/* Vector API for GNU compiler. Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc. Contributed by Nathan Sidwell Re-implemented in C++ by Diego Novillo This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_VEC_H #define GCC_VEC_H #include "statistics.h" /* For MEM_STAT_DECL. */ /* Templated vector type and associated interfaces. The interface functions are typesafe and use inline functions, sometimes backed by out-of-line generic functions. The vectors are designed to interoperate with the GTY machinery. FIXME - Remove the following compatibility notes after a handler class for vec_t is implemented. To preserve compatibility with the existing API, some functions that manipulate vector elements implement two overloads: one taking a pointer to the element and others that take a pointer to a pointer to the element. This used to be implemented with three different families of macros and structures: structure objects, scalar objects and of pointers. Both the structure object and pointer variants passed pointers to objects around -- in the former case the pointers were stored into the vector and in the latter case the pointers were dereferenced and the objects copied into the vector. The scalar object variant was suitable for int-like objects, and the vector elements were returned by value. There are both 'index' and 'iterate' accessors. The index accessor is implemented by operator[]. The iterator returns a boolean iteration condition and updates the iteration variable passed by reference. Because the iterator will be inlined, the address-of can be optimized away. The vectors are implemented using the trailing array idiom, thus they are not resizeable without changing the address of the vector object itself. This means you cannot have variables or fields of vector type -- always use a pointer to a vector. The one exception is the final field of a structure, which could be a vector type. You will have to use the embedded_size & embedded_init calls to create such objects, and they will probably not be resizeable (so don't use the 'safe' allocation variants). The trailing array idiom is used (rather than a pointer to an array of data), because, if we allow NULL to also represent an empty vector, empty vectors occupy minimal space in the structure containing them. Each operation that increases the number of active elements is available in 'quick' and 'safe' variants. The former presumes that there is sufficient allocated space for the operation to succeed (it dies if there is not). The latter will reallocate the vector, if needed. Reallocation causes an exponential increase in vector size. If you know you will be adding N elements, it would be more efficient to use the reserve operation before adding the elements with the 'quick' operation. This will ensure there are at least as many elements as you ask for, it will exponentially increase if there are too few spare slots. If you want reserve a specific number of slots, but do not want the exponential increase (for instance, you know this is the last allocation), use the reserve_exact operation. You can also create a vector of a specific size from the get go. You should prefer the push and pop operations, as they append and remove from the end of the vector. If you need to remove several items in one go, use the truncate operation. The insert and remove operations allow you to change elements in the middle of the vector. There are two remove operations, one which preserves the element ordering 'ordered_remove', and one which does not 'unordered_remove'. The latter function copies the end element into the removed slot, rather than invoke a memmove operation. The 'lower_bound' function will determine where to place an item in the array using insert that will maintain sorted order. When a vector type is defined, first a non-memory managed version is created. You can then define either or both garbage collected and heap allocated versions. The allocation mechanism is specified when the vector is allocated. This can occur via the VEC_alloc call or one of the VEC_safe_* functions that add elements to a vector. If the vector is NULL, it will be allocated using the allocation strategy selected in the call. The valid allocations are defined in enum vec_allocation_t. If you need to directly manipulate a vector, then the 'address' accessor will return the address of the start of the vector. Also the 'space' predicate will tell you whether there is spare capacity in the vector. You will not normally need to use these two functions. Variables of vector type are of type vec_t where ETYPE is the type of the elements of the vector. Due to the way GTY works, you must annotate any structures you wish to insert or reference from a vector with a GTY(()) tag. You need to do this even if you never use the GC allocated variants. An example of their use would be, struct my_struct { vec_t *v; // A (pointer to) a vector of tree pointers. }; struct my_struct *s; if (VEC_length(tree,s->v)) { we have some contents } VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++) { do something with elt } */ #if ENABLE_CHECKING #define ALONE_VEC_CHECK_INFO __FILE__, __LINE__, __FUNCTION__ #define VEC_CHECK_INFO , ALONE_VEC_CHECK_INFO #define ALONE_VEC_CHECK_DECL const char *file_, unsigned line_, const char *function_ #define VEC_CHECK_DECL , ALONE_VEC_CHECK_DECL #define ALONE_VEC_CHECK_PASS file_, line_, function_ #define VEC_CHECK_PASS , ALONE_VEC_CHECK_PASS #define VEC_ASSERT(EXPR,OP,T,A) \ (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0)) extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL) ATTRIBUTE_NORETURN; #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS) #else #define ALONE_VEC_CHECK_INFO #define VEC_CHECK_INFO #define ALONE_VEC_CHECK_DECL void #define VEC_CHECK_DECL #define ALONE_VEC_CHECK_PASS #define VEC_CHECK_PASS #define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR) #endif #define VEC(T,A) vec_t enum vec_allocation_t { heap, gc, stack }; struct vec_prefix { unsigned num_; unsigned alloc_; }; /* Vector type, user visible. */ template struct GTY(()) vec_t { unsigned length (void) const; bool empty (void) const; T *address (void); T &last (ALONE_VEC_CHECK_DECL); const T &operator[] (unsigned) const; T &operator[] (unsigned); void embedded_init (int, int = 0); template vec_t *copy (ALONE_MEM_STAT_DECL); bool space (int VEC_CHECK_DECL); void splice (vec_t * VEC_CHECK_DECL); T &quick_push (T VEC_CHECK_DECL); T *quick_push (const T * VEC_CHECK_DECL); T &pop (ALONE_VEC_CHECK_DECL); void truncate (unsigned VEC_CHECK_DECL); void replace (unsigned, T VEC_CHECK_DECL); void quick_insert (unsigned, T VEC_CHECK_DECL); void quick_insert (unsigned, const T * VEC_CHECK_DECL); void ordered_remove (unsigned VEC_CHECK_DECL); void unordered_remove (unsigned VEC_CHECK_DECL); void block_remove (unsigned, unsigned VEC_CHECK_DECL); unsigned lower_bound (T, bool (*)(T, T)) const; unsigned lower_bound (const T *, bool (*)(const T *, const T *)) const; /* Class-static member functions. Some of these will become member functions of a future handler class wrapping vec_t. */ static size_t embedded_size (int); template static vec_t *alloc (int MEM_STAT_DECL); static vec_t *alloc (int, vec_t *); template static void free (vec_t **); template static vec_t *reserve_exact (vec_t *, int MEM_STAT_DECL); template static bool reserve_exact (vec_t **, int VEC_CHECK_DECL MEM_STAT_DECL); template static vec_t *reserve (vec_t *, int MEM_STAT_DECL); template static bool reserve (vec_t **, int VEC_CHECK_DECL MEM_STAT_DECL); template static void safe_splice (vec_t **, vec_t * VEC_CHECK_DECL MEM_STAT_DECL); template static T &safe_push (vec_t **, T VEC_CHECK_DECL MEM_STAT_DECL); template static T *safe_push (vec_t **, const T * VEC_CHECK_DECL MEM_STAT_DECL); template static void safe_grow (vec_t **, int VEC_CHECK_DECL MEM_STAT_DECL); template static void safe_grow_cleared (vec_t **, int VEC_CHECK_DECL MEM_STAT_DECL); template static void safe_insert (vec_t **, unsigned, T * VEC_CHECK_DECL MEM_STAT_DECL); template static void safe_insert (vec_t **, unsigned, T obj VEC_CHECK_DECL MEM_STAT_DECL); static bool iterate (const vec_t *, unsigned, T *); static bool iterate (const vec_t *, unsigned, T **); vec_prefix prefix_; T vec_[1]; }; /* Garbage collection support for vec_t. */ template void gt_ggc_mx (vec_t *v) { extern void gt_ggc_mx (T &); for (unsigned i = 0; i < v->length (); i++) gt_ggc_mx ((*v)[i]); } /* PCH support for vec_t. */ template void gt_pch_nx (vec_t *v) { extern void gt_pch_nx (T &); for (unsigned i = 0; i < v->length (); i++) gt_pch_nx ((*v)[i]); } template void gt_pch_nx (vec_t *v, gt_pointer_operator op, void *cookie) { for (unsigned i = 0; i < v->length (); i++) op (&((*v)[i]), cookie); } template void gt_pch_nx (vec_t *v, gt_pointer_operator op, void *cookie) { extern void gt_pch_nx (T *, gt_pointer_operator, void *); for (unsigned i = 0; i < v->length (); i++) gt_pch_nx (&((*v)[i]), op, cookie); } /* FIXME. Remove these definitions and update all calling sites after the handler class for vec_t is implemented. */ /* Vector of integer-like object. */ #define DEF_VEC_I(T) struct vec_swallow_trailing_semi #define DEF_VEC_ALLOC_I(T,A) struct vec_swallow_trailing_semi /* Vector of pointer to object. */ #define DEF_VEC_P(T) struct vec_swallow_trailing_semi #define DEF_VEC_ALLOC_P(T,A) struct vec_swallow_trailing_semi /* Vector of object. */ #define DEF_VEC_O(T) struct vec_swallow_trailing_semi #define DEF_VEC_ALLOC_O(T,A) struct vec_swallow_trailing_semi /* Vectors on the stack. */ #define DEF_VEC_ALLOC_P_STACK(T) struct vec_swallow_trailing_semi #define DEF_VEC_ALLOC_O_STACK(T) struct vec_swallow_trailing_semi #define DEF_VEC_ALLOC_I_STACK(T) struct vec_swallow_trailing_semi /* Vectors of atomic types. Atomic types do not need to have its elements marked for GC and PCH. To avoid unnecessary traversals, we provide template instantiations for the GC/PCH functions that do not traverse the vector. FIXME cxx-conversion - Once vec_t users are converted this can be provided in some other way (e.g., adding an additional template parameter to the vec_t class). */ #define DEF_VEC_A(TYPE) \ template \ void \ gt_ggc_mx (vec_t *v ATTRIBUTE_UNUSED) \ { \ } \ \ template \ void \ gt_pch_nx (vec_t *v ATTRIBUTE_UNUSED) \ { \ } \ \ template \ void \ gt_pch_nx (vec_t *v ATTRIBUTE_UNUSED, \ gt_pointer_operator op ATTRIBUTE_UNUSED, \ void *cookie ATTRIBUTE_UNUSED) \ { \ } \ struct vec_swallow_trailing_semi #define DEF_VEC_ALLOC_A(T,A) struct vec_swallow_trailing_semi /* Support functions for stack vectors. */ extern void *vec_stack_p_reserve_exact_1 (int, void *); extern void *vec_stack_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL); extern void *vec_stack_o_reserve_exact (void *, int, size_t, size_t MEM_STAT_DECL); extern void vec_stack_free (void *); extern void dump_vec_loc_statistics (void); extern void ggc_free (void *); extern void vec_heap_free (void *); /* API compatibility macros (to be removed). */ #define VEC_length(T,V) \ ((V) ? (V)->length () : 0) #define VEC_empty(T,V) \ ((V) ? (V)->empty () : true) #define VEC_address(T,V) \ vec_address (V) /* FIXME. For now, we need to continue expanding VEC_address into a function call. Otherwise, the warning machinery for -Wnonnull gets confused thinking that VEC_address may return null in calls to memcpy and qsort. This will disappear once vec_address becomes a member function for a handler class wrapping vec_t. */ template static inline T * vec_address (vec_t *vec) { return vec ? vec->address() : NULL; } #define VEC_last(T,V) \ ((V)->last (ALONE_VEC_CHECK_INFO)) #define VEC_index(T,V,I) \ ((*(V))[I]) #define VEC_iterate(T,V,I,P) \ (vec_t::iterate(V, I, &(P))) #define VEC_embedded_size(T,N) \ (vec_t::embedded_size (N)) #define VEC_embedded_init(T,V,N) \ ((V)->embedded_init (N)) #define VEC_free(T,A,V) \ (vec_t::free (&(V))) #define VEC_copy(T,A,V) \ ((V)->copy (ALONE_MEM_STAT_INFO)) #define VEC_space(T,V,R) \ ((V) ? (V)->space (R VEC_CHECK_INFO) : (R) == 0) #define VEC_reserve(T,A,V,R) \ (vec_t::reserve (&(V), (int)(R) VEC_CHECK_INFO MEM_STAT_INFO)) #define VEC_reserve_exact(T,A,V,R) \ (vec_t::reserve_exact (&(V), R VEC_CHECK_INFO MEM_STAT_INFO)) #define VEC_splice(T,DST,SRC) \ (DST)->splice (SRC VEC_CHECK_INFO) #define VEC_safe_splice(T,A,DST,SRC) \ vec_t::safe_splice (&(DST), SRC VEC_CHECK_INFO MEM_STAT_INFO) #define VEC_quick_push(T,V,O) \ ((V)->quick_push (O VEC_CHECK_INFO)) #define VEC_safe_push(T,A,V,O) \ (vec_t::safe_push (&(V), O VEC_CHECK_INFO MEM_STAT_INFO)) #define VEC_pop(T,V) \ ((V)->pop (ALONE_VEC_CHECK_INFO)) #define VEC_truncate(T,V,I) \ (V \ ? (V)->truncate ((unsigned)(I) VEC_CHECK_INFO) \ : gcc_assert ((I) == 0)) #define VEC_safe_grow(T,A,V,I) \ (vec_t::safe_grow (&(V), (int)(I) VEC_CHECK_INFO MEM_STAT_INFO)) #define VEC_safe_grow_cleared(T,A,V,I) \ (vec_t::safe_grow_cleared (&(V), (int)(I) \ VEC_CHECK_INFO MEM_STAT_INFO)) #define VEC_replace(T,V,I,O) \ ((V)->replace ((unsigned)(I), O VEC_CHECK_INFO)) #define VEC_quick_insert(T,V,I,O) \ ((V)->quick_insert (I,O VEC_CHECK_INFO)) #define VEC_safe_insert(T,A,V,I,O) \ (vec_t::safe_insert (&(V), I, O VEC_CHECK_INFO MEM_STAT_INFO)) #define VEC_ordered_remove(T,V,I) \ ((V)->ordered_remove (I VEC_CHECK_INFO)) #define VEC_unordered_remove(T,V,I) \ ((V)->unordered_remove (I VEC_CHECK_INFO)) #define VEC_block_remove(T,V,I,L) \ ((V)->block_remove (I, L VEC_CHECK_INFO)) #define VEC_lower_bound(T,V,O,LT) \ ((V)->lower_bound (O, LT)) /* Return the number of active elements in this vector. */ template inline unsigned vec_t::length (void) const { return prefix_.num_; } /* Return true if this vector has no active elements. */ template inline bool vec_t::empty (void) const { return length () == 0; } /* Return the address of the array of elements. If you need to directly manipulate the array (for instance, you want to feed it to qsort), use this accessor. */ template inline T * vec_t::address (void) { return vec_; } /* Get the final element of the vector, which must not be empty. */ template T & vec_t::last (ALONE_VEC_CHECK_DECL) { VEC_ASSERT (prefix_.num_, "last", T, base); return (*this)[prefix_.num_ - 1]; } /* Index into vector. Return the IX'th element. IX must be in the domain of the vector. */ template const T & vec_t::operator[] (unsigned ix) const { gcc_assert (ix < prefix_.num_); return vec_[ix]; } template T & vec_t::operator[] (unsigned ix) { gcc_assert (ix < prefix_.num_); return vec_[ix]; } /* Return iteration condition and update PTR to point to the IX'th element of VEC. Use this to iterate over the elements of a vector as follows, for (ix = 0; vec_t::iterate(v, ix, &ptr); ix++) continue; FIXME. This is a static member function because if VEC is NULL, PTR should be initialized to NULL. This will become a regular member function of the handler class. */ template bool vec_t::iterate (const vec_t *vec, unsigned ix, T *ptr) { if (vec && ix < vec->prefix_.num_) { *ptr = vec->vec_[ix]; return true; } else { *ptr = 0; return false; } } /* Return iteration condition and update *PTR to point to the IX'th element of VEC. Use this to iterate over the elements of a vector as follows, for (ix = 0; v->iterate(ix, &ptr); ix++) continue; This variant is for vectors of objects. FIXME, to be removed once the distinction between vec_t and vec_t disappears. */ template bool vec_t::iterate (const vec_t *vec, unsigned ix, T **ptr) { if (vec && ix < vec->prefix_.num_) { *ptr = CONST_CAST (T *, &vec->vec_[ix]); return true; } else { *ptr = 0; return false; } } /* Convenience macro for forward iteration. */ #define FOR_EACH_VEC_ELT(T, V, I, P) \ for (I = 0; VEC_iterate (T, (V), (I), (P)); ++(I)) /* Likewise, but start from FROM rather than 0. */ #define FOR_EACH_VEC_ELT_FROM(T, V, I, P, FROM) \ for (I = (FROM); VEC_iterate (T, (V), (I), (P)); ++(I)) /* Convenience macro for reverse iteration. */ #define FOR_EACH_VEC_ELT_REVERSE(T, V, I, P) \ for (I = VEC_length (T, (V)) - 1; \ VEC_iterate (T, (V), (I), (P)); \ (I)--) /* Return the number of bytes needed to embed an instance of vec_t inside another data structure. Use these methods to determine the required size and initialization of a vector V of type T embedded within another structure (as the final member): size_t vec_t::embedded_size (int reserve); void v->embedded_init(int reserve, int active); These allow the caller to perform the memory allocation. */ template size_t vec_t::embedded_size (int nelems) { return offsetof (vec_t, vec_) + nelems * sizeof (T); } /* Initialize the vector to contain room for NELEMS elements and ACTIVE active elements. */ template void vec_t::embedded_init (int nelems, int active) { prefix_.num_ = active; prefix_.alloc_ = nelems; } /* Allocate a new vector with space for RESERVE objects. If RESERVE is zero, NO vector is created. Note that this allocator must always be a macro: We support a vector which starts out with space on the stack and switches to heap space when forced to reallocate. This works a little differently. In the case of stack vectors, vec_alloc will expand to a call to vec_alloc_1 that calls XALLOCAVAR to request the initial allocation. This uses alloca to get the initial space. Since alloca can not be usefully called in an inline function, vec_alloc must always be a macro. Important limitations of stack vectors: - Only the initial allocation will be made using alloca, so pass a reasonable estimate that doesn't use too much stack space; don't pass zero. - Don't return a stack-allocated vector from the function which allocated it. */ #define VEC_alloc(T,A,N) \ ((A == stack) \ ? vec_t::alloc (N, XALLOCAVAR (vec_t, vec_t::embedded_size (N)))\ : vec_t::alloc (N MEM_STAT_INFO)) template template vec_t * vec_t::alloc (int nelems MEM_STAT_DECL) { return reserve_exact ((vec_t *) NULL, nelems PASS_MEM_STAT); } template vec_t * vec_t::alloc (int nelems, vec_t *space) { return static_cast *> (vec_stack_p_reserve_exact_1 (nelems, space)); } /* Free vector *V and set it to NULL. */ template template void vec_t::free (vec_t **v) { if (*v) { if (A == heap) vec_heap_free (*v); else if (A == gc) ggc_free (*v); else if (A == stack) vec_stack_free (*v); } *v = NULL; } /* Return a copy of this vector. The new and old vectors need not be allocated by the same mechanism. */ template template vec_t * vec_t::copy (ALONE_MEM_STAT_DECL) { unsigned len = VEC_length (T, this); vec_t *new_vec = NULL; if (len) { new_vec = reserve_exact (static_cast *> (NULL), len PASS_MEM_STAT); new_vec->embedded_init (len, len); memcpy (new_vec->address (), vec_, sizeof (T) * len); } return new_vec; } /* If this vector has space for RESERVE additional entries, return true. You usually only need to use this if you are doing your own vector reallocation, for instance on an embedded vector. This returns true in exactly the same circumstances that vec_reserve will. */ template bool vec_t::space (int nelems VEC_CHECK_DECL) { VEC_ASSERT (nelems >= 0, "space", T, base); return prefix_.alloc_ - prefix_.num_ >= static_cast (nelems); } /* Ensure that the vector **VEC has at least RESERVE slots available. This will create additional headroom. Note this can cause **VEC to be reallocated. Returns true iff reallocation actually occurred. */ template template bool vec_t::reserve (vec_t **vec, int nelems VEC_CHECK_DECL MEM_STAT_DECL) { bool extend = (*vec) ? !(*vec)->space (nelems VEC_CHECK_PASS) : nelems != 0; if (extend) *vec = reserve (*vec, nelems PASS_MEM_STAT); return extend; } /* Ensure that **VEC has at least NELEMS slots available. This will not create additional headroom. Note this can cause VEC to be reallocated. Returns true iff reallocation actually occurred. */ template template bool vec_t::reserve_exact (vec_t **vec, int nelems VEC_CHECK_DECL MEM_STAT_DECL) { bool extend = (*vec) ? !(*vec)->space (nelems VEC_CHECK_PASS) : nelems != 0; if (extend) *vec = reserve_exact (*vec, nelems PASS_MEM_STAT); return extend; } /* Copy the elements from SRC to the end of this vector as if by memcpy. SRC and this vector need not be allocated with the same mechanism, although they most often will be. This vector is assumed to have sufficient headroom available. */ template void vec_t::splice (vec_t *src VEC_CHECK_DECL) { if (src) { unsigned len = VEC_length (T, src); VEC_ASSERT (VEC_length (T, this) + len <= prefix_.alloc_, "splice", T, base); memcpy (address () + VEC_length (T, this), src->address (), len * sizeof (T)); prefix_.num_ += len; } } /* Copy the elements in SRC to the end of DST as if by memcpy. DST and SRC need not be allocated with the same mechanism, although they most often will be. DST need not have sufficient headroom and will be reallocated if needed. */ template template void vec_t::safe_splice (vec_t **dst, vec_t *src VEC_CHECK_DECL MEM_STAT_DECL) { if (src) { reserve_exact (dst, VEC_length (T, src) VEC_CHECK_PASS MEM_STAT_INFO); (*dst)->splice (src VEC_CHECK_PASS); } } /* Push OBJ (a new element) onto the end, returns a reference to the slot filled in. There must be sufficient space in the vector. */ template T & vec_t::quick_push (T obj VEC_CHECK_DECL) { VEC_ASSERT (prefix_.num_ < prefix_.alloc_, "push", T, base); vec_[prefix_.num_] = obj; T &val = vec_[prefix_.num_]; prefix_.num_++; return val; } /* Push PTR (a new pointer to an element) onto the end, returns a pointer to the slot filled in. The new value can be NULL, in which case NO initialization is performed. There must be sufficient space in the vector. */ template T * vec_t::quick_push (const T *ptr VEC_CHECK_DECL) { VEC_ASSERT (prefix_.num_ < prefix_.alloc_, "push", T, base); T *slot = &vec_[prefix_.num_++]; if (ptr) *slot = *ptr; return slot; } /* Push a new element OBJ onto the end of VEC. Returns a reference to the slot filled in. Reallocates V, if needed. */ template template T & vec_t::safe_push (vec_t **vec, T obj VEC_CHECK_DECL MEM_STAT_DECL) { reserve (vec, 1 VEC_CHECK_PASS PASS_MEM_STAT); return (*vec)->quick_push (obj VEC_CHECK_PASS); } /* Push a pointer PTR to a new element onto the end of VEC. Returns a pointer to the slot filled in. For object vectors, the new value can be NULL, in which case NO initialization is performed. Reallocates VEC, if needed. */ template template T * vec_t::safe_push (vec_t **vec, const T *ptr VEC_CHECK_DECL MEM_STAT_DECL) { reserve (vec, 1 VEC_CHECK_PASS PASS_MEM_STAT); return (*vec)->quick_push (ptr VEC_CHECK_PASS); } /* Pop and return the last element off the end of the vector. */ template T & vec_t::pop (ALONE_VEC_CHECK_DECL) { VEC_ASSERT (prefix_.num_, "pop", T, base); return vec_[--prefix_.num_]; } /* Set the length of the vector to LEN. The new length must be less than or equal to the current length. This is an O(1) operation. */ template void vec_t::truncate (unsigned size VEC_CHECK_DECL) { VEC_ASSERT (prefix_.num_ >= size, "truncate", T, base); prefix_.num_ = size; } /* Grow the vector VEC to a specific length. The LEN must be as long or longer than the current length. The new elements are uninitialized. */ template template void vec_t::safe_grow (vec_t **vec, int size VEC_CHECK_DECL MEM_STAT_DECL) { VEC_ASSERT (size >= 0 && VEC_length (T, *vec) <= (unsigned)size, "grow", T, A); reserve_exact (vec, size - (int)VEC_length (T, *vec) VEC_CHECK_PASS PASS_MEM_STAT); (*vec)->prefix_.num_ = size; } /* Grow the vector *VEC to a specific length. The LEN must be as long or longer than the current length. The new elements are initialized to zero. */ template template void vec_t::safe_grow_cleared (vec_t **vec, int size VEC_CHECK_DECL MEM_STAT_DECL) { int oldsize = VEC_length (T, *vec); safe_grow (vec, size VEC_CHECK_PASS PASS_MEM_STAT); memset (&((*vec)->address ()[oldsize]), 0, sizeof (T) * (size - oldsize)); } /* Replace the IXth element of this vector with a new value, VAL. */ template void vec_t::replace (unsigned ix, T obj VEC_CHECK_DECL) { VEC_ASSERT (ix < prefix_.num_, "replace", T, base); vec_[ix] = obj; } /* Insert an element, OBJ, at the IXth position of VEC. There must be sufficient space. */ template void vec_t::quick_insert (unsigned ix, T obj VEC_CHECK_DECL) { VEC_ASSERT (prefix_.num_ < prefix_.alloc_, "insert", T, base); VEC_ASSERT (ix <= prefix_.num_, "insert", T, base); T *slot = &vec_[ix]; memmove (slot + 1, slot, (prefix_.num_++ - ix) * sizeof (T)); *slot = obj; } /* Insert an element, *PTR, at the IXth position of V. The new value can be NULL, in which case no initialization of the inserted slot takes place. There must be sufficient space. */ template void vec_t::quick_insert (unsigned ix, const T *ptr VEC_CHECK_DECL) { VEC_ASSERT (prefix_.num_ < prefix_.alloc_, "insert", T, base); VEC_ASSERT (ix <= prefix_.num_, "insert", T, base); T *slot = &vec_[ix]; memmove (slot + 1, slot, (prefix_.num_++ - ix) * sizeof (T)); if (ptr) *slot = *ptr; } /* Insert an element, VAL, at the IXth position of VEC. Reallocate VEC, if necessary. */ template template void vec_t::safe_insert (vec_t **vec, unsigned ix, T obj VEC_CHECK_DECL MEM_STAT_DECL) { reserve (vec, 1 VEC_CHECK_PASS PASS_MEM_STAT); (*vec)->quick_insert (ix, obj VEC_CHECK_PASS); } /* Insert an element, *PTR, at the IXth position of VEC. Return a pointer to the slot created. For vectors of object, the new value can be NULL, in which case no initialization of the inserted slot takes place. Reallocate V, if necessary. */ template template void vec_t::safe_insert (vec_t **vec, unsigned ix, T *ptr VEC_CHECK_DECL MEM_STAT_DECL) { reserve (vec, 1 VEC_CHECK_PASS PASS_MEM_STAT); (*vec)->quick_insert (ix, ptr VEC_CHECK_PASS); } /* Remove an element from the IXth position of this vector. Ordering of remaining elements is preserved. This is an O(N) operation due to a memmove. */ template void vec_t::ordered_remove (unsigned ix VEC_CHECK_DECL) { VEC_ASSERT (ix < prefix_.num_, "remove", T, base); T *slot = &vec_[ix]; memmove (slot, slot + 1, (--prefix_.num_ - ix) * sizeof (T)); } /* Remove an element from the IXth position of VEC. Ordering of remaining elements is destroyed. This is an O(1) operation. */ template void vec_t::unordered_remove (unsigned ix VEC_CHECK_DECL) { VEC_ASSERT (ix < prefix_.num_, "remove", T, base); vec_[ix] = vec_[--prefix_.num_]; } /* Remove LEN elements starting at the IXth. Ordering is retained. This is an O(N) operation due to memmove. */ template void vec_t::block_remove (unsigned ix, unsigned len VEC_CHECK_DECL) { VEC_ASSERT (ix + len <= prefix_.num_, "block_remove", T, base); T *slot = &vec_[ix]; prefix_.num_ -= len; memmove (slot, slot + len, (prefix_.num_ - ix) * sizeof (T)); } /* Sort the contents of V with qsort. Use CMP as the comparison function. */ #define VEC_qsort(T,V,CMP) \ qsort (VEC_address (T, V), VEC_length (T, V), sizeof (T), CMP) /* Find and return the first position in which OBJ could be inserted without changing the ordering of this vector. LESSTHAN is a function that returns true if the first argument is strictly less than the second. */ template unsigned vec_t::lower_bound (T obj, bool (*lessthan)(T, T)) const { unsigned int len = VEC_length (T, this); unsigned int half, middle; unsigned int first = 0; while (len > 0) { half = len >> 1; middle = first; middle += half; T middle_elem = (*this)[middle]; if (lessthan (middle_elem, obj)) { first = middle; ++first; len = len - half - 1; } else len = half; } return first; } /* Find and return the first position in which *PTR could be inserted without changing the ordering of this vector. LESSTHAN is a function that returns true if the first argument is strictly less than the second. */ template unsigned vec_t::lower_bound (const T *ptr, bool (*lessthan)(const T *, const T *)) const { unsigned int len = VEC_length (T, this); unsigned int half, middle; unsigned int first = 0; while (len > 0) { half = len >> 1; middle = first; middle += half; const T *middle_elem = &(*this)[middle]; if (lessthan (middle_elem, ptr)) { first = middle; ++first; len = len - half - 1; } else len = half; } return first; } void *vec_heap_o_reserve_1 (void *, int, size_t, size_t, bool MEM_STAT_DECL); void *vec_gc_o_reserve_1 (void *, int, size_t, size_t, bool MEM_STAT_DECL); /* Ensure there are at least RESERVE free slots in VEC_, growing exponentially. If RESERVE < 0 grow exactly, else grow exponentially. As a special case, if VEC_ is NULL, and RESERVE is 0, no vector will be created. */ template template vec_t * vec_t::reserve (vec_t *vec, int reserve MEM_STAT_DECL) { void *res = NULL; size_t off = offsetof (vec_t, vec_); size_t sz = sizeof (T); switch (A) { case gc: res = vec_gc_o_reserve_1 (vec, reserve, off, sz, false PASS_MEM_STAT); break; case heap: res = vec_heap_o_reserve_1 (vec, reserve, off, sz, false PASS_MEM_STAT); break; case stack: res = vec_stack_o_reserve (vec, reserve, off, sz PASS_MEM_STAT); break; } return static_cast *> (res); } /* Ensure there are at least RESERVE free slots in VEC, growing exactly. If RESERVE < 0 grow exactly, else grow exponentially. As a special case, if VEC is NULL, and RESERVE is 0, no vector will be created. */ template template vec_t * vec_t::reserve_exact (vec_t *vec, int reserve MEM_STAT_DECL) { void *res = NULL; size_t off = sizeof (struct vec_prefix); size_t sz = sizeof (T); gcc_assert (offsetof (vec_t, vec_) == sizeof (struct vec_prefix)); switch (A) { case gc: res = vec_gc_o_reserve_1 (vec, reserve, off, sz, true PASS_MEM_STAT); break; case heap: res = vec_heap_o_reserve_1 (vec, reserve, off, sz, true PASS_MEM_STAT); break; case stack: res = vec_stack_o_reserve_exact (vec, reserve, off, sz PASS_MEM_STAT); break; } return static_cast *> (res); } #endif /* GCC_VEC_H */