/* Vector API for GNU compiler. Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc. Contributed by Nathan Sidwell Re-implemented in C++ by Diego Novillo This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_VEC_H #define GCC_VEC_H #include "statistics.h" /* For MEM_STAT_DECL. */ /* The macros here implement a set of templated vector types and associated interfaces. These templates are implemented with macros, as we're not in C++ land. The interface functions are typesafe and use static inline functions, sometimes backed by out-of-line generic functions. The vectors are designed to interoperate with the GTY machinery. Because of the different behavior of structure objects, scalar objects and of pointers, there are three flavors, one for each of these variants. Both the structure object and pointer variants pass pointers to objects around -- in the former case the pointers are stored into the vector and in the latter case the pointers are dereferenced and the objects copied into the vector. The scalar object variant is suitable for int-like objects, and the vector elements are returned by value. There are both 'index' and 'iterate' accessors. The iterator returns a boolean iteration condition and updates the iteration variable passed by reference. Because the iterator will be inlined, the address-of can be optimized away. The vectors are implemented using the trailing array idiom, thus they are not resizeable without changing the address of the vector object itself. This means you cannot have variables or fields of vector type -- always use a pointer to a vector. The one exception is the final field of a structure, which could be a vector type. You will have to use the embedded_size & embedded_init calls to create such objects, and they will probably not be resizeable (so don't use the 'safe' allocation variants). The trailing array idiom is used (rather than a pointer to an array of data), because, if we allow NULL to also represent an empty vector, empty vectors occupy minimal space in the structure containing them. Each operation that increases the number of active elements is available in 'quick' and 'safe' variants. The former presumes that there is sufficient allocated space for the operation to succeed (it dies if there is not). The latter will reallocate the vector, if needed. Reallocation causes an exponential increase in vector size. If you know you will be adding N elements, it would be more efficient to use the reserve operation before adding the elements with the 'quick' operation. This will ensure there are at least as many elements as you ask for, it will exponentially increase if there are too few spare slots. If you want reserve a specific number of slots, but do not want the exponential increase (for instance, you know this is the last allocation), use the reserve_exact operation. You can also create a vector of a specific size from the get go. You should prefer the push and pop operations, as they append and remove from the end of the vector. If you need to remove several items in one go, use the truncate operation. The insert and remove operations allow you to change elements in the middle of the vector. There are two remove operations, one which preserves the element ordering 'ordered_remove', and one which does not 'unordered_remove'. The latter function copies the end element into the removed slot, rather than invoke a memmove operation. The 'lower_bound' function will determine where to place an item in the array using insert that will maintain sorted order. When a vector type is defined, first a non-memory managed version is created. You can then define either or both garbage collected and heap allocated versions. The allocation mechanism is specified when the type is defined, and is therefore part of the type. If you need both gc'd and heap allocated versions, you still must have *exactly* one definition of the common non-memory managed base vector. If you need to directly manipulate a vector, then the 'address' accessor will return the address of the start of the vector. Also the 'space' predicate will tell you whether there is spare capacity in the vector. You will not normally need to use these two functions. Vector types are defined using a DEF_VEC_{O,A,P,I}(TYPEDEF) macro, to get the non-memory allocation version, and then a DEF_VEC_ALLOC_{O,A,P,I}(TYPEDEF,ALLOC) macro to get memory managed vectors. Variables of vector type are declared using a VEC(TYPEDEF,ALLOC) macro. The ALLOC argument specifies the allocation strategy, and can be either 'gc' or 'heap' for garbage collected and heap allocated respectively. It can be 'none' to get a vector that must be explicitly allocated (for instance as a trailing array of another structure). The characters O, A, P and I indicate whether TYPEDEF is a pointer (P), object (O), atomic object (A) or integral (I) type. Be careful to pick the correct one, as you'll get an awkward and inefficient API if you use the wrong one or a even a crash if you pick the atomic object version when the object version should have been chosen instead. There is a check, which results in a compile-time warning, for the P and I versions, but there is no check for the O versions, as that is not possible in plain C. Due to the way GTY works, you must annotate any structures you wish to insert or reference from a vector with a GTY(()) tag. You need to do this even if you never declare the GC allocated variants. An example of their use would be, DEF_VEC_P(tree); // non-managed tree vector. DEF_VEC_ALLOC_P(tree,gc); // gc'd vector of tree pointers. This must // appear at file scope. struct my_struct { VEC(tree,gc) *v; // A (pointer to) a vector of tree pointers. }; struct my_struct *s; if (VEC_length(tree,s->v)) { we have some contents } VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++) { do something with elt } */ #if ENABLE_CHECKING #define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__ #define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_ #define VEC_CHECK_PASS ,file_,line_,function_ #define VEC_ASSERT(EXPR,OP,T,A) \ (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0)) extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL) ATTRIBUTE_NORETURN; #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS) #else #define VEC_CHECK_INFO #define VEC_CHECK_DECL #define VEC_CHECK_PASS #define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR) #endif #define VEC(T,A) vec_t enum vec_allocation_t { heap, gc, stack }; struct vec_prefix { unsigned num; unsigned alloc; }; /* Vector type, user visible. */ template struct GTY(()) vec_t { vec_prefix prefix; T vec[1]; }; /* Garbage collection support for vec_t. */ template void gt_ggc_mx (vec_t *v) { extern void gt_ggc_mx (T&); for (unsigned i = 0; i < v->prefix.num; i++) gt_ggc_mx (v->vec[i]); } /* PCH support for vec_t. */ template void gt_pch_nx (vec_t *v) { extern void gt_pch_nx (T&); for (unsigned i = 0; i < v->prefix.num; i++) gt_pch_nx (v->vec[i]); } template void gt_pch_nx (vec_t *v, gt_pointer_operator op, void *cookie) { for (unsigned i = 0; i < v->prefix.num; i++) op (&(v->vec[i]), cookie); } template void gt_pch_nx (vec_t *v, gt_pointer_operator op, void *cookie) { extern void gt_pch_nx (T *, gt_pointer_operator, void *); for (unsigned i = 0; i < v->prefix.num; i++) gt_pch_nx (&(v->vec[i]), op, cookie); } /* FIXME cxx-conversion. Remove these definitions and update all calling sites. */ /* Vector of integer-like object. */ #define DEF_VEC_I(T) struct vec_swallow_trailing_semi #define DEF_VEC_ALLOC_I(T,A) struct vec_swallow_trailing_semi /* Vector of pointer to object. */ #define DEF_VEC_P(T) struct vec_swallow_trailing_semi #define DEF_VEC_ALLOC_P(T,A) struct vec_swallow_trailing_semi /* Vector of object. */ #define DEF_VEC_O(T) struct vec_swallow_trailing_semi #define DEF_VEC_ALLOC_O(T,A) struct vec_swallow_trailing_semi /* Vectors on the stack. */ #define DEF_VEC_ALLOC_P_STACK(T) struct vec_swallow_trailing_semi #define DEF_VEC_ALLOC_O_STACK(T) struct vec_swallow_trailing_semi #define DEF_VEC_ALLOC_I_STACK(T) struct vec_swallow_trailing_semi /* Vectors of atomic types. Atomic types do not need to have its elements marked for GC and PCH. To avoid unnecessary traversals, we provide template instantiations for the GC/PCH functions that do not traverse the vector. FIXME cxx-conversion - Once vec_t users are converted this can be provided in some other way (e.g., adding an additional template parameter to the vec_t class). */ #define DEF_VEC_A(TYPE) \ template \ void \ gt_ggc_mx (vec_t *v ATTRIBUTE_UNUSED) \ { \ } \ \ template \ void \ gt_pch_nx (vec_t *v ATTRIBUTE_UNUSED) \ { \ } \ \ template \ void \ gt_pch_nx (vec_t *v ATTRIBUTE_UNUSED, \ gt_pointer_operator op ATTRIBUTE_UNUSED, \ void *cookie ATTRIBUTE_UNUSED) \ { \ } \ struct vec_swallow_trailing_semi #define DEF_VEC_ALLOC_A(T,A) struct vec_swallow_trailing_semi /* Support functions for stack vectors. */ extern void *vec_stack_p_reserve_exact_1 (int, void *); extern void *vec_stack_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL); extern void *vec_stack_o_reserve_exact (void *, int, size_t, size_t MEM_STAT_DECL); extern void vec_stack_free (void *); /* Reallocate an array of elements with prefix. */ template extern vec_t *vec_reserve (vec_t *, int MEM_STAT_DECL); template extern vec_t *vec_reserve_exact (vec_t *, int MEM_STAT_DECL); extern void dump_vec_loc_statistics (void); extern void ggc_free (void *); extern void vec_heap_free (void *); /* Macros to invoke API calls. A single macro works for both pointer and object vectors, but the argument and return types might well be different. In each macro, T is the typedef of the vector elements, and A is the allocation strategy. The allocation strategy is only present when it is required. Some of these macros pass the vector, V, by reference (by taking its address), this is noted in the descriptions. */ /* Length of vector unsigned VEC_T_length(const VEC(T) *v); Return the number of active elements in V. V can be NULL, in which case zero is returned. */ #define VEC_length(T,V) (VEC_length_1 (V)) template static inline unsigned VEC_length_1 (const vec_t *vec_) { return vec_ ? vec_->prefix.num : 0; } /* Check if vector is empty int VEC_T_empty(const VEC(T) *v); Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */ #define VEC_empty(T,V) (VEC_empty_1 (V)) template static inline bool VEC_empty_1 (const vec_t *vec_) { return VEC_length (T, vec_) == 0; } /* Get the address of the array of elements T *VEC_T_address (VEC(T) v) If you need to directly manipulate the array (for instance, you want to feed it to qsort), use this accessor. */ #define VEC_address(T,V) (VEC_address_1 (V)) template static inline T * VEC_address_1 (vec_t *vec_) { return vec_ ? vec_->vec : 0; } /* Get the final element of the vector. T VEC_T_last(VEC(T) *v); // Integer T VEC_T_last(VEC(T) *v); // Pointer T *VEC_T_last(VEC(T) *v); // Object Return the final element. V must not be empty. */ #define VEC_last(T,V) (VEC_last_1 (V VEC_CHECK_INFO)) template static inline T& VEC_last_1 (vec_t *vec_ VEC_CHECK_DECL) { VEC_ASSERT (vec_ && vec_->prefix.num, "last", T, base); return vec_->vec[vec_->prefix.num - 1]; } /* Index into vector T VEC_T_index(VEC(T) *v, unsigned ix); // Integer T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer T *VEC_T_index(VEC(T) *v, unsigned ix); // Object Return the IX'th element. IX must be in the domain of V. */ #define VEC_index(T,V,I) (VEC_index_1 (V, I VEC_CHECK_INFO)) template static inline T& VEC_index_1 (vec_t *vec_, unsigned ix_ VEC_CHECK_DECL) { VEC_ASSERT (vec_ && ix_ < vec_->prefix.num, "index", T, base); return vec_->vec[ix_]; } template static inline const T& VEC_index_1 (const vec_t *vec_, unsigned ix_ VEC_CHECK_DECL) { VEC_ASSERT (vec_ && ix_ < vec_->prefix.num, "index", T, base); return vec_->vec[ix_]; } /* Iterate over vector int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object Return iteration condition and update PTR to point to the IX'th element. At the end of iteration, sets PTR to NULL. Use this to iterate over the elements of a vector as follows, for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++) continue; */ #define VEC_iterate(T,V,I,P) (VEC_iterate_1 (V, I, &(P))) template static inline bool VEC_iterate_1 (const vec_t *vec_, unsigned ix_, T *ptr) { if (vec_ && ix_ < vec_->prefix.num) { *ptr = vec_->vec[ix_]; return true; } else { *ptr = 0; return false; } } template static inline bool VEC_iterate_1 (vec_t *vec_, unsigned ix_, T **ptr) { if (vec_ && ix_ < vec_->prefix.num) { *ptr = &vec_->vec[ix_]; return true; } else { *ptr = 0; return false; } } /* Convenience macro for forward iteration. */ #define FOR_EACH_VEC_ELT(T, V, I, P) \ for (I = 0; VEC_iterate (T, (V), (I), (P)); ++(I)) /* Likewise, but start from FROM rather than 0. */ #define FOR_EACH_VEC_ELT_FROM(T, V, I, P, FROM) \ for (I = (FROM); VEC_iterate (T, (V), (I), (P)); ++(I)) /* Convenience macro for reverse iteration. */ #define FOR_EACH_VEC_ELT_REVERSE(T,V,I,P) \ for (I = VEC_length (T, (V)) - 1; \ VEC_iterate (T, (V), (I), (P)); \ (I)--) /* Use these to determine the required size and initialization of a vector embedded within another structure (as the final member). size_t VEC_T_embedded_size(int reserve); void VEC_T_embedded_init(VEC(T) *v, int reserve); These allow the caller to perform the memory allocation. */ #define VEC_embedded_size(T,N) (VEC_embedded_size_1 (N)) template static inline size_t VEC_embedded_size_1 (int alloc_) { return offsetof (vec_t, vec) + alloc_ * sizeof (T); } #define VEC_embedded_init(T,O,N) (VEC_embedded_init_1 (O, N)) template static inline void VEC_embedded_init_1 (vec_t *vec_, int alloc_) { vec_->prefix.num = 0; vec_->prefix.alloc = alloc_; } /* Allocate new vector. VEC(T,A) *VEC_T_A_alloc(int reserve); Allocate a new vector with space for RESERVE objects. If RESERVE is zero, NO vector is created. We support a vector which starts out with space on the stack and switches to heap space when forced to reallocate. This works a little differently. In the case of stack vectors, VEC_alloc will expand to a call to VEC_alloc_1 that calls XALLOCAVAR to request the initial allocation. This uses alloca to get the initial space. Since alloca can not be usefully called in an inline function, VEC_alloc must always be a macro. Only the initial allocation will be made using alloca, so pass a reasonable estimate that doesn't use too much stack space; don't pass zero. Don't return a VEC(TYPE,stack) vector from the function which allocated it. */ #define VEC_alloc(T,A,N) \ ((A == stack) \ ? VEC_alloc_1 (N, \ XALLOCAVAR (vec_t, \ VEC_embedded_size_1 (N))) \ : VEC_alloc_1 (N MEM_STAT_INFO)) template static inline vec_t * VEC_alloc_1 (int alloc_ MEM_STAT_DECL) { return vec_reserve_exact (NULL, alloc_ PASS_MEM_STAT); } template static inline vec_t * VEC_alloc_1 (int alloc_, vec_t *space) { return (vec_t *) vec_stack_p_reserve_exact_1 (alloc_, space); } /* Free a vector. void VEC_T_A_free(VEC(T,A) *&); Free a vector and set it to NULL. */ #define VEC_free(T,A,V) (VEC_free_1 (&V)) template static inline void VEC_free_1 (vec_t **vec_) { if (*vec_) { if (A == heap) vec_heap_free (*vec_); else if (A == gc) ggc_free (*vec_); else if (A == stack) vec_stack_free (*vec_); } *vec_ = NULL; } /* Copy a vector. VEC(T,A) *VEC_T_A_copy(VEC(T) *); Copy the live elements of a vector into a new vector. The new and old vectors need not be allocated by the same mechanism. */ #define VEC_copy(T,A,V) (VEC_copy_1 (V MEM_STAT_INFO)) template static inline vec_t * VEC_copy_1 (vec_t *vec_ MEM_STAT_DECL) { size_t len_ = vec_ ? vec_->prefix.num : 0; vec_t *new_vec_ = NULL; if (len_) { new_vec_ = vec_reserve_exact (NULL, len_ PASS_MEM_STAT); new_vec_->prefix.num = len_; memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); } return new_vec_; } /* Determine if a vector has additional capacity. int VEC_T_space (VEC(T) *v,int reserve) If V has space for RESERVE additional entries, return nonzero. You usually only need to use this if you are doing your own vector reallocation, for instance on an embedded vector. This returns nonzero in exactly the same circumstances that VEC_T_reserve will. */ #define VEC_space(T,V,R) (VEC_space_1 (V, R VEC_CHECK_INFO)) template static inline int VEC_space_1 (vec_t *vec_, int alloc_ VEC_CHECK_DECL) { VEC_ASSERT (alloc_ >= 0, "space", T, base); return vec_ ? vec_->prefix.alloc - vec_->prefix.num >= (unsigned)alloc_ : !alloc_; } /* Reserve space. int VEC_T_A_reserve(VEC(T,A) *&v, int reserve); Ensure that V has at least RESERVE slots available. This will create additional headroom. Note this can cause V to be reallocated. Returns nonzero iff reallocation actually occurred. */ #define VEC_reserve(T,A,V,R) \ (VEC_reserve_1 (&(V), (int)(R) VEC_CHECK_INFO MEM_STAT_INFO)) template static inline int VEC_reserve_1 (vec_t **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) { int extend = !VEC_space_1 (*vec_, alloc_ VEC_CHECK_PASS); if (extend) *vec_ = vec_reserve (*vec_, alloc_ PASS_MEM_STAT); return extend; } /* Reserve space exactly. int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve); Ensure that V has at least RESERVE slots available. This will not create additional headroom. Note this can cause V to be reallocated. Returns nonzero iff reallocation actually occurred. */ #define VEC_reserve_exact(T,A,V,R) \ (VEC_reserve_exact_1 (&(V), R VEC_CHECK_INFO MEM_STAT_INFO)) template static inline int VEC_reserve_exact_1 (vec_t **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) { int extend = !VEC_space_1 (*vec_, alloc_ VEC_CHECK_PASS); if (extend) *vec_ = vec_reserve_exact (*vec_, alloc_ PASS_MEM_STAT); return extend; } /* Copy elements with no reallocation void VEC_T_splice (VEC(T) *dst, VEC(T) *src); // Integer void VEC_T_splice (VEC(T) *dst, VEC(T) *src); // Pointer void VEC_T_splice (VEC(T) *dst, VEC(T) *src); // Object Copy the elements in SRC to the end of DST as if by memcpy. DST and SRC need not be allocated with the same mechanism, although they most often will be. DST is assumed to have sufficient headroom available. */ #define VEC_splice(T,DST,SRC) (VEC_splice_1 (DST, SRC VEC_CHECK_INFO)) template static inline void VEC_splice_1 (vec_t *dst_, vec_t *src_ VEC_CHECK_DECL) { if (src_) { unsigned len_ = src_->prefix.num; VEC_ASSERT (dst_->prefix.num + len_ <= dst_->prefix.alloc, "splice", T, base); memcpy (&dst_->vec[dst_->prefix.num], &src_->vec[0], len_ * sizeof (T)); dst_->prefix.num += len_; } } /* Copy elements with reallocation void VEC_T_safe_splice (VEC(T,A) *&dst, VEC(T) *src); // Integer void VEC_T_safe_splice (VEC(T,A) *&dst, VEC(T) *src); // Pointer void VEC_T_safe_splice (VEC(T,A) *&dst, VEC(T) *src); // Object Copy the elements in SRC to the end of DST as if by memcpy. DST and SRC need not be allocated with the same mechanism, although they most often will be. DST need not have sufficient headroom and will be reallocated if needed. */ #define VEC_safe_splice(T,A,DST,SRC) \ (VEC_safe_splice_1 (&(DST), SRC VEC_CHECK_INFO MEM_STAT_INFO)) template static inline void VEC_safe_splice_1 (vec_t **dst_, vec_t *src_ VEC_CHECK_DECL MEM_STAT_DECL) { if (src_) { VEC_reserve_exact_1 (dst_, src_->prefix.num VEC_CHECK_PASS MEM_STAT_INFO); VEC_splice_1 (*dst_, src_ VEC_CHECK_PASS); } } /* Push object with no reallocation T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object Push a new element onto the end, returns a pointer to the slot filled in. For object vectors, the new value can be NULL, in which case NO initialization is performed. There must be sufficient space in the vector. */ #define VEC_quick_push(T,V,O) (VEC_quick_push_1 (V, O VEC_CHECK_INFO)) template static inline T & VEC_quick_push_1 (vec_t *vec_, T obj_ VEC_CHECK_DECL) { VEC_ASSERT (vec_->prefix.num < vec_->prefix.alloc, "push", T, base); vec_->vec[vec_->prefix.num] = obj_; T &val_ = vec_->vec[vec_->prefix.num]; vec_->prefix.num++; return val_; } template static inline T * VEC_quick_push_1 (vec_t *vec_, const T *ptr_ VEC_CHECK_DECL) { T *slot_; VEC_ASSERT (vec_->prefix.num < vec_->prefix.alloc, "push", T, base); slot_ = &vec_->vec[vec_->prefix.num++]; if (ptr_) *slot_ = *ptr_; return slot_; } /* Push object with reallocation T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object Push a new element onto the end, returns a pointer to the slot filled in. For object vectors, the new value can be NULL, in which case NO initialization is performed. Reallocates V, if needed. */ #define VEC_safe_push(T,A,V,O) \ (VEC_safe_push_1 (&(V), O VEC_CHECK_INFO MEM_STAT_INFO)) template static inline T & VEC_safe_push_1 (vec_t **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) { VEC_reserve_1 (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); return VEC_quick_push_1 (*vec_, obj_ VEC_CHECK_PASS); } template static inline T * VEC_safe_push_1 (vec_t **vec_, const T *ptr_ VEC_CHECK_DECL MEM_STAT_DECL) { VEC_reserve_1 (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); return VEC_quick_push_1 (*vec_, ptr_ VEC_CHECK_PASS); } /* Pop element off end T VEC_T_pop (VEC(T) *v); // Integer T VEC_T_pop (VEC(T) *v); // Pointer void VEC_T_pop (VEC(T) *v); // Object Pop the last element off the end. Returns the element popped, for pointer vectors. */ #define VEC_pop(T,V) (VEC_pop_1 (V VEC_CHECK_INFO)) template static inline T& VEC_pop_1 (vec_t *vec_ VEC_CHECK_DECL) { VEC_ASSERT (vec_->prefix.num, "pop", T, base); return vec_->vec[--vec_->prefix.num]; } /* Truncate to specific length void VEC_T_truncate (VEC(T) *v, unsigned len); Set the length as specified. The new length must be less than or equal to the current length. This is an O(1) operation. */ #define VEC_truncate(T,V,I) \ (VEC_truncate_1 (V, (unsigned)(I) VEC_CHECK_INFO)) template static inline void VEC_truncate_1 (vec_t *vec_, unsigned size_ VEC_CHECK_DECL) { VEC_ASSERT (vec_ ? vec_->prefix.num >= size_ : !size_, "truncate", T, base); if (vec_) vec_->prefix.num = size_; } /* Grow to a specific length. void VEC_T_A_safe_grow (VEC(T,A) *&v, int len); Grow the vector to a specific length. The LEN must be as long or longer than the current length. The new elements are uninitialized. */ #define VEC_safe_grow(T,A,V,I) \ (VEC_safe_grow_1 (&(V), (int)(I) VEC_CHECK_INFO MEM_STAT_INFO)) template static inline void VEC_safe_grow_1 (vec_t **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) { VEC_ASSERT (size_ >= 0 && VEC_length (T, *vec_) <= (unsigned)size_, "grow", T, A); VEC_reserve_exact_1 (vec_, size_ - (int)(*vec_ ? (*vec_)->prefix.num : 0) VEC_CHECK_PASS PASS_MEM_STAT); (*vec_)->prefix.num = size_; } /* Grow to a specific length. void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len); Grow the vector to a specific length. The LEN must be as long or longer than the current length. The new elements are initialized to zero. */ #define VEC_safe_grow_cleared(T,A,V,I) \ (VEC_safe_grow_cleared_1 (&(V), (int)(I) \ VEC_CHECK_INFO MEM_STAT_INFO)) template static inline void VEC_safe_grow_cleared_1 (vec_t **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) { int oldsize = VEC_length (T, *vec_); VEC_safe_grow_1 (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); memset (&(VEC_address (T, *vec_)[oldsize]), 0, sizeof (T) * (size_ - oldsize)); } /* Replace element T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object Replace the IXth element of V with a new value, VAL. For pointer vectors returns the original value. For object vectors returns a pointer to the new value. For object vectors the new value can be NULL, in which case no overwriting of the slot is actually performed. */ #define VEC_replace(T,V,I,O) \ (VEC_replace_1 (V, (unsigned)(I), O VEC_CHECK_INFO)) template static inline T& VEC_replace_1 (vec_t *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) { VEC_ASSERT (ix_ < vec_->prefix.num, "replace", T, base); vec_->vec[ix_] = obj_; return vec_->vec[ix_]; } /* Insert object with no reallocation void VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer void VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer void VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object Insert an element, VAL, at the IXth position of V. For vectors of object, the new value can be NULL, in which case no initialization of the inserted slot takes place. There must be sufficient space. */ #define VEC_quick_insert(T,V,I,O) \ (VEC_quick_insert_1 (V,I,O VEC_CHECK_INFO)) template static inline void VEC_quick_insert_1 (vec_t *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) { T *slot_; VEC_ASSERT (vec_->prefix.num < vec_->prefix.alloc, "insert", T, base); VEC_ASSERT (ix_ <= vec_->prefix.num, "insert", T, base); slot_ = &vec_->vec[ix_]; memmove (slot_ + 1, slot_, (vec_->prefix.num++ - ix_) * sizeof (T)); *slot_ = obj_; } template static inline void VEC_quick_insert_1 (vec_t *vec_, unsigned ix_, const T *ptr_ VEC_CHECK_DECL) { T *slot_; VEC_ASSERT (vec_->prefix.num < vec_->prefix.alloc, "insert", T, base); VEC_ASSERT (ix_ <= vec_->prefix.num, "insert", T, base); slot_ = &vec_->vec[ix_]; memmove (slot_ + 1, slot_, (vec_->prefix.num++ - ix_) * sizeof (T)); if (ptr_) *slot_ = *ptr_; } /* Insert object with reallocation T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object Insert an element, VAL, at the IXth position of V. Return a pointer to the slot created. For vectors of object, the new value can be NULL, in which case no initialization of the inserted slot takes place. Reallocate V, if necessary. */ #define VEC_safe_insert(T,A,V,I,O) \ (VEC_safe_insert_1 (&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO)) template static inline void VEC_safe_insert_1 (vec_t **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) { VEC_reserve_1 (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); VEC_quick_insert_1 (*vec_, ix_, obj_ VEC_CHECK_PASS); } template static inline void VEC_safe_insert_1 (vec_t **vec_, unsigned ix_, T *ptr_ VEC_CHECK_DECL MEM_STAT_DECL) { VEC_reserve_1 (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); VEC_quick_insert_1 (*vec_, ix_, ptr_ VEC_CHECK_PASS); } /* Remove element retaining order void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object Remove an element from the IXth position of V. Ordering of remaining elements is preserved. This is an O(N) operation due to a memmove. */ #define VEC_ordered_remove(T,V,I) \ (VEC_ordered_remove_1 (V,I VEC_CHECK_INFO)) template static inline void VEC_ordered_remove_1 (vec_t *vec_, unsigned ix_ VEC_CHECK_DECL) { T *slot_; VEC_ASSERT (ix_ < vec_->prefix.num, "remove", T, base); slot_ = &vec_->vec[ix_]; memmove (slot_, slot_ + 1, (--vec_->prefix.num - ix_) * sizeof (T)); } /* Remove element destroying order void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object Remove an element from the IXth position of V. Ordering of remaining elements is destroyed. This is an O(1) operation. */ #define VEC_unordered_remove(T,V,I) \ (VEC_unordered_remove_1 (V,I VEC_CHECK_INFO)) template static inline void VEC_unordered_remove_1 (vec_t *vec_, unsigned ix_ VEC_CHECK_DECL) { VEC_ASSERT (ix_ < vec_->prefix.num, "remove", T, base); vec_->vec[ix_] = vec_->vec[--vec_->prefix.num]; } /* Remove a block of elements void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len); Remove LEN elements starting at the IXth. Ordering is retained. This is an O(N) operation due to memmove. */ #define VEC_block_remove(T,V,I,L) \ (VEC_block_remove_1 (V, I, L VEC_CHECK_INFO)) template static inline void VEC_block_remove_1 (vec_t *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) { T *slot_; VEC_ASSERT (ix_ + len_ <= vec_->prefix.num, "block_remove", T, base); slot_ = &vec_->vec[ix_]; vec_->prefix.num -= len_; memmove (slot_, slot_ + len_, (vec_->prefix.num - ix_) * sizeof (T)); } /* Conveniently sort the contents of the vector with qsort. void VEC_qsort (VEC(T) *v, int (*cmp_func)(const void *, const void *)) */ #define VEC_qsort(T,V,CMP) qsort(VEC_address (T, V), VEC_length (T, V), \ sizeof (T), CMP) /* Find the first index in the vector not less than the object. unsigned VEC_T_lower_bound (VEC(T) *v, const T val, bool (*lessthan) (const T, const T)); // Integer unsigned VEC_T_lower_bound (VEC(T) *v, const T val, bool (*lessthan) (const T, const T)); // Pointer unsigned VEC_T_lower_bound (VEC(T) *v, const T *val, bool (*lessthan) (const T*, const T*)); // Object Find the first position in which VAL could be inserted without changing the ordering of V. LESSTHAN is a function that returns true if the first argument is strictly less than the second. */ #define VEC_lower_bound(T,V,O,LT) \ (VEC_lower_bound_1 (V, O, LT VEC_CHECK_INFO)) template static inline unsigned VEC_lower_bound_1 (vec_t *vec_, T obj_, bool (*lessthan_)(T, T) VEC_CHECK_DECL) { unsigned int len_ = VEC_length (T, vec_); unsigned int half_, middle_; unsigned int first_ = 0; while (len_ > 0) { T middle_elem_; half_ = len_ >> 1; middle_ = first_; middle_ += half_; middle_elem_ = VEC_index_1 (vec_, middle_ VEC_CHECK_PASS); if (lessthan_ (middle_elem_, obj_)) { first_ = middle_; ++first_; len_ = len_ - half_ - 1; } else len_ = half_; } return first_; } template static inline unsigned VEC_lower_bound_1 (vec_t *vec_, const T *ptr_, bool (*lessthan_)(const T*, const T*) VEC_CHECK_DECL) { unsigned int len_ = VEC_length (T, vec_); unsigned int half_, middle_; unsigned int first_ = 0; while (len_ > 0) { T *middle_elem_; half_ = len_ >> 1; middle_ = first_; middle_ += half_; middle_elem_ = &VEC_index_1 (vec_, middle_ VEC_CHECK_PASS); if (lessthan_ (middle_elem_, ptr_)) { first_ = middle_; ++first_; len_ = len_ - half_ - 1; } else len_ = half_; } return first_; } void *vec_heap_o_reserve_1 (void *, int, size_t, size_t, bool MEM_STAT_DECL); void *vec_gc_o_reserve_1 (void *, int, size_t, size_t, bool MEM_STAT_DECL); /* Ensure there are at least RESERVE free slots in VEC_, growing exponentially. If RESERVE < 0 grow exactly, else grow exponentially. As a special case, if VEC_ is NULL, and RESERVE is 0, no vector will be created. */ template vec_t * vec_reserve (vec_t *vec_, int reserve MEM_STAT_DECL) { if (A == gc) return (vec_t *) vec_gc_o_reserve_1 (vec_, reserve, offsetof (vec_t, vec), sizeof (T), false PASS_MEM_STAT); else if (A == heap) return (vec_t *) vec_heap_o_reserve_1 (vec_, reserve, offsetof (vec_t, vec), sizeof (T), false PASS_MEM_STAT); else { /* Only allow stack vectors when re-growing them. The initial allocation of stack vectors must be done with the VEC_stack_alloc macro, because it uses alloca() for the allocation. */ if (vec_ == NULL) { fprintf (stderr, "Stack vectors must be initially allocated " "with VEC_stack_alloc.\n"); gcc_unreachable (); } return (vec_t *) vec_stack_o_reserve (vec_, reserve, offsetof (vec_t, vec), sizeof (T) PASS_MEM_STAT); } } /* Ensure there are at least RESERVE free slots in VEC_, growing exactly. If RESERVE < 0 grow exactly, else grow exponentially. As a special case, if VEC_ is NULL, and RESERVE is 0, no vector will be created. */ template vec_t * vec_reserve_exact (vec_t *vec_, int reserve MEM_STAT_DECL) { if (A == gc) return (vec_t *) vec_gc_o_reserve_1 (vec_, reserve, sizeof (struct vec_prefix), sizeof (T), true PASS_MEM_STAT); else if (A == heap) return (vec_t *) vec_heap_o_reserve_1 (vec_, reserve, sizeof (struct vec_prefix), sizeof (T), true PASS_MEM_STAT); else if (A == stack) { /* Only allow stack vectors when re-growing them. The initial allocation of stack vectors must be done with VEC_alloc, because it uses alloca() for the allocation. */ if (vec_ == NULL) { fprintf (stderr, "Stack vectors must be initially allocated " "with VEC_stack_alloc.\n"); gcc_unreachable (); } return (vec_t *) vec_stack_o_reserve_exact (vec_, reserve, sizeof (struct vec_prefix), sizeof (T) PASS_MEM_STAT); } } #endif /* GCC_VEC_H */