookup. */ mutable unsigned int m_cache; }; struct GTY(()) maps_info_macro { /* This array contains the macro line maps. A macro line map is created whenever a macro expansion occurs. */ line_map_macro * GTY ((length ("%h.used"))) maps; /* The total number of allocated maps. */ unsigned int allocated; /* The number of elements used in maps. This number is smaller or equal to ALLOCATED. */ unsigned int used; /* The index of the last macro map that was looked up with linemap_lookup. */ mutable unsigned int m_cache; }; /* Data structure to associate a source_range together with an arbitrary data pointer with a source location. */ struct GTY(()) location_adhoc_data { location_t locus; source_range src_range; void * GTY((skip)) data; unsigned discriminator; }; struct htab; /* The following data structure encodes a location with some adhoc data and maps it to a new unsigned integer (called an adhoc location) that replaces the original location to represent the mapping. The new adhoc_loc uses the highest bit as the enabling bit, i.e. if the highest bit is 1, then the number is adhoc_loc. Otherwise, it serves as the original location. Once identified as the adhoc_loc, the lower 31 bits of the integer is used to index the location_adhoc_data array, in which the locus and associated data is stored. */ struct GTY(()) location_adhoc_data_map { struct htab * GTY((skip)) htab; location_t curr_loc; unsigned int allocated; struct location_adhoc_data GTY((length ("%h.allocated"))) *data; }; /* A set of chronological line_map structures. */ class GTY(()) line_maps { public: ~line_maps (); bool pure_location_p (location_t loc) const; location_t get_pure_location (location_t loc) const; source_range get_range_from_loc (location_t loc) const; location_t get_start (location_t loc) const { return get_range_from_loc (loc).m_start; } location_t get_finish (location_t loc) const { return get_range_from_loc (loc).m_finish; } location_t make_location (location_t caret, location_t start, location_t finish); location_t get_or_create_combined_loc (location_t locus, source_range src_range, void *data, unsigned discriminator); private: bool can_be_stored_compactly_p (location_t locus, source_range src_range, void *data, unsigned discriminator) const; source_range get_range_from_adhoc_loc (location_t loc) const; public: maps_info_ordinary info_ordinary; maps_info_macro info_macro; /* Depth of the include stack, including the current file. */ unsigned int depth; /* If true, prints an include trace a la -H. */ bool trace_includes; /* True if we've seen a #line or # 44 "file" directive. */ bool seen_line_directive; /* Highest location_t "given out". */ location_t highest_location; /* Start of line of highest location_t "given out". */ location_t highest_line; /* The maximum column number we can quickly allocate. Higher numbers may require allocating a new line_map. */ unsigned int max_column_hint; /* The allocator to use when resizing 'maps', defaults to xrealloc. */ line_map_realloc GTY((callback)) m_reallocator; /* The allocators' function used to know the actual size it allocated, for a certain allocation size requested. */ line_map_round_alloc_size_func GTY((callback)) m_round_alloc_size; struct location_adhoc_data_map m_location_adhoc_data_map; /* The special location value that is used as spelling location for built-in tokens. */ location_t builtin_location; /* The default value of range_bits in ordinary line maps. */ unsigned int default_range_bits; unsigned int m_num_optimized_ranges; unsigned int m_num_unoptimized_ranges; }; /* Returns the number of allocated maps so far. MAP_KIND shall be TRUE if we are interested in macro maps, FALSE otherwise. */ inline unsigned int LINEMAPS_ALLOCATED (const line_maps *set, bool map_kind) { if (map_kind) return set->info_macro.allocated; else return set->info_ordinary.allocated; } /* As above, but by reference (e.g. as an lvalue). */ inline unsigned int & LINEMAPS_ALLOCATED (line_maps *set, bool map_kind) { if (map_kind) return set->info_macro.allocated; else return set->info_ordinary.allocated; } /* Returns the number of used maps so far. MAP_KIND shall be TRUE if we are interested in macro maps, FALSE otherwise.*/ inline unsigned int LINEMAPS_USED (const line_maps *set, bool map_kind) { if (map_kind) return set->info_macro.used; else return set->info_ordinary.used; } /* As above, but by reference (e.g. as an lvalue). */ inline unsigned int & LINEMAPS_USED (line_maps *set, bool map_kind) { if (map_kind) return set->info_macro.used; else return set->info_ordinary.used; } /* Return the map at a given index. */ inline line_map * LINEMAPS_MAP_AT (const line_maps *set, bool map_kind, int index) { if (map_kind) return &set->info_macro.maps[index]; else return &set->info_ordinary.maps[index]; } /* Returns the last map used in the line table SET. MAP_KIND shall be TRUE if we are interested in macro maps, FALSE otherwise.*/ inline line_map * LINEMAPS_LAST_MAP (const line_maps *set, bool map_kind) { return LINEMAPS_MAP_AT (set, map_kind, LINEMAPS_USED (set, map_kind) - 1); } /* Returns the INDEXth ordinary map. */ inline line_map_ordinary * LINEMAPS_ORDINARY_MAP_AT (const line_maps *set, int index) { linemap_assert (index >= 0 && (unsigned int)index < LINEMAPS_USED (set, false)); return (line_map_ordinary *)LINEMAPS_MAP_AT (set, false, index); } /* Return the number of ordinary maps allocated in the line table SET. */ inline unsigned int LINEMAPS_ORDINARY_ALLOCATED (const line_maps *set) { return LINEMAPS_ALLOCATED (set, false); } /* Return the number of ordinary maps used in the line table SET. */ inline unsigned int LINEMAPS_ORDINARY_USED (const line_maps *set) { return LINEMAPS_USED (set, false); } /* Returns a pointer to the last ordinary map used in the line table SET. */ inline line_map_ordinary * LINEMAPS_LAST_ORDINARY_MAP (const line_maps *set) { return (line_map_ordinary *)LINEMAPS_LAST_MAP (set, false); } /* Returns the INDEXth macro map. */ inline line_map_macro * LINEMAPS_MACRO_MAP_AT (const line_maps *set, int index) { linemap_assert (index >= 0 && (unsigned int)index < LINEMAPS_USED (set, true)); return (line_map_macro *)LINEMAPS_MAP_AT (set, true, index); } /* Returns the number of macro maps that were allocated in the line table SET. */ inline unsigned int LINEMAPS_MACRO_ALLOCATED (const line_maps *set) { return LINEMAPS_ALLOCATED (set, true); } /* Returns the number of macro maps used in the line table SET. */ inline unsigned int LINEMAPS_MACRO_USED (const line_maps *set) { return LINEMAPS_USED (set, true); } /* Returns the last macro map used in the line table SET. */ inline line_map_macro * LINEMAPS_LAST_MACRO_MAP (const line_maps *set) { return (line_map_macro *)LINEMAPS_LAST_MAP (set, true); } /* Returns the lowest location [of a token resulting from macro expansion] encoded in this line table. */ inline location_t LINEMAPS_MACRO_LOWEST_LOCATION (const line_maps *set) { return LINEMAPS_MACRO_USED (set) ? MAP_START_LOCATION (LINEMAPS_LAST_MACRO_MAP (set)) : MAX_LOCATION_T + 1; } extern void *get_data_from_adhoc_loc (const line_maps *, location_t); extern unsigned get_discriminator_from_adhoc_loc (const line_maps *, location_t); extern location_t get_location_from_adhoc_loc (const line_maps *, location_t); extern source_range get_range_from_loc (const line_maps *set, location_t loc); extern unsigned get_discriminator_from_loc (const line_maps *set, location_t loc); /* Get whether location LOC is a "pure" location, or whether it is an ad-hoc location, or embeds range information. */ bool pure_location_p (const line_maps *set, location_t loc); /* Given location LOC within SET, strip away any packed range information or ad-hoc information. */ extern location_t get_pure_location (const line_maps *set, location_t loc); extern void rebuild_location_adhoc_htab (class line_maps *); /* Initialize a line map set. SET is the line map set to initialize and BUILTIN_LOCATION is the special location value to be used as spelling location for built-in tokens. This BUILTIN_LOCATION has to be strictly less than RESERVED_LOCATION_COUNT. */ extern void linemap_init (class line_maps *set, location_t builtin_location); /* Check for and warn about line_maps entered but not exited. */ extern void linemap_check_files_exited (const line_maps *); /* Return a location_t for the start (i.e. column==0) of (physical) line TO_LINE in the current source file (as in the most recent linemap_add). MAX_COLUMN_HINT is the highest column number we expect to use in this line (but it does not change the highest_location). */ extern location_t linemap_line_start (class line_maps *set, linenum_type to_line, unsigned int max_column_hint); /* Allocate a raw block of line maps, zero initialized. */ extern line_map *line_map_new_raw (line_maps *, bool, unsigned); /* Add a mapping of logical source line to physical source file and line number. This function creates an "ordinary map", which is a map that records locations of tokens that are not part of macro replacement-lists present at a macro expansion point. The text pointed to by TO_FILE must have a lifetime at least as long as the lifetime of SET. An empty TO_FILE means standard input. If reason is LC_LEAVE, and TO_FILE is NULL, then TO_FILE, TO_LINE and SYSP are given their natural values considering the file we are returning to. A call to this function can relocate the previous set of maps, so any stored line_map pointers should not be used. */ extern const line_map *linemap_add (class line_maps *, enum lc_reason, unsigned int sysp, const char *to_file, linenum_type to_line); /* Create a macro map. A macro map encodes source locations of tokens that are part of a macro replacement-list, at a macro expansion point. See the extensive comments of struct line_map and struct line_map_macro, in line-map.h. This map shall be created when the macro is expanded. The map encodes the source location of the expansion point of the macro as well as the "original" source location of each token that is part of the macro replacement-list. If a macro is defined but never expanded, it has no macro map. SET is the set of maps the macro map should be part of. MACRO_NODE is the macro which the new macro map should encode source locations for. EXPANSION is the location of the expansion point of MACRO. For function-like macros invocations, it's best to make it point to the closing parenthesis of the macro, rather than the the location of the first character of the macro. NUM_TOKENS is the number of tokens that are part of the replacement-list of MACRO. */ const line_map_macro *linemap_enter_macro (line_maps *, cpp_hashnode *, location_t, unsigned int); /* Create a source location for a module. The creator must either do this after the TU is tokenized, or deal with saving and restoring map state. */ extern location_t linemap_module_loc (line_maps *, location_t from, const char *name); extern void linemap_module_reparent (line_maps *, location_t loc, location_t new_parent); /* Restore the linemap state such that the map at LWM-1 continues. Return start location of the new map. */ extern unsigned linemap_module_restore (line_maps *, unsigned lwm); /* Given a logical source location, returns the map which the corresponding (source file, line, column) triplet can be deduced from. Since the set is built chronologically, the logical lines are monotonic increasing, and so the list is sorted and we can use a binary search. If no line map have been allocated yet, this function returns NULL. */ extern const line_map *linemap_lookup (const line_maps *, location_t); unsigned linemap_lookup_macro_index (const line_maps *, location_t); /* Returns TRUE if the line table set tracks token locations across macro expansion, FALSE otherwise. */ bool linemap_tracks_macro_expansion_locs_p (const line_maps *); /* Return the name of the macro associated to MACRO_MAP. */ const char* linemap_map_get_macro_name (const line_map_macro *); /* Return a positive value if LOCATION is the locus of a token that is located in a system header, O otherwise. It returns 1 if LOCATION is the locus of a token that is located in a system header, and 2 if LOCATION is the locus of a token located in a C system header that therefore needs to be extern "C" protected in C++. Note that this function returns 1 if LOCATION belongs to a token that is part of a macro replacement-list defined in a system header, but expanded in a non-system file. */ int linemap_location_in_system_header_p (const line_maps *, location_t); /* Return TRUE if LOCATION is a source code location of a token that is part of a macro expansion, FALSE otherwise. */ bool linemap_location_from_macro_expansion_p (const line_maps *, location_t); /* TRUE if LOCATION is a source code location of a token that is part of the definition of a macro, FALSE otherwise. */ bool linemap_location_from_macro_definition_p (const line_maps *, location_t); /* With the precondition that LOCATION is the locus of a token that is an argument of a function-like macro MACRO_MAP and appears in the expansion of MACRO_MAP, return the locus of that argument in the context of the caller of MACRO_MAP. */ extern location_t linemap_macro_map_loc_unwind_toward_spelling (const line_maps *set, const line_map_macro *macro_map, location_t location); /* location_t values from 0 to RESERVED_LOCATION_COUNT-1 will be reserved for libcpp user as special values, no token from libcpp will contain any of those locations. */ const location_t RESERVED_LOCATION_COUNT = 2; /* Converts a map and a location_t to source line. */ inline linenum_type SOURCE_LINE (const line_map_ordinary *ord_map, location_t loc) { return ((loc - ord_map->start_location) >> ord_map->m_column_and_range_bits) + ord_map->to_line; } /* Convert a map and location_t to source column number. */ inline linenum_type SOURCE_COLUMN (const line_map_ordinary *ord_map, location_t loc) { return ((loc - ord_map->start_location) & ((1 << ord_map->m_column_and_range_bits) - 1)) >> ord_map->m_range_bits; } inline location_t linemap_included_from (const line_map_ordinary *ord_map) { return ord_map->included_from; } /* The linemap containing the included-from location of MAP. */ const line_map_ordinary * linemap_included_from_linemap (const line_maps *set, const line_map_ordinary *map); /* True if the map is at the bottom of the include stack. */ inline bool MAIN_FILE_P (const line_map_ordinary *ord_map) { return ord_map->included_from == 0; } /* Encode and return a location_t from a column number. The source line considered is the last source line used to call linemap_line_start, i.e, the last source line which a location was encoded from. */ extern location_t linemap_position_for_column (class line_maps *, unsigned int); /* Encode and return a source location from a given line and column. */ location_t linemap_position_for_line_and_column (line_maps *set, const line_map_ordinary *, linenum_type, unsigned int); /* Encode and return a location_t starting from location LOC and shifting it by OFFSET columns. This function does not support virtual locations. */ location_t linemap_position_for_loc_and_offset (class line_maps *set, location_t loc, unsigned int offset); /* Return the file this map is for. */ inline const char * LINEMAP_FILE (const line_map_ordinary *ord_map) { return ord_map->to_file; } /* Return the line number this map started encoding location from. */ inline linenum_type LINEMAP_LINE (const line_map_ordinary *ord_map) { return ord_map->to_line; } /* Return a positive value if map encodes locations from a system header, 0 otherwise. Returns 1 if MAP encodes locations in a system header and 2 if it encodes locations in a C system header that therefore needs to be extern "C" protected in C++. */ inline unsigned char LINEMAP_SYSP (const line_map_ordinary *ord_map) { return ord_map->sysp; } const struct line_map *first_map_in_common (const line_maps *set, location_t loc0, location_t loc1, location_t *res_loc0, location_t *res_loc1); /* Return a positive value if PRE denotes the location of a token that comes before the token of POST, 0 if PRE denotes the location of the same token as the token for POST, and a negative value otherwise. */ int linemap_compare_locations (const line_maps *set, location_t pre, location_t post); /* Return TRUE if LOC_A denotes the location a token that comes topogically before the token denoted by location LOC_B, or if they are equal. */ inline bool linemap_location_before_p (const line_maps *set, location_t loc_a, location_t loc_b) { return linemap_compare_locations (set, loc_a, loc_b) >= 0; } typedef struct { /* The name of the source file involved. */ const char *file; /* The line-location in the source file. */ int line; int column; void *data; /* In a system header?. */ bool sysp; } expanded_location; /* This is enum is used by the function linemap_resolve_location below. The meaning of the values is explained in the comment of that function. */ enum location_resolution_kind { LRK_MACRO_EXPANSION_POINT, LRK_SPELLING_LOCATION, LRK_MACRO_DEFINITION_LOCATION }; /* Resolve a virtual location into either a spelling location, an expansion point location or a token argument replacement point location. Return the map that encodes the virtual location as well as the resolved location. If LOC is *NOT* the location of a token resulting from the expansion of a macro, then the parameter LRK (which stands for Location Resolution Kind) is ignored and the resulting location just equals the one given in argument. Now if LOC *IS* the location of a token resulting from the expansion of a macro, this is what happens. * If LRK is set to LRK_MACRO_EXPANSION_POINT ------------------------------- The virtual location is resolved to the first macro expansion point that led to this macro expansion. * If LRK is set to LRK_SPELLING_LOCATION ------------------------------------- The virtual location is resolved to the locus where the token has been spelled in the source. This can follow through all the macro expansions that led to the token. * If LRK is set to LRK_MACRO_DEFINITION_LOCATION -------------------------------------- The virtual location is resolved to the locus of the token in the context of the macro definition. If LOC is the locus of a token that is an argument of a function-like macro [replacing a parameter in the replacement list of the macro] the virtual location is resolved to the locus of the parameter that is replaced, in the context of the definition of the macro. If LOC is the locus of a token that is not an argument of a function-like macro, then the function behaves as if LRK was set to LRK_SPELLING_LOCATION. If LOC_MAP is not NULL, *LOC_MAP is set to the map encoding the returned location. Note that if the returned location wasn't originally encoded by a map, the *MAP is set to NULL. This can happen if LOC resolves to a location reserved for the client code, like UNKNOWN_LOCATION or BUILTINS_LOCATION in GCC. */ location_t linemap_resolve_location (const line_maps *, location_t loc, enum location_resolution_kind lrk, const line_map_ordinary **loc_map); /* Suppose that LOC is the virtual location of a token coming from the expansion of a macro M. This function then steps up to get the location L of the point where M got expanded. If L is a spelling location inside a macro expansion M', then this function returns the point where M' was expanded. LOC_MAP is an output parameter. When non-NULL, *LOC_MAP is set to the map of the returned location. */ location_t linemap_unwind_toward_expansion (const line_maps *, location_t loc, const line_map **loc_map); /* If LOC is the virtual location of a token coming from the expansion of a macro M and if its spelling location is reserved (e.g, a location for a built-in token), then this function unwinds (using linemap_unwind_toward_expansion) the location until a location that is not reserved and is not in a system header is reached. In other words, this unwinds the reserved location until a location that is in real source code is reached. Otherwise, if the spelling location for LOC is not reserved or if LOC doesn't come from the expansion of a macro, the function returns LOC as is and *MAP is not touched. *MAP is set to the map of the returned location if the later is different from LOC. */ location_t linemap_unwind_to_first_non_reserved_loc (const line_maps *, location_t loc, const line_map **map); /* Expand source code location LOC and return a user readable source code location. LOC must be a spelling (non-virtual) location. If it's a location < RESERVED_LOCATION_COUNT a zeroed expanded source location is returned. */ expanded_location linemap_expand_location (const line_maps *, const line_map *, location_t loc); /* Statistics about maps allocation and usage as returned by linemap_get_statistics. */ struct linemap_stats { long num_ordinary_maps_allocated; long num_ordinary_maps_used; long ordinary_maps_allocated_size; long ordinary_maps_used_size; long num_expanded_macros; long num_macro_tokens; long num_macro_maps_used; long macro_maps_allocated_size; long macro_maps_used_size; long macro_maps_locations_size; long duplicated_macro_maps_locations_size; long adhoc_table_size; long adhoc_table_entries_used; }; /* Return the highest location emitted for a given file for which there is a line map in SET. FILE_NAME is the file name to consider. If the function returns TRUE, *LOC is set to the highest location emitted for that file. */ bool linemap_get_file_highest_location (const line_maps * set, const char *file_name, location_t *loc); /* Compute and return statistics about the memory consumption of some parts of the line table SET. */ void linemap_get_statistics (const line_maps *, struct linemap_stats *); /* Dump debugging information about source location LOC into the file stream STREAM. SET is the line map set LOC comes from. */ void linemap_dump_location (const line_maps *, location_t, FILE *); /* Dump line map at index IX in line table SET to STREAM. If STREAM is NULL, use stderr. IS_MACRO is true if the caller wants to dump a macro map, false otherwise. */ void linemap_dump (FILE *, const line_maps *, unsigned, bool); /* Dump line table SET to STREAM. If STREAM is NULL, stderr is used. NUM_ORDINARY specifies how many ordinary maps to dump. NUM_MACRO specifies how many macro maps to dump. */ void line_table_dump (FILE *, const line_maps *, unsigned int, unsigned int); /* An enum for distinguishing the various parts within a location_t. */ enum location_aspect { LOCATION_ASPECT_CARET, LOCATION_ASPECT_START, LOCATION_ASPECT_FINISH }; /* The rich_location class requires a way to expand location_t instances. We would directly use expand_location_to_spelling_point, which is implemented in gcc/input.cc, but we also need to use it for rich_location within genmatch.cc. Hence we require client code of libcpp to implement the following symbol. */ extern expanded_location linemap_client_expand_location_to_spelling_point (const line_maps *, location_t, enum location_aspect); #endif /* !LIBCPP_LINE_MAP_H */