/* Support routines for Value Range Propagation (VRP). Copyright (C) 2005-2021 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "insn-codes.h" #include "tree.h" #include "gimple.h" #include "ssa.h" #include "optabs-tree.h" #include "gimple-pretty-print.h" #include "diagnostic-core.h" #include "flags.h" #include "fold-const.h" #include "calls.h" #include "cfganal.h" #include "gimple-fold.h" #include "gimple-iterator.h" #include "tree-cfg.h" #include "tree-ssa-loop-niter.h" #include "tree-ssa-loop.h" #include "intl.h" #include "cfgloop.h" #include "tree-scalar-evolution.h" #include "tree-ssa-propagate.h" #include "tree-chrec.h" #include "omp-general.h" #include "case-cfn-macros.h" #include "alloc-pool.h" #include "attribs.h" #include "range.h" #include "vr-values.h" #include "cfghooks.h" #include "range-op.h" #include "gimple-range.h" /* Set value range VR to a non-negative range of type TYPE. */ static inline void set_value_range_to_nonnegative (value_range_equiv *vr, tree type) { tree zero = build_int_cst (type, 0); vr->update (zero, vrp_val_max (type)); } /* Set value range VR to a range of a truthvalue of type TYPE. */ static inline void set_value_range_to_truthvalue (value_range_equiv *vr, tree type) { if (TYPE_PRECISION (type) == 1) vr->set_varying (type); else vr->update (build_int_cst (type, 0), build_int_cst (type, 1)); } /* Return the lattice entry for VAR or NULL if it doesn't exist or cannot be initialized. */ value_range_equiv * vr_values::get_lattice_entry (const_tree var) { value_range_equiv *vr; tree sym; unsigned ver = SSA_NAME_VERSION (var); /* If we query the entry for a new SSA name avoid reallocating the lattice since we should get here at most from the substitute-and-fold stage which will never try to change values. */ if (ver >= num_vr_values) return NULL; vr = vr_value[ver]; if (vr) return vr; /* Create a default value range. */ vr = allocate_value_range_equiv (); vr_value[ver] = vr; /* After propagation finished return varying. */ if (values_propagated) { vr->set_varying (TREE_TYPE (var)); return vr; } vr->set_undefined (); /* If VAR is a default definition of a parameter, the variable can take any value in VAR's type. */ if (SSA_NAME_IS_DEFAULT_DEF (var)) { sym = SSA_NAME_VAR (var); if (TREE_CODE (sym) == PARM_DECL) { /* Try to use the "nonnull" attribute to create ~[0, 0] anti-ranges for pointers. Note that this is only valid with default definitions of PARM_DECLs. */ if (POINTER_TYPE_P (TREE_TYPE (sym)) && (nonnull_arg_p (sym) || (get_global_range_query ()->range_of_expr (*vr, const_cast (var)) && vr->nonzero_p ()))) { vr->set_nonzero (TREE_TYPE (sym)); vr->equiv_clear (); } else if (INTEGRAL_TYPE_P (TREE_TYPE (sym))) { get_global_range_query ()->range_of_expr (*vr, const_cast (var)); if (vr->undefined_p ()) vr->set_varying (TREE_TYPE (sym)); } else vr->set_varying (TREE_TYPE (sym)); } else if (TREE_CODE (sym) == RESULT_DECL && DECL_BY_REFERENCE (sym)) { vr->set_nonzero (TREE_TYPE (sym)); vr->equiv_clear (); } } return vr; } /* Return value range information for VAR. If we have no values ranges recorded (ie, VRP is not running), then return NULL. Otherwise create an empty range if none existed for VAR. */ const value_range_equiv * vr_values::get_value_range (const_tree var, gimple *stmt ATTRIBUTE_UNUSED) { /* If we have no recorded ranges, then return NULL. */ if (!vr_value) return NULL; value_range_equiv *vr = get_lattice_entry (var); /* Reallocate the lattice if needed. */ if (!vr) { unsigned int old_sz = num_vr_values; num_vr_values = num_ssa_names + num_ssa_names / 10; vr_value = XRESIZEVEC (value_range_equiv *, vr_value, num_vr_values); for ( ; old_sz < num_vr_values; old_sz++) vr_value [old_sz] = NULL; /* Now that the lattice has been resized, we should never fail. */ vr = get_lattice_entry (var); gcc_assert (vr); } return vr; } bool vr_values::range_of_expr (irange &r, tree expr, gimple *stmt) { if (!gimple_range_ssa_p (expr)) return get_tree_range (r, expr, stmt); if (const value_range *vr = get_value_range (expr, stmt)) { if (vr->undefined_p () || vr->constant_p ()) r = *vr; else { value_range tmp = *vr; tmp.normalize_symbolics (); r = tmp; } return true; } return false; } tree vr_values::value_of_expr (tree op, gimple *) { return op_with_constant_singleton_value_range (op); } tree vr_values::value_on_edge (edge, tree op) { return op_with_constant_singleton_value_range (op); } tree vr_values::value_of_stmt (gimple *stmt, tree op) { if (!op) op = gimple_get_lhs (stmt); gcc_checking_assert (!op|| op == gimple_get_lhs (stmt)); if (op) return op_with_constant_singleton_value_range (op); return NULL_TREE; } /* Set the lattice entry for DEF to VARYING. */ void vr_values::set_def_to_varying (const_tree def) { value_range_equiv *vr = get_lattice_entry (def); if (vr) vr->set_varying (TREE_TYPE (def)); } /* Set value-ranges of all SSA names defined by STMT to varying. */ void vr_values::set_defs_to_varying (gimple *stmt) { ssa_op_iter i; tree def; FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF) set_def_to_varying (def); } /* Update the value range and equivalence set for variable VAR to NEW_VR. Return true if NEW_VR is different from VAR's previous value. NOTE: This function assumes that NEW_VR is a temporary value range object created for the sole purpose of updating VAR's range. The storage used by the equivalence set from NEW_VR will be freed by this function. Do not call update_value_range when NEW_VR is the range object associated with another SSA name. */ bool vr_values::update_value_range (const_tree var, value_range_equiv *new_vr) { value_range_equiv *old_vr; bool is_new; /* If there is a value-range on the SSA name from earlier analysis factor that in. */ if (INTEGRAL_TYPE_P (TREE_TYPE (var))) { value_range_equiv nr; get_global_range_query ()->range_of_expr (nr, const_cast (var)); if (!nr.undefined_p ()) new_vr->intersect (&nr); } /* Update the value range, if necessary. If we cannot allocate a lattice entry for VAR keep it at VARYING. This happens when DOM feeds us stmts with SSA names allocated after setting up the lattice. */ old_vr = get_lattice_entry (var); if (!old_vr) return false; is_new = !old_vr->equal_p (*new_vr, /*ignore_equivs=*/false); if (is_new) { /* Do not allow transitions up the lattice. The following is slightly more awkward than just new_vr->type < old_vr->type because VR_RANGE and VR_ANTI_RANGE need to be considered the same. We may not have is_new when transitioning to UNDEFINED. If old_vr->type is VARYING, we shouldn't be called, if we are anyway, keep it VARYING. */ if (old_vr->varying_p ()) { new_vr->set_varying (TREE_TYPE (var)); is_new = false; } else if (new_vr->undefined_p ()) { old_vr->set_varying (TREE_TYPE (var)); new_vr->set_varying (TREE_TYPE (var)); return true; } else old_vr->set (new_vr->min (), new_vr->max (), new_vr->equiv (), new_vr->kind ()); } new_vr->equiv_clear (); return is_new; } /* Return true if value range VR involves exactly one symbol SYM. */ static bool symbolic_range_based_on_p (value_range *vr, const_tree sym) { bool neg, min_has_symbol, max_has_symbol; tree inv; if (is_gimple_min_invariant (vr->min ())) min_has_symbol = false; else if (get_single_symbol (vr->min (), &neg, &inv) == sym) min_has_symbol = true; else return false; if (is_gimple_min_invariant (vr->max ())) max_has_symbol = false; else if (get_single_symbol (vr->max (), &neg, &inv) == sym) max_has_symbol = true; else return false; return (min_has_symbol || max_has_symbol); } /* Return true if the result of assignment STMT is know to be non-zero. */ static bool gimple_assign_nonzero_p (gimple *stmt) { enum tree_code code = gimple_assign_rhs_code (stmt); bool strict_overflow_p; tree type = TREE_TYPE (gimple_assign_lhs (stmt)); switch (get_gimple_rhs_class (code)) { case GIMPLE_UNARY_RHS: return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt), type, gimple_assign_rhs1 (stmt), &strict_overflow_p); case GIMPLE_BINARY_RHS: return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt), type, gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), &strict_overflow_p); case GIMPLE_TERNARY_RHS: return false; case GIMPLE_SINGLE_RHS: return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt), &strict_overflow_p); case GIMPLE_INVALID_RHS: gcc_unreachable (); default: gcc_unreachable (); } } /* Return true if STMT is known to compute a non-zero value. */ static bool gimple_stmt_nonzero_p (gimple *stmt) { switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: return gimple_assign_nonzero_p (stmt); case GIMPLE_CALL: { gcall *call_stmt = as_a (stmt); return (gimple_call_nonnull_result_p (call_stmt) || gimple_call_nonnull_arg (call_stmt)); } default: gcc_unreachable (); } } /* Like tree_expr_nonzero_p, but this function uses value ranges obtained so far. */ bool vr_values::vrp_stmt_computes_nonzero (gimple *stmt) { if (gimple_stmt_nonzero_p (stmt)) return true; /* If we have an expression of the form &X->a, then the expression is nonnull if X is nonnull. */ if (is_gimple_assign (stmt) && gimple_assign_rhs_code (stmt) == ADDR_EXPR) { tree expr = gimple_assign_rhs1 (stmt); poly_int64 bitsize, bitpos; tree offset; machine_mode mode; int unsignedp, reversep, volatilep; tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize, &bitpos, &offset, &mode, &unsignedp, &reversep, &volatilep); if (base != NULL_TREE && TREE_CODE (base) == MEM_REF && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME) { poly_offset_int off = 0; bool off_cst = false; if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST) { off = mem_ref_offset (base); if (offset) off += poly_offset_int::from (wi::to_poly_wide (offset), SIGNED); off <<= LOG2_BITS_PER_UNIT; off += bitpos; off_cst = true; } /* If &X->a is equal to X and X is ~[0, 0], the result is too. For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't allow going from non-NULL pointer to NULL. */ if ((off_cst && known_eq (off, 0)) || (flag_delete_null_pointer_checks && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))) { const value_range_equiv *vr = get_value_range (TREE_OPERAND (base, 0), stmt); if (!range_includes_zero_p (vr)) return true; } /* If MEM_REF has a "positive" offset, consider it non-NULL always, for -fdelete-null-pointer-checks also "negative" ones. Punt for unknown offsets (e.g. variable ones). */ if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)) && off_cst && known_ne (off, 0) && (flag_delete_null_pointer_checks || known_gt (off, 0))) return true; } } return false; } /* Returns true if EXPR is a valid value (as expected by compare_values) -- a gimple invariant, or SSA_NAME +- CST. */ static bool valid_value_p (tree expr) { if (TREE_CODE (expr) == SSA_NAME) return true; if (TREE_CODE (expr) == PLUS_EXPR || TREE_CODE (expr) == MINUS_EXPR) return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST); return is_gimple_min_invariant (expr); } /* If OP has a value range with a single constant value return that, otherwise return NULL_TREE. This returns OP itself if OP is a constant. */ tree vr_values::op_with_constant_singleton_value_range (tree op) { if (is_gimple_min_invariant (op)) return op; if (TREE_CODE (op) != SSA_NAME) return NULL_TREE; tree t; if (get_value_range (op)->singleton_p (&t)) return t; return NULL; } /* Return true if op is in a boolean [0, 1] value-range. */ bool simplify_using_ranges::op_with_boolean_value_range_p (tree op, gimple *s) { if (TYPE_PRECISION (TREE_TYPE (op)) == 1) return true; if (integer_zerop (op) || integer_onep (op)) return true; if (TREE_CODE (op) != SSA_NAME) return false; /* ?? Errr, this should probably check for [0,0] and [1,1] as well as [0,1]. */ const value_range *vr = query->get_value_range (op, s); return *vr == value_range (build_zero_cst (TREE_TYPE (op)), build_one_cst (TREE_TYPE (op))); } /* Extract value range information for VAR when (OP COND_CODE LIMIT) is true and store it in *VR_P. */ void vr_values::extract_range_for_var_from_comparison_expr (tree var, enum tree_code cond_code, tree op, tree limit, value_range_equiv *vr_p) { tree min, max, type; const value_range_equiv *limit_vr; type = TREE_TYPE (var); /* For pointer arithmetic, we only keep track of pointer equality and inequality. If we arrive here with unfolded conditions like _1 > _1 do not derive anything. */ if ((POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR) || limit == var) { vr_p->set_varying (type); return; } /* If LIMIT is another SSA name and LIMIT has a range of its own, try to use LIMIT's range to avoid creating symbolic ranges unnecessarily. */ limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL; /* LIMIT's range is only interesting if it has any useful information. */ if (! limit_vr || limit_vr->undefined_p () || limit_vr->varying_p () || (limit_vr->symbolic_p () && ! (limit_vr->kind () == VR_RANGE && (limit_vr->min () == limit_vr->max () || operand_equal_p (limit_vr->min (), limit_vr->max (), 0))))) limit_vr = NULL; /* Initially, the new range has the same set of equivalences of VAR's range. This will be revised before returning the final value. Since assertions may be chained via mutually exclusive predicates, we will need to trim the set of equivalences before we are done. */ gcc_assert (vr_p->equiv () == NULL); vr_p->equiv_add (var, get_value_range (var), &vrp_equiv_obstack); /* Extract a new range based on the asserted comparison for VAR and LIMIT's value range. Notice that if LIMIT has an anti-range, we will only use it for equality comparisons (EQ_EXPR). For any other kind of assertion, we cannot derive a range from LIMIT's anti-range that can be used to describe the new range. For instance, ASSERT_EXPR . If b_4 is ~[2, 10], then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is no single range for x_2 that could describe LE_EXPR, so we might as well build the range [b_4, +INF] for it. One special case we handle is extracting a range from a range test encoded as (unsigned)var + CST <= limit. */ if (TREE_CODE (op) == NOP_EXPR || TREE_CODE (op) == PLUS_EXPR) { if (TREE_CODE (op) == PLUS_EXPR) { min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (op, 1)), TREE_OPERAND (op, 1)); max = int_const_binop (PLUS_EXPR, limit, min); op = TREE_OPERAND (op, 0); } else { min = build_int_cst (TREE_TYPE (var), 0); max = limit; } /* Make sure to not set TREE_OVERFLOW on the final type conversion. We are willingly interpreting large positive unsigned values as negative signed values here. */ min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false); max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false); /* We can transform a max, min range to an anti-range or vice-versa. Use set_and_canonicalize which does this for us. */ if (cond_code == LE_EXPR) vr_p->set (min, max, vr_p->equiv ()); else if (cond_code == GT_EXPR) vr_p->set (min, max, vr_p->equiv (), VR_ANTI_RANGE); else gcc_unreachable (); } else if (cond_code == EQ_EXPR) { enum value_range_kind range_kind; if (limit_vr) { range_kind = limit_vr->kind (); min = limit_vr->min (); max = limit_vr->max (); } else { range_kind = VR_RANGE; min = limit; max = limit; } vr_p->update (min, max, range_kind); /* When asserting the equality VAR == LIMIT and LIMIT is another SSA name, the new range will also inherit the equivalence set from LIMIT. */ if (TREE_CODE (limit) == SSA_NAME) vr_p->equiv_add (limit, get_value_range (limit), &vrp_equiv_obstack); } else if (cond_code == NE_EXPR) { /* As described above, when LIMIT's range is an anti-range and this assertion is an inequality (NE_EXPR), then we cannot derive anything from the anti-range. For instance, if LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does not imply that VAR's range is [0, 0]. So, in the case of anti-ranges, we just assert the inequality using LIMIT and not its anti-range. If LIMIT_VR is a range, we can only use it to build a new anti-range if LIMIT_VR is a single-valued range. For instance, if LIMIT_VR is [0, 1], the predicate VAR != [0, 1] does not mean that VAR's range is ~[0, 1]. Rather, it means that for value 0 VAR should be ~[0, 0] and for value 1, VAR should be ~[1, 1]. We cannot represent these ranges. The only situation in which we can build a valid anti-range is when LIMIT_VR is a single-valued range (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case, build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */ if (limit_vr && limit_vr->kind () == VR_RANGE && compare_values (limit_vr->min (), limit_vr->max ()) == 0) { min = limit_vr->min (); max = limit_vr->max (); } else { /* In any other case, we cannot use LIMIT's range to build a valid anti-range. */ min = max = limit; } /* If MIN and MAX cover the whole range for their type, then just use the original LIMIT. */ if (INTEGRAL_TYPE_P (type) && vrp_val_is_min (min) && vrp_val_is_max (max)) min = max = limit; vr_p->set (min, max, vr_p->equiv (), VR_ANTI_RANGE); } else if (cond_code == LE_EXPR || cond_code == LT_EXPR) { min = TYPE_MIN_VALUE (type); if (limit_vr == NULL || limit_vr->kind () == VR_ANTI_RANGE) max = limit; else { /* If LIMIT_VR is of the form [N1, N2], we need to build the range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for LT_EXPR. */ max = limit_vr->max (); } /* If the maximum value forces us to be out of bounds, simply punt. It would be pointless to try and do anything more since this all should be optimized away above us. */ if (cond_code == LT_EXPR && compare_values (max, min) == 0) vr_p->set_varying (TREE_TYPE (min)); else { /* For LT_EXPR, we create the range [MIN, MAX - 1]. */ if (cond_code == LT_EXPR) { if (TYPE_PRECISION (TREE_TYPE (max)) == 1 && !TYPE_UNSIGNED (TREE_TYPE (max))) max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max, build_int_cst (TREE_TYPE (max), -1)); else max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, build_int_cst (TREE_TYPE (max), 1)); /* Signal to compare_values_warnv this expr doesn't overflow. */ if (EXPR_P (max)) suppress_warning (max, OPT_Woverflow); } vr_p->update (min, max); } } else if (cond_code == GE_EXPR || cond_code == GT_EXPR) { max = TYPE_MAX_VALUE (type); if (limit_vr == NULL || limit_vr->kind () == VR_ANTI_RANGE) min = limit; else { /* If LIMIT_VR is of the form [N1, N2], we need to build the range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for GT_EXPR. */ min = limit_vr->min (); } /* If the minimum value forces us to be out of bounds, simply punt. It would be pointless to try and do anything more since this all should be optimized away above us. */ if (cond_code == GT_EXPR && compare_values (min, max) == 0) vr_p->set_varying (TREE_TYPE (min)); else { /* For GT_EXPR, we create the range [MIN + 1, MAX]. */ if (cond_code == GT_EXPR) { if (TYPE_PRECISION (TREE_TYPE (min)) == 1 && !TYPE_UNSIGNED (TREE_TYPE (min))) min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min, build_int_cst (TREE_TYPE (min), -1)); else min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min, build_int_cst (TREE_TYPE (min), 1)); /* Signal to compare_values_warnv this expr doesn't overflow. */ if (EXPR_P (min)) suppress_warning (min, OPT_Woverflow); } vr_p->update (min, max); } } else gcc_unreachable (); /* Finally intersect the new range with what we already know about var. */ vr_p->intersect (get_value_range (var)); } /* Extract value range information from an ASSERT_EXPR EXPR and store it in *VR_P. */ void vr_values::extract_range_from_assert (value_range_equiv *vr_p, tree expr) { tree var = ASSERT_EXPR_VAR (expr); tree cond = ASSERT_EXPR_COND (expr); tree limit, op; enum tree_code cond_code; gcc_assert (COMPARISON_CLASS_P (cond)); /* Find VAR in the ASSERT_EXPR conditional. */ if (var == TREE_OPERAND (cond, 0) || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR) { /* If the predicate is of the form VAR COMP LIMIT, then we just take LIMIT from the RHS and use the same comparison code. */ cond_code = TREE_CODE (cond); limit = TREE_OPERAND (cond, 1); op = TREE_OPERAND (cond, 0); } else { /* If the predicate is of the form LIMIT COMP VAR, then we need to flip around the comparison code to create the proper range for VAR. */ cond_code = swap_tree_comparison (TREE_CODE (cond)); limit = TREE_OPERAND (cond, 0); op = TREE_OPERAND (cond, 1); } extract_range_for_var_from_comparison_expr (var, cond_code, op, limit, vr_p); } /* Extract range information from SSA name VAR and store it in VR. If VAR has an interesting range, use it. Otherwise, create the range [VAR, VAR] and return it. This is useful in situations where we may have conditionals testing values of VARYING names. For instance, x_3 = y_5; if (x_3 > y_5) ... Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is always false. */ void vr_values::extract_range_from_ssa_name (value_range_equiv *vr, tree var) { const value_range_equiv *var_vr = get_value_range (var); if (!var_vr->varying_p ()) vr->deep_copy (var_vr); else vr->set (var); if (!vr->undefined_p ()) vr->equiv_add (var, get_value_range (var), &vrp_equiv_obstack); } /* Extract range information from a binary expression OP0 CODE OP1 based on the ranges of each of its operands with resulting type EXPR_TYPE. The resulting range is stored in *VR. */ void vr_values::extract_range_from_binary_expr (value_range_equiv *vr, enum tree_code code, tree expr_type, tree op0, tree op1) { /* Get value ranges for each operand. For constant operands, create a new value range with the operand to simplify processing. */ value_range vr0, vr1; if (TREE_CODE (op0) == SSA_NAME) vr0 = *(get_value_range (op0)); else if (is_gimple_min_invariant (op0)) vr0.set (op0); else vr0.set_varying (TREE_TYPE (op0)); if (TREE_CODE (op1) == SSA_NAME) vr1 = *(get_value_range (op1)); else if (is_gimple_min_invariant (op1)) vr1.set (op1); else vr1.set_varying (TREE_TYPE (op1)); /* If one argument is varying, we can sometimes still deduce a range for the output: any + [3, +INF] is in [MIN+3, +INF]. */ if (INTEGRAL_TYPE_P (TREE_TYPE (op0)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))) { if (vr0.varying_p () && !vr1.varying_p ()) vr0 = value_range (vrp_val_min (expr_type), vrp_val_max (expr_type)); else if (vr1.varying_p () && !vr0.varying_p ()) vr1 = value_range (vrp_val_min (expr_type), vrp_val_max (expr_type)); } range_fold_binary_expr (vr, code, expr_type, &vr0, &vr1); /* Set value_range for n in following sequence: def = __builtin_memchr (arg, 0, sz) n = def - arg Here the range for n can be set to [0, PTRDIFF_MAX - 1]. */ if (vr->varying_p () && code == POINTER_DIFF_EXPR && TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME) { tree op0_ptype = TREE_TYPE (TREE_TYPE (op0)); tree op1_ptype = TREE_TYPE (TREE_TYPE (op1)); gcall *call_stmt = NULL; if (TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node) && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node) && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node) && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node) && (call_stmt = dyn_cast(SSA_NAME_DEF_STMT (op0))) && gimple_call_builtin_p (call_stmt, BUILT_IN_MEMCHR) && operand_equal_p (op0, gimple_call_lhs (call_stmt), 0) && operand_equal_p (op1, gimple_call_arg (call_stmt, 0), 0) && integer_zerop (gimple_call_arg (call_stmt, 1))) { tree max = vrp_val_max (ptrdiff_type_node); wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max))); tree range_min = build_zero_cst (expr_type); tree range_max = wide_int_to_tree (expr_type, wmax - 1); vr->set (range_min, range_max); return; } } /* Try harder for PLUS and MINUS if the range of one operand is symbolic and based on the other operand, for example if it was deduced from a symbolic comparison. When a bound of the range of the first operand is invariant, we set the corresponding bound of the new range to INF in order to avoid recursing on the range of the second operand. */ if (vr->varying_p () && (code == PLUS_EXPR || code == MINUS_EXPR) && TREE_CODE (op1) == SSA_NAME && vr0.kind () == VR_RANGE && symbolic_range_based_on_p (&vr0, op1)) { const bool minus_p = (code == MINUS_EXPR); value_range n_vr1; /* Try with VR0 and [-INF, OP1]. */ if (is_gimple_min_invariant (minus_p ? vr0.max () : vr0.min ())) n_vr1.set (vrp_val_min (expr_type), op1); /* Try with VR0 and [OP1, +INF]. */ else if (is_gimple_min_invariant (minus_p ? vr0.min () : vr0.max ())) n_vr1.set (op1, vrp_val_max (expr_type)); /* Try with VR0 and [OP1, OP1]. */ else n_vr1.set (op1, op1); range_fold_binary_expr (vr, code, expr_type, &vr0, &n_vr1); } if (vr->varying_p () && (code == PLUS_EXPR || code == MINUS_EXPR) && TREE_CODE (op0) == SSA_NAME && vr1.kind () == VR_RANGE && symbolic_range_based_on_p (&vr1, op0)) { const bool minus_p = (code == MINUS_EXPR); value_range n_vr0; /* Try with [-INF, OP0] and VR1. */ if (is_gimple_min_invariant (minus_p ? vr1.max () : vr1.min ())) n_vr0.set (vrp_val_min (expr_type), op0); /* Try with [OP0, +INF] and VR1. */ else if (is_gimple_min_invariant (minus_p ? vr1.min (): vr1.max ())) n_vr0.set (op0, vrp_val_max (expr_type)); /* Try with [OP0, OP0] and VR1. */ else n_vr0.set (op0); range_fold_binary_expr (vr, code, expr_type, &n_vr0, &vr1); } /* If we didn't derive a range for MINUS_EXPR, and op1's range is ~[op0,op0] or vice-versa, then we can derive a non-null range. This happens often for pointer subtraction. */ if (vr->varying_p () && (code == MINUS_EXPR || code == POINTER_DIFF_EXPR) && TREE_CODE (op0) == SSA_NAME && ((vr0.kind () == VR_ANTI_RANGE && vr0.min () == op1 && vr0.min () == vr0.max ()) || (vr1.kind () == VR_ANTI_RANGE && vr1.min () == op0 && vr1.min () == vr1.max ()))) { vr->set_nonzero (expr_type); vr->equiv_clear (); } } /* Extract range information from a unary expression CODE OP0 based on the range of its operand with resulting type TYPE. The resulting range is stored in *VR. */ void vr_values::extract_range_from_unary_expr (value_range_equiv *vr, enum tree_code code, tree type, tree op0) { value_range vr0; /* Get value ranges for the operand. For constant operands, create a new value range with the operand to simplify processing. */ if (TREE_CODE (op0) == SSA_NAME) vr0 = *(get_value_range (op0)); else if (is_gimple_min_invariant (op0)) vr0.set (op0); else vr0.set_varying (type); range_fold_unary_expr (vr, code, type, &vr0, TREE_TYPE (op0)); } /* Extract range information from a conditional expression STMT based on the ranges of each of its operands and the expression code. */ void vr_values::extract_range_from_cond_expr (value_range_equiv *vr, gassign *stmt) { /* Get value ranges for each operand. For constant operands, create a new value range with the operand to simplify processing. */ tree op0 = gimple_assign_rhs2 (stmt); value_range_equiv tem0; const value_range_equiv *vr0 = &tem0; if (TREE_CODE (op0) == SSA_NAME) vr0 = get_value_range (op0); else if (is_gimple_min_invariant (op0)) tem0.set (op0); else tem0.set_varying (TREE_TYPE (op0)); tree op1 = gimple_assign_rhs3 (stmt); value_range_equiv tem1; const value_range_equiv *vr1 = &tem1; if (TREE_CODE (op1) == SSA_NAME) vr1 = get_value_range (op1); else if (is_gimple_min_invariant (op1)) tem1.set (op1); else tem1.set_varying (TREE_TYPE (op1)); /* The resulting value range is the union of the operand ranges */ vr->deep_copy (vr0); vr->union_ (vr1); } /* Extract range information from a comparison expression EXPR based on the range of its operand and the expression code. */ void vr_values::extract_range_from_comparison (value_range_equiv *vr, gimple *stmt) { enum tree_code code = gimple_assign_rhs_code (stmt); tree type = TREE_TYPE (gimple_assign_lhs (stmt)); tree op0 = gimple_assign_rhs1 (stmt); tree op1 = gimple_assign_rhs2 (stmt); bool sop; tree val = simplifier.vrp_evaluate_conditional_warnv_with_ops (stmt, code, op0, op1, false, &sop, NULL); if (val) { /* Since this expression was found on the RHS of an assignment, its type may be different from _Bool. Convert VAL to EXPR's type. */ val = fold_convert (type, val); if (is_gimple_min_invariant (val)) vr->set (val); else vr->update (val, val); } else /* The result of a comparison is always true or false. */ set_value_range_to_truthvalue (vr, type); } /* Helper function for simplify_internal_call_using_ranges and extract_range_basic. Return true if OP0 SUBCODE OP1 for SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or always overflow. Set *OVF to true if it is known to always overflow. */ static bool check_for_binary_op_overflow (range_query *query, enum tree_code subcode, tree type, tree op0, tree op1, bool *ovf, gimple *s = NULL) { value_range vr0, vr1; if (TREE_CODE (op0) == SSA_NAME) vr0 = *query->get_value_range (op0, s); else if (TREE_CODE (op0) == INTEGER_CST) vr0.set (op0); else vr0.set_varying (TREE_TYPE (op0)); if (TREE_CODE (op1) == SSA_NAME) vr1 = *query->get_value_range (op1, s); else if (TREE_CODE (op1) == INTEGER_CST) vr1.set (op1); else vr1.set_varying (TREE_TYPE (op1)); tree vr0min = vr0.min (), vr0max = vr0.max (); tree vr1min = vr1.min (), vr1max = vr1.max (); if (!range_int_cst_p (&vr0) || TREE_OVERFLOW (vr0min) || TREE_OVERFLOW (vr0max)) { vr0min = vrp_val_min (TREE_TYPE (op0)); vr0max = vrp_val_max (TREE_TYPE (op0)); } if (!range_int_cst_p (&vr1) || TREE_OVERFLOW (vr1min) || TREE_OVERFLOW (vr1max)) { vr1min = vrp_val_min (TREE_TYPE (op1)); vr1max = vrp_val_max (TREE_TYPE (op1)); } *ovf = arith_overflowed_p (subcode, type, vr0min, subcode == MINUS_EXPR ? vr1max : vr1min); if (arith_overflowed_p (subcode, type, vr0max, subcode == MINUS_EXPR ? vr1min : vr1max) != *ovf) return false; if (subcode == MULT_EXPR) { if (arith_overflowed_p (subcode, type, vr0min, vr1max) != *ovf || arith_overflowed_p (subcode, type, vr0max, vr1min) != *ovf) return false; } if (*ovf) { /* So far we found that there is an overflow on the boundaries. That doesn't prove that there is an overflow even for all values in between the boundaries. For that compute widest_int range of the result and see if it doesn't overlap the range of type. */ widest_int wmin, wmax; widest_int w[4]; int i; w[0] = wi::to_widest (vr0min); w[1] = wi::to_widest (vr0max); w[2] = wi::to_widest (vr1min); w[3] = wi::to_widest (vr1max); for (i = 0; i < 4; i++) { widest_int wt; switch (subcode) { case PLUS_EXPR: wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]); break; case MINUS_EXPR: wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]); break; case MULT_EXPR: wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]); break; default: gcc_unreachable (); } if (i == 0) { wmin = wt; wmax = wt; } else { wmin = wi::smin (wmin, wt); wmax = wi::smax (wmax, wt); } } /* The result of op0 CODE op1 is known to be in range [wmin, wmax]. */ widest_int wtmin = wi::to_widest (vrp_val_min (type)); widest_int wtmax = wi::to_widest (vrp_val_max (type)); /* If all values in [wmin, wmax] are smaller than [wtmin, wtmax] or all are larger than [wtmin, wtmax], the arithmetic operation will always overflow. */ if (wmax < wtmin || wmin > wtmax) return true; return false; } return true; } /* Derive a range from a builtin. Set range in VR and return TRUE if successful. */ bool vr_values::extract_range_from_ubsan_builtin (value_range_equiv *vr, gimple *stmt) { gcc_assert (is_gimple_call (stmt)); enum tree_code subcode = ERROR_MARK; combined_fn cfn = gimple_call_combined_fn (stmt); scalar_int_mode mode; switch (cfn) { case CFN_UBSAN_CHECK_ADD: subcode = PLUS_EXPR; break; case CFN_UBSAN_CHECK_SUB: subcode = MINUS_EXPR; break; case CFN_UBSAN_CHECK_MUL: subcode = MULT_EXPR; break; default: break; } if (subcode != ERROR_MARK) { bool saved_flag_wrapv = flag_wrapv; /* Pretend the arithmetics is wrapping. If there is any overflow, we'll complain, but will actually do wrapping operation. */ flag_wrapv = 1; extract_range_from_binary_expr (vr, subcode, TREE_TYPE (gimple_call_arg (stmt, 0)), gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1)); flag_wrapv = saved_flag_wrapv; /* If for both arguments vrp_valueize returned non-NULL, this should have been already folded and if not, it wasn't folded because of overflow. Avoid removing the UBSAN_CHECK_* calls in that case. */ if (vr->kind () == VR_RANGE && (vr->min () == vr->max () || operand_equal_p (vr->min (), vr->max (), 0))) vr->set_varying (vr->type ()); return !vr->varying_p (); } return false; } /* Try to derive a nonnegative or nonzero range out of STMT relying primarily on generic routines in fold in conjunction with range data. Store the result in *VR */ void vr_values::extract_range_basic (value_range_equiv *vr, gimple *stmt) { bool sop; if (is_gimple_call (stmt)) { combined_fn cfn = gimple_call_combined_fn (stmt); switch (cfn) { case CFN_UBSAN_CHECK_ADD: case CFN_UBSAN_CHECK_SUB: case CFN_UBSAN_CHECK_MUL: if (extract_range_from_ubsan_builtin (vr, stmt)) return; break; default: if (fold_range (*vr, stmt, this)) { /* The original code nuked equivalences every time a range was found, so do the same here. */ vr->equiv_clear (); return; } break; } } /* Handle extraction of the two results (result of arithmetics and a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW internal function. Similarly from ATOMIC_COMPARE_EXCHANGE. */ if (is_gimple_assign (stmt) && (gimple_assign_rhs_code (stmt) == REALPART_EXPR || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))) { enum tree_code code = gimple_assign_rhs_code (stmt); tree op = gimple_assign_rhs1 (stmt); tree type = TREE_TYPE (gimple_assign_lhs (stmt)); if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME) { gimple *g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0)); if (is_gimple_call (g) && gimple_call_internal_p (g)) { enum tree_code subcode = ERROR_MARK; switch (gimple_call_internal_fn (g)) { case IFN_ADD_OVERFLOW: subcode = PLUS_EXPR; break; case IFN_SUB_OVERFLOW: subcode = MINUS_EXPR; break; case IFN_MUL_OVERFLOW: subcode = MULT_EXPR; break; case IFN_ATOMIC_COMPARE_EXCHANGE: if (code == IMAGPART_EXPR) { /* This is the boolean return value whether compare and exchange changed anything or not. */ vr->set (build_int_cst (type, 0), build_int_cst (type, 1)); return; } break; default: break; } if (subcode != ERROR_MARK) { tree op0 = gimple_call_arg (g, 0); tree op1 = gimple_call_arg (g, 1); if (code == IMAGPART_EXPR) { bool ovf = false; if (check_for_binary_op_overflow (this, subcode, type, op0, op1, &ovf)) vr->set (build_int_cst (type, ovf)); else if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type)) vr->set_varying (type); else vr->set (build_int_cst (type, 0), build_int_cst (type, 1)); } else if (types_compatible_p (type, TREE_TYPE (op0)) && types_compatible_p (type, TREE_TYPE (op1))) { bool saved_flag_wrapv = flag_wrapv; /* Pretend the arithmetics is wrapping. If there is any overflow, IMAGPART_EXPR will be set. */ flag_wrapv = 1; extract_range_from_binary_expr (vr, subcode, type, op0, op1); flag_wrapv = saved_flag_wrapv; } else { value_range_equiv vr0, vr1; bool saved_flag_wrapv = flag_wrapv; /* Pretend the arithmetics is wrapping. If there is any overflow, IMAGPART_EXPR will be set. */ flag_wrapv = 1; extract_range_from_unary_expr (&vr0, NOP_EXPR, type, op0); extract_range_from_unary_expr (&vr1, NOP_EXPR, type, op1); range_fold_binary_expr (vr, subcode, type, &vr0, &vr1); flag_wrapv = saved_flag_wrapv; } return; } } } } /* None of the below should need a 'type', but we are only called for assignments and calls with a LHS. */ tree type = TREE_TYPE (gimple_get_lhs (stmt)); if (INTEGRAL_TYPE_P (type) && gimple_stmt_nonnegative_warnv_p (stmt, &sop)) set_value_range_to_nonnegative (vr, type); else if (vrp_stmt_computes_nonzero (stmt)) { vr->set_nonzero (type); vr->equiv_clear (); } else vr->set_varying (type); } /* Try to compute a useful range out of assignment STMT and store it in *VR. */ void vr_values::extract_range_from_assignment (value_range_equiv *vr, gassign *stmt) { enum tree_code code = gimple_assign_rhs_code (stmt); if (code == ASSERT_EXPR) extract_range_from_assert (vr, gimple_assign_rhs1 (stmt)); else if (code == SSA_NAME) extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt)); else if (TREE_CODE_CLASS (code) == tcc_binary) extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt), TREE_TYPE (gimple_assign_lhs (stmt)), gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt)); else if (TREE_CODE_CLASS (code) == tcc_unary) extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt), TREE_TYPE (gimple_assign_lhs (stmt)), gimple_assign_rhs1 (stmt)); else if (code == COND_EXPR) extract_range_from_cond_expr (vr, stmt); else if (TREE_CODE_CLASS (code) == tcc_comparison) extract_range_from_comparison (vr, stmt); else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS && is_gimple_min_invariant (gimple_assign_rhs1 (stmt))) vr->set (gimple_assign_rhs1 (stmt)); else vr->set_varying (TREE_TYPE (gimple_assign_lhs (stmt))); if (vr->varying_p ()) extract_range_basic (vr, stmt); } /* Given two numeric value ranges VR0, VR1 and a comparison code COMP: - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for all the values in the ranges. - Return BOOLEAN_FALSE_NODE if the comparison always returns false. - Return NULL_TREE if it is not always possible to determine the value of the comparison. Also set *STRICT_OVERFLOW_P to indicate whether comparision evaluation assumed signed overflow is undefined. */ static tree compare_ranges (enum tree_code comp, const value_range_equiv *vr0, const value_range_equiv *vr1, bool *strict_overflow_p) { /* VARYING or UNDEFINED ranges cannot be compared. */ if (vr0->varying_p () || vr0->undefined_p () || vr1->varying_p () || vr1->undefined_p ()) return NULL_TREE; /* Anti-ranges need to be handled separately. */ if (vr0->kind () == VR_ANTI_RANGE || vr1->kind () == VR_ANTI_RANGE) { /* If both are anti-ranges, then we cannot compute any comparison. */ if (vr0->kind () == VR_ANTI_RANGE && vr1->kind () == VR_ANTI_RANGE) return NULL_TREE; /* These comparisons are never statically computable. */ if (comp == GT_EXPR || comp == GE_EXPR || comp == LT_EXPR || comp == LE_EXPR) return NULL_TREE; /* Equality can be computed only between a range and an anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */ if (vr0->kind () == VR_RANGE) /* To simplify processing, make VR0 the anti-range. */ std::swap (vr0, vr1); gcc_assert (comp == NE_EXPR || comp == EQ_EXPR); if (compare_values_warnv (vr0->min (), vr1->min (), strict_overflow_p) == 0 && compare_values_warnv (vr0->max (), vr1->max (), strict_overflow_p) == 0) return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node; return NULL_TREE; } /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the operands around and change the comparison code. */ if (comp == GT_EXPR || comp == GE_EXPR) { comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR; std::swap (vr0, vr1); } if (comp == EQ_EXPR) { /* Equality may only be computed if both ranges represent exactly one value. */ if (compare_values_warnv (vr0->min (), vr0->max (), strict_overflow_p) == 0 && compare_values_warnv (vr1->min (), vr1->max (), strict_overflow_p) == 0) { int cmp_min = compare_values_warnv (vr0->min (), vr1->min (), strict_overflow_p); int cmp_max = compare_values_warnv (vr0->max (), vr1->max (), strict_overflow_p); if (cmp_min == 0 && cmp_max == 0) return boolean_true_node; else if (cmp_min != -2 && cmp_max != -2) return boolean_false_node; } /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */ else if (compare_values_warnv (vr0->min (), vr1->max (), strict_overflow_p) == 1 || compare_values_warnv (vr1->min (), vr0->max (), strict_overflow_p) == 1) return boolean_false_node; return NULL_TREE; } else if (comp == NE_EXPR) { int cmp1, cmp2; /* If VR0 is completely to the left or completely to the right of VR1, they are always different. Notice that we need to make sure that both comparisons yield similar results to avoid comparing values that cannot be compared at compile-time. */ cmp1 = compare_values_warnv (vr0->max (), vr1->min (), strict_overflow_p); cmp2 = compare_values_warnv (vr0->min (), vr1->max (), strict_overflow_p); if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1)) return boolean_true_node; /* If VR0 and VR1 represent a single value and are identical, return false. */ else if (compare_values_warnv (vr0->min (), vr0->max (), strict_overflow_p) == 0 && compare_values_warnv (vr1->min (), vr1->max (), strict_overflow_p) == 0 && compare_values_warnv (vr0->min (), vr1->min (), strict_overflow_p) == 0 && compare_values_warnv (vr0->max (), vr1->max (), strict_overflow_p) == 0) return boolean_false_node; /* Otherwise, they may or may not be different. */ else return NULL_TREE; } else if (comp == LT_EXPR || comp == LE_EXPR) { int tst; /* If VR0 is to the left of VR1, return true. */ tst = compare_values_warnv (vr0->max (), vr1->min (), strict_overflow_p); if ((comp == LT_EXPR && tst == -1) || (comp == LE_EXPR && (tst == -1 || tst == 0))) return boolean_true_node; /* If VR0 is to the right of VR1, return false. */ tst = compare_values_warnv (vr0->min (), vr1->max (), strict_overflow_p); if ((comp == LT_EXPR && (tst == 0 || tst == 1)) || (comp == LE_EXPR && tst == 1)) return boolean_false_node; /* Otherwise, we don't know. */ return NULL_TREE; } gcc_unreachable (); } /* Given a value range VR, a value VAL and a comparison code COMP, return BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the values in VR. Return BOOLEAN_FALSE_NODE if the comparison always returns false. Return NULL_TREE if it is not always possible to determine the value of the comparison. Also set *STRICT_OVERFLOW_P to indicate whether comparision evaluation assumed signed overflow is undefined. */ static tree compare_range_with_value (enum tree_code comp, const value_range *vr, tree val, bool *strict_overflow_p) { if (vr->varying_p () || vr->undefined_p ()) return NULL_TREE; /* Anti-ranges need to be handled separately. */ if (vr->kind () == VR_ANTI_RANGE) { /* For anti-ranges, the only predicates that we can compute at compile time are equality and inequality. */ if (comp == GT_EXPR || comp == GE_EXPR || comp == LT_EXPR || comp == LE_EXPR) return NULL_TREE; /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */ if (!vr->may_contain_p (val)) return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node; return NULL_TREE; } if (comp == EQ_EXPR) { /* EQ_EXPR may only be computed if VR represents exactly one value. */ if (compare_values_warnv (vr->min (), vr->max (), strict_overflow_p) == 0) { int cmp = compare_values_warnv (vr->min (), val, strict_overflow_p); if (cmp == 0) return boolean_true_node; else if (cmp == -1 || cmp == 1 || cmp == 2) return boolean_false_node; } else if (compare_values_warnv (val, vr->min (), strict_overflow_p) == -1 || compare_values_warnv (vr->max (), val, strict_overflow_p) == -1) return boolean_false_node; return NULL_TREE; } else if (comp == NE_EXPR) { /* If VAL is not inside VR, then they are always different. */ if (compare_values_warnv (vr->max (), val, strict_overflow_p) == -1 || compare_values_warnv (vr->min (), val, strict_overflow_p) == 1) return boolean_true_node; /* If VR represents exactly one value equal to VAL, then return false. */ if (compare_values_warnv (vr->min (), vr->max (), strict_overflow_p) == 0 && compare_values_warnv (vr->min (), val, strict_overflow_p) == 0) return boolean_false_node; /* Otherwise, they may or may not be different. */ return NULL_TREE; } else if (comp == LT_EXPR || comp == LE_EXPR) { int tst; /* If VR is to the left of VAL, return true. */ tst = compare_values_warnv (vr->max (), val, strict_overflow_p); if ((comp == LT_EXPR && tst == -1) || (comp == LE_EXPR && (tst == -1 || tst == 0))) return boolean_true_node; /* If VR is to the right of VAL, return false. */ tst = compare_values_warnv (vr->min (), val, strict_overflow_p); if ((comp == LT_EXPR && (tst == 0 || tst == 1)) || (comp == LE_EXPR && tst == 1)) return boolean_false_node; /* Otherwise, we don't know. */ return NULL_TREE; } else if (comp == GT_EXPR || comp == GE_EXPR) { int tst; /* If VR is to the right of VAL, return true. */ tst = compare_values_warnv (vr->min (), val, strict_overflow_p); if ((comp == GT_EXPR && tst == 1) || (comp == GE_EXPR && (tst == 0 || tst == 1))) return boolean_true_node; /* If VR is to the left of VAL, return false. */ tst = compare_values_warnv (vr->max (), val, strict_overflow_p); if ((comp == GT_EXPR && (tst == -1 || tst == 0)) || (comp == GE_EXPR && tst == -1)) return boolean_false_node; /* Otherwise, we don't know. */ return NULL_TREE; } gcc_unreachable (); } /* Given a VAR in STMT within LOOP, determine the bounds of the variable and store it in MIN/MAX and return TRUE. If no bounds could be determined, return FALSE. */ bool bounds_of_var_in_loop (tree *min, tree *max, range_query *query, class loop *loop, gimple *stmt, tree var) { tree init, step, chrec, tmin, tmax, type = TREE_TYPE (var); enum ev_direction dir; chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var)); /* Like in PR19590, scev can return a constant function. */ if (is_gimple_min_invariant (chrec)) { *min = *max = chrec; goto fix_overflow; } if (TREE_CODE (chrec) != POLYNOMIAL_CHREC) return false; init = initial_condition_in_loop_num (chrec, loop->num); step = evolution_part_in_loop_num (chrec, loop->num); if (!init || !step) return false; /* If INIT is an SSA with a singleton range, set INIT to said singleton, otherwise leave INIT alone. */ if (TREE_CODE (init) == SSA_NAME) query->get_value_range (init, stmt)->singleton_p (&init); /* Likewise for step. */ if (TREE_CODE (step) == SSA_NAME) query->get_value_range (step, stmt)->singleton_p (&step); /* If STEP is symbolic, we can't know whether INIT will be the minimum or maximum value in the range. Also, unless INIT is a simple expression, compare_values and possibly other functions in tree-vrp won't be able to handle it. */ if (step == NULL_TREE || !is_gimple_min_invariant (step) || !valid_value_p (init)) return false; dir = scev_direction (chrec); if (/* Do not adjust ranges if we do not know whether the iv increases or decreases, ... */ dir == EV_DIR_UNKNOWN /* ... or if it may wrap. */ || scev_probably_wraps_p (NULL_TREE, init, step, stmt, get_chrec_loop (chrec), true)) return false; if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type)) tmin = lower_bound_in_type (type, type); else tmin = TYPE_MIN_VALUE (type); if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type)) tmax = upper_bound_in_type (type, type); else tmax = TYPE_MAX_VALUE (type); /* Try to use estimated number of iterations for the loop to constrain the final value in the evolution. */ if (TREE_CODE (step) == INTEGER_CST && is_gimple_val (init) && (TREE_CODE (init) != SSA_NAME || query->get_value_range (init, stmt)->kind () == VR_RANGE)) { widest_int nit; /* We are only entering here for loop header PHI nodes, so using the number of latch executions is the correct thing to use. */ if (max_loop_iterations (loop, &nit)) { signop sgn = TYPE_SIGN (TREE_TYPE (step)); wi::overflow_type overflow; widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn, &overflow); /* If the multiplication overflowed we can't do a meaningful adjustment. Likewise if the result doesn't fit in the type of the induction variable. For a signed type we have to check whether the result has the expected signedness which is that of the step as number of iterations is unsigned. */ if (!overflow && wi::fits_to_tree_p (wtmp, TREE_TYPE (init)) && (sgn == UNSIGNED || wi::gts_p (wtmp, 0) == wi::gts_p (wi::to_wide (step), 0))) { value_range maxvr, vr0, vr1; if (TREE_CODE (init) == SSA_NAME) vr0 = *(query->get_value_range (init, stmt)); else if (is_gimple_min_invariant (init)) vr0.set (init); else vr0.set_varying (TREE_TYPE (init)); tree tem = wide_int_to_tree (TREE_TYPE (init), wtmp); vr1.set (tem, tem); range_fold_binary_expr (&maxvr, PLUS_EXPR, TREE_TYPE (init), &vr0, &vr1); /* Likewise if the addition did. */ if (maxvr.kind () == VR_RANGE) { value_range initvr; if (TREE_CODE (init) == SSA_NAME) initvr = *(query->get_value_range (init, stmt)); else if (is_gimple_min_invariant (init)) initvr.set (init); else return false; /* Check if init + nit * step overflows. Though we checked scev {init, step}_loop doesn't wrap, it is not enough because the loop may exit immediately. Overflow could happen in the plus expression in this case. */ if ((dir == EV_DIR_DECREASES && compare_values (maxvr.min (), initvr.min ()) != -1) || (dir == EV_DIR_GROWS && compare_values (maxvr.max (), initvr.max ()) != 1)) return false; tmin = maxvr.min (); tmax = maxvr.max (); } } } } *min = tmin; *max = tmax; if (dir == EV_DIR_DECREASES) *max = init; else *min = init; fix_overflow: /* Even for valid range info, sometimes overflow flag will leak in. As GIMPLE IL should have no constants with TREE_OVERFLOW set, we drop them. */ if (TREE_OVERFLOW_P (*min)) *min = drop_tree_overflow (*min); if (TREE_OVERFLOW_P (*max)) *max = drop_tree_overflow (*max); gcc_checking_assert (compare_values (*min, *max) != 1); return true; } /* Given a range VR, a LOOP and a variable VAR, determine whether it would be profitable to adjust VR using scalar evolution information for VAR. If so, update VR with the new limits. */ void vr_values::adjust_range_with_scev (value_range_equiv *vr, class loop *loop, gimple *stmt, tree var) { tree min, max; if (bounds_of_var_in_loop (&min, &max, this, loop, stmt, var)) { if (vr->undefined_p () || vr->varying_p ()) { /* For VARYING or UNDEFINED ranges, just about anything we get from scalar evolutions should be better. */ vr->update (min, max); } else if (vr->kind () == VR_RANGE) { /* Start with the input range... */ tree vrmin = vr->min (); tree vrmax = vr->max (); /* ...and narrow it down with what we got from SCEV. */ if (compare_values (min, vrmin) == 1) vrmin = min; if (compare_values (max, vrmax) == -1) vrmax = max; vr->update (vrmin, vrmax); } else if (vr->kind () == VR_ANTI_RANGE) { /* ?? As an enhancement, if VR, MIN, and MAX are constants, one could just intersect VR with a range of [MIN,MAX]. */ } } } /* Dump value ranges of all SSA_NAMEs to FILE. */ void vr_values::dump (FILE *file) { size_t i; for (i = 0; i < num_vr_values; i++) { if (vr_value[i] && ssa_name (i)) { print_generic_expr (file, ssa_name (i)); fprintf (file, ": "); dump_value_range (file, vr_value[i]); fprintf (file, "\n"); } } fprintf (file, "\n"); } /* Initialize VRP lattice. */ vr_values::vr_values () : simplifier (this) { values_propagated = false; num_vr_values = num_ssa_names * 2; vr_value = XCNEWVEC (value_range_equiv *, num_vr_values); vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names); bitmap_obstack_initialize (&vrp_equiv_obstack); } /* Free VRP lattice. */ vr_values::~vr_values () { /* Free allocated memory. */ free (vr_value); free (vr_phi_edge_counts); bitmap_obstack_release (&vrp_equiv_obstack); /* So that we can distinguish between VRP data being available and not available. */ vr_value = NULL; vr_phi_edge_counts = NULL; } /* A hack. */ static class vr_values *x_vr_values; /* Return the singleton value-range for NAME or NAME. */ static inline tree vrp_valueize (tree name) { if (TREE_CODE (name) == SSA_NAME) { const value_range_equiv *vr = x_vr_values->get_value_range (name); if (vr->kind () == VR_RANGE && (TREE_CODE (vr->min ()) == SSA_NAME || is_gimple_min_invariant (vr->min ())) && vrp_operand_equal_p (vr->min (), vr->max ())) return vr->min (); } return name; } /* Return the singleton value-range for NAME if that is a constant but signal to not follow SSA edges. */ static inline tree vrp_valueize_1 (tree name) { if (TREE_CODE (name) == SSA_NAME) { /* If the definition may be simulated again we cannot follow this SSA edge as the SSA propagator does not necessarily re-visit the use. */ gimple *def_stmt = SSA_NAME_DEF_STMT (name); if (!gimple_nop_p (def_stmt) && prop_simulate_again_p (def_stmt)) return NULL_TREE; const value_range_equiv *vr = x_vr_values->get_value_range (name); tree singleton; if (vr->singleton_p (&singleton)) return singleton; } return name; } /* Given STMT, an assignment or call, return its LHS if the type of the LHS is suitable for VRP analysis, else return NULL_TREE. */ tree get_output_for_vrp (gimple *stmt) { if (!is_gimple_assign (stmt) && !is_gimple_call (stmt)) return NULL_TREE; /* We only keep track of ranges in integral and pointer types. */ tree lhs = gimple_get_lhs (stmt); if (TREE_CODE (lhs) == SSA_NAME && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs)) /* It is valid to have NULL MIN/MAX values on a type. See build_range_type. */ && TYPE_MIN_VALUE (TREE_TYPE (lhs)) && TYPE_MAX_VALUE (TREE_TYPE (lhs))) || POINTER_TYPE_P (TREE_TYPE (lhs)))) return lhs; return NULL_TREE; } /* Visit assignment STMT. If it produces an interesting range, record the range in VR and set LHS to OUTPUT_P. */ void vr_values::vrp_visit_assignment_or_call (gimple *stmt, tree *output_p, value_range_equiv *vr) { tree lhs = get_output_for_vrp (stmt); *output_p = lhs; /* We only keep track of ranges in integral and pointer types. */ if (lhs) { enum gimple_code code = gimple_code (stmt); /* Try folding the statement to a constant first. */ x_vr_values = this; tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize, vrp_valueize_1); x_vr_values = NULL; if (tem) { if (TREE_CODE (tem) == SSA_NAME && (SSA_NAME_IS_DEFAULT_DEF (tem) || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (tem)))) { extract_range_from_ssa_name (vr, tem); return; } else if (is_gimple_min_invariant (tem)) { vr->set (tem); return; } } /* Then dispatch to value-range extracting functions. */ if (code == GIMPLE_CALL) extract_range_basic (vr, stmt); else extract_range_from_assignment (vr, as_a (stmt)); } } /* Helper that gets the value range of the SSA_NAME with version I or a symbolic range containing the SSA_NAME only if the value range is varying or undefined. Uses TEM as storage for the alternate range. */ const value_range_equiv * simplify_using_ranges::get_vr_for_comparison (int i, value_range_equiv *tem, gimple *s) { /* Shallow-copy equiv bitmap. */ const value_range_equiv *vr = query->get_value_range (ssa_name (i), s); /* If name N_i does not have a valid range, use N_i as its own range. This allows us to compare against names that may have N_i in their ranges. */ if (vr->varying_p () || vr->undefined_p ()) { tem->set (ssa_name (i)); return tem; } return vr; } /* Compare all the value ranges for names equivalent to VAR with VAL using comparison code COMP. Return the same value returned by compare_range_with_value, including the setting of *STRICT_OVERFLOW_P. */ tree simplify_using_ranges::compare_name_with_value (enum tree_code comp, tree var, tree val, bool *strict_overflow_p, bool use_equiv_p, gimple *s) { /* Get the set of equivalences for VAR. */ bitmap e = query->get_value_range (var, s)->equiv (); /* Start at -1. Set it to 0 if we do a comparison without relying on overflow, or 1 if all comparisons rely on overflow. */ int used_strict_overflow = -1; /* Compare vars' value range with val. */ value_range_equiv tem_vr; const value_range_equiv *equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var), &tem_vr, s); bool sop = false; tree retval = compare_range_with_value (comp, equiv_vr, val, &sop); if (retval) used_strict_overflow = sop ? 1 : 0; /* If the equiv set is empty we have done all work we need to do. */ if (e == NULL) { if (retval && used_strict_overflow > 0) *strict_overflow_p = true; return retval; } unsigned i; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi) { tree name = ssa_name (i); if (!name) continue; if (!use_equiv_p && !SSA_NAME_IS_DEFAULT_DEF (name) && prop_simulate_again_p (SSA_NAME_DEF_STMT (name))) continue; equiv_vr = get_vr_for_comparison (i, &tem_vr, s); sop = false; tree t = compare_range_with_value (comp, equiv_vr, val, &sop); if (t) { /* If we get different answers from different members of the equivalence set this check must be in a dead code region. Folding it to a trap representation would be correct here. For now just return don't-know. */ if (retval != NULL && t != retval) { retval = NULL_TREE; break; } retval = t; if (!sop) used_strict_overflow = 0; else if (used_strict_overflow < 0) used_strict_overflow = 1; } } if (retval && used_strict_overflow > 0) *strict_overflow_p = true; return retval; } /* Given a comparison code COMP and names N1 and N2, compare all the ranges equivalent to N1 against all the ranges equivalent to N2 to determine the value of N1 COMP N2. Return the same value returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate whether we relied on undefined signed overflow in the comparison. */ tree simplify_using_ranges::compare_names (enum tree_code comp, tree n1, tree n2, bool *strict_overflow_p, gimple *s) { /* Compare the ranges of every name equivalent to N1 against the ranges of every name equivalent to N2. */ bitmap e1 = query->get_value_range (n1, s)->equiv (); bitmap e2 = query->get_value_range (n2, s)->equiv (); /* Use the fake bitmaps if e1 or e2 are not available. */ static bitmap s_e1 = NULL, s_e2 = NULL; static bitmap_obstack *s_obstack = NULL; if (s_obstack == NULL) { s_obstack = XNEW (bitmap_obstack); bitmap_obstack_initialize (s_obstack); s_e1 = BITMAP_ALLOC (s_obstack); s_e2 = BITMAP_ALLOC (s_obstack); } if (e1 == NULL) e1 = s_e1; if (e2 == NULL) e2 = s_e2; /* Add N1 and N2 to their own set of equivalences to avoid duplicating the body of the loop just to check N1 and N2 ranges. */ bitmap_set_bit (e1, SSA_NAME_VERSION (n1)); bitmap_set_bit (e2, SSA_NAME_VERSION (n2)); /* If the equivalence sets have a common intersection, then the two names can be compared without checking their ranges. */ if (bitmap_intersect_p (e1, e2)) { bitmap_clear_bit (e1, SSA_NAME_VERSION (n1)); bitmap_clear_bit (e2, SSA_NAME_VERSION (n2)); return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR) ? boolean_true_node : boolean_false_node; } /* Start at -1. Set it to 0 if we do a comparison without relying on overflow, or 1 if all comparisons rely on overflow. */ int used_strict_overflow = -1; /* Otherwise, compare all the equivalent ranges. First, add N1 and N2 to their own set of equivalences to avoid duplicating the body of the loop just to check N1 and N2 ranges. */ bitmap_iterator bi1; unsigned i1; EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1) { if (!ssa_name (i1)) continue; value_range_equiv tem_vr1; const value_range_equiv *vr1 = get_vr_for_comparison (i1, &tem_vr1, s); tree t = NULL_TREE, retval = NULL_TREE; bitmap_iterator bi2; unsigned i2; EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2) { if (!ssa_name (i2)) continue; bool sop = false; value_range_equiv tem_vr2; const value_range_equiv *vr2 = get_vr_for_comparison (i2, &tem_vr2, s); t = compare_ranges (comp, vr1, vr2, &sop); if (t) { /* If we get different answers from different members of the equivalence set this check must be in a dead code region. Folding it to a trap representation would be correct here. For now just return don't-know. */ if (retval != NULL && t != retval) { bitmap_clear_bit (e1, SSA_NAME_VERSION (n1)); bitmap_clear_bit (e2, SSA_NAME_VERSION (n2)); return NULL_TREE; } retval = t; if (!sop) used_strict_overflow = 0; else if (used_strict_overflow < 0) used_strict_overflow = 1; } } if (retval) { bitmap_clear_bit (e1, SSA_NAME_VERSION (n1)); bitmap_clear_bit (e2, SSA_NAME_VERSION (n2)); if (used_strict_overflow > 0) *strict_overflow_p = true; return retval; } } /* None of the equivalent ranges are useful in computing this comparison. */ bitmap_clear_bit (e1, SSA_NAME_VERSION (n1)); bitmap_clear_bit (e2, SSA_NAME_VERSION (n2)); return NULL_TREE; } /* Helper function for vrp_evaluate_conditional_warnv & other optimizers. */ tree simplify_using_ranges::vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code, tree op0, tree op1, bool * strict_overflow_p, gimple *s) { const value_range_equiv *vr0, *vr1; vr0 = (TREE_CODE (op0) == SSA_NAME) ? query->get_value_range (op0, s) : NULL; vr1 = (TREE_CODE (op1) == SSA_NAME) ? query->get_value_range (op1, s) : NULL; tree res = NULL_TREE; if (vr0 && vr1) res = compare_ranges (code, vr0, vr1, strict_overflow_p); if (!res && vr0) res = compare_range_with_value (code, vr0, op1, strict_overflow_p); if (!res && vr1) res = (compare_range_with_value (swap_tree_comparison (code), vr1, op0, strict_overflow_p)); return res; } /* Helper function for vrp_evaluate_conditional_warnv. */ tree simplify_using_ranges::vrp_evaluate_conditional_warnv_with_ops (gimple *stmt, enum tree_code code, tree op0, tree op1, bool use_equiv_p, bool *strict_overflow_p, bool *only_ranges) { tree ret; if (only_ranges) *only_ranges = true; /* We only deal with integral and pointer types. */ if (!INTEGRAL_TYPE_P (TREE_TYPE (op0)) && !POINTER_TYPE_P (TREE_TYPE (op0))) return NULL_TREE; /* If OP0 CODE OP1 is an overflow comparison, if it can be expressed as a simple equality test, then prefer that over its current form for evaluation. An overflow test which collapses to an equality test can always be expressed as a comparison of one argument against zero. Overflow occurs when the chosen argument is zero and does not occur if the chosen argument is not zero. */ tree x; if (overflow_comparison_p (code, op0, op1, use_equiv_p, &x)) { wide_int max = wi::max_value (TYPE_PRECISION (TREE_TYPE (op0)), UNSIGNED); /* B = A - 1; if (A < B) -> B = A - 1; if (A == 0) B = A - 1; if (A > B) -> B = A - 1; if (A != 0) B = A + 1; if (B < A) -> B = A + 1; if (B == 0) B = A + 1; if (B > A) -> B = A + 1; if (B != 0) */ if (integer_zerop (x)) { op1 = x; code = (code == LT_EXPR || code == LE_EXPR) ? EQ_EXPR : NE_EXPR; } /* B = A + 1; if (A > B) -> B = A + 1; if (B == 0) B = A + 1; if (A < B) -> B = A + 1; if (B != 0) B = A - 1; if (B > A) -> B = A - 1; if (A == 0) B = A - 1; if (B < A) -> B = A - 1; if (A != 0) */ else if (wi::to_wide (x) == max - 1) { op0 = op1; op1 = wide_int_to_tree (TREE_TYPE (op0), 0); code = (code == GT_EXPR || code == GE_EXPR) ? EQ_EXPR : NE_EXPR; } else { value_range vro, vri; if (code == GT_EXPR || code == GE_EXPR) { vro.set (TYPE_MIN_VALUE (TREE_TYPE (op0)), x, VR_ANTI_RANGE); vri.set (TYPE_MIN_VALUE (TREE_TYPE (op0)), x); } else if (code == LT_EXPR || code == LE_EXPR) { vro.set (TYPE_MIN_VALUE (TREE_TYPE (op0)), x); vri.set (TYPE_MIN_VALUE (TREE_TYPE (op0)), x, VR_ANTI_RANGE); } else gcc_unreachable (); const value_range_equiv *vr0 = query->get_value_range (op0, stmt); /* If vro, the range for OP0 to pass the overflow test, has no intersection with *vr0, OP0's known range, then the overflow test can't pass, so return the node for false. If it is the inverted range, vri, that has no intersection, then the overflow test must pass, so return the node for true. In other cases, we could proceed with a simplified condition comparing OP0 and X, with LE_EXPR for previously LE_ or LT_EXPR and GT_EXPR otherwise, but the comments next to the enclosing if suggest it's not generally profitable to do so. */ vro.intersect (vr0); if (vro.undefined_p ()) return boolean_false_node; vri.intersect (vr0); if (vri.undefined_p ()) return boolean_true_node; } } if ((ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1, strict_overflow_p, stmt))) return ret; if (only_ranges) *only_ranges = false; /* Do not use compare_names during propagation, it's quadratic. */ if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME && use_equiv_p) return compare_names (code, op0, op1, strict_overflow_p, stmt); else if (TREE_CODE (op0) == SSA_NAME) return compare_name_with_value (code, op0, op1, strict_overflow_p, use_equiv_p, stmt); else if (TREE_CODE (op1) == SSA_NAME) return compare_name_with_value (swap_tree_comparison (code), op1, op0, strict_overflow_p, use_equiv_p, stmt); return NULL_TREE; } /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range information. Return NULL if the conditional cannot be evaluated. The ranges of all the names equivalent with the operands in COND will be used when trying to compute the value. If the result is based on undefined signed overflow, issue a warning if appropriate. */ tree simplify_using_ranges::vrp_evaluate_conditional (tree_code code, tree op0, tree op1, gimple *stmt) { bool sop; tree ret; bool only_ranges; /* Some passes and foldings leak constants with overflow flag set into the IL. Avoid doing wrong things with these and bail out. */ if ((TREE_CODE (op0) == INTEGER_CST && TREE_OVERFLOW (op0)) || (TREE_CODE (op1) == INTEGER_CST && TREE_OVERFLOW (op1))) return NULL_TREE; sop = false; ret = vrp_evaluate_conditional_warnv_with_ops (stmt, code, op0, op1, true, &sop, &only_ranges); if (ret && sop) { enum warn_strict_overflow_code wc; const char* warnmsg; if (is_gimple_min_invariant (ret)) { wc = WARN_STRICT_OVERFLOW_CONDITIONAL; warnmsg = G_("assuming signed overflow does not occur when " "simplifying conditional to constant"); } else { wc = WARN_STRICT_OVERFLOW_COMPARISON; warnmsg = G_("assuming signed overflow does not occur when " "simplifying conditional"); } if (issue_strict_overflow_warning (wc)) { location_t location; if (!gimple_has_location (stmt)) location = input_location; else location = gimple_location (stmt); warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg); } } if (warn_type_limits && ret && only_ranges && TREE_CODE_CLASS (code) == tcc_comparison && TREE_CODE (op0) == SSA_NAME) { /* If the comparison is being folded and the operand on the LHS is being compared against a constant value that is outside of the natural range of OP0's type, then the predicate will always fold regardless of the value of OP0. If -Wtype-limits was specified, emit a warning. */ tree type = TREE_TYPE (op0); const value_range_equiv *vr0 = query->get_value_range (op0, stmt); if (vr0->varying_p () && INTEGRAL_TYPE_P (type) && is_gimple_min_invariant (op1)) { location_t location; if (!gimple_has_location (stmt)) location = input_location; else location = gimple_location (stmt); warning_at (location, OPT_Wtype_limits, integer_zerop (ret) ? G_("comparison always false " "due to limited range of data type") : G_("comparison always true " "due to limited range of data type")); } } return ret; } /* Visit conditional statement STMT. If we can determine which edge will be taken out of STMT's basic block, record it in *TAKEN_EDGE_P. Otherwise, set *TAKEN_EDGE_P to NULL. */ void simplify_using_ranges::vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p) { tree val; *taken_edge_p = NULL; if (dump_file && (dump_flags & TDF_DETAILS)) { tree use; ssa_op_iter i; fprintf (dump_file, "\nVisiting conditional with predicate: "); print_gimple_stmt (dump_file, stmt, 0); fprintf (dump_file, "\nWith known ranges\n"); FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE) { fprintf (dump_file, "\t"); print_generic_expr (dump_file, use); fprintf (dump_file, ": "); dump_value_range (dump_file, query->get_value_range (use, stmt)); } fprintf (dump_file, "\n"); } /* Compute the value of the predicate COND by checking the known ranges of each of its operands. Note that we cannot evaluate all the equivalent ranges here because those ranges may not yet be final and with the current propagation strategy, we cannot determine when the value ranges of the names in the equivalence set have changed. For instance, given the following code fragment i_5 = PHI <8, i_13> ... i_14 = ASSERT_EXPR if (i_14 == 1) ... Assume that on the first visit to i_14, i_5 has the temporary range [8, 8] because the second argument to the PHI function is not yet executable. We derive the range ~[0, 0] for i_14 and the equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for the first time, since i_14 is equivalent to the range [8, 8], we determine that the predicate is always false. On the next round of propagation, i_13 is determined to be VARYING, which causes i_5 to drop down to VARYING. So, another visit to i_14 is scheduled. In this second visit, we compute the exact same range and equivalence set for i_14, namely ~[0, 0] and { i_5 }. But we did not have the previous range for i_5 registered, so vrp_visit_assignment thinks that the range for i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)' is not visited again, which stops propagation from visiting statements in the THEN clause of that if(). To properly fix this we would need to keep the previous range value for the names in the equivalence set. This way we would've discovered that from one visit to the other i_5 changed from range [8, 8] to VR_VARYING. However, fixing this apparent limitation may not be worth the additional checking. Testing on several code bases (GCC, DLV, MICO, TRAMP3D and SPEC2000) showed that doing this results in 4 more predicates folded in SPEC. */ bool sop; val = vrp_evaluate_conditional_warnv_with_ops (stmt, gimple_cond_code (stmt), gimple_cond_lhs (stmt), gimple_cond_rhs (stmt), false, &sop, NULL); if (val) *taken_edge_p = find_taken_edge (gimple_bb (stmt), val); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\nPredicate evaluates to: "); if (val == NULL_TREE) fprintf (dump_file, "DON'T KNOW\n"); else print_generic_stmt (dump_file, val); } } /* Searches the case label vector VEC for the ranges of CASE_LABELs that are used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1. Returns true if the default label is not needed. */ static bool find_case_label_ranges (gswitch *stmt, const value_range *vr, size_t *min_idx1, size_t *max_idx1, size_t *min_idx2, size_t *max_idx2) { size_t i, j, k, l; unsigned int n = gimple_switch_num_labels (stmt); bool take_default; tree case_low, case_high; tree min = vr->min (), max = vr->max (); gcc_checking_assert (!vr->varying_p () && !vr->undefined_p ()); take_default = !find_case_label_range (stmt, min, max, &i, &j); /* Set second range to empty. */ *min_idx2 = 1; *max_idx2 = 0; if (vr->kind () == VR_RANGE) { *min_idx1 = i; *max_idx1 = j; return !take_default; } /* Set first range to all case labels. */ *min_idx1 = 1; *max_idx1 = n - 1; if (i > j) return false; /* Make sure all the values of case labels [i , j] are contained in range [MIN, MAX]. */ case_low = CASE_LOW (gimple_switch_label (stmt, i)); case_high = CASE_HIGH (gimple_switch_label (stmt, j)); if (tree_int_cst_compare (case_low, min) < 0) i += 1; if (case_high != NULL_TREE && tree_int_cst_compare (max, case_high) < 0) j -= 1; if (i > j) return false; /* If the range spans case labels [i, j], the corresponding anti-range spans the labels [1, i - 1] and [j + 1, n - 1]. */ k = j + 1; l = n - 1; if (k > l) { k = 1; l = 0; } j = i - 1; i = 1; if (i > j) { i = k; j = l; k = 1; l = 0; } *min_idx1 = i; *max_idx1 = j; *min_idx2 = k; *max_idx2 = l; return false; } /* Visit switch statement STMT. If we can determine which edge will be taken out of STMT's basic block, record it in *TAKEN_EDGE_P. Otherwise, *TAKEN_EDGE_P set to NULL. */ void vr_values::vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p) { tree op, val; const value_range_equiv *vr; size_t i = 0, j = 0, k, l; bool take_default; *taken_edge_p = NULL; op = gimple_switch_index (stmt); if (TREE_CODE (op) != SSA_NAME) return; vr = get_value_range (op); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\nVisiting switch expression with operand "); print_generic_expr (dump_file, op); fprintf (dump_file, " with known range "); dump_value_range (dump_file, vr); fprintf (dump_file, "\n"); } if (vr->undefined_p () || vr->varying_p () || vr->symbolic_p ()) return; /* Find the single edge that is taken from the switch expression. */ take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l); /* Check if the range spans no CASE_LABEL. If so, we only reach the default label */ if (j < i) { gcc_assert (take_default); val = gimple_switch_default_label (stmt); } else { /* Check if labels with index i to j and maybe the default label are all reaching the same label. */ val = gimple_switch_label (stmt, i); if (take_default && CASE_LABEL (gimple_switch_default_label (stmt)) != CASE_LABEL (val)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " not a single destination for this " "range\n"); return; } for (++i; i <= j; ++i) { if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " not a single destination for this " "range\n"); return; } } for (; k <= l; ++k) { if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " not a single destination for this " "range\n"); return; } } } *taken_edge_p = find_edge (gimple_bb (stmt), label_to_block (cfun, CASE_LABEL (val))); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " will take edge to "); print_generic_stmt (dump_file, CASE_LABEL (val)); } } /* Evaluate statement STMT. If the statement produces a useful range, set VR and corepsponding OUTPUT_P. If STMT is a conditional branch and we can determine its truth value, the taken edge is recorded in *TAKEN_EDGE_P. */ void vr_values::extract_range_from_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p, value_range_equiv *vr) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\nextract_range_from_stmt visiting:\n"); print_gimple_stmt (dump_file, stmt, 0, dump_flags); } if (!stmt_interesting_for_vrp (stmt)) gcc_assert (stmt_ends_bb_p (stmt)); else if (is_gimple_assign (stmt) || is_gimple_call (stmt)) vrp_visit_assignment_or_call (stmt, output_p, vr); else if (gimple_code (stmt) == GIMPLE_COND) simplifier.vrp_visit_cond_stmt (as_a (stmt), taken_edge_p); else if (gimple_code (stmt) == GIMPLE_SWITCH) vrp_visit_switch_stmt (as_a (stmt), taken_edge_p); } /* Visit all arguments for PHI node PHI that flow through executable edges. If a valid value range can be derived from all the incoming value ranges, set a new range in VR_RESULT. */ void vr_values::extract_range_from_phi_node (gphi *phi, value_range_equiv *vr_result) { tree lhs = PHI_RESULT (phi); const value_range_equiv *lhs_vr = get_value_range (lhs); bool first = true; int old_edges; class loop *l; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\nVisiting PHI node: "); print_gimple_stmt (dump_file, phi, 0, dump_flags); } bool may_simulate_backedge_again = false; int edges = 0; for (size_t i = 0; i < gimple_phi_num_args (phi); i++) { edge e = gimple_phi_arg_edge (phi, i); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " Argument #%d (%d -> %d %sexecutable)\n", (int) i, e->src->index, e->dest->index, (e->flags & EDGE_EXECUTABLE) ? "" : "not "); } if (e->flags & EDGE_EXECUTABLE) { value_range_equiv vr_arg_tem; const value_range_equiv *vr_arg = &vr_arg_tem; ++edges; tree arg = PHI_ARG_DEF (phi, i); if (TREE_CODE (arg) == SSA_NAME) { /* See if we are eventually going to change one of the args. */ gimple *def_stmt = SSA_NAME_DEF_STMT (arg); if (! gimple_nop_p (def_stmt) && prop_simulate_again_p (def_stmt) && e->flags & EDGE_DFS_BACK) may_simulate_backedge_again = true; const value_range_equiv *vr_arg_ = get_value_range (arg); /* Do not allow equivalences or symbolic ranges to leak in from backedges. That creates invalid equivalencies. See PR53465 and PR54767. */ if (e->flags & EDGE_DFS_BACK) { if (!vr_arg_->varying_p () && !vr_arg_->undefined_p ()) { vr_arg_tem.set (vr_arg_->min (), vr_arg_->max (), NULL, vr_arg_->kind ()); if (vr_arg_tem.symbolic_p ()) vr_arg_tem.set_varying (TREE_TYPE (arg)); } else vr_arg = vr_arg_; } /* If the non-backedge arguments range is VR_VARYING then we can still try recording a simple equivalence. */ else if (vr_arg_->varying_p ()) vr_arg_tem.set (arg); else vr_arg = vr_arg_; } else { if (TREE_OVERFLOW_P (arg)) arg = drop_tree_overflow (arg); vr_arg_tem.set (arg); } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\t"); print_generic_expr (dump_file, arg, dump_flags); fprintf (dump_file, ": "); dump_value_range (dump_file, vr_arg); fprintf (dump_file, "\n"); } if (first) vr_result->deep_copy (vr_arg); else vr_result->union_ (vr_arg); first = false; if (vr_result->varying_p ()) break; } } if (vr_result->varying_p ()) goto varying; else if (vr_result->undefined_p ()) goto update_range; old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)]; vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges; /* To prevent infinite iterations in the algorithm, derive ranges when the new value is slightly bigger or smaller than the previous one. We don't do this if we have seen a new executable edge; this helps us avoid an infinity for conditionals which are not in a loop. If the old value-range was VR_UNDEFINED use the updated range and iterate one more time. If we will not simulate this PHI again via the backedge allow us to iterate. */ if (edges > 0 && gimple_phi_num_args (phi) > 1 && edges == old_edges && !lhs_vr->undefined_p () && may_simulate_backedge_again) { /* Compare old and new ranges, fall back to varying if the values are not comparable. */ int cmp_min = compare_values (lhs_vr->min (), vr_result->min ()); if (cmp_min == -2) goto varying; int cmp_max = compare_values (lhs_vr->max (), vr_result->max ()); if (cmp_max == -2) goto varying; /* For non VR_RANGE or for pointers fall back to varying if the range changed. */ if ((lhs_vr->kind () != VR_RANGE || vr_result->kind () != VR_RANGE || POINTER_TYPE_P (TREE_TYPE (lhs))) && (cmp_min != 0 || cmp_max != 0)) goto varying; /* If the new minimum is larger than the previous one retain the old value. If the new minimum value is smaller than the previous one and not -INF go all the way to -INF + 1. In the first case, to avoid infinite bouncing between different minimums, and in the other case to avoid iterating millions of times to reach -INF. Going to -INF + 1 also lets the following iteration compute whether there will be any overflow, at the expense of one additional iteration. */ tree new_min = vr_result->min (); tree new_max = vr_result->max (); if (cmp_min < 0) new_min = lhs_vr->min (); else if (cmp_min > 0 && (TREE_CODE (vr_result->min ()) != INTEGER_CST || tree_int_cst_lt (vrp_val_min (vr_result->type ()), vr_result->min ()))) new_min = int_const_binop (PLUS_EXPR, vrp_val_min (vr_result->type ()), build_int_cst (vr_result->type (), 1)); /* Similarly for the maximum value. */ if (cmp_max > 0) new_max = lhs_vr->max (); else if (cmp_max < 0 && (TREE_CODE (vr_result->max ()) != INTEGER_CST || tree_int_cst_lt (vr_result->max (), vrp_val_max (vr_result->type ())))) new_max = int_const_binop (MINUS_EXPR, vrp_val_max (vr_result->type ()), build_int_cst (vr_result->type (), 1)); vr_result->update (new_min, new_max, vr_result->kind ()); /* If we dropped either bound to +-INF then if this is a loop PHI node SCEV may known more about its value-range. */ if (cmp_min > 0 || cmp_min < 0 || cmp_max < 0 || cmp_max > 0) goto scev_check; goto infinite_check; } goto update_range; varying: vr_result->set_varying (TREE_TYPE (lhs)); scev_check: /* If this is a loop PHI node SCEV may known more about its value-range. scev_check can be reached from two paths, one is a fall through from above "varying" label, the other is direct goto from code block which tries to avoid infinite simulation. */ if (scev_initialized_p () && (l = loop_containing_stmt (phi)) && l->header == gimple_bb (phi)) adjust_range_with_scev (vr_result, l, phi, lhs); infinite_check: /* If we will end up with a (-INF, +INF) range, set it to VARYING. Same if the previous max value was invalid for the type and we end up with vr_result.min > vr_result.max. */ if ((!vr_result->varying_p () && !vr_result->undefined_p ()) && !((vrp_val_is_max (vr_result->max ()) && vrp_val_is_min (vr_result->min ())) || compare_values (vr_result->min (), vr_result->max ()) > 0)) ; else vr_result->set_varying (TREE_TYPE (lhs)); /* If the new range is different than the previous value, keep iterating. */ update_range: return; } /* Simplify boolean operations if the source is known to be already a boolean. */ bool simplify_using_ranges::simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) { enum tree_code rhs_code = gimple_assign_rhs_code (stmt); tree lhs, op0, op1; bool need_conversion; /* We handle only !=/== case here. */ gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR); op0 = gimple_assign_rhs1 (stmt); if (!op_with_boolean_value_range_p (op0, stmt)) return false; op1 = gimple_assign_rhs2 (stmt); if (!op_with_boolean_value_range_p (op1, stmt)) return false; /* Reduce number of cases to handle to NE_EXPR. As there is no BIT_XNOR_EXPR we cannot replace A == B with a single statement. */ if (rhs_code == EQ_EXPR) { if (TREE_CODE (op1) == INTEGER_CST) op1 = int_const_binop (BIT_XOR_EXPR, op1, build_int_cst (TREE_TYPE (op1), 1)); else return false; } lhs = gimple_assign_lhs (stmt); need_conversion = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0)); /* Make sure to not sign-extend a 1-bit 1 when converting the result. */ if (need_conversion && !TYPE_UNSIGNED (TREE_TYPE (op0)) && TYPE_PRECISION (TREE_TYPE (op0)) == 1 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1) return false; /* For A != 0 we can substitute A itself. */ if (integer_zerop (op1)) gimple_assign_set_rhs_with_ops (gsi, need_conversion ? NOP_EXPR : TREE_CODE (op0), op0); /* For A != B we substitute A ^ B. Either with conversion. */ else if (need_conversion) { tree tem = make_ssa_name (TREE_TYPE (op0)); gassign *newop = gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1); gsi_insert_before (gsi, newop, GSI_SAME_STMT); if (INTEGRAL_TYPE_P (TREE_TYPE (tem)) && TYPE_PRECISION (TREE_TYPE (tem)) > 1) set_range_info (tem, VR_RANGE, wi::zero (TYPE_PRECISION (TREE_TYPE (tem))), wi::one (TYPE_PRECISION (TREE_TYPE (tem)))); gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem); } /* Or without. */ else gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1); update_stmt (gsi_stmt (*gsi)); fold_stmt (gsi, follow_single_use_edges); return true; } /* Simplify a division or modulo operator to a right shift or bitwise and if the first operand is unsigned or is greater than zero and the second operand is an exact power of two. For TRUNC_MOD_EXPR op0 % op1 with constant op1 (op1min = op1) or with op1 in [op1min, op1max] range, optimize it into just op0 if op0's range is known to be a subset of [-op1min + 1, op1min - 1] for signed and [0, op1min - 1] for unsigned modulo. */ bool simplify_using_ranges::simplify_div_or_mod_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) { enum tree_code rhs_code = gimple_assign_rhs_code (stmt); tree val = NULL; tree op0 = gimple_assign_rhs1 (stmt); tree op1 = gimple_assign_rhs2 (stmt); tree op0min = NULL_TREE, op0max = NULL_TREE; tree op1min = op1; const value_range *vr = NULL; if (TREE_CODE (op0) == INTEGER_CST) { op0min = op0; op0max = op0; } else { vr = query->get_value_range (op0, stmt); if (range_int_cst_p (vr)) { op0min = vr->min (); op0max = vr->max (); } } if (rhs_code == TRUNC_MOD_EXPR && TREE_CODE (op1) == SSA_NAME) { const value_range_equiv *vr1 = query->get_value_range (op1, stmt); if (range_int_cst_p (vr1)) op1min = vr1->min (); } if (rhs_code == TRUNC_MOD_EXPR && TREE_CODE (op1min) == INTEGER_CST && tree_int_cst_sgn (op1min) == 1 && op0max && tree_int_cst_lt (op0max, op1min)) { if (TYPE_UNSIGNED (TREE_TYPE (op0)) || tree_int_cst_sgn (op0min) >= 0 || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1min), op1min), op0min)) { /* If op0 already has the range op0 % op1 has, then TRUNC_MOD_EXPR won't change anything. */ gimple_assign_set_rhs_from_tree (gsi, op0); return true; } } if (TREE_CODE (op0) != SSA_NAME) return false; if (!integer_pow2p (op1)) { /* X % -Y can be only optimized into X % Y either if X is not INT_MIN, or Y is not -1. Fold it now, as after remove_range_assertions the range info might be not available anymore. */ if (rhs_code == TRUNC_MOD_EXPR && fold_stmt (gsi, follow_single_use_edges)) return true; return false; } if (TYPE_UNSIGNED (TREE_TYPE (op0))) val = integer_one_node; else { bool sop = false; val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop); if (val && sop && integer_onep (val) && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC)) { location_t location; if (!gimple_has_location (stmt)) location = input_location; else location = gimple_location (stmt); warning_at (location, OPT_Wstrict_overflow, "assuming signed overflow does not occur when " "simplifying % or %<%%%> to %<>>%> or %<&%>"); } } if (val && integer_onep (val)) { tree t; if (rhs_code == TRUNC_DIV_EXPR) { t = build_int_cst (integer_type_node, tree_log2 (op1)); gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR); gimple_assign_set_rhs1 (stmt, op0); gimple_assign_set_rhs2 (stmt, t); } else { t = build_int_cst (TREE_TYPE (op1), 1); t = int_const_binop (MINUS_EXPR, op1, t); t = fold_convert (TREE_TYPE (op0), t); gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR); gimple_assign_set_rhs1 (stmt, op0); gimple_assign_set_rhs2 (stmt, t); } update_stmt (stmt); fold_stmt (gsi, follow_single_use_edges); return true; } return false; } /* Simplify a min or max if the ranges of the two operands are disjoint. Return true if we do simplify. */ bool simplify_using_ranges::simplify_min_or_max_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) { tree op0 = gimple_assign_rhs1 (stmt); tree op1 = gimple_assign_rhs2 (stmt); bool sop = false; tree val; val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges (LE_EXPR, op0, op1, &sop, stmt)); if (!val) { sop = false; val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges (LT_EXPR, op0, op1, &sop, stmt)); } if (val) { if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC)) { location_t location; if (!gimple_has_location (stmt)) location = input_location; else location = gimple_location (stmt); warning_at (location, OPT_Wstrict_overflow, "assuming signed overflow does not occur when " "simplifying % to % or %"); } /* VAL == TRUE -> OP0 < or <= op1 VAL == FALSE -> OP0 > or >= op1. */ tree res = ((gimple_assign_rhs_code (stmt) == MAX_EXPR) == integer_zerop (val)) ? op0 : op1; gimple_assign_set_rhs_from_tree (gsi, res); return true; } return false; } /* If the operand to an ABS_EXPR is >= 0, then eliminate the ABS_EXPR. If the operand is <= 0, then simplify the ABS_EXPR into a NEGATE_EXPR. */ bool simplify_using_ranges::simplify_abs_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) { tree op = gimple_assign_rhs1 (stmt); const value_range *vr = query->get_value_range (op, stmt); if (vr) { tree val = NULL; bool sop = false; val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop); if (!val) { /* The range is neither <= 0 nor > 0. Now see if it is either < 0 or >= 0. */ sop = false; val = compare_range_with_value (LT_EXPR, vr, integer_zero_node, &sop); } if (val) { if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC)) { location_t location; if (!gimple_has_location (stmt)) location = input_location; else location = gimple_location (stmt); warning_at (location, OPT_Wstrict_overflow, "assuming signed overflow does not occur when " "simplifying % to % or %<-X%>"); } gimple_assign_set_rhs1 (stmt, op); if (integer_zerop (val)) gimple_assign_set_rhs_code (stmt, SSA_NAME); else gimple_assign_set_rhs_code (stmt, NEGATE_EXPR); update_stmt (stmt); fold_stmt (gsi, follow_single_use_edges); return true; } } return false; } /* value_range wrapper for wi_set_zero_nonzero_bits. Return TRUE if VR was a constant range and we were able to compute the bit masks. */ static bool vr_set_zero_nonzero_bits (const tree expr_type, const value_range *vr, wide_int *may_be_nonzero, wide_int *must_be_nonzero) { if (range_int_cst_p (vr)) { wi_set_zero_nonzero_bits (expr_type, wi::to_wide (vr->min ()), wi::to_wide (vr->max ()), *may_be_nonzero, *must_be_nonzero); return true; } *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type)); *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type)); return false; } /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR. If all the bits that are being cleared by & are already known to be zero from VR, or all the bits that are being set by | are already known to be one from VR, the bit operation is redundant. */ bool simplify_using_ranges::simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) { tree op0 = gimple_assign_rhs1 (stmt); tree op1 = gimple_assign_rhs2 (stmt); tree op = NULL_TREE; value_range vr0, vr1; wide_int may_be_nonzero0, may_be_nonzero1; wide_int must_be_nonzero0, must_be_nonzero1; wide_int mask; if (TREE_CODE (op0) == SSA_NAME) vr0 = *(query->get_value_range (op0, stmt)); else if (is_gimple_min_invariant (op0)) vr0.set (op0); else return false; if (TREE_CODE (op1) == SSA_NAME) vr1 = *(query->get_value_range (op1, stmt)); else if (is_gimple_min_invariant (op1)) vr1.set (op1); else return false; if (!vr_set_zero_nonzero_bits (TREE_TYPE (op0), &vr0, &may_be_nonzero0, &must_be_nonzero0)) return false; if (!vr_set_zero_nonzero_bits (TREE_TYPE (op1), &vr1, &may_be_nonzero1, &must_be_nonzero1)) return false; switch (gimple_assign_rhs_code (stmt)) { case BIT_AND_EXPR: mask = wi::bit_and_not (may_be_nonzero0, must_be_nonzero1); if (mask == 0) { op = op0; break; } mask = wi::bit_and_not (may_be_nonzero1, must_be_nonzero0); if (mask == 0) { op = op1; break; } break; case BIT_IOR_EXPR: mask = wi::bit_and_not (may_be_nonzero0, must_be_nonzero1); if (mask == 0) { op = op1; break; } mask = wi::bit_and_not (may_be_nonzero1, must_be_nonzero0); if (mask == 0) { op = op0; break; } break; default: gcc_unreachable (); } if (op == NULL_TREE) return false; gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op); update_stmt (gsi_stmt (*gsi)); return true; } /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has a known value range VR. If there is one and only one value which will satisfy the conditional, then return that value. Else return NULL. If signed overflow must be undefined for the value to satisfy the conditional, then set *STRICT_OVERFLOW_P to true. */ static tree test_for_singularity (enum tree_code cond_code, tree op0, tree op1, const value_range *vr) { tree min = NULL; tree max = NULL; /* Extract minimum/maximum values which satisfy the conditional as it was written. */ if (cond_code == LE_EXPR || cond_code == LT_EXPR) { min = TYPE_MIN_VALUE (TREE_TYPE (op0)); max = op1; if (cond_code == LT_EXPR) { tree one = build_int_cst (TREE_TYPE (op0), 1); max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one); /* Signal to compare_values_warnv this expr doesn't overflow. */ if (EXPR_P (max)) suppress_warning (max, OPT_Woverflow); } } else if (cond_code == GE_EXPR || cond_code == GT_EXPR) { max = TYPE_MAX_VALUE (TREE_TYPE (op0)); min = op1; if (cond_code == GT_EXPR) { tree one = build_int_cst (TREE_TYPE (op0), 1); min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one); /* Signal to compare_values_warnv this expr doesn't overflow. */ if (EXPR_P (min)) suppress_warning (min, OPT_Woverflow); } } /* Now refine the minimum and maximum values using any value range information we have for op0. */ if (min && max) { tree type = TREE_TYPE (op0); tree tmin = wide_int_to_tree (type, vr->lower_bound ()); tree tmax = wide_int_to_tree (type, vr->upper_bound ()); if (compare_values (tmin, min) == 1) min = tmin; if (compare_values (tmax, max) == -1) max = tmax; /* If the new min/max values have converged to a single value, then there is only one value which can satisfy the condition, return that value. */ if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min)) return min; } return NULL; } /* Return whether the value range *VR fits in an integer type specified by PRECISION and UNSIGNED_P. */ bool range_fits_type_p (const value_range *vr, unsigned dest_precision, signop dest_sgn) { tree src_type; unsigned src_precision; widest_int tem; signop src_sgn; /* We can only handle integral and pointer types. */ src_type = vr->type (); if (!INTEGRAL_TYPE_P (src_type) && !POINTER_TYPE_P (src_type)) return false; /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED, and so is an identity transform. */ src_precision = TYPE_PRECISION (vr->type ()); src_sgn = TYPE_SIGN (src_type); if ((src_precision < dest_precision && !(dest_sgn == UNSIGNED && src_sgn == SIGNED)) || (src_precision == dest_precision && src_sgn == dest_sgn)) return true; /* Now we can only handle ranges with constant bounds. */ if (!range_int_cst_p (vr)) return false; /* For sign changes, the MSB of the wide_int has to be clear. An unsigned value with its MSB set cannot be represented by a signed wide_int, while a negative value cannot be represented by an unsigned wide_int. */ if (src_sgn != dest_sgn && (wi::lts_p (wi::to_wide (vr->min ()), 0) || wi::lts_p (wi::to_wide (vr->max ()), 0))) return false; /* Then we can perform the conversion on both ends and compare the result for equality. */ tem = wi::ext (wi::to_widest (vr->min ()), dest_precision, dest_sgn); if (tem != wi::to_widest (vr->min ())) return false; tem = wi::ext (wi::to_widest (vr->max ()), dest_precision, dest_sgn); if (tem != wi::to_widest (vr->max ())) return false; return true; } /* If COND can be folded entirely as TRUE or FALSE, rewrite the conditional as such, and return TRUE. */ bool simplify_using_ranges::fold_cond (gcond *cond) { int_range_max r; if (query->range_of_stmt (r, cond) && r.singleton_p ()) { // COND has already been folded if arguments are constant. if (TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME && TREE_CODE (gimple_cond_rhs (cond)) != SSA_NAME) return false; if (r.zero_p ()) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\nPredicate evaluates to: 0\n"); gimple_cond_make_false (cond); } else { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\nPredicate evaluates to: 1\n"); gimple_cond_make_true (cond); } update_stmt (cond); return true; } /* ?? vrp_folder::fold_predicate_in() is a superset of this. At some point we should merge all variants of this code. */ edge taken_edge; vrp_visit_cond_stmt (cond, &taken_edge); if (taken_edge) { if (taken_edge->flags & EDGE_TRUE_VALUE) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\nVRP Predicate evaluates to: 1\n"); gimple_cond_make_true (cond); } else if (taken_edge->flags & EDGE_FALSE_VALUE) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\nVRP Predicate evaluates to: 0\n"); gimple_cond_make_false (cond); } else gcc_unreachable (); update_stmt (cond); return true; } return false; } /* Simplify a conditional using a relational operator to an equality test if the range information indicates only one value can satisfy the original conditional. */ bool simplify_using_ranges::simplify_cond_using_ranges_1 (gcond *stmt) { tree op0 = gimple_cond_lhs (stmt); tree op1 = gimple_cond_rhs (stmt); enum tree_code cond_code = gimple_cond_code (stmt); if (fold_cond (stmt)) return true; if (cond_code != NE_EXPR && cond_code != EQ_EXPR && TREE_CODE (op0) == SSA_NAME && INTEGRAL_TYPE_P (TREE_TYPE (op0)) && is_gimple_min_invariant (op1)) { const value_range *vr = query->get_value_range (op0, stmt); /* If we have range information for OP0, then we might be able to simplify this conditional. */ if (!vr->undefined_p () && !vr->varying_p ()) { tree new_tree = test_for_singularity (cond_code, op0, op1, vr); if (new_tree) { if (dump_file) { fprintf (dump_file, "Simplified relational "); print_gimple_stmt (dump_file, stmt, 0); fprintf (dump_file, " into "); } gimple_cond_set_code (stmt, EQ_EXPR); gimple_cond_set_lhs (stmt, op0); gimple_cond_set_rhs (stmt, new_tree); update_stmt (stmt); if (dump_file) { print_gimple_stmt (dump_file, stmt, 0); fprintf (dump_file, "\n"); } return true; } /* Try again after inverting the condition. We only deal with integral types here, so no need to worry about issues with inverting FP comparisons. */ new_tree = test_for_singularity (invert_tree_comparison (cond_code, false), op0, op1, vr); if (new_tree) { if (dump_file) { fprintf (dump_file, "Simplified relational "); print_gimple_stmt (dump_file, stmt, 0); fprintf (dump_file, " into "); } gimple_cond_set_code (stmt, NE_EXPR); gimple_cond_set_lhs (stmt, op0); gimple_cond_set_rhs (stmt, new_tree); update_stmt (stmt); if (dump_file) { print_gimple_stmt (dump_file, stmt, 0); fprintf (dump_file, "\n"); } return true; } } } return false; } /* Simplify a switch statement using the value range of the switch argument. */ bool simplify_using_ranges::simplify_switch_using_ranges (gswitch *stmt) { tree op = gimple_switch_index (stmt); const value_range *vr = NULL; bool take_default; edge e; edge_iterator ei; size_t i = 0, j = 0, n, n2; tree vec2; switch_update su; size_t k = 1, l = 0; if (TREE_CODE (op) == SSA_NAME) { vr = query->get_value_range (op, stmt); /* We can only handle integer ranges. */ if (vr->varying_p () || vr->undefined_p () || vr->symbolic_p ()) return false; /* Find case label for min/max of the value range. */ take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l); } else if (TREE_CODE (op) == INTEGER_CST) { take_default = !find_case_label_index (stmt, 1, op, &i); if (take_default) { i = 1; j = 0; } else { j = i; } } else return false; n = gimple_switch_num_labels (stmt); /* We can truncate the case label ranges that partially overlap with OP's value range. */ size_t min_idx = 1, max_idx = 0; if (vr != NULL) find_case_label_range (stmt, vr->min (), vr->max (), &min_idx, &max_idx); if (min_idx <= max_idx) { tree min_label = gimple_switch_label (stmt, min_idx); tree max_label = gimple_switch_label (stmt, max_idx); /* Avoid changing the type of the case labels when truncating. */ tree case_label_type = TREE_TYPE (CASE_LOW (min_label)); tree vr_min = fold_convert (case_label_type, vr->min ()); tree vr_max = fold_convert (case_label_type, vr->max ()); if (vr->kind () == VR_RANGE) { /* If OP's value range is [2,8] and the low label range is 0 ... 3, truncate the label's range to 2 .. 3. */ if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0 && CASE_HIGH (min_label) != NULL_TREE && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0) CASE_LOW (min_label) = vr_min; /* If OP's value range is [2,8] and the high label range is 7 ... 10, truncate the label's range to 7 .. 8. */ if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0 && CASE_HIGH (max_label) != NULL_TREE && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0) CASE_HIGH (max_label) = vr_max; } else if (vr->kind () == VR_ANTI_RANGE) { tree one_cst = build_one_cst (case_label_type); if (min_label == max_label) { /* If OP's value range is ~[7,8] and the label's range is 7 ... 10, truncate the label's range to 9 ... 10. */ if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) == 0 && CASE_HIGH (min_label) != NULL_TREE && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) > 0) CASE_LOW (min_label) = int_const_binop (PLUS_EXPR, vr_max, one_cst); /* If OP's value range is ~[7,8] and the label's range is 5 ... 8, truncate the label's range to 5 ... 6. */ if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0 && CASE_HIGH (min_label) != NULL_TREE && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) == 0) CASE_HIGH (min_label) = int_const_binop (MINUS_EXPR, vr_min, one_cst); } else { /* If OP's value range is ~[2,8] and the low label range is 0 ... 3, truncate the label's range to 0 ... 1. */ if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0 && CASE_HIGH (min_label) != NULL_TREE && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0) CASE_HIGH (min_label) = int_const_binop (MINUS_EXPR, vr_min, one_cst); /* If OP's value range is ~[2,8] and the high label range is 7 ... 10, truncate the label's range to 9 ... 10. */ if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0 && CASE_HIGH (max_label) != NULL_TREE && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0) CASE_LOW (max_label) = int_const_binop (PLUS_EXPR, vr_max, one_cst); } } /* Canonicalize singleton case ranges. */ if (tree_int_cst_equal (CASE_LOW (min_label), CASE_HIGH (min_label))) CASE_HIGH (min_label) = NULL_TREE; if (tree_int_cst_equal (CASE_LOW (max_label), CASE_HIGH (max_label))) CASE_HIGH (max_label) = NULL_TREE; } /* We can also eliminate case labels that lie completely outside OP's value range. */ /* Bail out if this is just all edges taken. */ if (i == 1 && j == n - 1 && take_default) return false; /* Build a new vector of taken case labels. */ vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default); n2 = 0; /* Add the default edge, if necessary. */ if (take_default) TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt); for (; i <= j; ++i, ++n2) TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i); for (; k <= l; ++k, ++n2) TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k); /* Mark needed edges. */ for (i = 0; i < n2; ++i) { e = find_edge (gimple_bb (stmt), label_to_block (cfun, CASE_LABEL (TREE_VEC_ELT (vec2, i)))); e->aux = (void *)-1; } /* Queue not needed edges for later removal. */ FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs) { if (e->aux == (void *)-1) { e->aux = NULL; continue; } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "removing unreachable case label\n"); } to_remove_edges.safe_push (e); e->flags &= ~EDGE_EXECUTABLE; e->flags |= EDGE_IGNORE; } /* And queue an update for the stmt. */ su.stmt = stmt; su.vec = vec2; to_update_switch_stmts.safe_push (su); return true; } void simplify_using_ranges::cleanup_edges_and_switches (void) { int i; edge e; switch_update *su; /* Remove dead edges from SWITCH_EXPR optimization. This leaves the CFG in a broken state and requires a cfg_cleanup run. */ FOR_EACH_VEC_ELT (to_remove_edges, i, e) remove_edge (e); /* Update SWITCH_EXPR case label vector. */ FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su) { size_t j; size_t n = TREE_VEC_LENGTH (su->vec); tree label; gimple_switch_set_num_labels (su->stmt, n); for (j = 0; j < n; j++) gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j)); /* As we may have replaced the default label with a regular one make sure to make it a real default label again. This ensures optimal expansion. */ label = gimple_switch_label (su->stmt, 0); CASE_LOW (label) = NULL_TREE; CASE_HIGH (label) = NULL_TREE; } if (!to_remove_edges.is_empty ()) { free_dominance_info (CDI_DOMINATORS); loops_state_set (LOOPS_NEED_FIXUP); } to_remove_edges.release (); to_update_switch_stmts.release (); } /* Simplify an integral conversion from an SSA name in STMT. */ static bool simplify_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) { tree innerop, middleop, finaltype; gimple *def_stmt; signop inner_sgn, middle_sgn, final_sgn; unsigned inner_prec, middle_prec, final_prec; widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax; finaltype = TREE_TYPE (gimple_assign_lhs (stmt)); if (!INTEGRAL_TYPE_P (finaltype)) return false; middleop = gimple_assign_rhs1 (stmt); def_stmt = SSA_NAME_DEF_STMT (middleop); if (!is_gimple_assign (def_stmt) || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))) return false; innerop = gimple_assign_rhs1 (def_stmt); if (TREE_CODE (innerop) != SSA_NAME || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop)) return false; /* Get the value-range of the inner operand. Use global ranges in case innerop was created during substitute-and-fold. */ wide_int imin, imax; value_range vr; if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop))) return false; get_range_query (cfun)->range_of_expr (vr, innerop, stmt); if (vr.undefined_p () || vr.varying_p ()) return false; innermin = widest_int::from (vr.lower_bound (), TYPE_SIGN (TREE_TYPE (innerop))); innermax = widest_int::from (vr.upper_bound (), TYPE_SIGN (TREE_TYPE (innerop))); /* Simulate the conversion chain to check if the result is equal if the middle conversion is removed. */ inner_prec = TYPE_PRECISION (TREE_TYPE (innerop)); middle_prec = TYPE_PRECISION (TREE_TYPE (middleop)); final_prec = TYPE_PRECISION (finaltype); /* If the first conversion is not injective, the second must not be widening. */ if (wi::gtu_p (innermax - innermin, wi::mask (middle_prec, false)) && middle_prec < final_prec) return false; /* We also want a medium value so that we can track the effect that narrowing conversions with sign change have. */ inner_sgn = TYPE_SIGN (TREE_TYPE (innerop)); if (inner_sgn == UNSIGNED) innermed = wi::shifted_mask (1, inner_prec - 1, false); else innermed = 0; if (wi::cmp (innermin, innermed, inner_sgn) >= 0 || wi::cmp (innermed, innermax, inner_sgn) >= 0) innermed = innermin; middle_sgn = TYPE_SIGN (TREE_TYPE (middleop)); middlemin = wi::ext (innermin, middle_prec, middle_sgn); middlemed = wi::ext (innermed, middle_prec, middle_sgn); middlemax = wi::ext (innermax, middle_prec, middle_sgn); /* Require that the final conversion applied to both the original and the intermediate range produces the same result. */ final_sgn = TYPE_SIGN (finaltype); if (wi::ext (middlemin, final_prec, final_sgn) != wi::ext (innermin, final_prec, final_sgn) || wi::ext (middlemed, final_prec, final_sgn) != wi::ext (innermed, final_prec, final_sgn) || wi::ext (middlemax, final_prec, final_sgn) != wi::ext (innermax, final_prec, final_sgn)) return false; gimple_assign_set_rhs1 (stmt, innerop); fold_stmt (gsi, follow_single_use_edges); return true; } /* Simplify a conversion from integral SSA name to float in STMT. */ bool simplify_using_ranges::simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) { tree rhs1 = gimple_assign_rhs1 (stmt); const value_range *vr = query->get_value_range (rhs1, stmt); scalar_float_mode fltmode = SCALAR_FLOAT_TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt))); scalar_int_mode mode; tree tem; gassign *conv; /* We can only handle constant ranges. */ if (!range_int_cst_p (vr)) return false; /* First check if we can use a signed type in place of an unsigned. */ scalar_int_mode rhs_mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (rhs1)); if (TYPE_UNSIGNED (TREE_TYPE (rhs1)) && can_float_p (fltmode, rhs_mode, 0) != CODE_FOR_nothing && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED)) mode = rhs_mode; /* If we can do the conversion in the current input mode do nothing. */ else if (can_float_p (fltmode, rhs_mode, TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing) return false; /* Otherwise search for a mode we can use, starting from the narrowest integer mode available. */ else { mode = NARROWEST_INT_MODE; for (;;) { /* If we cannot do a signed conversion to float from mode or if the value-range does not fit in the signed type try with a wider mode. */ if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED)) break; /* But do not widen the input. Instead leave that to the optabs expansion code. */ if (!GET_MODE_WIDER_MODE (mode).exists (&mode) || GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1))) return false; } } /* It works, insert a truncation or sign-change before the float conversion. */ tem = make_ssa_name (build_nonstandard_integer_type (GET_MODE_PRECISION (mode), 0)); conv = gimple_build_assign (tem, NOP_EXPR, rhs1); gsi_insert_before (gsi, conv, GSI_SAME_STMT); gimple_assign_set_rhs1 (stmt, tem); fold_stmt (gsi, follow_single_use_edges); return true; } /* Simplify an internal fn call using ranges if possible. */ bool simplify_using_ranges::simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) { enum tree_code subcode; bool is_ubsan = false; bool ovf = false; switch (gimple_call_internal_fn (stmt)) { case IFN_UBSAN_CHECK_ADD: subcode = PLUS_EXPR; is_ubsan = true; break; case IFN_UBSAN_CHECK_SUB: subcode = MINUS_EXPR; is_ubsan = true; break; case IFN_UBSAN_CHECK_MUL: subcode = MULT_EXPR; is_ubsan = true; break; case IFN_ADD_OVERFLOW: subcode = PLUS_EXPR; break; case IFN_SUB_OVERFLOW: subcode = MINUS_EXPR; break; case IFN_MUL_OVERFLOW: subcode = MULT_EXPR; break; default: return false; } tree op0 = gimple_call_arg (stmt, 0); tree op1 = gimple_call_arg (stmt, 1); tree type; if (is_ubsan) { type = TREE_TYPE (op0); if (VECTOR_TYPE_P (type)) return false; } else if (gimple_call_lhs (stmt) == NULL_TREE) return false; else type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt))); if (!check_for_binary_op_overflow (query, subcode, type, op0, op1, &ovf, stmt) || (is_ubsan && ovf)) return false; gimple *g; location_t loc = gimple_location (stmt); if (is_ubsan) g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1); else { int prec = TYPE_PRECISION (type); tree utype = type; if (ovf || !useless_type_conversion_p (type, TREE_TYPE (op0)) || !useless_type_conversion_p (type, TREE_TYPE (op1))) utype = build_nonstandard_integer_type (prec, 1); if (TREE_CODE (op0) == INTEGER_CST) op0 = fold_convert (utype, op0); else if (!useless_type_conversion_p (utype, TREE_TYPE (op0))) { g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0); gimple_set_location (g, loc); gsi_insert_before (gsi, g, GSI_SAME_STMT); op0 = gimple_assign_lhs (g); } if (TREE_CODE (op1) == INTEGER_CST) op1 = fold_convert (utype, op1); else if (!useless_type_conversion_p (utype, TREE_TYPE (op1))) { g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1); gimple_set_location (g, loc); gsi_insert_before (gsi, g, GSI_SAME_STMT); op1 = gimple_assign_lhs (g); } g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1); gimple_set_location (g, loc); gsi_insert_before (gsi, g, GSI_SAME_STMT); if (utype != type) { g = gimple_build_assign (make_ssa_name (type), NOP_EXPR, gimple_assign_lhs (g)); gimple_set_location (g, loc); gsi_insert_before (gsi, g, GSI_SAME_STMT); } g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR, gimple_assign_lhs (g), build_int_cst (type, ovf)); } gimple_set_location (g, loc); gsi_replace (gsi, g, false); return true; } /* Return true if VAR is a two-valued variable. Set a and b with the two-values when it is true. Return false otherwise. */ bool simplify_using_ranges::two_valued_val_range_p (tree var, tree *a, tree *b, gimple *s) { value_range vr = *query->get_value_range (var, s); vr.normalize_symbolics (); if (vr.varying_p () || vr.undefined_p ()) return false; if ((vr.num_pairs () == 1 && vr.upper_bound () - vr.lower_bound () == 1) || (vr.num_pairs () == 2 && vr.lower_bound (0) == vr.upper_bound (0) && vr.lower_bound (1) == vr.upper_bound (1))) { *a = wide_int_to_tree (TREE_TYPE (var), vr.lower_bound ()); *b = wide_int_to_tree (TREE_TYPE (var), vr.upper_bound ()); return true; } return false; } simplify_using_ranges::simplify_using_ranges (range_query *query) : query (query) { to_remove_edges = vNULL; to_update_switch_stmts = vNULL; } simplify_using_ranges::~simplify_using_ranges () { cleanup_edges_and_switches (); } /* Simplify STMT using ranges if possible. */ bool simplify_using_ranges::simplify (gimple_stmt_iterator *gsi) { gcc_checking_assert (query); gimple *stmt = gsi_stmt (*gsi); if (is_gimple_assign (stmt)) { enum tree_code rhs_code = gimple_assign_rhs_code (stmt); tree rhs1 = gimple_assign_rhs1 (stmt); tree rhs2 = gimple_assign_rhs2 (stmt); tree lhs = gimple_assign_lhs (stmt); tree val1 = NULL_TREE, val2 = NULL_TREE; use_operand_p use_p; gimple *use_stmt; /* Convert: LHS = CST BINOP VAR Where VAR is two-valued and LHS is used in GIMPLE_COND only To: LHS = VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2) Also handles: LHS = VAR BINOP CST Where VAR is two-valued and LHS is used in GIMPLE_COND only To: LHS = VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST) */ if (TREE_CODE_CLASS (rhs_code) == tcc_binary && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) && ((TREE_CODE (rhs1) == INTEGER_CST && TREE_CODE (rhs2) == SSA_NAME) || (TREE_CODE (rhs2) == INTEGER_CST && TREE_CODE (rhs1) == SSA_NAME)) && single_imm_use (lhs, &use_p, &use_stmt) && gimple_code (use_stmt) == GIMPLE_COND) { tree new_rhs1 = NULL_TREE; tree new_rhs2 = NULL_TREE; tree cmp_var = NULL_TREE; if (TREE_CODE (rhs2) == SSA_NAME && two_valued_val_range_p (rhs2, &val1, &val2, stmt)) { /* Optimize RHS1 OP [VAL1, VAL2]. */ new_rhs1 = int_const_binop (rhs_code, rhs1, val1); new_rhs2 = int_const_binop (rhs_code, rhs1, val2); cmp_var = rhs2; } else if (TREE_CODE (rhs1) == SSA_NAME && two_valued_val_range_p (rhs1, &val1, &val2, stmt)) { /* Optimize [VAL1, VAL2] OP RHS2. */ new_rhs1 = int_const_binop (rhs_code, val1, rhs2); new_rhs2 = int_const_binop (rhs_code, val2, rhs2); cmp_var = rhs1; } /* If we could not find two-vals or the optimzation is invalid as in divide by zero, new_rhs1 / new_rhs will be NULL_TREE. */ if (new_rhs1 && new_rhs2) { tree cond = build2 (EQ_EXPR, boolean_type_node, cmp_var, val1); gimple_assign_set_rhs_with_ops (gsi, COND_EXPR, cond, new_rhs1, new_rhs2); update_stmt (gsi_stmt (*gsi)); fold_stmt (gsi, follow_single_use_edges); return true; } } switch (rhs_code) { case EQ_EXPR: case NE_EXPR: /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity if the RHS is zero or one, and the LHS are known to be boolean values. */ if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) return simplify_truth_ops_using_ranges (gsi, stmt); break; /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR and BIT_AND_EXPR respectively if the first operand is greater than zero and the second operand is an exact power of two. Also optimize TRUNC_MOD_EXPR away if the second operand is constant and the first operand already has the right value range. */ case TRUNC_DIV_EXPR: case TRUNC_MOD_EXPR: if ((TREE_CODE (rhs1) == SSA_NAME || TREE_CODE (rhs1) == INTEGER_CST) && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) return simplify_div_or_mod_using_ranges (gsi, stmt); break; /* Transform ABS (X) into X or -X as appropriate. */ case ABS_EXPR: if (TREE_CODE (rhs1) == SSA_NAME && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) return simplify_abs_using_ranges (gsi, stmt); break; case BIT_AND_EXPR: case BIT_IOR_EXPR: /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR if all the bits being cleared are already cleared or all the bits being set are already set. */ if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) return simplify_bit_ops_using_ranges (gsi, stmt); break; CASE_CONVERT: if (TREE_CODE (rhs1) == SSA_NAME && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) return simplify_conversion_using_ranges (gsi, stmt); break; case FLOAT_EXPR: if (TREE_CODE (rhs1) == SSA_NAME && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) return simplify_float_conversion_using_ranges (gsi, stmt); break; case MIN_EXPR: case MAX_EXPR: return simplify_min_or_max_using_ranges (gsi, stmt); default: break; } } else if (gimple_code (stmt) == GIMPLE_COND) return simplify_cond_using_ranges_1 (as_a (stmt)); else if (gimple_code (stmt) == GIMPLE_SWITCH) return simplify_switch_using_ranges (as_a (stmt)); else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt)) return simplify_internal_call_using_ranges (gsi, stmt); return false; } /* Set the lattice entry for VAR to VR. */ void vr_values::set_vr_value (tree var, value_range_equiv *vr) { if (SSA_NAME_VERSION (var) >= num_vr_values) return; vr_value[SSA_NAME_VERSION (var)] = vr; } /* Swap the lattice entry for VAR with VR and return the old entry. */ value_range_equiv * vr_values::swap_vr_value (tree var, value_range_equiv *vr) { if (SSA_NAME_VERSION (var) >= num_vr_values) return NULL; std::swap (vr_value[SSA_NAME_VERSION (var)], vr); return vr; }