/* Vector API for GNU compiler. Copyright (C) 2004 Free Software Foundation, Inc. Contributed by Nathan Sidwell This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef GCC_VEC_H #define GCC_VEC_H /* The macros here implement a set of templated vector types and associated interfaces. These templates are implemented with macros, as we're not in C++ land. The interface functions are typesafe and use static inline functions, sometimes backed by out-of-line generic functions. The vectors are designed to interoperate with the GTY machinery. Because of the different behaviour of objects and of pointers to objects, there are two flavors. One to deal with a vector of pointers to objects, and one to deal with a vector of objects themselves. Both of these pass pointers to objects around -- in the former case the pointers are stored into the vector and in the latter case the pointers are dereferenced and the objects copied into the vector. Therefore, when using a vector of pointers, the objects pointed to must be long lived, but when dealing with a vector of objects, the source objects need not be. There are both 'index' and 'iterate' accessors. The iterator returns a boolean iteration condition and updates the iteration variable passed by reference. Because the iterator will be inlined, the address-of can be optimized away. The vectors are implemented using the trailing array idiom, thus they are not resizeable without changing the address of the vector object itself. This means you cannot have variables or fields of vector type -- always use a pointer to a vector. The one exception is the final field of a structure, which could be a vector type. You will have to use the embedded_size & embedded_init calls to create such objects, and they will probably not be resizeable (so don't use the 'safe' allocation variants). The trailing array idiom is used (rather than a pointer to an array of data), because, if we allow NULL to also represent an empty vector, empty vectors occupy minimal space in the structure containing them. Each operation that increases the number of active elements is available in 'quick' and 'safe' variants. The former presumes that there is sufficient allocated space for the operation to succeed (it aborts if there is not). The latter will reallocate the vector, if needed. Reallocation causes an exponential increase in vector size. If you know you will be adding N elements, it would be more efficient to use the reserve operation before adding the elements with the 'quick' operation. You may also use the reserve operation with a -1 operand, to gain control over exactly when reallocation occurs. You should prefer the push and pop operations, as they append and remove from the end of the vector. If you need to remove several items in one go, use the truncate operation. The insert and remove operations allow you to change elements in the middle of the vector. There are two remove operations, one which preserves the element ordering 'ordered_remove', and one which does not 'unordered_remove'. The latter function copies the end element into the removed slot, rather than invoke a memmove operation. The 'lower_bound' function will determine where to place an item in the array using insert that will maintain sorted order. Both garbage collected and explicitly managed vector types are creatable. The allocation mechanism is specified when the type is defined, and is therefore part of the type. If you need to directly manipulate a vector, then the 'address' accessor will return the address of the start of the vector. Also the 'space' predicate will tell you whether there is spare capacity in the vector. You will not normally need to use these two functions. Vector types are defined using a DEF_VEC_{GC,MALLOC}_{O,P}(TYPEDEF) macro, and variables of vector type are declared using a VEC(TYPEDEF) macro. The tags GC and MALLOC specify the allocation method -- garbage collected or explicit malloc/free calls. The characters O and P indicate whether TYPEDEF is a pointer (P) or object (O) type. An example of their use would be, DEF_VEC_GC_P(tree); // define a gc'd vector of tree pointers. This must // appear at file scope. struct my_struct { VEC(tree) *v; // A (pointer to) a vector of tree pointers. }; struct my_struct *s; if (VEC_length(tree,s->v)) { we have some contents } VEC_safe_push(tree,s->v,decl); // append some decl onto the end for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++) { do something with elt } */ /* Macros to invoke API calls. A single macro works for both pointer and object vectors, but the argument and return types might well be different. In each macro, TDEF is the typedef of the vector elements. Some of these macros pass the vector, V, by reference (by taking its address), this is noted in the descriptions. */ /* Length of vector unsigned VEC_T_length(const VEC(T) *v); Return the number of active elements in V. V can be NULL, in which case zero is returned. */ #define VEC_length(TDEF,V) (VEC_OP(TDEF,length)(V)) /* Get the final element of the vector. T VEC_T_last(VEC(T) *v); // Pointer T *VEC_T_last(VEC(T) *v); // Object Return the final element. If V is empty, abort. */ #define VEC_last(TDEF,V) (VEC_OP(TDEF,last)(V VEC_CHECK_INFO)) /* Index into vector T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer T *VEC_T_index(VEC(T) *v, unsigned ix); // Object Return the IX'th element. If IX is outside the domain of V, abort. */ #define VEC_index(TDEF,V,I) (VEC_OP(TDEF,index)(V,I VEC_CHECK_INFO)) /* Iterate over vector int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object Return iteration condition and update PTR to point to the IX'th element. At the end of iteration, sets PTR to NULL. Use this to iterate over the elements of a vector as follows, for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++) continue; */ #define VEC_iterate(TDEF,V,I,P) (VEC_OP(TDEF,iterate)(V,I,&(P))) /* Allocate new vector. VEC(T) *VEC_T_alloc(int reserve); Allocate a new vector with space for RESERVE objects. If RESERVE is <= 0, a default number of slots are created. */ #define VEC_alloc(TDEF,A) (VEC_OP(TDEF,alloc)(A MEM_STAT_INFO)) /* Free a vector. void VEC_T_alloc(VEC(T) *&); Free a vector and set it to NULL. */ #define VEC_free(TDEF,V) (VEC_OP(TDEF,free)(&V)) /* Use these to determine the required size and initialization of a vector embedded within another structure (as the final member). size_t VEC_T_embedded_size(int reserve); void VEC_T_embedded_init(VEC(T) *v, int reserve); These allow the caller to perform the memory allocation. */ #define VEC_embedded_size(TDEF,A) (VEC_OP(TDEF,embedded_size)(A)) #define VEC_embedded_init(TDEF,O,A) (VEC_OP(TDEF,embedded_init)(O,A)) /* Determine if a vector has additional capacity. int VEC_T_space (VEC(T) *v,int reserve) If V has space for RESERVE additional entries, return non-zero. If RESERVE is < 0, ensure there is at least one space slot. You usually only need to use this if you are doing your own vector reallocation, for instance on an embedded vector. This returns non-zero in exactly the same circumstances that VEC_T_reserve will. */ #define VEC_space(TDEF,V,R) (VEC_OP(TDEF,space)(V,R)) /* Reserve space. int VEC_T_reserve(VEC(T) *&v, int reserve); Ensure that V has at least RESERVE slots available, if RESERVE is >= 0. If RESERVE < 0, ensure that there is at least one spare slot. These differ in their reallocation behaviour, the first will not create additional headroom, but the second mechanism will perform the usual exponential headroom increase. Note this can cause V to be reallocated. Returns non-zero iff reallocation actually occurred. */ #define VEC_reserve(TDEF,V,R) (VEC_OP(TDEF,reserve)(&(V),R MEM_STAT_INFO)) /* Push object with no reallocation T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object Push a new element onto the end, returns a pointer to the slot filled in. For object vectors, the new value can be NULL, in which case NO initialization is performed. Aborts if there is insufficient space in the vector. */ #define VEC_quick_push(TDEF,V,O) \ (VEC_OP(TDEF,quick_push)(V,O VEC_CHECK_INFO)) /* Push object with reallocation T *VEC_T_safe_push (VEC(T) *&v, T obj); // Pointer T *VEC_T_safe_push (VEC(T) *&v, T *obj); // Object Push a new element onto the end, returns a pointer to the slot filled in. For object vectors, the new value can be NULL, in which case NO initialization is performed. Reallocates V, if needed. */ #define VEC_safe_push(TDEF,V,O) \ (VEC_OP(TDEF,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO)) /* Pop element off end T VEC_T_pop (VEC(T) *v); // Pointer void VEC_T_pop (VEC(T) *v); // Object Pop the last element off the end. Returns the element popped, for pointer vectors. */ #define VEC_pop(TDEF,V) (VEC_OP(TDEF,pop)(V VEC_CHECK_INFO)) /* Truncate to specific length void VEC_T_truncate (VEC(T) *v, unsigned len); Set the length as specified. This is an O(1) operation. */ #define VEC_truncate(TDEF,V,I) \ (VEC_OP(TDEF,truncate)(V,I VEC_CHECK_INFO)) /* Replace element T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object Replace the IXth element of V with a new value, VAL. For pointer vectors returns the original value. For object vectors returns a pointer to the new value. For object vectors the new value can be NULL, in which case no overwriting of the slot is actually performed. */ #define VEC_replace(TDEF,V,I,O) \ (VEC_OP(TDEF,replace)(V,I,O VEC_CHECK_INFO)) /* Insert object with no reallocation T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object Insert an element, VAL, at the IXth position of V. Return a pointer to the slot created. For vectors of object, the new value can be NULL, in which case no initialization of the inserted slot takes place. Aborts if there is insufficient space. */ #define VEC_quick_insert(TDEF,V,I,O) \ (VEC_OP(TDEF,quick_insert)(V,I,O VEC_CHECK_INFO)) /* Insert object with reallocation T *VEC_T_safe_insert (VEC(T) *&v, unsigned ix, T val); // Pointer T *VEC_T_safe_insert (VEC(T) *&v, unsigned ix, T *val); // Object Insert an element, VAL, at the IXth position of V. Return a pointer to the slot created. For vectors of object, the new value can be NULL, in which case no initialization of the inserted slot takes place. Reallocate V, if necessary. */ #define VEC_safe_insert(TDEF,V,I,O) \ (VEC_OP(TDEF,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO)) /* Remove element retaining order T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object Remove an element from the IXth position of V. Ordering of remaining elements is preserved. For pointer vectors returns the removed object. This is an O(N) operation due to a memmove. */ #define VEC_ordered_remove(TDEF,V,I) \ (VEC_OP(TDEF,ordered_remove)(V,I VEC_CHECK_INFO)) /* Remove element destroying order T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object Remove an element from the IXth position of V. Ordering of remaining elements is destroyed. For pointer vectors returns the removed object. This is an O(1) operation. */ #define VEC_unordered_remove(TDEF,V,I) \ (VEC_OP(TDEF,unordered_remove)(V,I VEC_CHECK_INFO)) /* Get the address of the array of elements T *VEC_T_address (VEC(T) v) If you need to directly manipulate the array (for instance, you want to feed it to qsort), use this accessor. */ #define VEC_address(TDEF,V) (VEC_OP(TDEF,address)(V)) /* Find the first index in the vector not less than the object. unsigned VEC_T_lower_bound (VEC(T) *v, const T val, bool (*lessthan) (const T, const T)); // Pointer unsigned VEC_T_lower_bound (VEC(T) *v, const T *val, bool (*lessthan) (const T*, const T*)); // Object Find the first position in which VAL could be inserted without changing the ordering of V. LESSTHAN is a function that returns true if the first argument is strictly less than the second. */ #define VEC_lower_bound(TDEF,V,O,LT) \ (VEC_OP(TDEF,lower_bound)(V,O,LT VEC_CHECK_INFO)) #if !IN_GENGTYPE /* Reallocate an array of elements with prefix. */ extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL); extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL); extern void vec_gc_free (void *); extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL); extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL); extern void vec_heap_free (void *); #if ENABLE_CHECKING #define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__ #define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_ #define VEC_CHECK_PASS ,file_,line_,function_ #define VEC_ASSERT(EXPR,OP,TDEF) \ (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(TDEF)), 0)) extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL) ATTRIBUTE_NORETURN; #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS) #else #define VEC_CHECK_INFO #define VEC_CHECK_DECL #define VEC_CHECK_PASS #define VEC_ASSERT(EXPR,OP,TYPE) (void)(EXPR) #endif #define VEC(TDEF) VEC_##TDEF #define VEC_OP(TDEF,OP) VEC_OP_(VEC(TDEF),OP) #define VEC_OP_(VEC,OP) VEC_OP__(VEC,OP) #define VEC_OP__(VEC,OP) VEC ## _ ## OP #else /* IN_GENGTYPE */ #define VEC(TDEF) VEC_ TDEF #define VEC_STRINGIFY(X) VEC_STRINGIFY_(X) #define VEC_STRINGIFY_(X) #X #undef GTY #endif /* IN_GENGTYPE */ #define VEC_TDEF(TDEF) \ typedef struct VEC (TDEF) GTY(()) \ { \ unsigned num; \ unsigned alloc; \ TDEF GTY ((length ("%h.num"))) vec[1]; \ } VEC (TDEF) /* Vector of pointer to object. */ #if IN_GENGTYPE {"DEF_VEC_GC_P", VEC_STRINGIFY (VEC_TDEF (#)) ";", NULL}, {"DEF_VEC_MALLOC_P", "", NULL}, #else #define DEF_VEC_GC_P(TDEF) DEF_VEC_P(TDEF,gc) #define DEF_VEC_MALLOC_P(TDEF) DEF_VEC_P(TDEF,heap) #define DEF_VEC_P(TDEF,a) \ VEC_TDEF (TDEF); \ \ static inline unsigned VEC_OP (TDEF,length) \ (const VEC (TDEF) *vec_) \ { \ return vec_ ? vec_->num : 0; \ } \ \ static inline TDEF VEC_OP (TDEF,last) \ (const VEC (TDEF) *vec_ VEC_CHECK_DECL) \ { \ VEC_ASSERT (vec_ && vec_->num, "last", TDEF); \ \ return vec_->vec[vec_->num - 1]; \ } \ \ static inline TDEF VEC_OP (TDEF,index) \ (const VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \ { \ VEC_ASSERT (vec_ && ix_ < vec_->num, "index", TDEF); \ \ return vec_->vec[ix_]; \ } \ \ static inline int VEC_OP (TDEF,iterate) \ (const VEC (TDEF) *vec_, unsigned ix_, TDEF *ptr) \ { \ if (vec_ && ix_ < vec_->num) \ { \ *ptr = vec_->vec[ix_]; \ return 1; \ } \ else \ { \ *ptr = 0; \ return 0; \ } \ } \ \ static inline VEC (TDEF) *VEC_OP (TDEF,alloc) \ (int alloc_ MEM_STAT_DECL) \ { \ return (VEC (TDEF) *) vec_##a##_p_reserve (NULL, alloc_ - !alloc_ PASS_MEM_STAT);\ } \ \ static inline void VEC_OP (TDEF,free) \ (VEC (TDEF) **vec_) \ { \ vec_##a##_free (*vec_); \ *vec_ = NULL; \ } \ \ static inline size_t VEC_OP (TDEF,embedded_size) \ (int alloc_) \ { \ return offsetof (VEC(TDEF),vec) + alloc_ * sizeof(TDEF); \ } \ \ static inline void VEC_OP (TDEF,embedded_init) \ (VEC (TDEF) *vec_, int alloc_) \ { \ vec_->num = 0; \ vec_->alloc = alloc_; \ } \ \ static inline int VEC_OP (TDEF,space) \ (VEC (TDEF) *vec_, int alloc_) \ { \ return vec_ ? ((vec_)->alloc - (vec_)->num \ < (unsigned)(alloc_ < 0 ? 1 : alloc_)) : alloc_ != 0; \ } \ \ static inline int VEC_OP (TDEF,reserve) \ (VEC (TDEF) **vec_, int alloc_ MEM_STAT_DECL) \ { \ int extend = VEC_OP (TDEF,space) (*vec_, alloc_); \ \ if (extend) \ *vec_ = (VEC (TDEF) *) vec_##a##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \ \ return extend; \ } \ \ static inline TDEF *VEC_OP (TDEF,quick_push) \ (VEC (TDEF) *vec_, TDEF obj_ VEC_CHECK_DECL) \ { \ TDEF *slot_; \ \ VEC_ASSERT (vec_->num < vec_->alloc, "push", TDEF); \ slot_ = &vec_->vec[vec_->num++]; \ *slot_ = obj_; \ \ return slot_; \ } \ \ static inline TDEF *VEC_OP (TDEF,safe_push) \ (VEC (TDEF) **vec_, TDEF obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ { \ VEC_OP (TDEF,reserve) (vec_, -1 PASS_MEM_STAT); \ \ return VEC_OP (TDEF,quick_push) (*vec_, obj_ VEC_CHECK_PASS); \ } \ \ static inline TDEF VEC_OP (TDEF,pop) \ (VEC (TDEF) *vec_ VEC_CHECK_DECL) \ { \ TDEF obj_; \ \ VEC_ASSERT (vec_->num, "pop", TDEF); \ obj_ = vec_->vec[--vec_->num]; \ \ return obj_; \ } \ \ static inline void VEC_OP (TDEF,truncate) \ (VEC (TDEF) *vec_, unsigned size_ VEC_CHECK_DECL) \ { \ VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", TDEF); \ if (vec_) \ vec_->num = size_; \ } \ \ static inline TDEF VEC_OP (TDEF,replace) \ (VEC (TDEF) *vec_, unsigned ix_, TDEF obj_ VEC_CHECK_DECL) \ { \ TDEF old_obj_; \ \ VEC_ASSERT (ix_ < vec_->num, "replace", TDEF); \ old_obj_ = vec_->vec[ix_]; \ vec_->vec[ix_] = obj_; \ \ return old_obj_; \ } \ \ static inline unsigned VEC_OP (TDEF,lower_bound) \ (VEC (TDEF) *vec_, const TDEF obj_, bool (*lessthan_)(const TDEF, const TDEF) VEC_CHECK_DECL) \ { \ unsigned int len_ = VEC_OP (TDEF, length) (vec_); \ unsigned int half_, middle_; \ unsigned int first_ = 0; \ while (len_ > 0) \ { \ TDEF middle_elem_; \ half_ = len_ >> 1; \ middle_ = first_; \ middle_ += half_; \ middle_elem_ = VEC_OP (TDEF, index) (vec_, middle_ VEC_CHECK_PASS); \ if (lessthan_ (middle_elem_, obj_)) \ { \ first_ = middle_; \ ++first_; \ len_ = len_ - half_ - 1; \ } \ else \ len_ = half_; \ } \ return first_; \ } \ \ static inline TDEF *VEC_OP (TDEF,quick_insert) \ (VEC (TDEF) *vec_, unsigned ix_, TDEF obj_ VEC_CHECK_DECL) \ { \ TDEF *slot_; \ \ VEC_ASSERT (vec_->num < vec_->alloc, "insert", TDEF); \ VEC_ASSERT (ix_ <= vec_->num, "insert", TDEF); \ slot_ = &vec_->vec[ix_]; \ memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (TDEF)); \ *slot_ = obj_; \ \ return slot_; \ } \ \ static inline TDEF *VEC_OP (TDEF,safe_insert) \ (VEC (TDEF) **vec_, unsigned ix_, TDEF obj_ \ VEC_CHECK_DECL MEM_STAT_DECL) \ { \ VEC_OP (TDEF,reserve) (vec_, -1 PASS_MEM_STAT); \ \ return VEC_OP (TDEF,quick_insert) (*vec_, ix_, obj_ VEC_CHECK_PASS); \ } \ \ static inline TDEF VEC_OP (TDEF,ordered_remove) \ (VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \ { \ TDEF *slot_; \ TDEF obj_; \ \ VEC_ASSERT (ix_ < vec_->num, "remove", TDEF); \ slot_ = &vec_->vec[ix_]; \ obj_ = *slot_; \ memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (TDEF)); \ \ return obj_; \ } \ \ static inline TDEF VEC_OP (TDEF,unordered_remove) \ (VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \ { \ TDEF *slot_; \ TDEF obj_; \ \ VEC_ASSERT (ix_ < vec_->num, "remove", TDEF); \ slot_ = &vec_->vec[ix_]; \ obj_ = *slot_; \ *slot_ = vec_->vec[--vec_->num]; \ \ return obj_; \ } \ \ static inline TDEF *VEC_OP (TDEF,address) \ (VEC (TDEF) *vec_) \ { \ return vec_ ? vec_->vec : 0; \ } \ \ struct vec_swallow_trailing_semi #endif /* Vector of object. */ #if IN_GENGTYPE {"DEF_VEC_GC_O", VEC_STRINGIFY (VEC_TDEF (#)) ";", NULL}, {"DEF_VEC_MALLOC_O", "", NULL}, #else #define DEF_VEC_GC_O(TDEF) DEF_VEC_O(TDEF,gc) #define DEF_VEC_MALLOC_O(TDEF) DEF_VEC_O(TDEF,heap) #define DEF_VEC_O(TDEF,a) \ VEC_TDEF (TDEF); \ \ static inline unsigned VEC_OP (TDEF,length) \ (const VEC (TDEF) *vec_) \ { \ return vec_ ? vec_->num : 0; \ } \ \ static inline TDEF *VEC_OP (TDEF,last) \ (VEC (TDEF) *vec_ VEC_CHECK_DECL) \ { \ VEC_ASSERT (vec_ && vec_->num, "last", TDEF); \ \ return &vec_->vec[vec_->num - 1]; \ } \ \ static inline TDEF *VEC_OP (TDEF,index) \ (VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \ { \ VEC_ASSERT (vec_ && ix_ < vec_->num, "index", TDEF); \ \ return &vec_->vec[ix_]; \ } \ \ static inline int VEC_OP (TDEF,iterate) \ (VEC (TDEF) *vec_, unsigned ix_, TDEF **ptr) \ { \ if (vec_ && ix_ < vec_->num) \ { \ *ptr = &vec_->vec[ix_]; \ return 1; \ } \ else \ { \ *ptr = 0; \ return 0; \ } \ } \ \ static inline VEC (TDEF) *VEC_OP (TDEF,alloc) \ (int alloc_ MEM_STAT_DECL) \ { \ return (VEC (TDEF) *) vec_##a##_o_reserve (NULL, alloc_ - !alloc_, \ offsetof (VEC(TDEF),vec), sizeof (TDEF)\ PASS_MEM_STAT); \ } \ \ static inline void VEC_OP (TDEF,free) \ (VEC (TDEF) **vec_) \ { \ vec_##a##_free (*vec_); \ *vec_ = NULL; \ } \ \ static inline size_t VEC_OP (TDEF,embedded_size) \ (int alloc_) \ { \ return offsetof (VEC(TDEF),vec) + alloc_ * sizeof(TDEF); \ } \ \ static inline void VEC_OP (TDEF,embedded_init) \ (VEC (TDEF) *vec_, int alloc_) \ { \ vec_->num = 0; \ vec_->alloc = alloc_; \ } \ \ static inline int VEC_OP (TDEF,space) \ (VEC (TDEF) *vec_, int alloc_) \ { \ return vec_ ? ((vec_)->alloc - (vec_)->num \ < (unsigned)(alloc_ < 0 ? 1 : alloc_)) : alloc_ != 0; \ } \ \ static inline int VEC_OP (TDEF,reserve) \ (VEC (TDEF) **vec_, int alloc_ MEM_STAT_DECL) \ { \ int extend = VEC_OP (TDEF,space) (*vec_, alloc_); \ \ if (extend) \ *vec_ = (VEC (TDEF) *) vec_##a##_o_reserve (*vec_, alloc_, \ offsetof (VEC(TDEF),vec), sizeof (TDEF) \ PASS_MEM_STAT); \ \ return extend; \ } \ \ static inline TDEF *VEC_OP (TDEF,quick_push) \ (VEC (TDEF) *vec_, const TDEF *obj_ VEC_CHECK_DECL) \ { \ TDEF *slot_; \ \ VEC_ASSERT (vec_->num < vec_->alloc, "push", TDEF); \ slot_ = &vec_->vec[vec_->num++]; \ if (obj_) \ *slot_ = *obj_; \ \ return slot_; \ } \ \ static inline TDEF *VEC_OP (TDEF,safe_push) \ (VEC (TDEF) **vec_, const TDEF *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ { \ VEC_OP (TDEF,reserve) (vec_, -1 PASS_MEM_STAT); \ \ return VEC_OP (TDEF,quick_push) (*vec_, obj_ VEC_CHECK_PASS); \ } \ \ static inline void VEC_OP (TDEF,pop) \ (VEC (TDEF) *vec_ VEC_CHECK_DECL) \ { \ VEC_ASSERT (vec_->num, "pop", TDEF); \ --vec_->num; \ } \ \ static inline void VEC_OP (TDEF,truncate) \ (VEC (TDEF) *vec_, unsigned size_ VEC_CHECK_DECL) \ { \ VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", TDEF); \ if (vec_) \ vec_->num = size_; \ } \ \ static inline TDEF *VEC_OP (TDEF,replace) \ (VEC (TDEF) *vec_, unsigned ix_, const TDEF *obj_ VEC_CHECK_DECL) \ { \ TDEF *slot_; \ \ VEC_ASSERT (ix_ < vec_->num, "replace", TDEF); \ slot_ = &vec_->vec[ix_]; \ if (obj_) \ *slot_ = *obj_; \ \ return slot_; \ } \ \ static inline unsigned VEC_OP (TDEF,lower_bound) \ (VEC (TDEF) *vec_, const TDEF *obj_, bool (*lessthan_)(const TDEF *, const TDEF *) VEC_CHECK_DECL) \ { \ unsigned int len_ = VEC_OP (TDEF, length) (vec_); \ unsigned int half_, middle_; \ unsigned int first_ = 0; \ while (len_ > 0) \ { \ TDEF *middle_elem_; \ half_ = len_ >> 1; \ middle_ = first_; \ middle_ += half_; \ middle_elem_ = VEC_OP (TDEF, index) (vec_, middle_ VEC_CHECK_PASS); \ if (lessthan_ (middle_elem_, obj_)) \ { \ first_ = middle_; \ ++first_; \ len_ = len_ - half_ - 1; \ } \ else \ len_ = half_; \ } \ return first_; \ } \ \ static inline TDEF *VEC_OP (TDEF,quick_insert) \ (VEC (TDEF) *vec_, unsigned ix_, const TDEF *obj_ VEC_CHECK_DECL) \ { \ TDEF *slot_; \ \ VEC_ASSERT (vec_->num < vec_->alloc, "insert", TDEF); \ VEC_ASSERT (ix_ <= vec_->num, "insert", TDEF); \ slot_ = &vec_->vec[ix_]; \ memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (TDEF)); \ if (obj_) \ *slot_ = *obj_; \ \ return slot_; \ } \ \ static inline TDEF *VEC_OP (TDEF,safe_insert) \ (VEC (TDEF) **vec_, unsigned ix_, const TDEF *obj_ \ VEC_CHECK_DECL MEM_STAT_DECL) \ { \ VEC_OP (TDEF,reserve) (vec_, -1 PASS_MEM_STAT); \ \ return VEC_OP (TDEF,quick_insert) (*vec_, ix_, obj_ VEC_CHECK_PASS); \ } \ \ static inline void VEC_OP (TDEF,ordered_remove) \ (VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \ { \ TDEF *slot_; \ \ VEC_ASSERT (ix_ < vec_->num, "remove", TDEF); \ slot_ = &vec_->vec[ix_]; \ memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (TDEF)); \ } \ \ static inline void VEC_OP (TDEF,unordered_remove) \ (VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \ { \ VEC_ASSERT (ix_ < vec_->num, "remove", TDEF); \ vec_->vec[ix_] = vec_->vec[--vec_->num]; \ } \ \ static inline TDEF *VEC_OP (TDEF,address) \ (VEC (TDEF) *vec_) \ { \ return vec_ ? vec_->vec : 0; \ } \ \ struct vec_swallow_trailing_semi #endif #endif /* GCC_VEC_H */