/* Output variables, constants and external declarations, for GNU compiler.
Copyright (C) 1987-2023 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
/* This file handles generation of all the assembler code
*except* the instructions of a function.
This includes declarations of variables and their initial values.
We also output the assembler code for constants stored in memory
and are responsible for combining constants with the same value. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "predict.h"
#include "memmodel.h"
#include "tm_p.h"
#include "stringpool.h"
#include "regs.h"
#include "emit-rtl.h"
#include "cgraph.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "varasm.h"
#include "version.h"
#include "flags.h"
#include "stmt.h"
#include "expr.h"
#include "expmed.h"
#include "optabs.h"
#include "output.h"
#include "langhooks.h"
#include "debug.h"
#include "common/common-target.h"
#include "stringpool.h"
#include "attribs.h"
#include "asan.h"
#include "rtl-iter.h"
#include "file-prefix-map.h" /* remap_debug_filename() */
#include "alloc-pool.h"
#include "toplev.h"
#include "opts.h"
/* The (assembler) name of the first globally-visible object output. */
extern GTY(()) const char *first_global_object_name;
extern GTY(()) const char *weak_global_object_name;
const char *first_global_object_name;
const char *weak_global_object_name;
class addr_const;
class constant_descriptor_rtx;
struct rtx_constant_pool;
#define n_deferred_constants (crtl->varasm.deferred_constants)
/* Number for making the label on the next
constant that is stored in memory. */
static GTY(()) int const_labelno;
/* Carry information from ASM_DECLARE_OBJECT_NAME
to ASM_FINISH_DECLARE_OBJECT. */
int size_directive_output;
/* The last decl for which assemble_variable was called,
if it did ASM_DECLARE_OBJECT_NAME.
If the last call to assemble_variable didn't do that,
this holds 0. */
tree last_assemble_variable_decl;
/* The following global variable indicates if the first basic block
in a function belongs to the cold partition or not. */
bool first_function_block_is_cold;
/* Whether we saw any functions with no_split_stack. */
static bool saw_no_split_stack;
static const char *strip_reg_name (const char *);
static bool contains_pointers_p (tree);
#ifdef ASM_OUTPUT_EXTERNAL
static bool incorporeal_function_p (tree);
#endif
static void decode_addr_const (tree, class addr_const *);
static hashval_t const_hash_1 (const tree);
static bool compare_constant (const tree, const tree);
static void output_constant_def_contents (rtx);
static void output_addressed_constants (tree, int);
static unsigned HOST_WIDE_INT output_constant (tree, unsigned HOST_WIDE_INT,
unsigned int, bool, bool);
static void globalize_decl (tree);
static bool decl_readonly_section_1 (enum section_category);
#ifdef BSS_SECTION_ASM_OP
#ifdef ASM_OUTPUT_ALIGNED_BSS
static void asm_output_aligned_bss (FILE *, tree, const char *,
unsigned HOST_WIDE_INT, int)
ATTRIBUTE_UNUSED;
#endif
#endif /* BSS_SECTION_ASM_OP */
static void mark_weak (tree);
static void output_constant_pool (const char *, tree);
static void handle_vtv_comdat_section (section *, const_tree);
/* Well-known sections, each one associated with some sort of *_ASM_OP. */
section *text_section;
section *data_section;
section *readonly_data_section;
section *sdata_section;
section *ctors_section;
section *dtors_section;
section *bss_section;
section *sbss_section;
/* Various forms of common section. All are guaranteed to be nonnull. */
section *tls_comm_section;
section *comm_section;
section *lcomm_section;
/* A SECTION_NOSWITCH section used for declaring global BSS variables.
May be null. */
section *bss_noswitch_section;
/* The section that holds the main exception table, when known. The section
is set either by the target's init_sections hook or by the first call to
switch_to_exception_section. */
section *exception_section;
/* The section that holds the DWARF2 frame unwind information, when known.
The section is set either by the target's init_sections hook or by the
first call to switch_to_eh_frame_section. */
section *eh_frame_section;
/* asm_out_file's current section. This is NULL if no section has yet
been selected or if we lose track of what the current section is. */
section *in_section;
/* True if code for the current function is currently being directed
at the cold section. */
bool in_cold_section_p;
/* The following global holds the "function name" for the code in the
cold section of a function, if hot/cold function splitting is enabled
and there was actually code that went into the cold section. A
pseudo function name is needed for the cold section of code for some
debugging tools that perform symbolization. */
tree cold_function_name = NULL_TREE;
/* A linked list of all the unnamed sections. */
static GTY(()) section *unnamed_sections;
/* Return a nonzero value if DECL has a section attribute. */
#define IN_NAMED_SECTION(DECL) \
(VAR_OR_FUNCTION_DECL_P (DECL) && DECL_SECTION_NAME (DECL) != NULL)
struct section_hasher : ggc_ptr_hash
{
typedef const char *compare_type;
static hashval_t hash (section *);
static bool equal (section *, const char *);
};
/* Hash table of named sections. */
static GTY(()) hash_table *section_htab;
struct object_block_hasher : ggc_ptr_hash
{
typedef const section *compare_type;
static hashval_t hash (object_block *);
static bool equal (object_block *, const section *);
};
/* A table of object_blocks, indexed by section. */
static GTY(()) hash_table *object_block_htab;
/* The next number to use for internal anchor labels. */
static GTY(()) int anchor_labelno;
/* A pool of constants that can be shared between functions. */
static GTY(()) struct rtx_constant_pool *shared_constant_pool;
/* Helper routines for maintaining section_htab. */
bool
section_hasher::equal (section *old, const char *new_name)
{
return strcmp (old->named.name, new_name) == 0;
}
hashval_t
section_hasher::hash (section *old)
{
return htab_hash_string (old->named.name);
}
/* Return a hash value for section SECT. */
static hashval_t
hash_section (section *sect)
{
if (sect->common.flags & SECTION_NAMED)
return htab_hash_string (sect->named.name);
return sect->common.flags & ~SECTION_DECLARED;
}
/* Helper routines for maintaining object_block_htab. */
inline bool
object_block_hasher::equal (object_block *old, const section *new_section)
{
return old->sect == new_section;
}
hashval_t
object_block_hasher::hash (object_block *old)
{
return hash_section (old->sect);
}
/* Return a new unnamed section with the given fields. */
section *
get_unnamed_section (unsigned int flags, void (*callback) (const char *),
const char *data)
{
section *sect;
sect = ggc_alloc ();
sect->unnamed.common.flags = flags | SECTION_UNNAMED;
sect->unnamed.callback = callback;
sect->unnamed.data = data;
sect->unnamed.next = unnamed_sections;
unnamed_sections = sect;
return sect;
}
/* Return a SECTION_NOSWITCH section with the given fields. */
static section *
get_noswitch_section (unsigned int flags, noswitch_section_callback callback)
{
section *sect;
sect = ggc_alloc ();
sect->noswitch.common.flags = flags | SECTION_NOSWITCH;
sect->noswitch.callback = callback;
return sect;
}
/* Return the named section structure associated with NAME. Create
a new section with the given fields if no such structure exists.
When NOT_EXISTING, then fail if the section already exists. Return
the existing section if the SECTION_RETAIN bit doesn't match. Set
the SECTION_WRITE | SECTION_RELRO bits on the existing section
if one of the section flags is SECTION_WRITE | SECTION_RELRO and the
other has none of these flags in named sections and either the section
hasn't been declared yet or has been declared as writable. */
section *
get_section (const char *name, unsigned int flags, tree decl,
bool not_existing)
{
section *sect, **slot;
slot = section_htab->find_slot_with_hash (name, htab_hash_string (name),
INSERT);
flags |= SECTION_NAMED;
if (decl != nullptr
&& DECL_P (decl)
&& lookup_attribute ("retain", DECL_ATTRIBUTES (decl)))
flags |= SECTION_RETAIN;
if (*slot == NULL)
{
sect = ggc_alloc ();
sect->named.common.flags = flags;
sect->named.name = ggc_strdup (name);
sect->named.decl = decl;
*slot = sect;
}
else
{
if (not_existing)
internal_error ("section already exists: %qs", name);
sect = *slot;
/* It is fine if one of the sections has SECTION_NOTYPE as long as
the other has none of the contrary flags (see the logic at the end
of default_section_type_flags, below). */
if (((sect->common.flags ^ flags) & SECTION_NOTYPE)
&& !((sect->common.flags | flags)
& (SECTION_CODE | SECTION_BSS | SECTION_TLS | SECTION_ENTSIZE
| (HAVE_COMDAT_GROUP ? SECTION_LINKONCE : 0))))
{
sect->common.flags |= SECTION_NOTYPE;
flags |= SECTION_NOTYPE;
}
if ((sect->common.flags & ~SECTION_DECLARED) != flags
&& ((sect->common.flags | flags) & SECTION_OVERRIDE) == 0)
{
/* It is fine if one of the section flags is
SECTION_WRITE | SECTION_RELRO and the other has none of these
flags (i.e. read-only) in named sections and either the
section hasn't been declared yet or has been declared as writable.
In that case just make sure the resulting flags are
SECTION_WRITE | SECTION_RELRO, ie. writable only because of
relocations. */
if (((sect->common.flags ^ flags) & (SECTION_WRITE | SECTION_RELRO))
== (SECTION_WRITE | SECTION_RELRO)
&& (sect->common.flags
& ~(SECTION_DECLARED | SECTION_WRITE | SECTION_RELRO))
== (flags & ~(SECTION_WRITE | SECTION_RELRO))
&& ((sect->common.flags & SECTION_DECLARED) == 0
|| (sect->common.flags & SECTION_WRITE)))
{
sect->common.flags |= (SECTION_WRITE | SECTION_RELRO);
return sect;
}
/* If the SECTION_RETAIN bit doesn't match, return and switch
to a new section later. */
if ((sect->common.flags & SECTION_RETAIN)
!= (flags & SECTION_RETAIN))
return sect;
/* Sanity check user variables for flag changes. */
if (sect->named.decl != NULL
&& DECL_P (sect->named.decl)
&& decl != sect->named.decl)
{
if (decl != NULL && DECL_P (decl))
error ("%+qD causes a section type conflict with %qD",
decl, sect->named.decl);
else
error ("section type conflict with %qD", sect->named.decl);
inform (DECL_SOURCE_LOCATION (sect->named.decl),
"%qD was declared here", sect->named.decl);
}
else if (decl != NULL && DECL_P (decl))
error ("%+qD causes a section type conflict", decl);
else
error ("section type conflict");
/* Make sure we don't error about one section multiple times. */
sect->common.flags |= SECTION_OVERRIDE;
}
}
return sect;
}
/* Return true if the current compilation mode benefits from having
objects grouped into blocks. */
static bool
use_object_blocks_p (void)
{
return flag_section_anchors;
}
/* Return the object_block structure for section SECT. Create a new
structure if we haven't created one already. Return null if SECT
itself is null. Return also null for mergeable sections since
section anchors can't be used in mergeable sections anyway,
because the linker might move objects around, and using the
object blocks infrastructure in that case is both a waste and a
maintenance burden. */
static struct object_block *
get_block_for_section (section *sect)
{
struct object_block *block;
if (sect == NULL)
return NULL;
if (sect->common.flags & SECTION_MERGE)
return NULL;
object_block **slot
= object_block_htab->find_slot_with_hash (sect, hash_section (sect),
INSERT);
block = *slot;
if (block == NULL)
{
block = ggc_cleared_alloc ();
block->sect = sect;
*slot = block;
}
return block;
}
/* Create a symbol with label LABEL and place it at byte offset
OFFSET in BLOCK. OFFSET can be negative if the symbol's offset
is not yet known. LABEL must be a garbage-collected string. */
static rtx
create_block_symbol (const char *label, struct object_block *block,
HOST_WIDE_INT offset)
{
rtx symbol;
unsigned int size;
/* Create the extended SYMBOL_REF. */
size = RTX_HDR_SIZE + sizeof (struct block_symbol);
symbol = (rtx) ggc_internal_alloc (size);
/* Initialize the normal SYMBOL_REF fields. */
memset (symbol, 0, size);
PUT_CODE (symbol, SYMBOL_REF);
PUT_MODE (symbol, Pmode);
XSTR (symbol, 0) = label;
SYMBOL_REF_FLAGS (symbol) = SYMBOL_FLAG_HAS_BLOCK_INFO;
/* Initialize the block_symbol stuff. */
SYMBOL_REF_BLOCK (symbol) = block;
SYMBOL_REF_BLOCK_OFFSET (symbol) = offset;
return symbol;
}
/* Return a section with a particular name and with whatever SECTION_*
flags section_type_flags deems appropriate. The name of the section
is taken from NAME if nonnull, otherwise it is taken from DECL's
DECL_SECTION_NAME. DECL is the decl associated with the section
(see the section comment for details) and RELOC is as for
section_type_flags. */
section *
get_named_section (tree decl, const char *name, int reloc)
{
unsigned int flags;
if (name == NULL)
{
gcc_assert (decl && DECL_P (decl) && DECL_SECTION_NAME (decl));
name = DECL_SECTION_NAME (decl);
}
flags = targetm.section_type_flags (decl, name, reloc);
return get_section (name, flags, decl);
}
/* Worker for resolve_unique_section. */
static bool
set_implicit_section (struct symtab_node *n, void *data ATTRIBUTE_UNUSED)
{
n->implicit_section = true;
return false;
}
/* If required, set DECL_SECTION_NAME to a unique name. */
void
resolve_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED,
int flag_function_or_data_sections)
{
if (DECL_SECTION_NAME (decl) == NULL
&& targetm_common.have_named_sections
&& (flag_function_or_data_sections
|| lookup_attribute ("retain", DECL_ATTRIBUTES (decl))
|| DECL_COMDAT_GROUP (decl)))
{
targetm.asm_out.unique_section (decl, reloc);
if (DECL_SECTION_NAME (decl))
symtab_node::get (decl)->call_for_symbol_and_aliases
(set_implicit_section, NULL, true);
}
}
#ifdef BSS_SECTION_ASM_OP
#ifdef ASM_OUTPUT_ALIGNED_BSS
/* Utility function for targets to use in implementing
ASM_OUTPUT_ALIGNED_BSS.
??? It is believed that this function will work in most cases so such
support is localized here. */
static void
asm_output_aligned_bss (FILE *file, tree decl ATTRIBUTE_UNUSED,
const char *name, unsigned HOST_WIDE_INT size,
int align)
{
switch_to_section (bss_section);
ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
#ifdef ASM_DECLARE_OBJECT_NAME
last_assemble_variable_decl = decl;
ASM_DECLARE_OBJECT_NAME (file, name, decl);
#else
/* Standard thing is just output label for the object. */
ASM_OUTPUT_LABEL (file, name);
#endif /* ASM_DECLARE_OBJECT_NAME */
ASM_OUTPUT_SKIP (file, size ? size : 1);
}
#endif
#endif /* BSS_SECTION_ASM_OP */
#ifndef USE_SELECT_SECTION_FOR_FUNCTIONS
/* Return the hot section for function DECL. Return text_section for
null DECLs. */
static section *
hot_function_section (tree decl)
{
if (decl != NULL_TREE
&& DECL_SECTION_NAME (decl) != NULL
&& targetm_common.have_named_sections)
return get_named_section (decl, NULL, 0);
else
return text_section;
}
#endif
/* Return section for TEXT_SECTION_NAME if DECL or DECL_SECTION_NAME (DECL)
is NULL.
When DECL_SECTION_NAME is non-NULL and it is implicit section and
NAMED_SECTION_SUFFIX is non-NULL, then produce section called
concatenate the name with NAMED_SECTION_SUFFIX.
Otherwise produce "TEXT_SECTION_NAME.IMPLICIT_NAME". */
section *
get_named_text_section (tree decl,
const char *text_section_name,
const char *named_section_suffix)
{
if (decl && DECL_SECTION_NAME (decl))
{
if (named_section_suffix)
{
const char *dsn = DECL_SECTION_NAME (decl);
const char *stripped_name;
char *name, *buffer;
name = (char *) alloca (strlen (dsn) + 1);
memcpy (name, dsn,
strlen (dsn) + 1);
stripped_name = targetm.strip_name_encoding (name);
buffer = ACONCAT ((stripped_name, named_section_suffix, NULL));
return get_named_section (decl, buffer, 0);
}
else if (symtab_node::get (decl)->implicit_section)
{
const char *name;
/* Do not try to split gnu_linkonce functions. This gets somewhat
slipperly. */
if (DECL_COMDAT_GROUP (decl) && !HAVE_COMDAT_GROUP)
return NULL;
name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
name = targetm.strip_name_encoding (name);
return get_named_section (decl, ACONCAT ((text_section_name, ".",
name, NULL)), 0);
}
else
return NULL;
}
return get_named_section (decl, text_section_name, 0);
}
/* Choose named function section based on its frequency. */
section *
default_function_section (tree decl, enum node_frequency freq,
bool startup, bool exit)
{
#if defined HAVE_LD_EH_GC_SECTIONS && defined HAVE_LD_EH_GC_SECTIONS_BUG
/* Old GNU linkers have buggy --gc-section support, which sometimes
results in .gcc_except_table* sections being garbage collected. */
if (decl
&& symtab_node::get (decl)->implicit_section)
return NULL;
#endif
if (!flag_reorder_functions
|| !targetm_common.have_named_sections)
return NULL;
/* Startup code should go to startup subsection unless it is
unlikely executed (this happens especially with function splitting
where we can split away unnecessary parts of static constructors. */
if (startup && freq != NODE_FREQUENCY_UNLIKELY_EXECUTED)
{
/* During LTO the tp_first_run profiling will naturally place all
initialization code first. Using separate section is counter-productive
because startup only code may call functions which are no longer
startup only. */
if (!in_lto_p
|| !cgraph_node::get (decl)->tp_first_run
|| !opt_for_fn (decl, flag_profile_reorder_functions))
return get_named_text_section (decl, ".text.startup", NULL);
else
return NULL;
}
/* Similarly for exit. */
if (exit && freq != NODE_FREQUENCY_UNLIKELY_EXECUTED)
return get_named_text_section (decl, ".text.exit", NULL);
/* Group cold functions together, similarly for hot code. */
switch (freq)
{
case NODE_FREQUENCY_UNLIKELY_EXECUTED:
return get_named_text_section (decl, ".text.unlikely", NULL);
case NODE_FREQUENCY_HOT:
return get_named_text_section (decl, ".text.hot", NULL);
/* FALLTHRU */
default:
return NULL;
}
}
/* Return the section for function DECL.
If DECL is NULL_TREE, return the text section. We can be passed
NULL_TREE under some circumstances by dbxout.cc at least.
If FORCE_COLD is true, return cold function section ignoring
the frequency info of cgraph_node. */
static section *
function_section_1 (tree decl, bool force_cold)
{
section *section = NULL;
enum node_frequency freq = NODE_FREQUENCY_NORMAL;
bool startup = false, exit = false;
if (decl)
{
struct cgraph_node *node = cgraph_node::get (decl);
if (node)
{
freq = node->frequency;
startup = node->only_called_at_startup;
exit = node->only_called_at_exit;
}
}
if (force_cold)
freq = NODE_FREQUENCY_UNLIKELY_EXECUTED;
#ifdef USE_SELECT_SECTION_FOR_FUNCTIONS
if (decl != NULL_TREE
&& DECL_SECTION_NAME (decl) != NULL)
{
if (targetm.asm_out.function_section)
section = targetm.asm_out.function_section (decl, freq,
startup, exit);
if (section)
return section;
return get_named_section (decl, NULL, 0);
}
else
return targetm.asm_out.select_section
(decl, freq == NODE_FREQUENCY_UNLIKELY_EXECUTED,
symtab_node::get (decl)->definition_alignment ());
#else
if (targetm.asm_out.function_section)
section = targetm.asm_out.function_section (decl, freq, startup, exit);
if (section)
return section;
return hot_function_section (decl);
#endif
}
/* Return the section for function DECL.
If DECL is NULL_TREE, return the text section. We can be passed
NULL_TREE under some circumstances by dbxout.cc at least. */
section *
function_section (tree decl)
{
/* Handle cases where function splitting code decides
to put function entry point into unlikely executed section
despite the fact that the function itself is not cold
(i.e. it is called rarely but contains a hot loop that is
better to live in hot subsection for the code locality). */
return function_section_1 (decl,
first_function_block_is_cold);
}
/* Return the section for the current function, take IN_COLD_SECTION_P
into account. */
section *
current_function_section (void)
{
return function_section_1 (current_function_decl, in_cold_section_p);
}
/* Tell assembler to switch to unlikely-to-be-executed text section. */
section *
unlikely_text_section (void)
{
return function_section_1 (current_function_decl, true);
}
/* When called within a function context, return true if the function
has been assigned a cold text section and if SECT is that section.
When called outside a function context, return true if SECT is the
default cold section. */
bool
unlikely_text_section_p (section *sect)
{
return sect == function_section_1 (current_function_decl, true);
}
/* Switch to the other function partition (if inside of hot section
into cold section, otherwise into the hot section). */
void
switch_to_other_text_partition (void)
{
in_cold_section_p = !in_cold_section_p;
switch_to_section (current_function_section ());
}
/* Return the read-only or relocated read-only data section
associated with function DECL. */
section *
default_function_rodata_section (tree decl, bool relocatable)
{
const char* sname;
unsigned int flags;
flags = 0;
if (relocatable)
{
sname = ".data.rel.ro.local";
flags = (SECTION_WRITE | SECTION_RELRO);
}
else
sname = ".rodata";
if (decl && DECL_SECTION_NAME (decl))
{
const char *name = DECL_SECTION_NAME (decl);
if (DECL_COMDAT_GROUP (decl) && HAVE_COMDAT_GROUP)
{
const char *dot;
size_t len;
char* rname;
dot = strchr (name + 1, '.');
if (!dot)
dot = name;
len = strlen (dot) + strlen (sname) + 1;
rname = (char *) alloca (len);
strcpy (rname, sname);
strcat (rname, dot);
return get_section (rname, (SECTION_LINKONCE | flags), decl);
}
/* For .gnu.linkonce.t.foo we want to use .gnu.linkonce.r.foo or
.gnu.linkonce.d.rel.ro.local.foo if the jump table is relocatable. */
else if (DECL_COMDAT_GROUP (decl)
&& startswith (name, ".gnu.linkonce.t."))
{
size_t len;
char *rname;
if (relocatable)
{
len = strlen (name) + strlen (".rel.ro.local") + 1;
rname = (char *) alloca (len);
strcpy (rname, ".gnu.linkonce.d.rel.ro.local");
strcat (rname, name + 15);
}
else
{
len = strlen (name) + 1;
rname = (char *) alloca (len);
memcpy (rname, name, len);
rname[14] = 'r';
}
return get_section (rname, (SECTION_LINKONCE | flags), decl);
}
/* For .text.foo we want to use .rodata.foo. */
else if (flag_function_sections && flag_data_sections
&& startswith (name, ".text."))
{
size_t len = strlen (name) + 1;
char *rname = (char *) alloca (len + strlen (sname) - 5);
memcpy (rname, sname, strlen (sname));
memcpy (rname + strlen (sname), name + 5, len - 5);
return get_section (rname, flags, decl);
}
}
if (relocatable)
return get_section (sname, flags, decl);
else
return readonly_data_section;
}
/* Return the read-only data section associated with function DECL
for targets where that section should be always the single
readonly data section. */
section *
default_no_function_rodata_section (tree, bool)
{
return readonly_data_section;
}
/* A subroutine of mergeable_string_section and mergeable_constant_section. */
static const char *
function_mergeable_rodata_prefix (void)
{
section *s = targetm.asm_out.function_rodata_section (current_function_decl,
false);
if (SECTION_STYLE (s) == SECTION_NAMED)
return s->named.name;
else
return targetm.asm_out.mergeable_rodata_prefix;
}
/* Return the section to use for string merging. */
static section *
mergeable_string_section (tree decl ATTRIBUTE_UNUSED,
unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED,
unsigned int flags ATTRIBUTE_UNUSED)
{
HOST_WIDE_INT len;
if (HAVE_GAS_SHF_MERGE && flag_merge_constants
&& TREE_CODE (decl) == STRING_CST
&& TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
&& align <= 256
&& (len = int_size_in_bytes (TREE_TYPE (decl))) > 0
&& TREE_STRING_LENGTH (decl) == len)
{
scalar_int_mode mode;
unsigned int modesize;
const char *str;
HOST_WIDE_INT i;
int j, unit;
const char *prefix = function_mergeable_rodata_prefix ();
char *name = (char *) alloca (strlen (prefix) + 30);
mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (TREE_TYPE (decl)));
modesize = GET_MODE_BITSIZE (mode);
if (modesize >= 8 && modesize <= 256
&& (modesize & (modesize - 1)) == 0)
{
if (align < modesize)
align = modesize;
if (!HAVE_LD_ALIGNED_SHF_MERGE && align > 8)
return readonly_data_section;
str = TREE_STRING_POINTER (decl);
unit = GET_MODE_SIZE (mode);
/* Check for embedded NUL characters. */
for (i = 0; i < len; i += unit)
{
for (j = 0; j < unit; j++)
if (str[i + j] != '\0')
break;
if (j == unit)
break;
}
if (i == len - unit || (unit == 1 && i == len))
{
sprintf (name, "%s.str%d.%d", prefix,
modesize / 8, (int) (align / 8));
flags |= (modesize / 8) | SECTION_MERGE | SECTION_STRINGS;
return get_section (name, flags, NULL);
}
}
}
return readonly_data_section;
}
/* Return the section to use for constant merging. */
section *
mergeable_constant_section (machine_mode mode ATTRIBUTE_UNUSED,
unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED,
unsigned int flags ATTRIBUTE_UNUSED)
{
if (HAVE_GAS_SHF_MERGE && flag_merge_constants
&& mode != VOIDmode
&& mode != BLKmode
&& known_le (GET_MODE_BITSIZE (mode), align)
&& align >= 8
&& align <= 256
&& (align & (align - 1)) == 0
&& (HAVE_LD_ALIGNED_SHF_MERGE ? 1 : align == 8))
{
const char *prefix = function_mergeable_rodata_prefix ();
char *name = (char *) alloca (strlen (prefix) + 30);
sprintf (name, "%s.cst%d", prefix, (int) (align / 8));
flags |= (align / 8) | SECTION_MERGE;
return get_section (name, flags, NULL);
}
return readonly_data_section;
}
/* Given NAME, a putative register name, discard any customary prefixes. */
static const char *
strip_reg_name (const char *name)
{
#ifdef REGISTER_PREFIX
if (!strncmp (name, REGISTER_PREFIX, strlen (REGISTER_PREFIX)))
name += strlen (REGISTER_PREFIX);
#endif
if (name[0] == '%' || name[0] == '#')
name++;
return name;
}
/* The user has asked for a DECL to have a particular name. Set (or
change) it in such a way that we don't prefix an underscore to
it. */
void
set_user_assembler_name (tree decl, const char *name)
{
char *starred = (char *) alloca (strlen (name) + 2);
starred[0] = '*';
strcpy (starred + 1, name);
symtab->change_decl_assembler_name (decl, get_identifier (starred));
SET_DECL_RTL (decl, NULL_RTX);
}
/* Decode an `asm' spec for a declaration as a register name.
Return the register number, or -1 if nothing specified,
or -2 if the ASMSPEC is not `cc' or `memory' and is not recognized,
or -3 if ASMSPEC is `cc' and is not recognized,
or -4 if ASMSPEC is `memory' and is not recognized.
Accept an exact spelling or a decimal number.
Prefixes such as % are optional. */
int
decode_reg_name_and_count (const char *asmspec, int *pnregs)
{
/* Presume just one register is clobbered. */
*pnregs = 1;
if (asmspec != 0)
{
int i;
/* Get rid of confusing prefixes. */
asmspec = strip_reg_name (asmspec);
/* Allow a decimal number as a "register name". */
for (i = strlen (asmspec) - 1; i >= 0; i--)
if (! ISDIGIT (asmspec[i]))
break;
if (asmspec[0] != 0 && i < 0)
{
i = atoi (asmspec);
if (i < FIRST_PSEUDO_REGISTER && i >= 0 && reg_names[i][0])
return i;
else
return -2;
}
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (reg_names[i][0]
&& ! strcmp (asmspec, strip_reg_name (reg_names[i])))
return i;
#ifdef OVERLAPPING_REGISTER_NAMES
{
static const struct
{
const char *const name;
const int number;
const int nregs;
} table[] = OVERLAPPING_REGISTER_NAMES;
for (i = 0; i < (int) ARRAY_SIZE (table); i++)
if (table[i].name[0]
&& ! strcmp (asmspec, table[i].name))
{
*pnregs = table[i].nregs;
return table[i].number;
}
}
#endif /* OVERLAPPING_REGISTER_NAMES */
#ifdef ADDITIONAL_REGISTER_NAMES
{
static const struct { const char *const name; const int number; } table[]
= ADDITIONAL_REGISTER_NAMES;
for (i = 0; i < (int) ARRAY_SIZE (table); i++)
if (table[i].name[0]
&& ! strcmp (asmspec, table[i].name)
&& reg_names[table[i].number][0])
return table[i].number;
}
#endif /* ADDITIONAL_REGISTER_NAMES */
if (!strcmp (asmspec, "memory"))
return -4;
if (!strcmp (asmspec, "cc"))
return -3;
return -2;
}
return -1;
}
int
decode_reg_name (const char *name)
{
int count;
return decode_reg_name_and_count (name, &count);
}
/* Return true if DECL's initializer is suitable for a BSS section. */
bool
bss_initializer_p (const_tree decl, bool named)
{
/* Do not put non-common constants into the .bss section, they belong in
a readonly section, except when NAMED is true. */
return ((!TREE_READONLY (decl) || DECL_COMMON (decl) || named)
&& (DECL_INITIAL (decl) == NULL
/* In LTO we have no errors in program; error_mark_node is used
to mark offlined constructors. */
|| (DECL_INITIAL (decl) == error_mark_node
&& !in_lto_p)
|| (flag_zero_initialized_in_bss
&& initializer_zerop (DECL_INITIAL (decl))
/* A decl with the "persistent" attribute applied and
explicitly initialized to 0 should not be treated as a BSS
variable. */
&& !DECL_PERSISTENT_P (decl))));
}
/* Compute the alignment of variable specified by DECL.
DONT_OUTPUT_DATA is from assemble_variable. */
void
align_variable (tree decl, bool dont_output_data)
{
unsigned int align = DECL_ALIGN (decl);
/* In the case for initialing an array whose length isn't specified,
where we have not yet been able to do the layout,
figure out the proper alignment now. */
if (dont_output_data && DECL_SIZE (decl) == 0
&& TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
align = MAX (align, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (decl))));
/* Some object file formats have a maximum alignment which they support.
In particular, a.out format supports a maximum alignment of 4. */
if (align > MAX_OFILE_ALIGNMENT)
{
error ("alignment of %q+D is greater than maximum object "
"file alignment %d", decl,
MAX_OFILE_ALIGNMENT/BITS_PER_UNIT);
align = MAX_OFILE_ALIGNMENT;
}
if (! DECL_USER_ALIGN (decl))
{
#ifdef DATA_ABI_ALIGNMENT
unsigned int data_abi_align
= DATA_ABI_ALIGNMENT (TREE_TYPE (decl), align);
/* For backwards compatibility, don't assume the ABI alignment for
TLS variables. */
if (! DECL_THREAD_LOCAL_P (decl) || data_abi_align <= BITS_PER_WORD)
align = data_abi_align;
#endif
/* On some machines, it is good to increase alignment sometimes.
But as DECL_ALIGN is used both for actually emitting the variable
and for code accessing the variable as guaranteed alignment, we
can only increase the alignment if it is a performance optimization
if the references to it must bind to the current definition. */
if (decl_binds_to_current_def_p (decl)
&& !DECL_VIRTUAL_P (decl))
{
#ifdef DATA_ALIGNMENT
unsigned int data_align = DATA_ALIGNMENT (TREE_TYPE (decl), align);
/* Don't increase alignment too much for TLS variables - TLS space
is too precious. */
if (! DECL_THREAD_LOCAL_P (decl) || data_align <= BITS_PER_WORD)
align = data_align;
#endif
if (DECL_INITIAL (decl) != 0
/* In LTO we have no errors in program; error_mark_node is used
to mark offlined constructors. */
&& (in_lto_p || DECL_INITIAL (decl) != error_mark_node))
{
unsigned int const_align
= targetm.constant_alignment (DECL_INITIAL (decl), align);
/* Don't increase alignment too much for TLS variables - TLS
space is too precious. */
if (! DECL_THREAD_LOCAL_P (decl) || const_align <= BITS_PER_WORD)
align = const_align;
}
}
}
/* Reset the alignment in case we have made it tighter, so we can benefit
from it in get_pointer_alignment. */
SET_DECL_ALIGN (decl, align);
}
/* Return DECL_ALIGN (decl), possibly increased for optimization purposes
beyond what align_variable returned. */
static unsigned int
get_variable_align (tree decl)
{
unsigned int align = DECL_ALIGN (decl);
/* For user aligned vars or static vars align_variable already did
everything. */
if (DECL_USER_ALIGN (decl) || !TREE_PUBLIC (decl))
return align;
#ifdef DATA_ABI_ALIGNMENT
if (DECL_THREAD_LOCAL_P (decl))
align = DATA_ABI_ALIGNMENT (TREE_TYPE (decl), align);
#endif
/* For decls that bind to the current definition, align_variable
did also everything, except for not assuming ABI required alignment
of TLS variables. For other vars, increase the alignment here
as an optimization. */
if (!decl_binds_to_current_def_p (decl))
{
/* On some machines, it is good to increase alignment sometimes. */
#ifdef DATA_ALIGNMENT
unsigned int data_align = DATA_ALIGNMENT (TREE_TYPE (decl), align);
/* Don't increase alignment too much for TLS variables - TLS space
is too precious. */
if (! DECL_THREAD_LOCAL_P (decl) || data_align <= BITS_PER_WORD)
align = data_align;
#endif
if (DECL_INITIAL (decl) != 0
/* In LTO we have no errors in program; error_mark_node is used
to mark offlined constructors. */
&& (in_lto_p || DECL_INITIAL (decl) != error_mark_node))
{
unsigned int const_align
= targetm.constant_alignment (DECL_INITIAL (decl), align);
/* Don't increase alignment too much for TLS variables - TLS space
is too precious. */
if (! DECL_THREAD_LOCAL_P (decl) || const_align <= BITS_PER_WORD)
align = const_align;
}
}
return align;
}
/* Compute reloc for get_variable_section. The return value
is a mask for which bit 1 indicates a global relocation, and bit 0
indicates a local relocation. */
int
compute_reloc_for_var (tree decl)
{
int reloc;
if (DECL_INITIAL (decl) == error_mark_node)
reloc = contains_pointers_p (TREE_TYPE (decl)) ? 3 : 0;
else if (DECL_INITIAL (decl))
reloc = compute_reloc_for_constant (DECL_INITIAL (decl));
else
reloc = 0;
return reloc;
}
/* Return the section into which the given VAR_DECL or CONST_DECL
should be placed. PREFER_NOSWITCH_P is true if a noswitch
section should be used wherever possible. */
section *
get_variable_section (tree decl, bool prefer_noswitch_p)
{
addr_space_t as = ADDR_SPACE_GENERIC;
int reloc;
varpool_node *vnode = varpool_node::get (decl);
if (vnode)
{
vnode = vnode->ultimate_alias_target ();
decl = vnode->decl;
}
if (TREE_TYPE (decl) != error_mark_node)
as = TYPE_ADDR_SPACE (TREE_TYPE (decl));
/* We need the constructor to figure out reloc flag. */
if (vnode)
vnode->get_constructor ();
if (DECL_COMMON (decl)
&& !lookup_attribute ("retain", DECL_ATTRIBUTES (decl)))
{
/* If the decl has been given an explicit section name, or it resides
in a non-generic address space, then it isn't common, and shouldn't
be handled as such. */
gcc_assert (DECL_SECTION_NAME (decl) == NULL
&& ADDR_SPACE_GENERIC_P (as));
if (DECL_THREAD_LOCAL_P (decl))
return tls_comm_section;
else if (TREE_PUBLIC (decl) && bss_initializer_p (decl))
return comm_section;
}
reloc = compute_reloc_for_var (decl);
resolve_unique_section (decl, reloc, flag_data_sections);
if (IN_NAMED_SECTION (decl))
{
section *sect = get_named_section (decl, NULL, reloc);
if ((sect->common.flags & SECTION_BSS)
&& !bss_initializer_p (decl, true))
{
error_at (DECL_SOURCE_LOCATION (decl),
"only zero initializers are allowed in section %qs",
sect->named.name);
DECL_INITIAL (decl) = error_mark_node;
}
return sect;
}
if (ADDR_SPACE_GENERIC_P (as)
&& !DECL_THREAD_LOCAL_P (decl)
&& !DECL_NOINIT_P (decl)
&& !(prefer_noswitch_p && targetm.have_switchable_bss_sections)
&& bss_initializer_p (decl))
{
if (!TREE_PUBLIC (decl)
&& !((flag_sanitize & SANITIZE_ADDRESS)
&& asan_protect_global (decl)))
return lcomm_section;
if (bss_noswitch_section)
return bss_noswitch_section;
}
return targetm.asm_out.select_section (decl, reloc,
get_variable_align (decl));
}
/* Return the block into which object_block DECL should be placed. */
static struct object_block *
get_block_for_decl (tree decl)
{
section *sect;
if (VAR_P (decl))
{
/* The object must be defined in this translation unit. */
if (DECL_EXTERNAL (decl))
return NULL;
/* There's no point using object blocks for something that is
isolated by definition. */
if (DECL_COMDAT_GROUP (decl))
return NULL;
}
/* We can only calculate block offsets if the decl has a known
constant size. */
if (DECL_SIZE_UNIT (decl) == NULL)
return NULL;
if (!tree_fits_uhwi_p (DECL_SIZE_UNIT (decl)))
return NULL;
/* Find out which section should contain DECL. We cannot put it into
an object block if it requires a standalone definition. */
if (VAR_P (decl))
align_variable (decl, 0);
sect = get_variable_section (decl, true);
if (SECTION_STYLE (sect) == SECTION_NOSWITCH)
return NULL;
if (bool (lookup_attribute ("retain", DECL_ATTRIBUTES (decl)))
!= bool (sect->common.flags & SECTION_RETAIN))
return NULL;
return get_block_for_section (sect);
}
/* Make sure block symbol SYMBOL is in block BLOCK. */
static void
change_symbol_block (rtx symbol, struct object_block *block)
{
if (block != SYMBOL_REF_BLOCK (symbol))
{
gcc_assert (SYMBOL_REF_BLOCK_OFFSET (symbol) < 0);
SYMBOL_REF_BLOCK (symbol) = block;
}
}
/* Return true if it is possible to put DECL in an object_block. */
static bool
use_blocks_for_decl_p (tree decl)
{
struct symtab_node *snode;
/* Don't create object blocks if each DECL is placed into a separate
section because that will uselessly create a section anchor for
each DECL. */
if (flag_data_sections)
return false;
/* Only data DECLs can be placed into object blocks. */
if (!VAR_P (decl) && TREE_CODE (decl) != CONST_DECL)
return false;
/* DECL_INITIAL (decl) set to decl is a hack used for some decls that
are never used from code directly and we never want object block handling
for those. */
if (DECL_INITIAL (decl) == decl)
return false;
/* If this decl is an alias, then we don't want to emit a
definition. */
if (VAR_P (decl)
&& (snode = symtab_node::get (decl)) != NULL
&& snode->alias)
return false;
return targetm.use_blocks_for_decl_p (decl);
}
/* Follow the IDENTIFIER_TRANSPARENT_ALIAS chain starting at *ALIAS
until we find an identifier that is not itself a transparent alias.
Modify the alias passed to it by reference (and all aliases on the
way to the ultimate target), such that they do not have to be
followed again, and return the ultimate target of the alias
chain. */
static inline tree
ultimate_transparent_alias_target (tree *alias)
{
tree target = *alias;
if (IDENTIFIER_TRANSPARENT_ALIAS (target))
{
gcc_assert (TREE_CHAIN (target));
target = ultimate_transparent_alias_target (&TREE_CHAIN (target));
gcc_assert (! IDENTIFIER_TRANSPARENT_ALIAS (target)
&& ! TREE_CHAIN (target));
*alias = target;
}
return target;
}
/* Return true if REGNUM is mentioned in ELIMINABLE_REGS as a from
register number. */
static bool
eliminable_regno_p (int regnum)
{
static const struct
{
const int from;
const int to;
} eliminables[] = ELIMINABLE_REGS;
for (size_t i = 0; i < ARRAY_SIZE (eliminables); i++)
if (regnum == eliminables[i].from)
return true;
return false;
}
/* Create the DECL_RTL for a VAR_DECL or FUNCTION_DECL. DECL should
have static storage duration. In other words, it should not be an
automatic variable, including PARM_DECLs.
There is, however, one exception: this function handles variables
explicitly placed in a particular register by the user.
This is never called for PARM_DECL nodes. */
void
make_decl_rtl (tree decl)
{
const char *name = 0;
int reg_number;
tree id;
rtx x;
/* Check that we are not being given an automatic variable. */
gcc_assert (TREE_CODE (decl) != PARM_DECL
&& TREE_CODE (decl) != RESULT_DECL);
/* A weak alias has TREE_PUBLIC set but not the other bits. */
gcc_assert (!VAR_P (decl)
|| TREE_STATIC (decl)
|| TREE_PUBLIC (decl)
|| DECL_EXTERNAL (decl)
|| DECL_REGISTER (decl));
/* And that we were not given a type or a label. */
gcc_assert (TREE_CODE (decl) != TYPE_DECL
&& TREE_CODE (decl) != LABEL_DECL);
/* For a duplicate declaration, we can be called twice on the
same DECL node. Don't discard the RTL already made. */
if (DECL_RTL_SET_P (decl))
{
/* If the old RTL had the wrong mode, fix the mode. */
x = DECL_RTL (decl);
if (GET_MODE (x) != DECL_MODE (decl))
SET_DECL_RTL (decl, adjust_address_nv (x, DECL_MODE (decl), 0));
if (TREE_CODE (decl) != FUNCTION_DECL && DECL_REGISTER (decl))
return;
/* ??? Another way to do this would be to maintain a hashed
table of such critters. Instead of adding stuff to a DECL
to give certain attributes to it, we could use an external
hash map from DECL to set of attributes. */
/* Let the target reassign the RTL if it wants.
This is necessary, for example, when one machine specific
decl attribute overrides another. */
targetm.encode_section_info (decl, DECL_RTL (decl), false);
/* If the symbol has a SYMBOL_REF_BLOCK field, update it based
on the new decl information. */
if (MEM_P (x)
&& GET_CODE (XEXP (x, 0)) == SYMBOL_REF
&& SYMBOL_REF_HAS_BLOCK_INFO_P (XEXP (x, 0)))
change_symbol_block (XEXP (x, 0), get_block_for_decl (decl));
return;
}
/* If this variable belongs to the global constant pool, retrieve the
pre-computed RTL or recompute it in LTO mode. */
if (VAR_P (decl) && DECL_IN_CONSTANT_POOL (decl))
{
SET_DECL_RTL (decl, output_constant_def (DECL_INITIAL (decl), 1));
return;
}
id = DECL_ASSEMBLER_NAME (decl);
name = IDENTIFIER_POINTER (id);
if (name[0] != '*' && TREE_CODE (decl) != FUNCTION_DECL
&& DECL_REGISTER (decl))
{
error ("register name not specified for %q+D", decl);
}
else if (TREE_CODE (decl) != FUNCTION_DECL && DECL_REGISTER (decl))
{
const char *asmspec = name+1;
machine_mode mode = DECL_MODE (decl);
reg_number = decode_reg_name (asmspec);
/* First detect errors in declaring global registers. */
if (reg_number == -1)
error ("register name not specified for %q+D", decl);
else if (reg_number < 0)
error ("invalid register name for %q+D", decl);
else if (mode == BLKmode)
error ("data type of %q+D isn%'t suitable for a register",
decl);
else if (!in_hard_reg_set_p (accessible_reg_set, mode, reg_number))
error ("the register specified for %q+D cannot be accessed"
" by the current target", decl);
else if (!in_hard_reg_set_p (operand_reg_set, mode, reg_number))
error ("the register specified for %q+D is not general enough"
" to be used as a register variable", decl);
else if (!targetm.hard_regno_mode_ok (reg_number, mode))
error ("register specified for %q+D isn%'t suitable for data type",
decl);
else if (reg_number != HARD_FRAME_POINTER_REGNUM
&& (reg_number == FRAME_POINTER_REGNUM
#ifdef RETURN_ADDRESS_POINTER_REGNUM
|| reg_number == RETURN_ADDRESS_POINTER_REGNUM
#endif
|| reg_number == ARG_POINTER_REGNUM)
&& eliminable_regno_p (reg_number))
error ("register specified for %q+D is an internal GCC "
"implementation detail", decl);
/* Now handle properly declared static register variables. */
else
{
int nregs;
if (DECL_INITIAL (decl) != 0 && TREE_STATIC (decl))
{
DECL_INITIAL (decl) = 0;
error ("global register variable has initial value");
}
if (TREE_THIS_VOLATILE (decl))
warning (OPT_Wvolatile_register_var,
"optimization may eliminate reads and/or "
"writes to register variables");
/* If the user specified one of the eliminables registers here,
e.g., FRAME_POINTER_REGNUM, we don't want to get this variable
confused with that register and be eliminated. This usage is
somewhat suspect... */
SET_DECL_RTL (decl, gen_raw_REG (mode, reg_number));
ORIGINAL_REGNO (DECL_RTL (decl)) = reg_number;
REG_USERVAR_P (DECL_RTL (decl)) = 1;
if (TREE_STATIC (decl))
{
/* Make this register global, so not usable for anything
else. */
#ifdef ASM_DECLARE_REGISTER_GLOBAL
name = IDENTIFIER_POINTER (DECL_NAME (decl));
ASM_DECLARE_REGISTER_GLOBAL (asm_out_file, decl, reg_number, name);
#endif
nregs = hard_regno_nregs (reg_number, mode);
while (nregs > 0)
globalize_reg (decl, reg_number + --nregs);
}
/* As a register variable, it has no section. */
return;
}
/* Avoid internal errors from invalid register
specifications. */
SET_DECL_ASSEMBLER_NAME (decl, NULL_TREE);
DECL_HARD_REGISTER (decl) = 0;
/* Also avoid SSA inconsistencies by pretending this is an external
decl now. */
DECL_EXTERNAL (decl) = 1;
return;
}
/* Now handle ordinary static variables and functions (in memory).
Also handle vars declared register invalidly. */
else if (name[0] == '*')
{
#ifdef REGISTER_PREFIX
if (strlen (REGISTER_PREFIX) != 0)
{
reg_number = decode_reg_name (name);
if (reg_number >= 0 || reg_number == -3)
error ("register name given for non-register variable %q+D", decl);
}
#endif
}
/* Specifying a section attribute on a variable forces it into a
non-.bss section, and thus it cannot be common. */
/* FIXME: In general this code should not be necessary because
visibility pass is doing the same work. But notice_global_symbol
is called early and it needs to make DECL_RTL to get the name.
we take care of recomputing the DECL_RTL after visibility is changed. */
if (VAR_P (decl)
&& (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
&& DECL_SECTION_NAME (decl) != NULL
&& DECL_INITIAL (decl) == NULL_TREE
&& DECL_COMMON (decl))
DECL_COMMON (decl) = 0;
/* Variables can't be both common and weak. */
if (VAR_P (decl) && DECL_WEAK (decl))
DECL_COMMON (decl) = 0;
if (use_object_blocks_p () && use_blocks_for_decl_p (decl))
x = create_block_symbol (name, get_block_for_decl (decl), -1);
else
{
machine_mode address_mode = Pmode;
if (TREE_TYPE (decl) != error_mark_node)
{
addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (decl));
address_mode = targetm.addr_space.address_mode (as);
}
x = gen_rtx_SYMBOL_REF (address_mode, name);
}
SYMBOL_REF_WEAK (x) = DECL_WEAK (decl);
SET_SYMBOL_REF_DECL (x, decl);
x = gen_rtx_MEM (DECL_MODE (decl), x);
if (TREE_CODE (decl) != FUNCTION_DECL)
set_mem_attributes (x, decl, 1);
SET_DECL_RTL (decl, x);
/* Optionally set flags or add text to the name to record information
such as that it is a function name.
If the name is changed, the macro ASM_OUTPUT_LABELREF
will have to know how to strip this information. */
targetm.encode_section_info (decl, DECL_RTL (decl), true);
}
/* Like make_decl_rtl, but inhibit creation of new alias sets when
calling make_decl_rtl. Also, reset DECL_RTL before returning the
rtl. */
rtx
make_decl_rtl_for_debug (tree decl)
{
unsigned int save_aliasing_flag;
rtx rtl;
if (DECL_RTL_SET_P (decl))
return DECL_RTL (decl);
/* Kludge alert! Somewhere down the call chain, make_decl_rtl will
call new_alias_set. If running with -fcompare-debug, sometimes
we do not want to create alias sets that will throw the alias
numbers off in the comparison dumps. So... clearing
flag_strict_aliasing will keep new_alias_set() from creating a
new set. */
save_aliasing_flag = flag_strict_aliasing;
flag_strict_aliasing = 0;
rtl = DECL_RTL (decl);
/* Reset DECL_RTL back, as various parts of the compiler expects
DECL_RTL set meaning it is actually going to be output. */
SET_DECL_RTL (decl, NULL);
flag_strict_aliasing = save_aliasing_flag;
return rtl;
}
/* Output a string of literal assembler code
for an `asm' keyword used between functions. */
void
assemble_asm (tree string)
{
const char *p;
app_enable ();
if (TREE_CODE (string) == ADDR_EXPR)
string = TREE_OPERAND (string, 0);
p = TREE_STRING_POINTER (string);
fprintf (asm_out_file, "%s%s\n", p[0] == '\t' ? "" : "\t", p);
}
/* Write the address of the entity given by SYMBOL to SEC. */
void
assemble_addr_to_section (rtx symbol, section *sec)
{
switch_to_section (sec);
assemble_align (POINTER_SIZE);
assemble_integer (symbol, POINTER_SIZE_UNITS, POINTER_SIZE, 1);
}
/* Return the numbered .ctors.N (if CONSTRUCTOR_P) or .dtors.N (if
not) section for PRIORITY. */
section *
get_cdtor_priority_section (int priority, bool constructor_p)
{
/* Buffer conservatively large enough for the full range of a 32-bit
int plus the text below. */
char buf[18];
/* ??? This only works reliably with the GNU linker. */
sprintf (buf, "%s.%.5u",
constructor_p ? ".ctors" : ".dtors",
/* Invert the numbering so the linker puts us in the proper
order; constructors are run from right to left, and the
linker sorts in increasing order. */
MAX_INIT_PRIORITY - priority);
return get_section (buf, SECTION_WRITE, NULL);
}
void
default_named_section_asm_out_destructor (rtx symbol, int priority)
{
section *sec;
if (priority != DEFAULT_INIT_PRIORITY)
sec = get_cdtor_priority_section (priority,
/*constructor_p=*/false);
else
sec = get_section (".dtors", SECTION_WRITE, NULL);
assemble_addr_to_section (symbol, sec);
}
#ifdef DTORS_SECTION_ASM_OP
void
default_dtor_section_asm_out_destructor (rtx symbol,
int priority ATTRIBUTE_UNUSED)
{
assemble_addr_to_section (symbol, dtors_section);
}
#endif
void
default_named_section_asm_out_constructor (rtx symbol, int priority)
{
section *sec;
if (priority != DEFAULT_INIT_PRIORITY)
sec = get_cdtor_priority_section (priority,
/*constructor_p=*/true);
else
sec = get_section (".ctors", SECTION_WRITE, NULL);
assemble_addr_to_section (symbol, sec);
}
#ifdef CTORS_SECTION_ASM_OP
void
default_ctor_section_asm_out_constructor (rtx symbol,
int priority ATTRIBUTE_UNUSED)
{
assemble_addr_to_section (symbol, ctors_section);
}
#endif
/* CONSTANT_POOL_BEFORE_FUNCTION may be defined as an expression with
a nonzero value if the constant pool should be output before the
start of the function, or a zero value if the pool should output
after the end of the function. The default is to put it before the
start. */
#ifndef CONSTANT_POOL_BEFORE_FUNCTION
#define CONSTANT_POOL_BEFORE_FUNCTION 1
#endif
/* DECL is an object (either VAR_DECL or FUNCTION_DECL) which is going
to be output to assembler.
Set first_global_object_name and weak_global_object_name as appropriate. */
void
notice_global_symbol (tree decl)
{
const char **t = &first_global_object_name;
if (first_global_object_name
|| !TREE_PUBLIC (decl)
|| DECL_EXTERNAL (decl)
|| !DECL_NAME (decl)
|| (VAR_P (decl) && DECL_HARD_REGISTER (decl))
|| (TREE_CODE (decl) != FUNCTION_DECL
&& (!VAR_P (decl)
|| (DECL_COMMON (decl)
&& (DECL_INITIAL (decl) == 0
|| DECL_INITIAL (decl) == error_mark_node)))))
return;
/* We win when global object is found, but it is useful to know about weak
symbol as well so we can produce nicer unique names. */
if (DECL_WEAK (decl) || DECL_ONE_ONLY (decl) || flag_shlib)
t = &weak_global_object_name;
if (!*t)
{
tree id = DECL_ASSEMBLER_NAME (decl);
ultimate_transparent_alias_target (&id);
*t = ggc_strdup (targetm.strip_name_encoding (IDENTIFIER_POINTER (id)));
}
}
/* If not using flag_reorder_blocks_and_partition, decide early whether the
current function goes into the cold section, so that targets can use
current_function_section during RTL expansion. DECL describes the
function. */
void
decide_function_section (tree decl)
{
first_function_block_is_cold = false;
if (DECL_SECTION_NAME (decl))
{
struct cgraph_node *node = cgraph_node::get (current_function_decl);
/* Calls to function_section rely on first_function_block_is_cold
being accurate. */
first_function_block_is_cold = (node
&& node->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED);
}
in_cold_section_p = first_function_block_is_cold;
}
/* Get the function's name, as described by its RTL. This may be
different from the DECL_NAME name used in the source file. */
const char *
get_fnname_from_decl (tree decl)
{
rtx x = DECL_RTL (decl);
gcc_assert (MEM_P (x));
x = XEXP (x, 0);
gcc_assert (GET_CODE (x) == SYMBOL_REF);
return XSTR (x, 0);
}
/* Output assembler code for the constant pool of a function and associated
with defining the name of the function. DECL describes the function.
NAME is the function's name. For the constant pool, we use the current
constant pool data. */
void
assemble_start_function (tree decl, const char *fnname)
{
int align;
char tmp_label[100];
bool hot_label_written = false;
if (crtl->has_bb_partition)
{
ASM_GENERATE_INTERNAL_LABEL (tmp_label, "LHOTB", const_labelno);
crtl->subsections.hot_section_label = ggc_strdup (tmp_label);
ASM_GENERATE_INTERNAL_LABEL (tmp_label, "LCOLDB", const_labelno);
crtl->subsections.cold_section_label = ggc_strdup (tmp_label);
ASM_GENERATE_INTERNAL_LABEL (tmp_label, "LHOTE", const_labelno);
crtl->subsections.hot_section_end_label = ggc_strdup (tmp_label);
ASM_GENERATE_INTERNAL_LABEL (tmp_label, "LCOLDE", const_labelno);
crtl->subsections.cold_section_end_label = ggc_strdup (tmp_label);
const_labelno++;
cold_function_name = NULL_TREE;
}
else
{
crtl->subsections.hot_section_label = NULL;
crtl->subsections.cold_section_label = NULL;
crtl->subsections.hot_section_end_label = NULL;
crtl->subsections.cold_section_end_label = NULL;
}
/* The following code does not need preprocessing in the assembler. */
app_disable ();
if (CONSTANT_POOL_BEFORE_FUNCTION)
output_constant_pool (fnname, decl);
align = symtab_node::get (decl)->definition_alignment ();
/* Make sure the not and cold text (code) sections are properly
aligned. This is necessary here in the case where the function
has both hot and cold sections, because we don't want to re-set
the alignment when the section switch happens mid-function. */
if (crtl->has_bb_partition)
{
first_function_block_is_cold = false;
switch_to_section (unlikely_text_section ());
assemble_align (align);
ASM_OUTPUT_LABEL (asm_out_file, crtl->subsections.cold_section_label);
/* When the function starts with a cold section, we need to explicitly
align the hot section and write out the hot section label.
But if the current function is a thunk, we do not have a CFG. */
if (!cfun->is_thunk
&& BB_PARTITION (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) == BB_COLD_PARTITION)
{
switch_to_section (text_section);
assemble_align (align);
ASM_OUTPUT_LABEL (asm_out_file, crtl->subsections.hot_section_label);
hot_label_written = true;
first_function_block_is_cold = true;
}
in_cold_section_p = first_function_block_is_cold;
}
/* Switch to the correct text section for the start of the function. */
switch_to_section (function_section (decl), decl);
if (crtl->has_bb_partition && !hot_label_written)
ASM_OUTPUT_LABEL (asm_out_file, crtl->subsections.hot_section_label);
/* Tell assembler to move to target machine's alignment for functions. */
align = floor_log2 (align / BITS_PER_UNIT);
if (align > 0)
{
ASM_OUTPUT_ALIGN (asm_out_file, align);
}
/* Handle a user-specified function alignment.
Note that we still need to align to DECL_ALIGN, as above,
because ASM_OUTPUT_MAX_SKIP_ALIGN might not do any alignment at all. */
if (! DECL_USER_ALIGN (decl)
&& align_functions.levels[0].log > align
&& optimize_function_for_speed_p (cfun))
{
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
int align_log = align_functions.levels[0].log;
#endif
int max_skip = align_functions.levels[0].maxskip;
if (flag_limit_function_alignment && crtl->max_insn_address > 0
&& max_skip >= crtl->max_insn_address)
max_skip = crtl->max_insn_address - 1;
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
ASM_OUTPUT_MAX_SKIP_ALIGN (asm_out_file, align_log, max_skip);
if (max_skip == align_functions.levels[0].maxskip)
ASM_OUTPUT_MAX_SKIP_ALIGN (asm_out_file,
align_functions.levels[1].log,
align_functions.levels[1].maxskip);
#else
ASM_OUTPUT_ALIGN (asm_out_file, align_functions.levels[0].log);
#endif
}
#ifdef ASM_OUTPUT_FUNCTION_PREFIX
ASM_OUTPUT_FUNCTION_PREFIX (asm_out_file, fnname);
#endif
if (!DECL_IGNORED_P (decl))
(*debug_hooks->begin_function) (decl);
/* Make function name accessible from other files, if appropriate. */
if (TREE_PUBLIC (decl))
{
notice_global_symbol (decl);
globalize_decl (decl);
maybe_assemble_visibility (decl);
}
if (DECL_PRESERVE_P (decl))
targetm.asm_out.mark_decl_preserved (fnname);
unsigned short patch_area_size = crtl->patch_area_size;
unsigned short patch_area_entry = crtl->patch_area_entry;
/* Emit the patching area before the entry label, if any. */
if (patch_area_entry > 0)
targetm.asm_out.print_patchable_function_entry (asm_out_file,
patch_area_entry, true);
/* Do any machine/system dependent processing of the function name. */
#ifdef ASM_DECLARE_FUNCTION_NAME
ASM_DECLARE_FUNCTION_NAME (asm_out_file, fnname, current_function_decl);
#else
/* Standard thing is just output label for the function. */
ASM_OUTPUT_FUNCTION_LABEL (asm_out_file, fnname, current_function_decl);
#endif /* ASM_DECLARE_FUNCTION_NAME */
/* And the area after the label. Record it if we haven't done so yet. */
if (patch_area_size > patch_area_entry)
targetm.asm_out.print_patchable_function_entry (asm_out_file,
patch_area_size
- patch_area_entry,
patch_area_entry == 0);
if (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (decl)))
saw_no_split_stack = true;
}
/* Output assembler code associated with defining the size of the
function. DECL describes the function. NAME is the function's name. */
void
assemble_end_function (tree decl, const char *fnname ATTRIBUTE_UNUSED)
{
#ifdef ASM_DECLARE_FUNCTION_SIZE
/* We could have switched section in the middle of the function. */
if (crtl->has_bb_partition)
switch_to_section (function_section (decl));
ASM_DECLARE_FUNCTION_SIZE (asm_out_file, fnname, decl);
#endif
if (! CONSTANT_POOL_BEFORE_FUNCTION)
{
output_constant_pool (fnname, decl);
switch_to_section (function_section (decl)); /* need to switch back */
}
/* Output labels for end of hot/cold text sections (to be used by
debug info.) */
if (crtl->has_bb_partition)
{
section *save_text_section;
save_text_section = in_section;
switch_to_section (unlikely_text_section ());
#ifdef ASM_DECLARE_COLD_FUNCTION_SIZE
if (cold_function_name != NULL_TREE)
ASM_DECLARE_COLD_FUNCTION_SIZE (asm_out_file,
IDENTIFIER_POINTER (cold_function_name),
decl);
#endif
ASM_OUTPUT_LABEL (asm_out_file, crtl->subsections.cold_section_end_label);
if (first_function_block_is_cold)
switch_to_section (text_section);
else
switch_to_section (function_section (decl));
ASM_OUTPUT_LABEL (asm_out_file, crtl->subsections.hot_section_end_label);
switch_to_section (save_text_section);
}
}
/* Assemble code to leave SIZE bytes of zeros. */
void
assemble_zeros (unsigned HOST_WIDE_INT size)
{
/* Do no output if -fsyntax-only. */
if (flag_syntax_only)
return;
#ifdef ASM_NO_SKIP_IN_TEXT
/* The `space' pseudo in the text section outputs nop insns rather than 0s,
so we must output 0s explicitly in the text section. */
if (ASM_NO_SKIP_IN_TEXT && (in_section->common.flags & SECTION_CODE) != 0)
{
unsigned HOST_WIDE_INT i;
for (i = 0; i < size; i++)
assemble_integer (const0_rtx, 1, BITS_PER_UNIT, 1);
}
else
#endif
if (size > 0)
ASM_OUTPUT_SKIP (asm_out_file, size);
}
/* Assemble an alignment pseudo op for an ALIGN-bit boundary. */
void
assemble_align (unsigned int align)
{
if (align > BITS_PER_UNIT)
{
ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (align / BITS_PER_UNIT));
}
}
/* Assemble a string constant with the specified C string as contents. */
void
assemble_string (const char *p, int size)
{
int pos = 0;
int maximum = 2000;
/* If the string is very long, split it up. */
while (pos < size)
{
int thissize = size - pos;
if (thissize > maximum)
thissize = maximum;
ASM_OUTPUT_ASCII (asm_out_file, p, thissize);
pos += thissize;
p += thissize;
}
}
/* A noswitch_section_callback for lcomm_section. */
static bool
emit_local (tree decl ATTRIBUTE_UNUSED,
const char *name ATTRIBUTE_UNUSED,
unsigned HOST_WIDE_INT size ATTRIBUTE_UNUSED,
unsigned HOST_WIDE_INT rounded ATTRIBUTE_UNUSED)
{
#if defined ASM_OUTPUT_ALIGNED_DECL_LOCAL
unsigned int align = symtab_node::get (decl)->definition_alignment ();
ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, decl, name,
size, align);
return true;
#elif defined ASM_OUTPUT_ALIGNED_LOCAL
unsigned int align = symtab_node::get (decl)->definition_alignment ();
ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size, align);
return true;
#else
ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
return false;
#endif
}
/* A noswitch_section_callback for bss_noswitch_section. */
#if defined ASM_OUTPUT_ALIGNED_BSS
static bool
emit_bss (tree decl ATTRIBUTE_UNUSED,
const char *name ATTRIBUTE_UNUSED,
unsigned HOST_WIDE_INT size ATTRIBUTE_UNUSED,
unsigned HOST_WIDE_INT rounded ATTRIBUTE_UNUSED)
{
ASM_OUTPUT_ALIGNED_BSS (asm_out_file, decl, name, size,
get_variable_align (decl));
return true;
}
#endif
/* A noswitch_section_callback for comm_section. */
static bool
emit_common (tree decl ATTRIBUTE_UNUSED,
const char *name ATTRIBUTE_UNUSED,
unsigned HOST_WIDE_INT size ATTRIBUTE_UNUSED,
unsigned HOST_WIDE_INT rounded ATTRIBUTE_UNUSED)
{
#if defined ASM_OUTPUT_ALIGNED_DECL_COMMON
ASM_OUTPUT_ALIGNED_DECL_COMMON (asm_out_file, decl, name,
size, get_variable_align (decl));
return true;
#elif defined ASM_OUTPUT_ALIGNED_COMMON
ASM_OUTPUT_ALIGNED_COMMON (asm_out_file, name, size,
get_variable_align (decl));
return true;
#else
ASM_OUTPUT_COMMON (asm_out_file, name, size, rounded);
return false;
#endif
}
/* A noswitch_section_callback for tls_comm_section. */
static bool
emit_tls_common (tree decl ATTRIBUTE_UNUSED,
const char *name ATTRIBUTE_UNUSED,
unsigned HOST_WIDE_INT size ATTRIBUTE_UNUSED,
unsigned HOST_WIDE_INT rounded ATTRIBUTE_UNUSED)
{
#ifdef ASM_OUTPUT_TLS_COMMON
ASM_OUTPUT_TLS_COMMON (asm_out_file, decl, name, size);
return true;
#else
sorry ("thread-local COMMON data not implemented");
return true;
#endif
}
/* Assemble DECL given that it belongs in SECTION_NOSWITCH section SECT.
NAME is the name of DECL's SYMBOL_REF. */
static void
assemble_noswitch_variable (tree decl, const char *name, section *sect,
unsigned int align)
{
unsigned HOST_WIDE_INT size, rounded;
size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
rounded = size;
if ((flag_sanitize & SANITIZE_ADDRESS) && asan_protect_global (decl))
size += asan_red_zone_size (size);
/* Don't allocate zero bytes of common,
since that means "undefined external" in the linker. */
if (size == 0)
rounded = 1;
/* Round size up to multiple of BIGGEST_ALIGNMENT bits
so that each uninitialized object starts on such a boundary. */
rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1;
rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
* (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
if (!sect->noswitch.callback (decl, name, size, rounded)
&& (unsigned HOST_WIDE_INT) (align / BITS_PER_UNIT) > rounded)
error ("requested alignment for %q+D is greater than "
"implemented alignment of %wu", decl, rounded);
}
/* A subroutine of assemble_variable. Output the label and contents of
DECL, whose address is a SYMBOL_REF with name NAME. DONT_OUTPUT_DATA
is as for assemble_variable. */
static void
assemble_variable_contents (tree decl, const char *name,
bool dont_output_data, bool merge_strings)
{
/* Do any machine/system dependent processing of the object. */
#ifdef ASM_DECLARE_OBJECT_NAME
last_assemble_variable_decl = decl;
ASM_DECLARE_OBJECT_NAME (asm_out_file, name, decl);
#else
/* Standard thing is just output label for the object. */
ASM_OUTPUT_LABEL (asm_out_file, name);
#endif /* ASM_DECLARE_OBJECT_NAME */
if (!dont_output_data)
{
/* Caller is supposed to use varpool_get_constructor when it wants
to output the body. */
gcc_assert (!in_lto_p || DECL_INITIAL (decl) != error_mark_node);
if (DECL_INITIAL (decl)
&& DECL_INITIAL (decl) != error_mark_node
&& !initializer_zerop (DECL_INITIAL (decl)))
/* Output the actual data. */
output_constant (DECL_INITIAL (decl),
tree_to_uhwi (DECL_SIZE_UNIT (decl)),
get_variable_align (decl),
false, merge_strings);
else
/* Leave space for it. */
assemble_zeros (tree_to_uhwi (DECL_SIZE_UNIT (decl)));
targetm.asm_out.decl_end ();
}
}
/* Write out assembly for the variable DECL, which is not defined in
the current translation unit. */
void
assemble_undefined_decl (tree decl)
{
const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
targetm.asm_out.assemble_undefined_decl (asm_out_file, name, decl);
}
/* Assemble everything that is needed for a variable or function declaration.
Not used for automatic variables, and not used for function definitions.
Should not be called for variables of incomplete structure type.
TOP_LEVEL is nonzero if this variable has file scope.
AT_END is nonzero if this is the special handling, at end of compilation,
to define things that have had only tentative definitions.
DONT_OUTPUT_DATA if nonzero means don't actually output the
initial value (that will be done by the caller). */
void
assemble_variable (tree decl, int top_level ATTRIBUTE_UNUSED,
int at_end ATTRIBUTE_UNUSED, int dont_output_data)
{
const char *name;
rtx decl_rtl, symbol;
section *sect;
unsigned int align;
bool asan_protected = false;
/* This function is supposed to handle VARIABLES. Ensure we have one. */
gcc_assert (VAR_P (decl));
/* Emulated TLS had better not get this far. */
gcc_checking_assert (targetm.have_tls || !DECL_THREAD_LOCAL_P (decl));
last_assemble_variable_decl = 0;
/* Normally no need to say anything here for external references,
since assemble_external is called by the language-specific code
when a declaration is first seen. */
if (DECL_EXTERNAL (decl))
return;
/* Do nothing for global register variables. */
if (DECL_RTL_SET_P (decl) && REG_P (DECL_RTL (decl)))
{
TREE_ASM_WRITTEN (decl) = 1;
return;
}
/* If type was incomplete when the variable was declared,
see if it is complete now. */
if (DECL_SIZE (decl) == 0)
layout_decl (decl, 0);
/* Still incomplete => don't allocate it; treat the tentative defn
(which is what it must have been) as an `extern' reference. */
if (!dont_output_data && DECL_SIZE (decl) == 0)
{
error ("storage size of %q+D isn%'t known", decl);
TREE_ASM_WRITTEN (decl) = 1;
return;
}
/* The first declaration of a variable that comes through this function
decides whether it is global (in C, has external linkage)
or local (in C, has internal linkage). So do nothing more
if this function has already run. */
if (TREE_ASM_WRITTEN (decl))
return;
/* Make sure targetm.encode_section_info is invoked before we set
ASM_WRITTEN. */
decl_rtl = DECL_RTL (decl);
TREE_ASM_WRITTEN (decl) = 1;
/* Do no output if -fsyntax-only. */
if (flag_syntax_only)
return;
if (! dont_output_data
&& ! valid_constant_size_p (DECL_SIZE_UNIT (decl)))
{
error ("size of variable %q+D is too large", decl);
return;
}
gcc_assert (MEM_P (decl_rtl));
gcc_assert (GET_CODE (XEXP (decl_rtl, 0)) == SYMBOL_REF);
symbol = XEXP (decl_rtl, 0);
/* If this symbol belongs to the tree constant pool, output the constant
if it hasn't already been written. */
if (TREE_CONSTANT_POOL_ADDRESS_P (symbol))
{
tree decl = SYMBOL_REF_DECL (symbol);
if (!TREE_ASM_WRITTEN (DECL_INITIAL (decl)))
output_constant_def_contents (symbol);
return;
}
app_disable ();
name = XSTR (symbol, 0);
if (TREE_PUBLIC (decl) && DECL_NAME (decl))
notice_global_symbol (decl);
/* Compute the alignment of this data. */
align_variable (decl, dont_output_data);
if ((flag_sanitize & SANITIZE_ADDRESS)
&& asan_protect_global (decl))
{
asan_protected = true;
SET_DECL_ALIGN (decl, MAX (DECL_ALIGN (decl),
ASAN_RED_ZONE_SIZE * BITS_PER_UNIT));
}
set_mem_align (decl_rtl, DECL_ALIGN (decl));
align = get_variable_align (decl);
if (TREE_PUBLIC (decl))
maybe_assemble_visibility (decl);
if (DECL_PRESERVE_P (decl))
targetm.asm_out.mark_decl_preserved (name);
/* First make the assembler name(s) global if appropriate. */
sect = get_variable_section (decl, false);
if (TREE_PUBLIC (decl)
&& (sect->common.flags & SECTION_COMMON) == 0)
globalize_decl (decl);
/* Output any data that we will need to use the address of. */
if (DECL_INITIAL (decl) && DECL_INITIAL (decl) != error_mark_node)
output_addressed_constants (DECL_INITIAL (decl), 0);
/* dbxout.cc needs to know this. */
if (sect && (sect->common.flags & SECTION_CODE) != 0)
DECL_IN_TEXT_SECTION (decl) = 1;
/* If the decl is part of an object_block, make sure that the decl
has been positioned within its block, but do not write out its
definition yet. output_object_blocks will do that later. */
if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol) && SYMBOL_REF_BLOCK (symbol))
{
gcc_assert (!dont_output_data);
place_block_symbol (symbol);
}
else if (SECTION_STYLE (sect) == SECTION_NOSWITCH)
assemble_noswitch_variable (decl, name, sect, align);
else
{
/* Special-case handling of vtv comdat sections. */
if (SECTION_STYLE (sect) == SECTION_NAMED
&& (strcmp (sect->named.name, ".vtable_map_vars") == 0))
handle_vtv_comdat_section (sect, decl);
else
switch_to_section (sect, decl);
if (align > BITS_PER_UNIT)
ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (align / BITS_PER_UNIT));
assemble_variable_contents (decl, name, dont_output_data,
(sect->common.flags & SECTION_MERGE)
&& (sect->common.flags & SECTION_STRINGS));
if (asan_protected)
{
unsigned HOST_WIDE_INT int size
= tree_to_uhwi (DECL_SIZE_UNIT (decl));
assemble_zeros (asan_red_zone_size (size));
}
}
}
/* Return true if type TYPE contains any pointers. */
static bool
contains_pointers_p (tree type)
{
switch (TREE_CODE (type))
{
case POINTER_TYPE:
case REFERENCE_TYPE:
/* I'm not sure whether OFFSET_TYPE needs this treatment,
so I'll play safe and return 1. */
case OFFSET_TYPE:
return true;
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
{
tree fields;
/* For a type that has fields, see if the fields have pointers. */
for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
if (TREE_CODE (fields) == FIELD_DECL
&& contains_pointers_p (TREE_TYPE (fields)))
return true;
return false;
}
case ARRAY_TYPE:
/* An array type contains pointers if its element type does. */
return contains_pointers_p (TREE_TYPE (type));
default:
return false;
}
}
/* We delay assemble_external processing until
the compilation unit is finalized. This is the best we can do for
right now (i.e. stage 3 of GCC 4.0) - the right thing is to delay
it all the way to final. See PR 17982 for further discussion. */
static GTY(()) tree pending_assemble_externals;
#ifdef ASM_OUTPUT_EXTERNAL
/* Some targets delay some output to final using TARGET_ASM_FILE_END.
As a result, assemble_external can be called after the list of externals
is processed and the pointer set destroyed. */
static bool pending_assemble_externals_processed;
/* Avoid O(external_decls**2) lookups in the pending_assemble_externals
TREE_LIST in assemble_external. */
static hash_set *pending_assemble_externals_set;
/* True if DECL is a function decl for which no out-of-line copy exists.
It is assumed that DECL's assembler name has been set. */
static bool
incorporeal_function_p (tree decl)
{
if (TREE_CODE (decl) == FUNCTION_DECL && fndecl_built_in_p (decl))
{
const char *name;
if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
&& ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (decl)))
return true;
name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
/* Atomic or sync builtins which have survived this far will be
resolved externally and therefore are not incorporeal. */
if (startswith (name, "__builtin_"))
return true;
}
return false;
}
/* Actually do the tests to determine if this is necessary, and invoke
ASM_OUTPUT_EXTERNAL. */
static void
assemble_external_real (tree decl)
{
rtx rtl = DECL_RTL (decl);
if (MEM_P (rtl) && GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF
&& !SYMBOL_REF_USED (XEXP (rtl, 0))
&& !incorporeal_function_p (decl))
{
/* Some systems do require some output. */
SYMBOL_REF_USED (XEXP (rtl, 0)) = 1;
ASM_OUTPUT_EXTERNAL (asm_out_file, decl, XSTR (XEXP (rtl, 0), 0));
}
}
#endif
void
process_pending_assemble_externals (void)
{
#ifdef ASM_OUTPUT_EXTERNAL
tree list;
for (list = pending_assemble_externals; list; list = TREE_CHAIN (list))
assemble_external_real (TREE_VALUE (list));
pending_assemble_externals = 0;
pending_assemble_externals_processed = true;
delete pending_assemble_externals_set;
#endif
}
/* This TREE_LIST contains any weak symbol declarations waiting
to be emitted. */
static GTY(()) tree weak_decls;
/* Output something to declare an external symbol to the assembler,
and qualifiers such as weakness. (Most assemblers don't need
extern declaration, so we normally output nothing.) Do nothing if
DECL is not external. */
void
assemble_external (tree decl ATTRIBUTE_UNUSED)
{
/* Make sure that the ASM_OUT_FILE is open.
If it's not, we should not be calling this function. */
gcc_assert (asm_out_file);
/* In a perfect world, the following condition would be true.
Sadly, the Go front end emit assembly *from the front end*,
bypassing the call graph. See PR52739. Fix before GCC 4.8. */
#if 0
/* This function should only be called if we are expanding, or have
expanded, to RTL.
Ideally, only final.cc would be calling this function, but it is
not clear whether that would break things somehow. See PR 17982
for further discussion. */
gcc_assert (state == EXPANSION
|| state == FINISHED);
#endif
if (!DECL_P (decl) || !DECL_EXTERNAL (decl) || !TREE_PUBLIC (decl))
return;
/* We want to output annotation for weak and external symbols at
very last to check if they are references or not. */
if (TARGET_SUPPORTS_WEAK
&& DECL_WEAK (decl)
/* TREE_STATIC is a weird and abused creature which is not
generally the right test for whether an entity has been
locally emitted, inlined or otherwise not-really-extern, but
for declarations that can be weak, it happens to be
match. */
&& !TREE_STATIC (decl)
&& lookup_attribute ("weak", DECL_ATTRIBUTES (decl))
&& value_member (decl, weak_decls) == NULL_TREE)
weak_decls = tree_cons (NULL, decl, weak_decls);
#ifdef ASM_OUTPUT_EXTERNAL
if (pending_assemble_externals_processed)
{
assemble_external_real (decl);
return;
}
if (! pending_assemble_externals_set->add (decl))
pending_assemble_externals = tree_cons (NULL, decl,
pending_assemble_externals);
#endif
}
/* Similar, for calling a library function FUN. */
void
assemble_external_libcall (rtx fun)
{
/* Declare library function name external when first used, if nec. */
if (! SYMBOL_REF_USED (fun))
{
SYMBOL_REF_USED (fun) = 1;
targetm.asm_out.external_libcall (fun);
}
}
/* Assemble a label named NAME. */
void
assemble_label (FILE *file, const char *name)
{
ASM_OUTPUT_LABEL (file, name);
}
/* Set the symbol_referenced flag for ID. */
void
mark_referenced (tree id)
{
TREE_SYMBOL_REFERENCED (id) = 1;
}
/* Set the symbol_referenced flag for DECL and notify callgraph. */
void
mark_decl_referenced (tree decl)
{
if (TREE_CODE (decl) == FUNCTION_DECL)
{
/* Extern inline functions don't become needed when referenced.
If we know a method will be emitted in other TU and no new
functions can be marked reachable, just use the external
definition. */
struct cgraph_node *node = cgraph_node::get_create (decl);
if (!DECL_EXTERNAL (decl)
&& !node->definition)
node->mark_force_output ();
}
else if (VAR_P (decl))
{
varpool_node *node = varpool_node::get_create (decl);
/* C++ frontend use mark_decl_references to force COMDAT variables
to be output that might appear dead otherwise. */
node->force_output = true;
}
/* else do nothing - we can get various sorts of CST nodes here,
which do not need to be marked. */
}
/* Output to FILE (an assembly file) a reference to NAME. If NAME
starts with a *, the rest of NAME is output verbatim. Otherwise
NAME is transformed in a target-specific way (usually by the
addition of an underscore). */
void
assemble_name_raw (FILE *file, const char *name)
{
if (name[0] == '*')
fputs (&name[1], file);
else
ASM_OUTPUT_LABELREF (file, name);
}
/* Return NAME that should actually be emitted, looking through
transparent aliases. If NAME refers to an entity that is also
represented as a tree (like a function or variable), mark the entity
as referenced. */
const char *
assemble_name_resolve (const char *name)
{
const char *real_name = targetm.strip_name_encoding (name);
tree id = maybe_get_identifier (real_name);
if (id)
{
tree id_orig = id;
mark_referenced (id);
ultimate_transparent_alias_target (&id);
if (id != id_orig)
name = IDENTIFIER_POINTER (id);
gcc_assert (! TREE_CHAIN (id));
}
return name;
}
/* Like assemble_name_raw, but should be used when NAME might refer to
an entity that is also represented as a tree (like a function or
variable). If NAME does refer to such an entity, that entity will
be marked as referenced. */
void
assemble_name (FILE *file, const char *name)
{
assemble_name_raw (file, assemble_name_resolve (name));
}
/* Allocate SIZE bytes writable static space with a gensym name
and return an RTX to refer to its address. */
rtx
assemble_static_space (unsigned HOST_WIDE_INT size)
{
char name[17];
const char *namestring;
rtx x;
ASM_GENERATE_INTERNAL_LABEL (name, "LF", const_labelno);
++const_labelno;
namestring = ggc_strdup (name);
x = gen_rtx_SYMBOL_REF (Pmode, namestring);
SYMBOL_REF_FLAGS (x) = SYMBOL_FLAG_LOCAL;
#ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name, size,
BIGGEST_ALIGNMENT);
#else
#ifdef ASM_OUTPUT_ALIGNED_LOCAL
ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size, BIGGEST_ALIGNMENT);
#else
{
/* Round size up to multiple of BIGGEST_ALIGNMENT bits
so that each uninitialized object starts on such a boundary. */
/* Variable `rounded' might or might not be used in ASM_OUTPUT_LOCAL. */
unsigned HOST_WIDE_INT rounded ATTRIBUTE_UNUSED
= ((size + (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1)
/ (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
* (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
}
#endif
#endif
return x;
}
/* Assemble the static constant template for function entry trampolines.
This is done at most once per compilation.
Returns an RTX for the address of the template. */
static GTY(()) rtx initial_trampoline;
rtx
assemble_trampoline_template (void)
{
char label[256];
const char *name;
int align;
rtx symbol;
gcc_assert (targetm.asm_out.trampoline_template != NULL);
if (initial_trampoline)
return initial_trampoline;
/* By default, put trampoline templates in read-only data section. */
#ifdef TRAMPOLINE_SECTION
switch_to_section (TRAMPOLINE_SECTION);
#else
switch_to_section (readonly_data_section);
#endif
/* Write the assembler code to define one. */
align = floor_log2 (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
if (align > 0)
ASM_OUTPUT_ALIGN (asm_out_file, align);
targetm.asm_out.internal_label (asm_out_file, "LTRAMP", 0);
targetm.asm_out.trampoline_template (asm_out_file);
/* Record the rtl to refer to it. */
ASM_GENERATE_INTERNAL_LABEL (label, "LTRAMP", 0);
name = ggc_strdup (label);
symbol = gen_rtx_SYMBOL_REF (Pmode, name);
SYMBOL_REF_FLAGS (symbol) = SYMBOL_FLAG_LOCAL;
initial_trampoline = gen_const_mem (BLKmode, symbol);
set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
set_mem_size (initial_trampoline, TRAMPOLINE_SIZE);
return initial_trampoline;
}
/* A and B are either alignments or offsets. Return the minimum alignment
that may be assumed after adding the two together. */
static inline unsigned
min_align (unsigned int a, unsigned int b)
{
return least_bit_hwi (a | b);
}
/* Return the assembler directive for creating a given kind of integer
object. SIZE is the number of bytes in the object and ALIGNED_P
indicates whether it is known to be aligned. Return NULL if the
assembly dialect has no such directive.
The returned string should be printed at the start of a new line and
be followed immediately by the object's initial value. */
const char *
integer_asm_op (int size, int aligned_p)
{
struct asm_int_op *ops;
if (aligned_p)
ops = &targetm.asm_out.aligned_op;
else
ops = &targetm.asm_out.unaligned_op;
switch (size)
{
case 1:
return targetm.asm_out.byte_op;
case 2:
return ops->hi;
case 3:
return ops->psi;
case 4:
return ops->si;
case 5:
case 6:
case 7:
return ops->pdi;
case 8:
return ops->di;
case 9:
case 10:
case 11:
case 12:
case 13:
case 14:
case 15:
return ops->pti;
case 16:
return ops->ti;
default:
return NULL;
}
}
/* Use directive OP to assemble an integer object X. Print OP at the
start of the line, followed immediately by the value of X. */
void
assemble_integer_with_op (const char *op, rtx x)
{
fputs (op, asm_out_file);
output_addr_const (asm_out_file, x);
fputc ('\n', asm_out_file);
}
/* The default implementation of the asm_out.integer target hook. */
bool
default_assemble_integer (rtx x ATTRIBUTE_UNUSED,
unsigned int size ATTRIBUTE_UNUSED,
int aligned_p ATTRIBUTE_UNUSED)
{
const char *op = integer_asm_op (size, aligned_p);
/* Avoid GAS bugs for large values. Specifically negative values whose
absolute value fits in a bfd_vma, but not in a bfd_signed_vma. */
if (size > UNITS_PER_WORD && size > POINTER_SIZE_UNITS)
return false;
return op && (assemble_integer_with_op (op, x), true);
}
/* Assemble the integer constant X into an object of SIZE bytes. ALIGN is
the alignment of the integer in bits. Return 1 if we were able to output
the constant, otherwise 0. We must be able to output the constant,
if FORCE is nonzero. */
bool
assemble_integer (rtx x, unsigned int size, unsigned int align, int force)
{
int aligned_p;
aligned_p = (align >= MIN (size * BITS_PER_UNIT, BIGGEST_ALIGNMENT));
/* See if the target hook can handle this kind of object. */
if (targetm.asm_out.integer (x, size, aligned_p))
return true;
/* If the object is a multi-byte one, try splitting it up. Split
it into words it if is multi-word, otherwise split it into bytes. */
if (size > 1)
{
machine_mode omode, imode;
unsigned int subalign;
unsigned int subsize, i;
enum mode_class mclass;
subsize = size > UNITS_PER_WORD? UNITS_PER_WORD : 1;
subalign = MIN (align, subsize * BITS_PER_UNIT);
if (GET_CODE (x) == CONST_FIXED)
mclass = GET_MODE_CLASS (GET_MODE (x));
else
mclass = MODE_INT;
omode = mode_for_size (subsize * BITS_PER_UNIT, mclass, 0).require ();
imode = mode_for_size (size * BITS_PER_UNIT, mclass, 0).require ();
for (i = 0; i < size; i += subsize)
{
rtx partial = simplify_subreg (omode, x, imode, i);
if (!partial || !assemble_integer (partial, subsize, subalign, 0))
break;
}
if (i == size)
return true;
/* If we've printed some of it, but not all of it, there's no going
back now. */
gcc_assert (!i);
}
gcc_assert (!force);
return false;
}
/* Assemble the floating-point constant D into an object of size MODE. ALIGN
is the alignment of the constant in bits. If REVERSE is true, D is output
in reverse storage order. */
void
assemble_real (REAL_VALUE_TYPE d, scalar_float_mode mode, unsigned int align,
bool reverse)
{
long data[4] = {0, 0, 0, 0};
int bitsize, nelts, nunits, units_per;
rtx elt;
/* This is hairy. We have a quantity of known size. real_to_target
will put it into an array of *host* longs, 32 bits per element
(even if long is more than 32 bits). We need to determine the
number of array elements that are occupied (nelts) and the number
of *target* min-addressable units that will be occupied in the
object file (nunits). We cannot assume that 32 divides the
mode's bitsize (size * BITS_PER_UNIT) evenly.
size * BITS_PER_UNIT is used here to make sure that padding bits
(which might appear at either end of the value; real_to_target
will include the padding bits in its output array) are included. */
nunits = GET_MODE_SIZE (mode);
bitsize = nunits * BITS_PER_UNIT;
nelts = CEIL (bitsize, 32);
units_per = 32 / BITS_PER_UNIT;
real_to_target (data, &d, mode);
/* Put out the first word with the specified alignment. */
unsigned int chunk_nunits = MIN (nunits, units_per);
if (reverse)
elt = flip_storage_order (SImode, gen_int_mode (data[nelts - 1], SImode));
else
elt = GEN_INT (sext_hwi (data[0], chunk_nunits * BITS_PER_UNIT));
assemble_integer (elt, chunk_nunits, align, 1);
nunits -= chunk_nunits;
/* Subsequent words need only 32-bit alignment. */
align = min_align (align, 32);
for (int i = 1; i < nelts; i++)
{
chunk_nunits = MIN (nunits, units_per);
if (reverse)
elt = flip_storage_order (SImode,
gen_int_mode (data[nelts - 1 - i], SImode));
else
elt = GEN_INT (sext_hwi (data[i], chunk_nunits * BITS_PER_UNIT));
assemble_integer (elt, chunk_nunits, align, 1);
nunits -= chunk_nunits;
}
}
/* Given an expression EXP with a constant value,
reduce it to the sum of an assembler symbol and an integer.
Store them both in the structure *VALUE.
EXP must be reducible. */
class addr_const {
public:
rtx base;
poly_int64 offset;
};
static void
decode_addr_const (tree exp, class addr_const *value)
{
tree target = TREE_OPERAND (exp, 0);
poly_int64 offset = 0;
rtx x;
while (1)
{
poly_int64 bytepos;
if (TREE_CODE (target) == COMPONENT_REF
&& poly_int_tree_p (byte_position (TREE_OPERAND (target, 1)),
&bytepos))
{
offset += bytepos;
target = TREE_OPERAND (target, 0);
}
else if (TREE_CODE (target) == ARRAY_REF
|| TREE_CODE (target) == ARRAY_RANGE_REF)
{
/* Truncate big offset. */
offset
+= (TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (target)))
* wi::to_poly_widest (TREE_OPERAND (target, 1)).force_shwi ());
target = TREE_OPERAND (target, 0);
}
else if (TREE_CODE (target) == MEM_REF
&& TREE_CODE (TREE_OPERAND (target, 0)) == ADDR_EXPR)
{
offset += mem_ref_offset (target).force_shwi ();
target = TREE_OPERAND (TREE_OPERAND (target, 0), 0);
}
else if (INDIRECT_REF_P (target)
&& TREE_CODE (TREE_OPERAND (target, 0)) == NOP_EXPR
&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (target, 0), 0))
== ADDR_EXPR)
target = TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (target, 0), 0), 0);
else
break;
}
switch (TREE_CODE (target))
{
case VAR_DECL:
case FUNCTION_DECL:
x = DECL_RTL (target);
break;
case LABEL_DECL:
x = gen_rtx_MEM (FUNCTION_MODE,
gen_rtx_LABEL_REF (Pmode, force_label_rtx (target)));
break;
case REAL_CST:
case FIXED_CST:
case STRING_CST:
case COMPLEX_CST:
case CONSTRUCTOR:
case INTEGER_CST:
x = lookup_constant_def (target);
/* Should have been added by output_addressed_constants. */
gcc_assert (x);
break;
case INDIRECT_REF:
/* This deals with absolute addresses. */
offset += tree_to_shwi (TREE_OPERAND (target, 0));
x = gen_rtx_MEM (QImode,
gen_rtx_SYMBOL_REF (Pmode, "origin of addresses"));
break;
case COMPOUND_LITERAL_EXPR:
gcc_assert (COMPOUND_LITERAL_EXPR_DECL (target));
x = DECL_RTL (COMPOUND_LITERAL_EXPR_DECL (target));
break;
default:
gcc_unreachable ();
}
gcc_assert (MEM_P (x));
x = XEXP (x, 0);
value->base = x;
value->offset = offset;
}
static GTY(()) hash_table *const_desc_htab;
static void maybe_output_constant_def_contents (struct constant_descriptor_tree *, int);
/* Constant pool accessor function. */
hash_table *
constant_pool_htab (void)
{
return const_desc_htab;
}
/* Compute a hash code for a constant expression. */
hashval_t
tree_descriptor_hasher::hash (constant_descriptor_tree *ptr)
{
return ptr->hash;
}
static hashval_t
const_hash_1 (const tree exp)
{
const char *p;
hashval_t hi;
int len, i;
enum tree_code code = TREE_CODE (exp);
/* Either set P and LEN to the address and len of something to hash and
exit the switch or return a value. */
switch (code)
{
case INTEGER_CST:
p = (char *) &TREE_INT_CST_ELT (exp, 0);
len = TREE_INT_CST_NUNITS (exp) * sizeof (HOST_WIDE_INT);
break;
case REAL_CST:
return real_hash (TREE_REAL_CST_PTR (exp));
case FIXED_CST:
return fixed_hash (TREE_FIXED_CST_PTR (exp));
case STRING_CST:
p = TREE_STRING_POINTER (exp);
len = TREE_STRING_LENGTH (exp);
break;
case COMPLEX_CST:
return (const_hash_1 (TREE_REALPART (exp)) * 5
+ const_hash_1 (TREE_IMAGPART (exp)));
case VECTOR_CST:
{
hi = 7 + VECTOR_CST_NPATTERNS (exp);
hi = hi * 563 + VECTOR_CST_NELTS_PER_PATTERN (exp);
unsigned int count = vector_cst_encoded_nelts (exp);
for (unsigned int i = 0; i < count; ++i)
hi = hi * 563 + const_hash_1 (VECTOR_CST_ENCODED_ELT (exp, i));
return hi;
}
case CONSTRUCTOR:
{
unsigned HOST_WIDE_INT idx;
tree value;
hi = 5 + int_size_in_bytes (TREE_TYPE (exp));
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
if (value)
hi = hi * 603 + const_hash_1 (value);
return hi;
}
case ADDR_EXPR:
if (CONSTANT_CLASS_P (TREE_OPERAND (exp, 0)))
return const_hash_1 (TREE_OPERAND (exp, 0));
/* Fallthru. */
case FDESC_EXPR:
{
class addr_const value;
decode_addr_const (exp, &value);
switch (GET_CODE (value.base))
{
case SYMBOL_REF:
/* Don't hash the address of the SYMBOL_REF;
only use the offset and the symbol name. */
hi = value.offset.coeffs[0];
p = XSTR (value.base, 0);
for (i = 0; p[i] != 0; i++)
hi = ((hi * 613) + (unsigned) (p[i]));
break;
case LABEL_REF:
hi = (value.offset.coeffs[0]
+ CODE_LABEL_NUMBER (label_ref_label (value.base)) * 13);
break;
default:
gcc_unreachable ();
}
}
return hi;
case PLUS_EXPR:
case POINTER_PLUS_EXPR:
case MINUS_EXPR:
return (const_hash_1 (TREE_OPERAND (exp, 0)) * 9
+ const_hash_1 (TREE_OPERAND (exp, 1)));
CASE_CONVERT:
return const_hash_1 (TREE_OPERAND (exp, 0)) * 7 + 2;
default:
/* A language specific constant. Just hash the code. */
return code;
}
/* Compute hashing function. */
hi = len;
for (i = 0; i < len; i++)
hi = ((hi * 613) + (unsigned) (p[i]));
return hi;
}
/* Wrapper of compare_constant, for the htab interface. */
bool
tree_descriptor_hasher::equal (constant_descriptor_tree *c1,
constant_descriptor_tree *c2)
{
if (c1->hash != c2->hash)
return false;
return compare_constant (c1->value, c2->value);
}
/* Compare t1 and t2, and return true only if they are known to result in
the same bit pattern on output. */
static bool
compare_constant (const tree t1, const tree t2)
{
enum tree_code typecode;
if (t1 == NULL_TREE)
return t2 == NULL_TREE;
if (t2 == NULL_TREE)
return false;
if (TREE_CODE (t1) != TREE_CODE (t2))
return false;
switch (TREE_CODE (t1))
{
case INTEGER_CST:
/* Integer constants are the same only if the same width of type. */
if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2)))
return false;
if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2)))
return false;
return tree_int_cst_equal (t1, t2);
case REAL_CST:
/* Real constants are the same only if the same width of type. In
addition to the same width, we need to check whether the modes are the
same. There might be two floating point modes that are the same size
but have different representations, such as the PowerPC that has 2
different 128-bit floating point types (IBM extended double and IEEE
128-bit floating point). */
if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2)))
return false;
if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2)))
return false;
return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
case FIXED_CST:
/* Fixed constants are the same only if the same width of type. */
if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2)))
return false;
return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
case STRING_CST:
if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2))
|| int_size_in_bytes (TREE_TYPE (t1))
!= int_size_in_bytes (TREE_TYPE (t2)))
return false;
return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
&& ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
TREE_STRING_LENGTH (t1)));
case COMPLEX_CST:
return (compare_constant (TREE_REALPART (t1), TREE_REALPART (t2))
&& compare_constant (TREE_IMAGPART (t1), TREE_IMAGPART (t2)));
case VECTOR_CST:
{
if (VECTOR_CST_NPATTERNS (t1)
!= VECTOR_CST_NPATTERNS (t2))
return false;
if (VECTOR_CST_NELTS_PER_PATTERN (t1)
!= VECTOR_CST_NELTS_PER_PATTERN (t2))
return false;
unsigned int count = vector_cst_encoded_nelts (t1);
for (unsigned int i = 0; i < count; ++i)
if (!compare_constant (VECTOR_CST_ENCODED_ELT (t1, i),
VECTOR_CST_ENCODED_ELT (t2, i)))
return false;
return true;
}
case CONSTRUCTOR:
{
vec *v1, *v2;
unsigned HOST_WIDE_INT idx;
typecode = TREE_CODE (TREE_TYPE (t1));
if (typecode != TREE_CODE (TREE_TYPE (t2)))
return false;
if (typecode == ARRAY_TYPE)
{
HOST_WIDE_INT size_1 = int_size_in_bytes (TREE_TYPE (t1));
/* For arrays, check that mode, size and storage order match. */
if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2))
|| size_1 == -1
|| size_1 != int_size_in_bytes (TREE_TYPE (t2))
|| TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (t1))
!= TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (t2)))
return false;
}
else
{
/* For record and union constructors, require exact type
equality. */
if (TREE_TYPE (t1) != TREE_TYPE (t2))
return false;
}
v1 = CONSTRUCTOR_ELTS (t1);
v2 = CONSTRUCTOR_ELTS (t2);
if (vec_safe_length (v1) != vec_safe_length (v2))
return false;
for (idx = 0; idx < vec_safe_length (v1); ++idx)
{
constructor_elt *c1 = &(*v1)[idx];
constructor_elt *c2 = &(*v2)[idx];
/* Check that each value is the same... */
if (!compare_constant (c1->value, c2->value))
return false;
/* ... and that they apply to the same fields! */
if (typecode == ARRAY_TYPE)
{
if (!compare_constant (c1->index, c2->index))
return false;
}
else
{
if (c1->index != c2->index)
return false;
}
}
return true;
}
case ADDR_EXPR:
case FDESC_EXPR:
{
class addr_const value1, value2;
enum rtx_code code;
bool ret;
decode_addr_const (t1, &value1);
decode_addr_const (t2, &value2);
if (maybe_ne (value1.offset, value2.offset))
return false;
code = GET_CODE (value1.base);
if (code != GET_CODE (value2.base))
return false;
switch (code)
{
case SYMBOL_REF:
ret = (strcmp (XSTR (value1.base, 0), XSTR (value2.base, 0)) == 0);
break;
case LABEL_REF:
ret = (CODE_LABEL_NUMBER (label_ref_label (value1.base))
== CODE_LABEL_NUMBER (label_ref_label (value2.base)));
break;
default:
gcc_unreachable ();
}
return ret;
}
case PLUS_EXPR:
case POINTER_PLUS_EXPR:
case MINUS_EXPR:
case RANGE_EXPR:
return (compare_constant (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))
&& compare_constant (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)));
CASE_CONVERT:
case VIEW_CONVERT_EXPR:
return compare_constant (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
default:
return false;
}
}
/* Return the section into which constant EXP should be placed. */
static section *
get_constant_section (tree exp, unsigned int align)
{
return targetm.asm_out.select_section (exp,
compute_reloc_for_constant (exp),
align);
}
/* Return the size of constant EXP in bytes. */
static HOST_WIDE_INT
get_constant_size (tree exp)
{
HOST_WIDE_INT size;
size = int_size_in_bytes (TREE_TYPE (exp));
gcc_checking_assert (size >= 0);
gcc_checking_assert (TREE_CODE (exp) != STRING_CST
|| size >= TREE_STRING_LENGTH (exp));
return size;
}
/* Subroutine of output_constant_def:
No constant equal to EXP is known to have been output.
Make a constant descriptor to enter EXP in the hash table.
Assign the label number and construct RTL to refer to the
constant's location in memory.
Caller is responsible for updating the hash table. */
static struct constant_descriptor_tree *
build_constant_desc (tree exp)
{
struct constant_descriptor_tree *desc;
rtx symbol, rtl;
char label[256];
int labelno;
tree decl;
desc = ggc_alloc ();
desc->value = exp;
/* Create a string containing the label name, in LABEL. */
labelno = const_labelno++;
ASM_GENERATE_INTERNAL_LABEL (label, "LC", labelno);
/* Construct the VAR_DECL associated with the constant. */
decl = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (label),
TREE_TYPE (exp));
DECL_ARTIFICIAL (decl) = 1;
DECL_IGNORED_P (decl) = 1;
TREE_READONLY (decl) = 1;
TREE_STATIC (decl) = 1;
TREE_ADDRESSABLE (decl) = 1;
/* We don't set the RTL yet as this would cause varpool to assume that the
variable is referenced. Moreover, it would just be dropped in LTO mode.
Instead we set the flag that will be recognized in make_decl_rtl. */
DECL_IN_CONSTANT_POOL (decl) = 1;
DECL_INITIAL (decl) = desc->value;
/* ??? targetm.constant_alignment hasn't been updated for vector types on
most architectures so use DATA_ALIGNMENT as well, except for strings. */
if (TREE_CODE (exp) == STRING_CST)
SET_DECL_ALIGN (decl, targetm.constant_alignment (exp, DECL_ALIGN (decl)));
else
{
align_variable (decl, 0);
if (DECL_ALIGN (decl) < GET_MODE_ALIGNMENT (DECL_MODE (decl))
&& ((optab_handler (movmisalign_optab, DECL_MODE (decl))
!= CODE_FOR_nothing)
|| targetm.slow_unaligned_access (DECL_MODE (decl),
DECL_ALIGN (decl))))
SET_DECL_ALIGN (decl, GET_MODE_ALIGNMENT (DECL_MODE (decl)));
}
/* Now construct the SYMBOL_REF and the MEM. */
if (use_object_blocks_p ())
{
int align = (TREE_CODE (decl) == CONST_DECL
|| (VAR_P (decl) && DECL_IN_CONSTANT_POOL (decl))
? DECL_ALIGN (decl)
: symtab_node::get (decl)->definition_alignment ());
section *sect = get_constant_section (exp, align);
symbol = create_block_symbol (ggc_strdup (label),
get_block_for_section (sect), -1);
}
else
symbol = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (label));
SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_LOCAL;
SET_SYMBOL_REF_DECL (symbol, decl);
TREE_CONSTANT_POOL_ADDRESS_P (symbol) = 1;
rtl = gen_const_mem (TYPE_MODE (TREE_TYPE (exp)), symbol);
set_mem_alias_set (rtl, 0);
/* Putting EXP into the literal pool might have imposed a different
alignment which should be visible in the RTX as well. */
set_mem_align (rtl, DECL_ALIGN (decl));
/* We cannot share RTX'es in pool entries.
Mark this piece of RTL as required for unsharing. */
RTX_FLAG (rtl, used) = 1;
/* Set flags or add text to the name to record information, such as
that it is a local symbol. If the name is changed, the macro
ASM_OUTPUT_LABELREF will have to know how to strip this
information. This call might invalidate our local variable
SYMBOL; we can't use it afterward. */
targetm.encode_section_info (exp, rtl, true);
desc->rtl = rtl;
return desc;
}
/* Subroutine of output_constant_def and tree_output_constant_def:
Add a constant to the hash table that tracks which constants
already have labels. */
static constant_descriptor_tree *
add_constant_to_table (tree exp, int defer)
{
/* The hash table methods may call output_constant_def for addressed
constants, so handle them first. */
output_addressed_constants (exp, defer);
/* Sanity check to catch recursive insertion. */
static bool inserting;
gcc_assert (!inserting);
inserting = true;
/* Look up EXP in the table of constant descriptors. If we didn't
find it, create a new one. */
struct constant_descriptor_tree key;
key.value = exp;
key.hash = const_hash_1 (exp);
constant_descriptor_tree **loc
= const_desc_htab->find_slot_with_hash (&key, key.hash, INSERT);
inserting = false;
struct constant_descriptor_tree *desc = *loc;
if (!desc)
{
desc = build_constant_desc (exp);
desc->hash = key.hash;
*loc = desc;
}
return desc;
}
/* Return an rtx representing a reference to constant data in memory
for the constant expression EXP.
If assembler code for such a constant has already been output,
return an rtx to refer to it.
Otherwise, output such a constant in memory
and generate an rtx for it.
If DEFER is nonzero, this constant can be deferred and output only
if referenced in the function after all optimizations.
`const_desc_table' records which constants already have label strings. */
rtx
output_constant_def (tree exp, int defer)
{
struct constant_descriptor_tree *desc = add_constant_to_table (exp, defer);
maybe_output_constant_def_contents (desc, defer);
return desc->rtl;
}
/* Subroutine of output_constant_def: Decide whether or not we need to
output the constant DESC now, and if so, do it. */
static void
maybe_output_constant_def_contents (struct constant_descriptor_tree *desc,
int defer)
{
rtx symbol = XEXP (desc->rtl, 0);
tree exp = desc->value;
if (flag_syntax_only)
return;
if (TREE_ASM_WRITTEN (exp))
/* Already output; don't do it again. */
return;
/* We can always defer constants as long as the context allows
doing so. */
if (defer)
{
/* Increment n_deferred_constants if it exists. It needs to be at
least as large as the number of constants actually referred to
by the function. If it's too small we'll stop looking too early
and fail to emit constants; if it's too large we'll only look
through the entire function when we could have stopped earlier. */
if (cfun)
n_deferred_constants++;
return;
}
output_constant_def_contents (symbol);
}
/* Subroutine of output_constant_def_contents. Output the definition
of constant EXP, which is pointed to by label LABEL. ALIGN is the
constant's alignment in bits. */
static void
assemble_constant_contents (tree exp, const char *label, unsigned int align,
bool merge_strings)
{
HOST_WIDE_INT size;
size = get_constant_size (exp);
/* Do any machine/system dependent processing of the constant. */
targetm.asm_out.declare_constant_name (asm_out_file, label, exp, size);
/* Output the value of EXP. */
output_constant (exp, size, align, false, merge_strings);
targetm.asm_out.decl_end ();
}
/* We must output the constant data referred to by SYMBOL; do so. */
static void
output_constant_def_contents (rtx symbol)
{
tree decl = SYMBOL_REF_DECL (symbol);
tree exp = DECL_INITIAL (decl);
bool asan_protected = false;
/* Make sure any other constants whose addresses appear in EXP
are assigned label numbers. */
output_addressed_constants (exp, 0);
/* We are no longer deferring this constant. */
TREE_ASM_WRITTEN (decl) = TREE_ASM_WRITTEN (exp) = 1;
if ((flag_sanitize & SANITIZE_ADDRESS)
&& TREE_CODE (exp) == STRING_CST
&& asan_protect_global (exp))
{
asan_protected = true;
SET_DECL_ALIGN (decl, MAX (DECL_ALIGN (decl),
ASAN_RED_ZONE_SIZE * BITS_PER_UNIT));
}
/* If the constant is part of an object block, make sure that the
decl has been positioned within its block, but do not write out
its definition yet. output_object_blocks will do that later. */
if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol) && SYMBOL_REF_BLOCK (symbol))
place_block_symbol (symbol);
else
{
int align = (TREE_CODE (decl) == CONST_DECL
|| (VAR_P (decl) && DECL_IN_CONSTANT_POOL (decl))
? DECL_ALIGN (decl)
: symtab_node::get (decl)->definition_alignment ());
section *sect = get_constant_section (exp, align);
switch_to_section (sect);
if (align > BITS_PER_UNIT)
ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (align / BITS_PER_UNIT));
assemble_constant_contents (exp, XSTR (symbol, 0), align,
(sect->common.flags & SECTION_MERGE)
&& (sect->common.flags & SECTION_STRINGS));
if (asan_protected)
{
HOST_WIDE_INT size = get_constant_size (exp);
assemble_zeros (asan_red_zone_size (size));
}
}
}
/* Look up EXP in the table of constant descriptors. Return the rtl
if it has been emitted, else null. */
rtx
lookup_constant_def (tree exp)
{
struct constant_descriptor_tree key;
key.value = exp;
key.hash = const_hash_1 (exp);
constant_descriptor_tree *desc
= const_desc_htab->find_with_hash (&key, key.hash);
return (desc ? desc->rtl : NULL_RTX);
}
/* Return a tree representing a reference to constant data in memory
for the constant expression EXP.
This is the counterpart of output_constant_def at the Tree level. */
tree
tree_output_constant_def (tree exp)
{
struct constant_descriptor_tree *desc = add_constant_to_table (exp, 1);
tree decl = SYMBOL_REF_DECL (XEXP (desc->rtl, 0));
varpool_node::finalize_decl (decl);
return decl;
}
class GTY((chain_next ("%h.next"), for_user)) constant_descriptor_rtx {
public:
class constant_descriptor_rtx *next;
rtx mem;
rtx sym;
rtx constant;
HOST_WIDE_INT offset;
hashval_t hash;
fixed_size_mode mode;
unsigned int align;
int labelno;
int mark;
};
struct const_rtx_desc_hasher : ggc_ptr_hash
{
static hashval_t hash (constant_descriptor_rtx *);
static bool equal (constant_descriptor_rtx *, constant_descriptor_rtx *);
};
/* Used in the hash tables to avoid outputting the same constant
twice. Unlike 'struct constant_descriptor_tree', RTX constants
are output once per function, not once per file. */
/* ??? Only a few targets need per-function constant pools. Most
can use one per-file pool. Should add a targetm bit to tell the
difference. */
struct GTY(()) rtx_constant_pool {
/* Pointers to first and last constant in pool, as ordered by offset. */
class constant_descriptor_rtx *first;
class constant_descriptor_rtx *last;
/* Hash facility for making memory-constants from constant rtl-expressions.
It is used on RISC machines where immediate integer arguments and
constant addresses are restricted so that such constants must be stored
in memory. */
hash_table *const_rtx_htab;
/* Current offset in constant pool (does not include any
machine-specific header). */
HOST_WIDE_INT offset;
};
/* Hash and compare functions for const_rtx_htab. */
hashval_t
const_rtx_desc_hasher::hash (constant_descriptor_rtx *desc)
{
return desc->hash;
}
bool
const_rtx_desc_hasher::equal (constant_descriptor_rtx *x,
constant_descriptor_rtx *y)
{
if (x->mode != y->mode)
return false;
return rtx_equal_p (x->constant, y->constant);
}
/* Hash one component of a constant. */
static hashval_t
const_rtx_hash_1 (const_rtx x)
{
unsigned HOST_WIDE_INT hwi;
machine_mode mode;
enum rtx_code code;
hashval_t h;
int i;
code = GET_CODE (x);
mode = GET_MODE (x);
h = (hashval_t) code * 1048573 + mode;
switch (code)
{
case CONST_INT:
hwi = INTVAL (x);
fold_hwi:
{
int shift = sizeof (hashval_t) * CHAR_BIT;
const int n = sizeof (HOST_WIDE_INT) / sizeof (hashval_t);
h ^= (hashval_t) hwi;
for (i = 1; i < n; ++i)
{
hwi >>= shift;
h ^= (hashval_t) hwi;
}
}
break;
case CONST_WIDE_INT:
hwi = 0;
{
for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
hwi ^= CONST_WIDE_INT_ELT (x, i);
goto fold_hwi;
}
case CONST_DOUBLE:
if (TARGET_SUPPORTS_WIDE_INT == 0 && mode == VOIDmode)
{
hwi = CONST_DOUBLE_LOW (x) ^ CONST_DOUBLE_HIGH (x);
goto fold_hwi;
}
else
h ^= real_hash (CONST_DOUBLE_REAL_VALUE (x));
break;
case CONST_FIXED:
h ^= fixed_hash (CONST_FIXED_VALUE (x));
break;
case SYMBOL_REF:
h ^= htab_hash_string (XSTR (x, 0));
break;
case LABEL_REF:
h = h * 251 + CODE_LABEL_NUMBER (label_ref_label (x));
break;
case UNSPEC:
case UNSPEC_VOLATILE:
h = h * 251 + XINT (x, 1);
break;
default:
break;
}
return h;
}
/* Compute a hash value for X, which should be a constant. */
static hashval_t
const_rtx_hash (rtx x)
{
hashval_t h = 0;
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, ALL)
h = h * 509 + const_rtx_hash_1 (*iter);
return h;
}
/* Create and return a new rtx constant pool. */
static struct rtx_constant_pool *
create_constant_pool (void)
{
struct rtx_constant_pool *pool;
pool = ggc_alloc ();
pool->const_rtx_htab = hash_table::create_ggc (31);
pool->first = NULL;
pool->last = NULL;
pool->offset = 0;
return pool;
}
/* Initialize constant pool hashing for a new function. */
void
init_varasm_status (void)
{
crtl->varasm.pool = create_constant_pool ();
crtl->varasm.deferred_constants = 0;
}
/* Given a MINUS expression, simplify it if both sides
include the same symbol. */
rtx
simplify_subtraction (rtx x)
{
rtx r = simplify_rtx (x);
return r ? r : x;
}
/* Given a constant rtx X, make (or find) a memory constant for its value
and return a MEM rtx to refer to it in memory. IN_MODE is the mode
of X. */
rtx
force_const_mem (machine_mode in_mode, rtx x)
{
class constant_descriptor_rtx *desc, tmp;
struct rtx_constant_pool *pool;
char label[256];
rtx def, symbol;
hashval_t hash;
unsigned int align;
constant_descriptor_rtx **slot;
fixed_size_mode mode;
/* We can't force variable-sized objects to memory. */
if (!is_a (in_mode, &mode))
return NULL_RTX;
/* If we're not allowed to drop X into the constant pool, don't. */
if (targetm.cannot_force_const_mem (mode, x))
return NULL_RTX;
/* Record that this function has used a constant pool entry. */
crtl->uses_const_pool = 1;
/* Decide which pool to use. */
pool = (targetm.use_blocks_for_constant_p (mode, x)
? shared_constant_pool
: crtl->varasm.pool);
/* Lookup the value in the hashtable. */
tmp.constant = x;
tmp.mode = mode;
hash = const_rtx_hash (x);
slot = pool->const_rtx_htab->find_slot_with_hash (&tmp, hash, INSERT);
desc = *slot;
/* If the constant was already present, return its memory. */
if (desc)
return copy_rtx (desc->mem);
/* Otherwise, create a new descriptor. */
desc = ggc_alloc ();
*slot = desc;
/* Align the location counter as required by EXP's data type. */
machine_mode align_mode = (mode == VOIDmode ? word_mode : mode);
align = targetm.static_rtx_alignment (align_mode);
pool->offset += (align / BITS_PER_UNIT) - 1;
pool->offset &= ~ ((align / BITS_PER_UNIT) - 1);
desc->next = NULL;
desc->constant = copy_rtx (tmp.constant);
desc->offset = pool->offset;
desc->hash = hash;
desc->mode = mode;
desc->align = align;
desc->labelno = const_labelno;
desc->mark = 0;
pool->offset += GET_MODE_SIZE (mode);
if (pool->last)
pool->last->next = desc;
else
pool->first = pool->last = desc;
pool->last = desc;
/* Create a string containing the label name, in LABEL. */
ASM_GENERATE_INTERNAL_LABEL (label, "LC", const_labelno);
++const_labelno;
/* Construct the SYMBOL_REF. Make sure to mark it as belonging to
the constants pool. */
if (use_object_blocks_p () && targetm.use_blocks_for_constant_p (mode, x))
{
section *sect = targetm.asm_out.select_rtx_section (mode, x, align);
symbol = create_block_symbol (ggc_strdup (label),
get_block_for_section (sect), -1);
}
else
symbol = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (label));
desc->sym = symbol;
SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_LOCAL;
CONSTANT_POOL_ADDRESS_P (symbol) = 1;
SET_SYMBOL_REF_CONSTANT (symbol, desc);
/* Construct the MEM. */
desc->mem = def = gen_const_mem (mode, symbol);
set_mem_align (def, align);
/* If we're dropping a label to the constant pool, make sure we
don't delete it. */
if (GET_CODE (x) == LABEL_REF)
LABEL_PRESERVE_P (XEXP (x, 0)) = 1;
return copy_rtx (def);
}
/* Given a constant pool SYMBOL_REF, return the corresponding constant. */
rtx
get_pool_constant (const_rtx addr)
{
return SYMBOL_REF_CONSTANT (addr)->constant;
}
/* Given a constant pool SYMBOL_REF, return the corresponding constant
and whether it has been output or not. */
rtx
get_pool_constant_mark (rtx addr, bool *pmarked)
{
class constant_descriptor_rtx *desc;
desc = SYMBOL_REF_CONSTANT (addr);
*pmarked = (desc->mark != 0);
return desc->constant;
}
/* Similar, return the mode. */
fixed_size_mode
get_pool_mode (const_rtx addr)
{
return SYMBOL_REF_CONSTANT (addr)->mode;
}
/* Return TRUE if and only if the constant pool has no entries. Note
that even entries we might end up choosing not to emit are counted
here, so there is the potential for missed optimizations. */
bool
constant_pool_empty_p (void)
{
return crtl->varasm.pool->first == NULL;
}
/* Worker function for output_constant_pool_1. Emit assembly for X
in MODE with known alignment ALIGN. */
static void
output_constant_pool_2 (fixed_size_mode mode, rtx x, unsigned int align)
{
switch (GET_MODE_CLASS (mode))
{
case MODE_FLOAT:
case MODE_DECIMAL_FLOAT:
{
gcc_assert (CONST_DOUBLE_AS_FLOAT_P (x));
assemble_real (*CONST_DOUBLE_REAL_VALUE (x),
as_a (mode), align, false);
break;
}
case MODE_INT:
case MODE_PARTIAL_INT:
case MODE_FRACT:
case MODE_UFRACT:
case MODE_ACCUM:
case MODE_UACCUM:
assemble_integer (x, GET_MODE_SIZE (mode), align, 1);
break;
case MODE_VECTOR_BOOL:
{
gcc_assert (GET_CODE (x) == CONST_VECTOR);
/* Pick the smallest integer mode that contains at least one
whole element. Often this is byte_mode and contains more
than one element. */
unsigned int nelts = GET_MODE_NUNITS (mode);
unsigned int elt_bits = GET_MODE_PRECISION (mode) / nelts;
unsigned int int_bits = MAX (elt_bits, BITS_PER_UNIT);
scalar_int_mode int_mode = int_mode_for_size (int_bits, 0).require ();
unsigned int mask = GET_MODE_MASK (GET_MODE_INNER (mode));
/* We allow GET_MODE_PRECISION (mode) <= GET_MODE_BITSIZE (mode) but
only properly handle cases where the difference is less than a
byte. */
gcc_assert (GET_MODE_BITSIZE (mode) - GET_MODE_PRECISION (mode) <
BITS_PER_UNIT);
/* Build the constant up one integer at a time. */
unsigned int elts_per_int = int_bits / elt_bits;
for (unsigned int i = 0; i < nelts; i += elts_per_int)
{
unsigned HOST_WIDE_INT value = 0;
unsigned int limit = MIN (nelts - i, elts_per_int);
for (unsigned int j = 0; j < limit; ++j)
{
auto elt = INTVAL (CONST_VECTOR_ELT (x, i + j));
value |= (elt & mask) << (j * elt_bits);
}
output_constant_pool_2 (int_mode, gen_int_mode (value, int_mode),
i != 0 ? MIN (align, int_bits) : align);
}
break;
}
case MODE_VECTOR_FLOAT:
case MODE_VECTOR_INT:
case MODE_VECTOR_FRACT:
case MODE_VECTOR_UFRACT:
case MODE_VECTOR_ACCUM:
case MODE_VECTOR_UACCUM:
{
int i, units;
scalar_mode submode = GET_MODE_INNER (mode);
unsigned int subalign = MIN (align, GET_MODE_BITSIZE (submode));
gcc_assert (GET_CODE (x) == CONST_VECTOR);
units = GET_MODE_NUNITS (mode);
for (i = 0; i < units; i++)
{
rtx elt = CONST_VECTOR_ELT (x, i);
output_constant_pool_2 (submode, elt, i ? subalign : align);
}
}
break;
default:
gcc_unreachable ();
}
}
/* Worker function for output_constant_pool. Emit constant DESC,
giving it ALIGN bits of alignment. */
static void
output_constant_pool_1 (class constant_descriptor_rtx *desc,
unsigned int align)
{
rtx x, tmp;
x = desc->constant;
/* See if X is a LABEL_REF (or a CONST referring to a LABEL_REF)
whose CODE_LABEL has been deleted. This can occur if a jump table
is eliminated by optimization. If so, write a constant of zero
instead. Note that this can also happen by turning the
CODE_LABEL into a NOTE. */
/* ??? This seems completely and utterly wrong. Certainly it's
not true for NOTE_INSN_DELETED_LABEL, but I disbelieve proper
functioning even with rtx_insn::deleted and friends. */
tmp = x;
switch (GET_CODE (tmp))
{
case CONST:
if (GET_CODE (XEXP (tmp, 0)) != PLUS
|| GET_CODE (XEXP (XEXP (tmp, 0), 0)) != LABEL_REF)
break;
tmp = XEXP (XEXP (tmp, 0), 0);
/* FALLTHRU */
case LABEL_REF:
{
rtx_insn *insn = label_ref_label (tmp);
gcc_assert (!insn->deleted ());
gcc_assert (!NOTE_P (insn)
|| NOTE_KIND (insn) != NOTE_INSN_DELETED);
break;
}
default:
break;
}
#ifdef ASM_OUTPUT_SPECIAL_POOL_ENTRY
ASM_OUTPUT_SPECIAL_POOL_ENTRY (asm_out_file, x, desc->mode,
align, desc->labelno, done);
#endif
assemble_align (align);
/* Output the label. */
targetm.asm_out.internal_label (asm_out_file, "LC", desc->labelno);
/* Output the data.
Pass actual alignment value while emitting string constant to asm code
as function 'output_constant_pool_1' explicitly passes the alignment as 1
assuming that the data is already aligned which prevents the generation
of fix-up table entries. */
output_constant_pool_2 (desc->mode, x, desc->align);
/* Make sure all constants in SECTION_MERGE and not SECTION_STRINGS
sections have proper size. */
if (align > GET_MODE_BITSIZE (desc->mode)
&& in_section
&& (in_section->common.flags & SECTION_MERGE))
assemble_align (align);
#ifdef ASM_OUTPUT_SPECIAL_POOL_ENTRY
done:
#endif
return;
}
/* Recompute the offsets of entries in POOL, and the overall size of
POOL. Do this after calling mark_constant_pool to ensure that we
are computing the offset values for the pool which we will actually
emit. */
static void
recompute_pool_offsets (struct rtx_constant_pool *pool)
{
class constant_descriptor_rtx *desc;
pool->offset = 0;
for (desc = pool->first; desc ; desc = desc->next)
if (desc->mark)
{
/* Recalculate offset. */
unsigned int align = desc->align;
pool->offset += (align / BITS_PER_UNIT) - 1;
pool->offset &= ~ ((align / BITS_PER_UNIT) - 1);
desc->offset = pool->offset;
pool->offset += GET_MODE_SIZE (desc->mode);
}
}
/* Mark all constants that are referenced by SYMBOL_REFs in X.
Emit referenced deferred strings. */
static void
mark_constants_in_pattern (rtx insn)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
{
const_rtx x = *iter;
if (GET_CODE (x) == SYMBOL_REF)
{
if (CONSTANT_POOL_ADDRESS_P (x))
{
class constant_descriptor_rtx *desc = SYMBOL_REF_CONSTANT (x);
if (desc->mark == 0)
{
desc->mark = 1;
iter.substitute (desc->constant);
}
}
else if (TREE_CONSTANT_POOL_ADDRESS_P (x))
{
tree decl = SYMBOL_REF_DECL (x);
if (!TREE_ASM_WRITTEN (DECL_INITIAL (decl)))
{
n_deferred_constants--;
output_constant_def_contents (CONST_CAST_RTX (x));
}
}
}
}
}
/* Look through appropriate parts of INSN, marking all entries in the
constant pool which are actually being used. Entries that are only
referenced by other constants are also marked as used. Emit
deferred strings that are used. */
static void
mark_constants (rtx_insn *insn)
{
if (!INSN_P (insn))
return;
/* Insns may appear inside a SEQUENCE. Only check the patterns of
insns, not any notes that may be attached. We don't want to mark
a constant just because it happens to appear in a REG_EQUIV note. */
if (rtx_sequence *seq = dyn_cast (PATTERN (insn)))
{
int i, n = seq->len ();
for (i = 0; i < n; ++i)
{
rtx subinsn = seq->element (i);
if (INSN_P (subinsn))
mark_constants_in_pattern (subinsn);
}
}
else
mark_constants_in_pattern (insn);
}
/* Look through the instructions for this function, and mark all the
entries in POOL which are actually being used. Emit deferred constants
which have indeed been used. */
static void
mark_constant_pool (void)
{
rtx_insn *insn;
if (!crtl->uses_const_pool && n_deferred_constants == 0)
return;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
mark_constants (insn);
}
/* Write all the constants in POOL. */
static void
output_constant_pool_contents (struct rtx_constant_pool *pool)
{
class constant_descriptor_rtx *desc;
for (desc = pool->first; desc ; desc = desc->next)
if (desc->mark < 0)
{
#ifdef ASM_OUTPUT_DEF
gcc_checking_assert (TARGET_SUPPORTS_ALIASES);
const char *name = XSTR (desc->sym, 0);
char label[256];
char buffer[256 + 32];
const char *p;
ASM_GENERATE_INTERNAL_LABEL (label, "LC", ~desc->mark);
p = label;
if (desc->offset)
{
sprintf (buffer, "%s+%ld", p, (long) (desc->offset));
p = buffer;
}
ASM_OUTPUT_DEF (asm_out_file, name, p);
#else
gcc_unreachable ();
#endif
}
else if (desc->mark)
{
/* If the constant is part of an object_block, make sure that
the constant has been positioned within its block, but do not
write out its definition yet. output_object_blocks will do
that later. */
if (SYMBOL_REF_HAS_BLOCK_INFO_P (desc->sym)
&& SYMBOL_REF_BLOCK (desc->sym))
place_block_symbol (desc->sym);
else
{
switch_to_section (targetm.asm_out.select_rtx_section
(desc->mode, desc->constant, desc->align));
output_constant_pool_1 (desc, desc->align);
}
}
}
struct constant_descriptor_rtx_data {
constant_descriptor_rtx *desc;
target_unit *bytes;
unsigned short size;
unsigned short offset;
unsigned int hash;
};
/* qsort callback to sort constant_descriptor_rtx_data * vector by
decreasing size. */
static int
constant_descriptor_rtx_data_cmp (const void *p1, const void *p2)
{
constant_descriptor_rtx_data *const data1
= *(constant_descriptor_rtx_data * const *) p1;
constant_descriptor_rtx_data *const data2
= *(constant_descriptor_rtx_data * const *) p2;
if (data1->size > data2->size)
return -1;
if (data1->size < data2->size)
return 1;
if (data1->hash < data2->hash)
return -1;
gcc_assert (data1->hash > data2->hash);
return 1;
}
struct const_rtx_data_hasher : nofree_ptr_hash
{
static hashval_t hash (constant_descriptor_rtx_data *);
static bool equal (constant_descriptor_rtx_data *,
constant_descriptor_rtx_data *);
};
/* Hash and compare functions for const_rtx_data_htab. */
hashval_t
const_rtx_data_hasher::hash (constant_descriptor_rtx_data *data)
{
return data->hash;
}
bool
const_rtx_data_hasher::equal (constant_descriptor_rtx_data *x,
constant_descriptor_rtx_data *y)
{
if (x->hash != y->hash || x->size != y->size)
return false;
unsigned int align1 = x->desc->align;
unsigned int align2 = y->desc->align;
unsigned int offset1 = (x->offset * BITS_PER_UNIT) & (align1 - 1);
unsigned int offset2 = (y->offset * BITS_PER_UNIT) & (align2 - 1);
if (offset1)
align1 = least_bit_hwi (offset1);
if (offset2)
align2 = least_bit_hwi (offset2);
if (align2 > align1)
return false;
if (memcmp (x->bytes, y->bytes, x->size * sizeof (target_unit)) != 0)
return false;
return true;
}
/* Attempt to optimize constant pool POOL. If it contains both CONST_VECTOR
constants and scalar constants with the values of CONST_VECTOR elements,
try to alias the scalar constants with the CONST_VECTOR elements. */
static void
optimize_constant_pool (struct rtx_constant_pool *pool)
{
auto_vec buffer;
auto_vec vec;
object_allocator
data_pool ("constant_descriptor_rtx_data_pool");
int idx = 0;
size_t size = 0;
for (constant_descriptor_rtx *desc = pool->first; desc; desc = desc->next)
if (desc->mark > 0
&& ! (SYMBOL_REF_HAS_BLOCK_INFO_P (desc->sym)
&& SYMBOL_REF_BLOCK (desc->sym)))
{
buffer.truncate (0);
buffer.reserve (GET_MODE_SIZE (desc->mode));
if (native_encode_rtx (desc->mode, desc->constant, buffer, 0,
GET_MODE_SIZE (desc->mode)))
{
constant_descriptor_rtx_data *data = data_pool.allocate ();
data->desc = desc;
data->bytes = NULL;
data->size = GET_MODE_SIZE (desc->mode);
data->offset = 0;
data->hash = idx++;
size += data->size;
vec.safe_push (data);
}
}
if (idx)
{
vec.qsort (constant_descriptor_rtx_data_cmp);
unsigned min_size = vec.last ()->size;
target_unit *bytes = XNEWVEC (target_unit, size);
unsigned int i;
constant_descriptor_rtx_data *data;
hash_table * htab
= new hash_table (31);
size = 0;
FOR_EACH_VEC_ELT (vec, i, data)
{
buffer.truncate (0);
native_encode_rtx (data->desc->mode, data->desc->constant,
buffer, 0, data->size);
memcpy (bytes + size, buffer.address (), data->size);
data->bytes = bytes + size;
data->hash = iterative_hash (data->bytes,
data->size * sizeof (target_unit), 0);
size += data->size;
constant_descriptor_rtx_data **slot
= htab->find_slot_with_hash (data, data->hash, INSERT);
if (*slot)
{
data->desc->mark = ~(*slot)->desc->labelno;
data->desc->offset = (*slot)->offset;
}
else
{
unsigned int sz = 1 << floor_log2 (data->size);
*slot = data;
for (sz >>= 1; sz >= min_size; sz >>= 1)
for (unsigned off = 0; off + sz <= data->size; off += sz)
{
constant_descriptor_rtx_data tmp;
tmp.desc = data->desc;
tmp.bytes = data->bytes + off;
tmp.size = sz;
tmp.offset = off;
tmp.hash = iterative_hash (tmp.bytes,
sz * sizeof (target_unit), 0);
slot = htab->find_slot_with_hash (&tmp, tmp.hash, INSERT);
if (*slot == NULL)
{
*slot = data_pool.allocate ();
**slot = tmp;
}
}
}
}
delete htab;
XDELETE (bytes);
}
data_pool.release ();
}
/* Mark all constants that are used in the current function, then write
out the function's private constant pool. */
static void
output_constant_pool (const char *fnname ATTRIBUTE_UNUSED,
tree fndecl ATTRIBUTE_UNUSED)
{
struct rtx_constant_pool *pool = crtl->varasm.pool;
/* It is possible for gcc to call force_const_mem and then to later
discard the instructions which refer to the constant. In such a
case we do not need to output the constant. */
mark_constant_pool ();
/* Having marked the constant pool entries we'll actually emit, we
now need to rebuild the offset information, which may have become
stale. */
recompute_pool_offsets (pool);
#ifdef ASM_OUTPUT_POOL_PROLOGUE
ASM_OUTPUT_POOL_PROLOGUE (asm_out_file, fnname, fndecl, pool->offset);
#endif
output_constant_pool_contents (pool);
#ifdef ASM_OUTPUT_POOL_EPILOGUE
ASM_OUTPUT_POOL_EPILOGUE (asm_out_file, fnname, fndecl, pool->offset);
#endif
}
/* Write the contents of the shared constant pool. */
void
output_shared_constant_pool (void)
{
if (optimize
&& TARGET_SUPPORTS_ALIASES)
optimize_constant_pool (shared_constant_pool);
output_constant_pool_contents (shared_constant_pool);
}
/* Determine what kind of relocations EXP may need. */
int
compute_reloc_for_constant (tree exp)
{
int reloc = 0, reloc2;
tree tem;
switch (TREE_CODE (exp))
{
case ADDR_EXPR:
case FDESC_EXPR:
/* Go inside any operations that get_inner_reference can handle and see
if what's inside is a constant: no need to do anything here for
addresses of variables or functions. */
for (tem = TREE_OPERAND (exp, 0); handled_component_p (tem);
tem = TREE_OPERAND (tem, 0))
;
if (TREE_CODE (tem) == MEM_REF
&& TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR)
{
reloc = compute_reloc_for_constant (TREE_OPERAND (tem, 0));
break;
}
if (!targetm.binds_local_p (tem))
reloc |= 2;
else
reloc |= 1;
break;
case PLUS_EXPR:
case POINTER_PLUS_EXPR:
reloc = compute_reloc_for_constant (TREE_OPERAND (exp, 0));
reloc |= compute_reloc_for_constant (TREE_OPERAND (exp, 1));
break;
case MINUS_EXPR:
reloc = compute_reloc_for_constant (TREE_OPERAND (exp, 0));
reloc2 = compute_reloc_for_constant (TREE_OPERAND (exp, 1));
/* The difference of two local labels is computable at link time. */
if (reloc == 1 && reloc2 == 1)
reloc = 0;
else
reloc |= reloc2;
break;
CASE_CONVERT:
case VIEW_CONVERT_EXPR:
reloc = compute_reloc_for_constant (TREE_OPERAND (exp, 0));
break;
case CONSTRUCTOR:
{
unsigned HOST_WIDE_INT idx;
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, tem)
if (tem != 0)
reloc |= compute_reloc_for_constant (tem);
}
break;
default:
break;
}
return reloc;
}
/* Find all the constants whose addresses are referenced inside of EXP,
and make sure assembler code with a label has been output for each one.
Indicate whether an ADDR_EXPR has been encountered. */
static void
output_addressed_constants (tree exp, int defer)
{
tree tem;
switch (TREE_CODE (exp))
{
case ADDR_EXPR:
case FDESC_EXPR:
/* Go inside any operations that get_inner_reference can handle and see
if what's inside is a constant: no need to do anything here for
addresses of variables or functions. */
for (tem = TREE_OPERAND (exp, 0); handled_component_p (tem);
tem = TREE_OPERAND (tem, 0))
;
/* If we have an initialized CONST_DECL, retrieve the initializer. */
if (TREE_CODE (tem) == CONST_DECL && DECL_INITIAL (tem))
tem = DECL_INITIAL (tem);
if (CONSTANT_CLASS_P (tem) || TREE_CODE (tem) == CONSTRUCTOR)
output_constant_def (tem, defer);
if (TREE_CODE (tem) == MEM_REF)
output_addressed_constants (TREE_OPERAND (tem, 0), defer);
break;
case PLUS_EXPR:
case POINTER_PLUS_EXPR:
case MINUS_EXPR:
output_addressed_constants (TREE_OPERAND (exp, 1), defer);
gcc_fallthrough ();
CASE_CONVERT:
case VIEW_CONVERT_EXPR:
output_addressed_constants (TREE_OPERAND (exp, 0), defer);
break;
case CONSTRUCTOR:
{
unsigned HOST_WIDE_INT idx;
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, tem)
if (tem != 0)
output_addressed_constants (tem, defer);
}
break;
default:
break;
}
}
/* Whether a constructor CTOR is a valid static constant initializer if all
its elements are. This used to be internal to initializer_constant_valid_p
and has been exposed to let other functions like categorize_ctor_elements
evaluate the property while walking a constructor for other purposes. */
bool
constructor_static_from_elts_p (const_tree ctor)
{
return (TREE_CONSTANT (ctor)
&& (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
|| TREE_CODE (TREE_TYPE (ctor)) == RECORD_TYPE
|| TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE));
}
static tree initializer_constant_valid_p_1 (tree value, tree endtype,
tree *cache);
/* A subroutine of initializer_constant_valid_p. VALUE is a MINUS_EXPR,
PLUS_EXPR or POINTER_PLUS_EXPR. This looks for cases of VALUE
which are valid when ENDTYPE is an integer of any size; in
particular, this does not accept a pointer minus a constant. This
returns null_pointer_node if the VALUE is an absolute constant
which can be used to initialize a static variable. Otherwise it
returns NULL. */
static tree
narrowing_initializer_constant_valid_p (tree value, tree endtype, tree *cache)
{
tree op0, op1;
if (!INTEGRAL_TYPE_P (endtype))
return NULL_TREE;
op0 = TREE_OPERAND (value, 0);
op1 = TREE_OPERAND (value, 1);
/* Like STRIP_NOPS except allow the operand mode to widen. This
works around a feature of fold that simplifies (int)(p1 - p2) to
((int)p1 - (int)p2) under the theory that the narrower operation
is cheaper. */
while (CONVERT_EXPR_P (op0)
|| TREE_CODE (op0) == NON_LVALUE_EXPR)
{
tree inner = TREE_OPERAND (op0, 0);
if (inner == error_mark_node
|| ! INTEGRAL_TYPE_P (TREE_TYPE (op0))
|| ! SCALAR_INT_MODE_P (TYPE_MODE (TREE_TYPE (op0)))
|| ! INTEGRAL_TYPE_P (TREE_TYPE (inner))
|| ! SCALAR_INT_MODE_P (TYPE_MODE (TREE_TYPE (inner)))
|| (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (TREE_TYPE (op0)))
> GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (TREE_TYPE (inner)))))
break;
op0 = inner;
}
while (CONVERT_EXPR_P (op1)
|| TREE_CODE (op1) == NON_LVALUE_EXPR)
{
tree inner = TREE_OPERAND (op1, 0);
if (inner == error_mark_node
|| ! INTEGRAL_TYPE_P (TREE_TYPE (op1))
|| ! SCALAR_INT_MODE_P (TYPE_MODE (TREE_TYPE (op1)))
|| ! INTEGRAL_TYPE_P (TREE_TYPE (inner))
|| ! SCALAR_INT_MODE_P (TYPE_MODE (TREE_TYPE (inner)))
|| (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (TREE_TYPE (op1)))
> GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (TREE_TYPE (inner)))))
break;
op1 = inner;
}
op0 = initializer_constant_valid_p_1 (op0, endtype, cache);
if (!op0)
return NULL_TREE;
op1 = initializer_constant_valid_p_1 (op1, endtype,
cache ? cache + 2 : NULL);
/* Both initializers must be known. */
if (op1)
{
if (op0 == op1
&& (op0 == null_pointer_node
|| TREE_CODE (value) == MINUS_EXPR))
return null_pointer_node;
/* Support differences between labels. */
if (TREE_CODE (op0) == LABEL_DECL
&& TREE_CODE (op1) == LABEL_DECL)
return null_pointer_node;
if (TREE_CODE (op0) == STRING_CST
&& TREE_CODE (op1) == STRING_CST
&& operand_equal_p (op0, op1, 1))
return null_pointer_node;
}
return NULL_TREE;
}
/* Helper function of initializer_constant_valid_p.
Return nonzero if VALUE is a valid constant-valued expression
for use in initializing a static variable; one that can be an
element of a "constant" initializer.
Return null_pointer_node if the value is absolute;
if it is relocatable, return the variable that determines the relocation.
We assume that VALUE has been folded as much as possible;
therefore, we do not need to check for such things as
arithmetic-combinations of integers.
Use CACHE (pointer to 2 tree values) for caching if non-NULL. */
static tree
initializer_constant_valid_p_1 (tree value, tree endtype, tree *cache)
{
tree ret;
switch (TREE_CODE (value))
{
case CONSTRUCTOR:
if (constructor_static_from_elts_p (value))
{
unsigned HOST_WIDE_INT idx;
tree elt;
bool absolute = true;
if (cache && cache[0] == value)
return cache[1];
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (value), idx, elt)
{
tree reloc;
reloc = initializer_constant_valid_p_1 (elt, TREE_TYPE (elt),
NULL);
if (!reloc
/* An absolute value is required with reverse SSO. */
|| (reloc != null_pointer_node
&& TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (value))
&& !AGGREGATE_TYPE_P (TREE_TYPE (elt))))
{
if (cache)
{
cache[0] = value;
cache[1] = NULL_TREE;
}
return NULL_TREE;
}
if (reloc != null_pointer_node)
absolute = false;
}
/* For a non-absolute relocation, there is no single
variable that can be "the variable that determines the
relocation." */
if (cache)
{
cache[0] = value;
cache[1] = absolute ? null_pointer_node : error_mark_node;
}
return absolute ? null_pointer_node : error_mark_node;
}
return TREE_STATIC (value) ? null_pointer_node : NULL_TREE;
case INTEGER_CST:
case VECTOR_CST:
case REAL_CST:
case FIXED_CST:
case STRING_CST:
case COMPLEX_CST:
return null_pointer_node;
case ADDR_EXPR:
case FDESC_EXPR:
{
tree op0 = staticp (TREE_OPERAND (value, 0));
if (op0)
{
/* "&(*a).f" is like unto pointer arithmetic. If "a" turns out
to be a constant, this is old-skool offsetof-like nonsense. */
if (TREE_CODE (op0) == INDIRECT_REF
&& TREE_CONSTANT (TREE_OPERAND (op0, 0)))
return null_pointer_node;
/* Taking the address of a nested function involves a trampoline,
unless we don't need or want one. */
if (TREE_CODE (op0) == FUNCTION_DECL
&& DECL_STATIC_CHAIN (op0)
&& !TREE_NO_TRAMPOLINE (value))
return NULL_TREE;
/* "&{...}" requires a temporary to hold the constructed
object. */
if (TREE_CODE (op0) == CONSTRUCTOR)
return NULL_TREE;
}
return op0;
}
case NON_LVALUE_EXPR:
return initializer_constant_valid_p_1 (TREE_OPERAND (value, 0),
endtype, cache);
case VIEW_CONVERT_EXPR:
{
tree src = TREE_OPERAND (value, 0);
tree src_type = TREE_TYPE (src);
tree dest_type = TREE_TYPE (value);
/* Allow view-conversions from aggregate to non-aggregate type only
if the bit pattern is fully preserved afterwards; otherwise, the
RTL expander won't be able to apply a subsequent transformation
to the underlying constructor. */
if (AGGREGATE_TYPE_P (src_type) && !AGGREGATE_TYPE_P (dest_type))
{
if (TYPE_MODE (endtype) == TYPE_MODE (dest_type))
return initializer_constant_valid_p_1 (src, endtype, cache);
else
return NULL_TREE;
}
/* Allow all other kinds of view-conversion. */
return initializer_constant_valid_p_1 (src, endtype, cache);
}
CASE_CONVERT:
{
tree src = TREE_OPERAND (value, 0);
tree src_type = TREE_TYPE (src);
tree dest_type = TREE_TYPE (value);
/* Allow conversions between pointer types and offset types. */
if ((POINTER_TYPE_P (dest_type) && POINTER_TYPE_P (src_type))
|| (TREE_CODE (dest_type) == OFFSET_TYPE
&& TREE_CODE (src_type) == OFFSET_TYPE))
return initializer_constant_valid_p_1 (src, endtype, cache);
/* Allow length-preserving conversions between integer types and
floating-point types. */
if (((INTEGRAL_TYPE_P (dest_type) && INTEGRAL_TYPE_P (src_type))
|| (SCALAR_FLOAT_TYPE_P (dest_type)
&& SCALAR_FLOAT_TYPE_P (src_type)))
&& (TYPE_PRECISION (dest_type) == TYPE_PRECISION (src_type)))
return initializer_constant_valid_p_1 (src, endtype, cache);
/* Allow conversions between other integer types only if
explicit value. Don't allow sign-extension to a type larger
than word and pointer, there aren't relocations that would
allow to sign extend it to a wider type. */
if (INTEGRAL_TYPE_P (dest_type)
&& INTEGRAL_TYPE_P (src_type)
&& (TYPE_UNSIGNED (src_type)
|| TYPE_PRECISION (dest_type) <= TYPE_PRECISION (src_type)
|| TYPE_PRECISION (dest_type) <= BITS_PER_WORD
|| TYPE_PRECISION (dest_type) <= POINTER_SIZE))
{
tree inner = initializer_constant_valid_p_1 (src, endtype, cache);
if (inner == null_pointer_node)
return null_pointer_node;
break;
}
/* Allow (int) &foo provided int is as wide as a pointer. */
if (INTEGRAL_TYPE_P (dest_type) && POINTER_TYPE_P (src_type)
&& (TYPE_PRECISION (dest_type) >= TYPE_PRECISION (src_type)))
return initializer_constant_valid_p_1 (src, endtype, cache);
/* Likewise conversions from int to pointers, but also allow
conversions from 0. */
if ((POINTER_TYPE_P (dest_type)
|| TREE_CODE (dest_type) == OFFSET_TYPE)
&& INTEGRAL_TYPE_P (src_type))
{
if (TREE_CODE (src) == INTEGER_CST
&& TYPE_PRECISION (dest_type) >= TYPE_PRECISION (src_type))
return null_pointer_node;
if (integer_zerop (src))
return null_pointer_node;
else if (TYPE_PRECISION (dest_type) <= TYPE_PRECISION (src_type))
return initializer_constant_valid_p_1 (src, endtype, cache);
}
/* Allow conversions to struct or union types if the value
inside is okay. */
if (TREE_CODE (dest_type) == RECORD_TYPE
|| TREE_CODE (dest_type) == UNION_TYPE)
return initializer_constant_valid_p_1 (src, endtype, cache);
}
break;
case POINTER_PLUS_EXPR:
case PLUS_EXPR:
/* Any valid floating-point constants will have been folded by now;
with -frounding-math we hit this with addition of two constants. */
if (TREE_CODE (endtype) == REAL_TYPE)
return NULL_TREE;
if (cache && cache[0] == value)
return cache[1];
if (! INTEGRAL_TYPE_P (endtype)
|| ! INTEGRAL_TYPE_P (TREE_TYPE (value))
|| TYPE_PRECISION (endtype) >= TYPE_PRECISION (TREE_TYPE (value)))
{
tree ncache[4] = { NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE };
tree valid0
= initializer_constant_valid_p_1 (TREE_OPERAND (value, 0),
endtype, ncache);
tree valid1
= initializer_constant_valid_p_1 (TREE_OPERAND (value, 1),
endtype, ncache + 2);
/* If either term is absolute, use the other term's relocation. */
if (valid0 == null_pointer_node)
ret = valid1;
else if (valid1 == null_pointer_node)
ret = valid0;
/* Support narrowing pointer differences. */
else
ret = narrowing_initializer_constant_valid_p (value, endtype,
ncache);
}
else
/* Support narrowing pointer differences. */
ret = narrowing_initializer_constant_valid_p (value, endtype, NULL);
if (cache)
{
cache[0] = value;
cache[1] = ret;
}
return ret;
case POINTER_DIFF_EXPR:
case MINUS_EXPR:
if (TREE_CODE (endtype) == REAL_TYPE)
return NULL_TREE;
if (cache && cache[0] == value)
return cache[1];
if (! INTEGRAL_TYPE_P (endtype)
|| ! INTEGRAL_TYPE_P (TREE_TYPE (value))
|| TYPE_PRECISION (endtype) >= TYPE_PRECISION (TREE_TYPE (value)))
{
tree ncache[4] = { NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE };
tree valid0
= initializer_constant_valid_p_1 (TREE_OPERAND (value, 0),
endtype, ncache);
tree valid1
= initializer_constant_valid_p_1 (TREE_OPERAND (value, 1),
endtype, ncache + 2);
/* Win if second argument is absolute. */
if (valid1 == null_pointer_node)
ret = valid0;
/* Win if both arguments have the same relocation.
Then the value is absolute. */
else if (valid0 == valid1 && valid0 != 0)
ret = null_pointer_node;
/* Since GCC guarantees that string constants are unique in the
generated code, a subtraction between two copies of the same
constant string is absolute. */
else if (valid0 && TREE_CODE (valid0) == STRING_CST
&& valid1 && TREE_CODE (valid1) == STRING_CST
&& operand_equal_p (valid0, valid1, 1))
ret = null_pointer_node;
/* Support narrowing differences. */
else
ret = narrowing_initializer_constant_valid_p (value, endtype,
ncache);
}
else
/* Support narrowing differences. */
ret = narrowing_initializer_constant_valid_p (value, endtype, NULL);
if (cache)
{
cache[0] = value;
cache[1] = ret;
}
return ret;
default:
break;
}
return NULL_TREE;
}
/* Return nonzero if VALUE is a valid constant-valued expression
for use in initializing a static variable; one that can be an
element of a "constant" initializer.
Return null_pointer_node if the value is absolute;
if it is relocatable, return the variable that determines the relocation.
We assume that VALUE has been folded as much as possible;
therefore, we do not need to check for such things as
arithmetic-combinations of integers. */
tree
initializer_constant_valid_p (tree value, tree endtype, bool reverse)
{
tree reloc = initializer_constant_valid_p_1 (value, endtype, NULL);
/* An absolute value is required with reverse storage order. */
if (reloc
&& reloc != null_pointer_node
&& reverse
&& !AGGREGATE_TYPE_P (endtype)
&& !VECTOR_TYPE_P (endtype))
reloc = NULL_TREE;
return reloc;
}
/* Return true if VALUE is a valid constant-valued expression
for use in initializing a static bit-field; one that can be
an element of a "constant" initializer. */
bool
initializer_constant_valid_for_bitfield_p (const_tree value)
{
/* For bitfields we support integer constants or possibly nested aggregates
of such. */
switch (TREE_CODE (value))
{
case CONSTRUCTOR:
{
unsigned HOST_WIDE_INT idx;
const_tree elt;
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (value), idx, elt)
if (!initializer_constant_valid_for_bitfield_p (elt))
return false;
return true;
}
case INTEGER_CST:
case REAL_CST:
return true;
case VIEW_CONVERT_EXPR:
case NON_LVALUE_EXPR:
return
initializer_constant_valid_for_bitfield_p (TREE_OPERAND (value, 0));
default:
break;
}
return false;
}
/* Check if a STRING_CST fits into the field.
Tolerate only the case when the NUL termination
does not fit into the field. */
static bool
check_string_literal (tree string, unsigned HOST_WIDE_INT size)
{
tree type = TREE_TYPE (string);
tree eltype = TREE_TYPE (type);
unsigned HOST_WIDE_INT elts = tree_to_uhwi (TYPE_SIZE_UNIT (eltype));
unsigned HOST_WIDE_INT mem_size = tree_to_uhwi (TYPE_SIZE_UNIT (type));
int len = TREE_STRING_LENGTH (string);
if (elts != 1 && elts != 2 && elts != 4)
return false;
if (len < 0 || len % elts != 0)
return false;
if (size < (unsigned)len)
return false;
if (mem_size != size)
return false;
return true;
}
/* output_constructor outer state of relevance in recursive calls, typically
for nested aggregate bitfields. */
struct oc_outer_state {
unsigned int bit_offset; /* current position in ... */
int byte; /* ... the outer byte buffer. */
};
static unsigned HOST_WIDE_INT
output_constructor (tree, unsigned HOST_WIDE_INT, unsigned int, bool,
oc_outer_state *);
/* Output assembler code for constant EXP, with no label.
This includes the pseudo-op such as ".int" or ".byte", and a newline.
Assumes output_addressed_constants has been done on EXP already.
Generate at least SIZE bytes of assembler data, padding at the end
with zeros if necessary. SIZE must always be specified. The returned
value is the actual number of bytes of assembler data generated, which
may be bigger than SIZE if the object contains a variable length field.
SIZE is important for structure constructors,
since trailing members may have been omitted from the constructor.
It is also important for initialization of arrays from string constants
since the full length of the string constant might not be wanted.
It is also needed for initialization of unions, where the initializer's
type is just one member, and that may not be as long as the union.
There a case in which we would fail to output exactly SIZE bytes:
for a structure constructor that wants to produce more than SIZE bytes.
But such constructors will never be generated for any possible input.
ALIGN is the alignment of the data in bits.
If REVERSE is true, EXP is output in reverse storage order. */
static unsigned HOST_WIDE_INT
output_constant (tree exp, unsigned HOST_WIDE_INT size, unsigned int align,
bool reverse, bool merge_strings)
{
enum tree_code code;
unsigned HOST_WIDE_INT thissize;
rtx cst;
if (size == 0 || flag_syntax_only)
return size;
/* See if we're trying to initialize a pointer in a non-default mode
to the address of some declaration somewhere. If the target says
the mode is valid for pointers, assume the target has a way of
resolving it. */
if (TREE_CODE (exp) == NOP_EXPR
&& POINTER_TYPE_P (TREE_TYPE (exp))
&& targetm.addr_space.valid_pointer_mode
(SCALAR_INT_TYPE_MODE (TREE_TYPE (exp)),
TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)))))
{
tree saved_type = TREE_TYPE (exp);
/* Peel off any intermediate conversions-to-pointer for valid
pointer modes. */
while (TREE_CODE (exp) == NOP_EXPR
&& POINTER_TYPE_P (TREE_TYPE (exp))
&& targetm.addr_space.valid_pointer_mode
(SCALAR_INT_TYPE_MODE (TREE_TYPE (exp)),
TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)))))
exp = TREE_OPERAND (exp, 0);
/* If what we're left with is the address of something, we can
convert the address to the final type and output it that
way. */
if (TREE_CODE (exp) == ADDR_EXPR)
exp = build1 (ADDR_EXPR, saved_type, TREE_OPERAND (exp, 0));
/* Likewise for constant ints. */
else if (TREE_CODE (exp) == INTEGER_CST)
exp = fold_convert (saved_type, exp);
}
/* Eliminate any conversions since we'll be outputting the underlying
constant. */
while (CONVERT_EXPR_P (exp)
|| TREE_CODE (exp) == NON_LVALUE_EXPR
|| TREE_CODE (exp) == VIEW_CONVERT_EXPR)
{
HOST_WIDE_INT type_size = int_size_in_bytes (TREE_TYPE (exp));
HOST_WIDE_INT op_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (exp, 0)));
/* Make sure eliminating the conversion is really a no-op, except with
VIEW_CONVERT_EXPRs to allow for wild Ada unchecked conversions and
union types to allow for Ada unchecked unions. */
if (type_size > op_size
&& TREE_CODE (exp) != VIEW_CONVERT_EXPR
&& TREE_CODE (TREE_TYPE (exp)) != UNION_TYPE)
/* Keep the conversion. */
break;
else
exp = TREE_OPERAND (exp, 0);
}
code = TREE_CODE (TREE_TYPE (exp));
thissize = int_size_in_bytes (TREE_TYPE (exp));
/* Allow a constructor with no elements for any data type.
This means to fill the space with zeros. */
if (TREE_CODE (exp) == CONSTRUCTOR
&& vec_safe_is_empty (CONSTRUCTOR_ELTS (exp)))
{
assemble_zeros (size);
return size;
}
if (TREE_CODE (exp) == FDESC_EXPR)
{
#ifdef ASM_OUTPUT_FDESC
HOST_WIDE_INT part = tree_to_shwi (TREE_OPERAND (exp, 1));
tree decl = TREE_OPERAND (exp, 0);
ASM_OUTPUT_FDESC (asm_out_file, decl, part);
#else
gcc_unreachable ();
#endif
return size;
}
/* Now output the underlying data. If we've handling the padding, return.
Otherwise, break and ensure SIZE is the size written. */
switch (code)
{
case BOOLEAN_TYPE:
case INTEGER_TYPE:
case ENUMERAL_TYPE:
case POINTER_TYPE:
case REFERENCE_TYPE:
case OFFSET_TYPE:
case FIXED_POINT_TYPE:
case NULLPTR_TYPE:
cst = expand_expr (exp, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
if (reverse)
cst = flip_storage_order (TYPE_MODE (TREE_TYPE (exp)), cst);
if (!assemble_integer (cst, MIN (size, thissize), align, 0))
error ("initializer for integer/fixed-point value is too complicated");
break;
case REAL_TYPE:
gcc_assert (size == thissize);
if (TREE_CODE (exp) != REAL_CST)
error ("initializer for floating value is not a floating constant");
else
assemble_real (TREE_REAL_CST (exp),
SCALAR_FLOAT_TYPE_MODE (TREE_TYPE (exp)),
align, reverse);
break;
case COMPLEX_TYPE:
output_constant (TREE_REALPART (exp), thissize / 2, align,
reverse, false);
output_constant (TREE_IMAGPART (exp), thissize / 2,
min_align (align, BITS_PER_UNIT * (thissize / 2)),
reverse, false);
break;
case BITINT_TYPE:
if (TREE_CODE (exp) != INTEGER_CST)
error ("initializer for %<_BitInt(%d)%> value is not an integer "
"constant", TYPE_PRECISION (TREE_TYPE (exp)));
else
{
struct bitint_info info;
tree type = TREE_TYPE (exp);
bool ok = targetm.c.bitint_type_info (TYPE_PRECISION (type), &info);
gcc_assert (ok);
scalar_int_mode limb_mode = as_a (info.limb_mode);
if (TYPE_PRECISION (type) <= GET_MODE_PRECISION (limb_mode))
{
cst = expand_expr (exp, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
if (reverse)
cst = flip_storage_order (TYPE_MODE (TREE_TYPE (exp)), cst);
if (!assemble_integer (cst, MIN (size, thissize), align, 0))
error ("initializer for integer/fixed-point value is too "
"complicated");
break;
}
int prec = GET_MODE_PRECISION (limb_mode);
int cnt = CEIL (TYPE_PRECISION (type), prec);
tree limb_type = build_nonstandard_integer_type (prec, 1);
int elt_size = GET_MODE_SIZE (limb_mode);
unsigned int nalign = MIN (align, GET_MODE_ALIGNMENT (limb_mode));
thissize = 0;
if (prec == HOST_BITS_PER_WIDE_INT)
for (int i = 0; i < cnt; i++)
{
int idx = (info.big_endian ^ reverse) ? cnt - 1 - i : i;
tree c;
if (idx >= TREE_INT_CST_EXT_NUNITS (exp))
c = build_int_cst (limb_type,
tree_int_cst_sgn (exp) < 0 ? -1 : 0);
else
c = build_int_cst (limb_type,
TREE_INT_CST_ELT (exp, idx));
output_constant (c, elt_size, nalign, reverse, false);
thissize += elt_size;
}
else
for (int i = 0; i < cnt; i++)
{
int idx = (info.big_endian ^ reverse) ? cnt - 1 - i : i;
wide_int w = wi::rshift (wi::to_wide (exp), idx * prec,
TYPE_SIGN (TREE_TYPE (exp)));
tree c = wide_int_to_tree (limb_type,
wide_int::from (w, prec, UNSIGNED));
output_constant (c, elt_size, nalign, reverse, false);
thissize += elt_size;
}
}
break;
case ARRAY_TYPE:
case VECTOR_TYPE:
switch (TREE_CODE (exp))
{
case CONSTRUCTOR:
return output_constructor (exp, size, align, reverse, NULL);
case STRING_CST:
thissize = (unsigned HOST_WIDE_INT)TREE_STRING_LENGTH (exp);
if (merge_strings
&& (thissize == 0
|| TREE_STRING_POINTER (exp) [thissize - 1] != '\0'))
thissize++;
gcc_checking_assert (check_string_literal (exp, size));
assemble_string (TREE_STRING_POINTER (exp), thissize);
break;
case VECTOR_CST:
{
scalar_mode inner = SCALAR_TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
unsigned int nalign = MIN (align, GET_MODE_ALIGNMENT (inner));
int elt_size = GET_MODE_SIZE (inner);
output_constant (VECTOR_CST_ELT (exp, 0), elt_size, align,
reverse, false);
thissize = elt_size;
/* Static constants must have a fixed size. */
unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
for (unsigned int i = 1; i < nunits; i++)
{
output_constant (VECTOR_CST_ELT (exp, i), elt_size, nalign,
reverse, false);
thissize += elt_size;
}
break;
}
default:
gcc_unreachable ();
}
break;
case RECORD_TYPE:
case UNION_TYPE:
gcc_assert (TREE_CODE (exp) == CONSTRUCTOR);
return output_constructor (exp, size, align, reverse, NULL);
case ERROR_MARK:
return 0;
default:
gcc_unreachable ();
}
if (size > thissize)
assemble_zeros (size - thissize);
return size;
}
/* Subroutine of output_constructor, used for computing the size of
arrays of unspecified length. VAL must be a CONSTRUCTOR of an array
type with an unspecified upper bound. */
static unsigned HOST_WIDE_INT
array_size_for_constructor (tree val)
{
tree max_index;
unsigned HOST_WIDE_INT cnt;
tree index, value, tmp;
offset_int i;
/* This code used to attempt to handle string constants that are not
arrays of single-bytes, but nothing else does, so there's no point in
doing it here. */
if (TREE_CODE (val) == STRING_CST)
return TREE_STRING_LENGTH (val);
max_index = NULL_TREE;
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (val), cnt, index, value)
{
if (TREE_CODE (index) == RANGE_EXPR)
index = TREE_OPERAND (index, 1);
if (max_index == NULL_TREE || tree_int_cst_lt (max_index, index))
max_index = index;
}
if (max_index == NULL_TREE)
return 0;
/* Compute the total number of array elements. */
tmp = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (val)));
i = wi::to_offset (max_index) - wi::to_offset (tmp) + 1;
/* Multiply by the array element unit size to find number of bytes. */
i *= wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (val))));
gcc_assert (wi::fits_uhwi_p (i));
return i.to_uhwi ();
}
/* Other datastructures + helpers for output_constructor. */
/* output_constructor local state to support interaction with helpers. */
struct oc_local_state {
/* Received arguments. */
tree exp; /* Constructor expression. */
tree type; /* Type of constructor expression. */
unsigned HOST_WIDE_INT size; /* # bytes to output - pad if necessary. */
unsigned int align; /* Known initial alignment. */
tree min_index; /* Lower bound if specified for an array. */
/* Output processing state. */
HOST_WIDE_INT total_bytes; /* # bytes output so far / current position. */
int byte; /* Part of a bitfield byte yet to be output. */
int last_relative_index; /* Implicit or explicit index of the last
array element output within a bitfield. */
bool byte_buffer_in_use; /* Whether BYTE is in use. */
bool reverse; /* Whether reverse storage order is in use. */
/* Current element. */
tree field; /* Current field decl in a record. */
tree val; /* Current element value. */
tree index; /* Current element index. */
};
/* Helper for output_constructor. From the current LOCAL state, output a
RANGE_EXPR element. */
static void
output_constructor_array_range (oc_local_state *local)
{
/* Perform the index calculation in modulo arithmetic but
sign-extend the result because Ada has negative DECL_FIELD_OFFSETs
but we are using an unsigned sizetype. */
unsigned prec = TYPE_PRECISION (sizetype);
offset_int idx = wi::sext (wi::to_offset (TREE_OPERAND (local->index, 0))
- wi::to_offset (local->min_index), prec);
tree valtype = TREE_TYPE (local->val);
HOST_WIDE_INT fieldpos
= (idx * wi::to_offset (TYPE_SIZE_UNIT (valtype))).to_short_addr ();
/* Advance to offset of this element. */
if (fieldpos > local->total_bytes)
{
assemble_zeros (fieldpos - local->total_bytes);
local->total_bytes = fieldpos;
}
else
/* Must not go backwards. */
gcc_assert (fieldpos == local->total_bytes);
unsigned HOST_WIDE_INT fieldsize
= int_size_in_bytes (TREE_TYPE (local->type));
HOST_WIDE_INT lo_index
= tree_to_shwi (TREE_OPERAND (local->index, 0));
HOST_WIDE_INT hi_index
= tree_to_shwi (TREE_OPERAND (local->index, 1));
HOST_WIDE_INT index;
unsigned int align2
= min_align (local->align, fieldsize * BITS_PER_UNIT);
for (index = lo_index; index <= hi_index; index++)
{
/* Output the element's initial value. */
if (local->val == NULL_TREE)
assemble_zeros (fieldsize);
else
fieldsize = output_constant (local->val, fieldsize, align2,
local->reverse, false);
/* Count its size. */
local->total_bytes += fieldsize;
}
}
/* Helper for output_constructor. From the current LOCAL state, output a
field element that is not true bitfield or part of an outer one. */
static void
output_constructor_regular_field (oc_local_state *local)
{
/* Field size and position. Since this structure is static, we know the
positions are constant. */
unsigned HOST_WIDE_INT fieldsize;
HOST_WIDE_INT fieldpos;
unsigned int align2;
/* Output any buffered-up bit-fields preceding this element. */
if (local->byte_buffer_in_use)
{
assemble_integer (GEN_INT (local->byte), 1, BITS_PER_UNIT, 1);
local->total_bytes++;
local->byte_buffer_in_use = false;
}
if (local->index != NULL_TREE)
{
/* Perform the index calculation in modulo arithmetic but
sign-extend the result because Ada has negative DECL_FIELD_OFFSETs
but we are using an unsigned sizetype. */
unsigned prec = TYPE_PRECISION (sizetype);
offset_int idx = wi::sext (wi::to_offset (local->index)
- wi::to_offset (local->min_index), prec);
fieldpos = (idx * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (local->val))))
.to_short_addr ();
}
else if (local->field != NULL_TREE)
fieldpos = int_byte_position (local->field);
else
fieldpos = 0;
/* Advance to offset of this element.
Note no alignment needed in an array, since that is guaranteed
if each element has the proper size. */
if (local->field != NULL_TREE || local->index != NULL_TREE)
{
if (fieldpos > local->total_bytes)
{
assemble_zeros (fieldpos - local->total_bytes);
local->total_bytes = fieldpos;
}
else
/* Must not go backwards. */
gcc_assert (fieldpos == local->total_bytes);
}
/* Find the alignment of this element. */
align2 = min_align (local->align, BITS_PER_UNIT * fieldpos);
/* Determine size this element should occupy. */
if (local->field)
{
fieldsize = 0;
/* If this is an array with an unspecified upper bound,
the initializer determines the size. */
/* ??? This ought to only checked if DECL_SIZE_UNIT is NULL,
but we cannot do this until the deprecated support for
initializing zero-length array members is removed. */
if (TREE_CODE (TREE_TYPE (local->field)) == ARRAY_TYPE
&& (!TYPE_DOMAIN (TREE_TYPE (local->field))
|| !TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (local->field)))))
{
unsigned HOST_WIDE_INT fldsize
= array_size_for_constructor (local->val);
fieldsize = int_size_in_bytes (TREE_TYPE (local->val));
/* In most cases fieldsize == fldsize as the size of the initializer
determines how many elements the flexible array member has. For
C++ fldsize can be smaller though, if the last or several last or
all initializers of the flexible array member have side-effects
and the FE splits them into dynamic initialization. */
gcc_checking_assert (fieldsize >= fldsize);
/* Given a non-empty initialization, this field had better
be last. Given a flexible array member, the next field
on the chain is a TYPE_DECL of the enclosing struct. */
const_tree next = DECL_CHAIN (local->field);
gcc_assert (!fieldsize || !next || TREE_CODE (next) != FIELD_DECL);
}
else
fieldsize = tree_to_uhwi (DECL_SIZE_UNIT (local->field));
}
else
fieldsize = int_size_in_bytes (TREE_TYPE (local->type));
/* Output the element's initial value. */
if (local->val == NULL_TREE)
assemble_zeros (fieldsize);
else
fieldsize = output_constant (local->val, fieldsize, align2,
local->reverse, false);
/* Count its size. */
local->total_bytes += fieldsize;
}
/* Helper for output_constructor. From the LOCAL state, output an element
that is a true bitfield or part of an outer one. BIT_OFFSET is the offset
from the start of a possibly ongoing outer byte buffer. */
static void
output_constructor_bitfield (oc_local_state *local, unsigned int bit_offset)
{
/* Bit size of this element. */
HOST_WIDE_INT ebitsize
= (local->field
? tree_to_uhwi (DECL_SIZE (local->field))
: tree_to_uhwi (TYPE_SIZE (TREE_TYPE (local->type))));
/* Relative index of this element if this is an array component. */
HOST_WIDE_INT relative_index
= (local->field
? 0
: (local->index
? tree_to_uhwi (local->index) - tree_to_uhwi (local->min_index)
: local->last_relative_index + 1));
/* Bit position of this element from the start of the containing
constructor. */
HOST_WIDE_INT constructor_relative_ebitpos
= (local->field
? int_bit_position (local->field)
: ebitsize * relative_index);
/* Bit position of this element from the start of a possibly ongoing
outer byte buffer. */
HOST_WIDE_INT byte_relative_ebitpos
= bit_offset + constructor_relative_ebitpos;
/* From the start of a possibly ongoing outer byte buffer, offsets to
the first bit of this element and to the first bit past the end of
this element. */
HOST_WIDE_INT next_offset = byte_relative_ebitpos;
HOST_WIDE_INT end_offset = byte_relative_ebitpos + ebitsize;
local->last_relative_index = relative_index;
if (local->val == NULL_TREE)
local->val = integer_zero_node;
while (TREE_CODE (local->val) == VIEW_CONVERT_EXPR
|| TREE_CODE (local->val) == NON_LVALUE_EXPR)
local->val = TREE_OPERAND (local->val, 0);
if (TREE_CODE (local->val) != INTEGER_CST
&& TREE_CODE (local->val) != CONSTRUCTOR)
{
error ("invalid initial value for member %qE", DECL_NAME (local->field));
return;
}
/* If this field does not start in this (or next) byte, skip some bytes. */
if (next_offset / BITS_PER_UNIT != local->total_bytes)
{
/* Output remnant of any bit field in previous bytes. */
if (local->byte_buffer_in_use)
{
assemble_integer (GEN_INT (local->byte), 1, BITS_PER_UNIT, 1);
local->total_bytes++;
local->byte_buffer_in_use = false;
}
/* If still not at proper byte, advance to there. */
if (next_offset / BITS_PER_UNIT != local->total_bytes)
{
gcc_assert (next_offset / BITS_PER_UNIT >= local->total_bytes);
assemble_zeros (next_offset / BITS_PER_UNIT - local->total_bytes);
local->total_bytes = next_offset / BITS_PER_UNIT;
}
}
/* Set up the buffer if necessary. */
if (!local->byte_buffer_in_use)
{
local->byte = 0;
if (ebitsize > 0)
local->byte_buffer_in_use = true;
}
/* If this is nested constructor, recurse passing the bit offset and the
pending data, then retrieve the new pending data afterwards. */
if (TREE_CODE (local->val) == CONSTRUCTOR)
{
oc_outer_state temp_state;
temp_state.bit_offset = next_offset % BITS_PER_UNIT;
temp_state.byte = local->byte;
local->total_bytes
+= output_constructor (local->val, 0, 0, local->reverse, &temp_state);
local->byte = temp_state.byte;
return;
}
/* Otherwise, we must split the element into pieces that fall within
separate bytes, and combine each byte with previous or following
bit-fields. */
while (next_offset < end_offset)
{
int this_time;
int shift;
unsigned HOST_WIDE_INT value;
HOST_WIDE_INT next_byte = next_offset / BITS_PER_UNIT;
HOST_WIDE_INT next_bit = next_offset % BITS_PER_UNIT;
/* Advance from byte to byte within this element when necessary. */
while (next_byte != local->total_bytes)
{
assemble_integer (GEN_INT (local->byte), 1, BITS_PER_UNIT, 1);
local->total_bytes++;
local->byte = 0;
}
/* Number of bits we can process at once (all part of the same byte). */
this_time = MIN (end_offset - next_offset, BITS_PER_UNIT - next_bit);
if (local->reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
{
/* For big-endian data, take the most significant bits (of the
bits that are significant) first and put them into bytes from
the most significant end. */
shift = end_offset - next_offset - this_time;
/* Don't try to take a bunch of bits that cross
the word boundary in the INTEGER_CST. We can
only select bits from one element. */
if ((shift / HOST_BITS_PER_WIDE_INT)
!= ((shift + this_time - 1) / HOST_BITS_PER_WIDE_INT))
{
const int end = shift + this_time - 1;
shift = end & -HOST_BITS_PER_WIDE_INT;
this_time = end - shift + 1;
}
/* Now get the bits we want to insert. */
value = wi::extract_uhwi (wi::to_widest (local->val),
shift, this_time);
/* Get the result. This works only when:
1 <= this_time <= HOST_BITS_PER_WIDE_INT. */
local->byte |= value << (BITS_PER_UNIT - this_time - next_bit);
}
else
{
/* On little-endian machines, take the least significant bits of
the value first and pack them starting at the least significant
bits of the bytes. */
shift = next_offset - byte_relative_ebitpos;
/* Don't try to take a bunch of bits that cross
the word boundary in the INTEGER_CST. We can
only select bits from one element. */
if ((shift / HOST_BITS_PER_WIDE_INT)
!= ((shift + this_time - 1) / HOST_BITS_PER_WIDE_INT))
this_time
= HOST_BITS_PER_WIDE_INT - (shift & (HOST_BITS_PER_WIDE_INT - 1));
/* Now get the bits we want to insert. */
value = wi::extract_uhwi (wi::to_widest (local->val),
shift, this_time);
/* Get the result. This works only when:
1 <= this_time <= HOST_BITS_PER_WIDE_INT. */
local->byte |= value << next_bit;
}
next_offset += this_time;
local->byte_buffer_in_use = true;
}
}
/* Subroutine of output_constant, used for CONSTRUCTORs (aggregate constants).
Generate at least SIZE bytes, padding if necessary. OUTER designates the
caller output state of relevance in recursive invocations. */
static unsigned HOST_WIDE_INT
output_constructor (tree exp, unsigned HOST_WIDE_INT size, unsigned int align,
bool reverse, oc_outer_state *outer)
{
unsigned HOST_WIDE_INT cnt;
constructor_elt *ce;
oc_local_state local;
/* Setup our local state to communicate with helpers. */
local.exp = exp;
local.type = TREE_TYPE (exp);
local.size = size;
local.align = align;
if (TREE_CODE (local.type) == ARRAY_TYPE && TYPE_DOMAIN (local.type))
local.min_index = TYPE_MIN_VALUE (TYPE_DOMAIN (local.type));
else
local.min_index = integer_zero_node;
local.total_bytes = 0;
local.byte_buffer_in_use = outer != NULL;
local.byte = outer ? outer->byte : 0;
local.last_relative_index = -1;
/* The storage order is specified for every aggregate type. */
if (AGGREGATE_TYPE_P (local.type))
local.reverse = TYPE_REVERSE_STORAGE_ORDER (local.type);
else
local.reverse = reverse;
gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_UNIT);
/* As CE goes through the elements of the constant, FIELD goes through the
structure fields if the constant is a structure. If the constant is a
union, we override this by getting the field from the TREE_LIST element.
But the constant could also be an array. Then FIELD is zero.
There is always a maximum of one element in the chain LINK for unions
(even if the initializer in a source program incorrectly contains
more one). */
if (TREE_CODE (local.type) == RECORD_TYPE)
local.field = TYPE_FIELDS (local.type);
else
local.field = NULL_TREE;
for (cnt = 0;
vec_safe_iterate (CONSTRUCTOR_ELTS (exp), cnt, &ce);
cnt++, local.field = local.field ? DECL_CHAIN (local.field) : 0)
{
local.val = ce->value;
local.index = NULL_TREE;
/* The element in a union constructor specifies the proper field
or index. */
if (RECORD_OR_UNION_TYPE_P (local.type) && ce->index != NULL_TREE)
local.field = ce->index;
else if (TREE_CODE (local.type) == ARRAY_TYPE)
local.index = ce->index;
if (local.field && flag_verbose_asm)
fprintf (asm_out_file, "%s %s:\n",
ASM_COMMENT_START,
DECL_NAME (local.field)
? IDENTIFIER_POINTER (DECL_NAME (local.field))
: "");
/* Eliminate the marker that makes a cast not be an lvalue. */
if (local.val != NULL_TREE)
STRIP_NOPS (local.val);
/* Output the current element, using the appropriate helper ... */
/* For an array slice not part of an outer bitfield. */
if (!outer
&& local.index != NULL_TREE
&& TREE_CODE (local.index) == RANGE_EXPR)
output_constructor_array_range (&local);
/* For a field that is neither a true bitfield nor part of an outer one,
known to be at least byte aligned and multiple-of-bytes long. */
else if (!outer
&& (local.field == NULL_TREE
|| !CONSTRUCTOR_BITFIELD_P (local.field)))
output_constructor_regular_field (&local);
/* For a true bitfield or part of an outer one. Only INTEGER_CSTs are
supported for scalar fields, so we may need to convert first. */
else
{
if (TREE_CODE (local.val) == REAL_CST)
local.val
= fold_unary (VIEW_CONVERT_EXPR,
build_nonstandard_integer_type
(TYPE_PRECISION (TREE_TYPE (local.val)), 0),
local.val);
output_constructor_bitfield (&local, outer ? outer->bit_offset : 0);
}
}
/* If we are not at toplevel, save the pending data for our caller.
Otherwise output the pending data and padding zeros as needed. */
if (outer)
outer->byte = local.byte;
else
{
if (local.byte_buffer_in_use)
{
assemble_integer (GEN_INT (local.byte), 1, BITS_PER_UNIT, 1);
local.total_bytes++;
}
if ((unsigned HOST_WIDE_INT)local.total_bytes < local.size)
{
assemble_zeros (local.size - local.total_bytes);
local.total_bytes = local.size;
}
}
return local.total_bytes;
}
/* Mark DECL as weak. */
static void
mark_weak (tree decl)
{
if (DECL_WEAK (decl))
return;
struct symtab_node *n = symtab_node::get (decl);
if (n && n->refuse_visibility_changes)
error ("%qD declared weak after being used", decl);
DECL_WEAK (decl) = 1;
if (DECL_RTL_SET_P (decl)
&& MEM_P (DECL_RTL (decl))
&& XEXP (DECL_RTL (decl), 0)
&& GET_CODE (XEXP (DECL_RTL (decl), 0)) == SYMBOL_REF)
SYMBOL_REF_WEAK (XEXP (DECL_RTL (decl), 0)) = 1;
}
/* Merge weak status between NEWDECL and OLDDECL. */
void
merge_weak (tree newdecl, tree olddecl)
{
if (DECL_WEAK (newdecl) == DECL_WEAK (olddecl))
{
if (DECL_WEAK (newdecl) && TARGET_SUPPORTS_WEAK)
{
tree *pwd;
/* We put the NEWDECL on the weak_decls list at some point
and OLDDECL as well. Keep just OLDDECL on the list. */
for (pwd = &weak_decls; *pwd; pwd = &TREE_CHAIN (*pwd))
if (TREE_VALUE (*pwd) == newdecl)
{
*pwd = TREE_CHAIN (*pwd);
break;
}
}
return;
}
if (DECL_WEAK (newdecl))
{
tree wd;
/* NEWDECL is weak, but OLDDECL is not. */
/* If we already output the OLDDECL, we're in trouble; we can't
go back and make it weak. This should never happen in
unit-at-a-time compilation. */
gcc_assert (!TREE_ASM_WRITTEN (olddecl));
/* If we've already generated rtl referencing OLDDECL, we may
have done so in a way that will not function properly with
a weak symbol. Again in unit-at-a-time this should be
impossible. */
gcc_assert (!TREE_USED (olddecl)
|| !TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (olddecl)));
/* PR 49899: You cannot convert a static function into a weak, public function. */
if (! TREE_PUBLIC (olddecl) && TREE_PUBLIC (newdecl))
error ("weak declaration of %q+D being applied to a already "
"existing, static definition", newdecl);
if (TARGET_SUPPORTS_WEAK)
{
/* We put the NEWDECL on the weak_decls list at some point.
Replace it with the OLDDECL. */
for (wd = weak_decls; wd; wd = TREE_CHAIN (wd))
if (TREE_VALUE (wd) == newdecl)
{
TREE_VALUE (wd) = olddecl;
break;
}
/* We may not find the entry on the list. If NEWDECL is a
weak alias, then we will have already called
globalize_decl to remove the entry; in that case, we do
not need to do anything. */
}
/* Make the OLDDECL weak; it's OLDDECL that we'll be keeping. */
mark_weak (olddecl);
}
else
/* OLDDECL was weak, but NEWDECL was not explicitly marked as
weak. Just update NEWDECL to indicate that it's weak too. */
mark_weak (newdecl);
}
/* Declare DECL to be a weak symbol. */
void
declare_weak (tree decl)
{
/* With -fsyntax-only, TREE_ASM_WRITTEN might be set on certain function
decls earlier than normally, but as with -fsyntax-only nothing is really
emitted, there is no harm in marking it weak later. */
gcc_assert (TREE_CODE (decl) != FUNCTION_DECL
|| !TREE_ASM_WRITTEN (decl)
|| flag_syntax_only);
if (! TREE_PUBLIC (decl))
{
error ("weak declaration of %q+D must be public", decl);
return;
}
else if (!TARGET_SUPPORTS_WEAK)
warning (0, "weak declaration of %q+D not supported", decl);
mark_weak (decl);
if (!lookup_attribute ("weak", DECL_ATTRIBUTES (decl)))
DECL_ATTRIBUTES (decl)
= tree_cons (get_identifier ("weak"), NULL, DECL_ATTRIBUTES (decl));
}
static void
weak_finish_1 (tree decl)
{
#if defined (ASM_WEAKEN_DECL) || defined (ASM_WEAKEN_LABEL)
const char *const name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
#endif
if (! TREE_USED (decl))
return;
#ifdef ASM_WEAKEN_DECL
ASM_WEAKEN_DECL (asm_out_file, decl, name, NULL);
#else
#ifdef ASM_WEAKEN_LABEL
ASM_WEAKEN_LABEL (asm_out_file, name);
#else
#ifdef ASM_OUTPUT_WEAK_ALIAS
{
static bool warn_once = 0;
if (! warn_once)
{
warning (0, "only weak aliases are supported in this configuration");
warn_once = 1;
}
return;
}
#endif
#endif
#endif
}
/* Fiven an assembly name, find the decl it is associated with. */
static tree
find_decl (tree target)
{
symtab_node *node = symtab_node::get_for_asmname (target);
if (node)
return node->decl;
return NULL_TREE;
}
/* This TREE_LIST contains weakref targets. */
static GTY(()) tree weakref_targets;
/* Emit any pending weak declarations. */
void
weak_finish (void)
{
tree t;
for (t = weakref_targets; t; t = TREE_CHAIN (t))
{
tree alias_decl = TREE_PURPOSE (t);
tree target = ultimate_transparent_alias_target (&TREE_VALUE (t));
if (! TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (alias_decl))
|| TREE_SYMBOL_REFERENCED (target))
/* Remove alias_decl from the weak list, but leave entries for
the target alone. */
target = NULL_TREE;
#ifndef ASM_OUTPUT_WEAKREF
else if (! TREE_SYMBOL_REFERENCED (target))
{
/* Use ASM_WEAKEN_LABEL only if ASM_WEAKEN_DECL is not
defined, otherwise we and weak_finish_1 would use
different macros. */
# if defined ASM_WEAKEN_LABEL && ! defined ASM_WEAKEN_DECL
ASM_WEAKEN_LABEL (asm_out_file, IDENTIFIER_POINTER (target));
# else
tree decl = find_decl (target);
if (! decl)
{
decl = build_decl (DECL_SOURCE_LOCATION (alias_decl),
TREE_CODE (alias_decl), target,
TREE_TYPE (alias_decl));
DECL_EXTERNAL (decl) = 1;
TREE_PUBLIC (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
TREE_NOTHROW (decl) = TREE_NOTHROW (alias_decl);
TREE_USED (decl) = 1;
}
weak_finish_1 (decl);
# endif
}
#endif
{
tree *p;
tree t2;
/* Remove the alias and the target from the pending weak list
so that we do not emit any .weak directives for the former,
nor multiple .weak directives for the latter. */
for (p = &weak_decls; (t2 = *p) ; )
{
if (TREE_VALUE (t2) == alias_decl
|| target == DECL_ASSEMBLER_NAME (TREE_VALUE (t2)))
*p = TREE_CHAIN (t2);
else
p = &TREE_CHAIN (t2);
}
/* Remove other weakrefs to the same target, to speed things up. */
for (p = &TREE_CHAIN (t); (t2 = *p) ; )
{
if (target == ultimate_transparent_alias_target (&TREE_VALUE (t2)))
*p = TREE_CHAIN (t2);
else
p = &TREE_CHAIN (t2);
}
}
}
for (t = weak_decls; t; t = TREE_CHAIN (t))
{
tree decl = TREE_VALUE (t);
weak_finish_1 (decl);
}
}
/* Emit the assembly bits to indicate that DECL is globally visible. */
static void
globalize_decl (tree decl)
{
#if defined (ASM_WEAKEN_LABEL) || defined (ASM_WEAKEN_DECL)
if (DECL_WEAK (decl))
{
const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
tree *p, t;
#ifdef ASM_WEAKEN_DECL
ASM_WEAKEN_DECL (asm_out_file, decl, name, 0);
#else
ASM_WEAKEN_LABEL (asm_out_file, name);
#endif
/* Remove this function from the pending weak list so that
we do not emit multiple .weak directives for it. */
for (p = &weak_decls; (t = *p) ; )
{
if (DECL_ASSEMBLER_NAME (decl) == DECL_ASSEMBLER_NAME (TREE_VALUE (t)))
*p = TREE_CHAIN (t);
else
p = &TREE_CHAIN (t);
}
/* Remove weakrefs to the same target from the pending weakref
list, for the same reason. */
for (p = &weakref_targets; (t = *p) ; )
{
if (DECL_ASSEMBLER_NAME (decl)
== ultimate_transparent_alias_target (&TREE_VALUE (t)))
*p = TREE_CHAIN (t);
else
p = &TREE_CHAIN (t);
}
return;
}
#endif
targetm.asm_out.globalize_decl_name (asm_out_file, decl);
}
vec *alias_pairs;
/* Output the assembler code for a define (equate) using ASM_OUTPUT_DEF
or ASM_OUTPUT_DEF_FROM_DECLS. The function defines the symbol whose
tree node is DECL to have the value of the tree node TARGET. */
void
do_assemble_alias (tree decl, tree target)
{
tree id;
/* Emulated TLS had better not get this var. */
gcc_assert (!(!targetm.have_tls
&& VAR_P (decl)
&& DECL_THREAD_LOCAL_P (decl)));
if (TREE_ASM_WRITTEN (decl))
return;
id = DECL_ASSEMBLER_NAME (decl);
ultimate_transparent_alias_target (&id);
ultimate_transparent_alias_target (&target);
/* We must force creation of DECL_RTL for debug info generation, even though
we don't use it here. */
make_decl_rtl (decl);
TREE_ASM_WRITTEN (decl) = 1;
TREE_ASM_WRITTEN (DECL_ASSEMBLER_NAME (decl)) = 1;
TREE_ASM_WRITTEN (id) = 1;
if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
{
if (!TREE_SYMBOL_REFERENCED (target))
weakref_targets = tree_cons (decl, target, weakref_targets);
#ifdef ASM_OUTPUT_WEAKREF
ASM_OUTPUT_WEAKREF (asm_out_file, decl,
IDENTIFIER_POINTER (id),
IDENTIFIER_POINTER (target));
#else
if (!TARGET_SUPPORTS_WEAK)
{
error_at (DECL_SOURCE_LOCATION (decl),
"%qs is not supported in this configuration", "weakref ");
return;
}
#endif
return;
}
#ifdef ASM_OUTPUT_DEF
tree orig_decl = decl;
/* Make name accessible from other files, if appropriate. */
if (TREE_PUBLIC (decl) || TREE_PUBLIC (orig_decl))
{
globalize_decl (decl);
maybe_assemble_visibility (decl);
}
if (TREE_CODE (decl) == FUNCTION_DECL
&& cgraph_node::get (decl)->ifunc_resolver)
{
#if defined (ASM_OUTPUT_TYPE_DIRECTIVE)
if (targetm.has_ifunc_p ())
ASM_OUTPUT_TYPE_DIRECTIVE
(asm_out_file, IDENTIFIER_POINTER (id),
IFUNC_ASM_TYPE);
else
#endif
error_at (DECL_SOURCE_LOCATION (decl),
"%qs is not supported on this target", "ifunc");
}
# ifdef ASM_OUTPUT_DEF_FROM_DECLS
ASM_OUTPUT_DEF_FROM_DECLS (asm_out_file, decl, target);
# else
ASM_OUTPUT_DEF (asm_out_file,
IDENTIFIER_POINTER (id),
IDENTIFIER_POINTER (target));
# endif
/* If symbol aliases aren't actually supported... */
if (!TARGET_SUPPORTS_ALIASES)
/* ..., 'ASM_OUTPUT_DEF{,_FROM_DECLS}' better have raised an error. */
gcc_checking_assert (seen_error ());
#elif defined (ASM_OUTPUT_WEAK_ALIAS) || defined (ASM_WEAKEN_DECL)
{
const char *name;
tree *p, t;
name = IDENTIFIER_POINTER (id);
# ifdef ASM_WEAKEN_DECL
ASM_WEAKEN_DECL (asm_out_file, decl, name, IDENTIFIER_POINTER (target));
# else
ASM_OUTPUT_WEAK_ALIAS (asm_out_file, name, IDENTIFIER_POINTER (target));
# endif
/* Remove this function from the pending weak list so that
we do not emit multiple .weak directives for it. */
for (p = &weak_decls; (t = *p) ; )
if (DECL_ASSEMBLER_NAME (decl) == DECL_ASSEMBLER_NAME (TREE_VALUE (t))
|| id == DECL_ASSEMBLER_NAME (TREE_VALUE (t)))
*p = TREE_CHAIN (t);
else
p = &TREE_CHAIN (t);
/* Remove weakrefs to the same target from the pending weakref
list, for the same reason. */
for (p = &weakref_targets; (t = *p) ; )
{
if (id == ultimate_transparent_alias_target (&TREE_VALUE (t)))
*p = TREE_CHAIN (t);
else
p = &TREE_CHAIN (t);
}
}
#endif
}
/* Output .symver directive. */
void
do_assemble_symver (tree decl, tree target)
{
tree id = DECL_ASSEMBLER_NAME (decl);
ultimate_transparent_alias_target (&id);
ultimate_transparent_alias_target (&target);
#ifdef ASM_OUTPUT_SYMVER_DIRECTIVE
ASM_OUTPUT_SYMVER_DIRECTIVE (asm_out_file,
IDENTIFIER_POINTER (target),
IDENTIFIER_POINTER (id));
#else
error ("symver is only supported on ELF platforms");
#endif
}
/* Emit an assembler directive to make the symbol for DECL an alias to
the symbol for TARGET. */
void
assemble_alias (tree decl, tree target)
{
tree target_decl;
if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
{
tree alias = DECL_ASSEMBLER_NAME (decl);
ultimate_transparent_alias_target (&target);
if (alias == target)
error ("%qs symbol %q+D ultimately targets itself", "weakref", decl);
if (TREE_PUBLIC (decl))
error ("%qs symbol %q+D must have static linkage", "weakref", decl);
}
else if (!TARGET_SUPPORTS_ALIASES)
{
# if !defined(ASM_OUTPUT_WEAK_ALIAS) && !defined (ASM_WEAKEN_DECL)
error_at (DECL_SOURCE_LOCATION (decl),
"alias definitions not supported in this configuration");
TREE_ASM_WRITTEN (decl) = 1;
return;
# else
if (!DECL_WEAK (decl))
{
/* NB: ifunc_resolver isn't set when an error is detected. */
if (TREE_CODE (decl) == FUNCTION_DECL
&& lookup_attribute ("ifunc", DECL_ATTRIBUTES (decl)))
error_at (DECL_SOURCE_LOCATION (decl),
"%qs is not supported in this configuration", "ifunc");
else
error_at (DECL_SOURCE_LOCATION (decl),
"only weak aliases are supported in this configuration");
TREE_ASM_WRITTEN (decl) = 1;
return;
}
# endif
gcc_unreachable ();
}
TREE_USED (decl) = 1;
/* Allow aliases to aliases. */
if (TREE_CODE (decl) == FUNCTION_DECL)
cgraph_node::get_create (decl)->alias = true;
else
varpool_node::get_create (decl)->alias = true;
/* If the target has already been emitted, we don't have to queue the
alias. This saves a tad of memory. */
if (symtab->global_info_ready)
target_decl = find_decl (target);
else
target_decl= NULL;
if ((target_decl && TREE_ASM_WRITTEN (target_decl))
|| symtab->state >= EXPANSION)
do_assemble_alias (decl, target);
else
{
alias_pair p = {decl, target};
vec_safe_push (alias_pairs, p);
}
}
/* Record and output a table of translations from original function
to its transaction aware clone. Note that tm_pure functions are
considered to be their own clone. */
struct tm_clone_hasher : ggc_cache_ptr_hash
{
static hashval_t hash (tree_map *m) { return tree_map_hash (m); }
static bool equal (tree_map *a, tree_map *b) { return tree_map_eq (a, b); }
static int
keep_cache_entry (tree_map *&e)
{
return ggc_marked_p (e->base.from);
}
};
static GTY((cache)) hash_table *tm_clone_hash;
void
record_tm_clone_pair (tree o, tree n)
{
struct tree_map **slot, *h;
if (tm_clone_hash == NULL)
tm_clone_hash = hash_table::create_ggc (32);
h = ggc_alloc ();
h->hash = htab_hash_pointer (o);
h->base.from = o;
h->to = n;
slot = tm_clone_hash->find_slot_with_hash (h, h->hash, INSERT);
*slot = h;
}
tree
get_tm_clone_pair (tree o)
{
if (tm_clone_hash)
{
struct tree_map *h, in;
in.base.from = o;
in.hash = htab_hash_pointer (o);
h = tm_clone_hash->find_with_hash (&in, in.hash);
if (h)
return h->to;
}
return NULL_TREE;
}
struct tm_alias_pair
{
unsigned int uid;
tree from;
tree to;
};
/* Dump the actual pairs to the .tm_clone_table section. */
static void
dump_tm_clone_pairs (vec tm_alias_pairs)
{
unsigned i;
tm_alias_pair *p;
bool switched = false;
FOR_EACH_VEC_ELT (tm_alias_pairs, i, p)
{
tree src = p->from;
tree dst = p->to;
struct cgraph_node *src_n = cgraph_node::get (src);
struct cgraph_node *dst_n = cgraph_node::get (dst);
/* The function ipa_tm_create_version() marks the clone as needed if
the original function was needed. But we also mark the clone as
needed if we ever called the clone indirectly through
TM_GETTMCLONE. If neither of these are true, we didn't generate
a clone, and we didn't call it indirectly... no sense keeping it
in the clone table. */
if (!dst_n || !dst_n->definition)
continue;
/* This covers the case where we have optimized the original
function away, and only access the transactional clone. */
if (!src_n || !src_n->definition)
continue;
if (!switched)
{
switch_to_section (targetm.asm_out.tm_clone_table_section ());
assemble_align (POINTER_SIZE);
switched = true;
}
assemble_integer (XEXP (DECL_RTL (src), 0),
POINTER_SIZE_UNITS, POINTER_SIZE, 1);
assemble_integer (XEXP (DECL_RTL (dst), 0),
POINTER_SIZE_UNITS, POINTER_SIZE, 1);
}
}
/* Provide a default for the tm_clone_table section. */
section *
default_clone_table_section (void)
{
return get_named_section (NULL, ".tm_clone_table", 3);
}
/* Helper comparison function for qsorting by the DECL_UID stored in
alias_pair->emitted_diags. */
static int
tm_alias_pair_cmp (const void *x, const void *y)
{
const tm_alias_pair *p1 = (const tm_alias_pair *) x;
const tm_alias_pair *p2 = (const tm_alias_pair *) y;
if (p1->uid < p2->uid)
return -1;
if (p1->uid > p2->uid)
return 1;
return 0;
}
void
finish_tm_clone_pairs (void)
{
vec tm_alias_pairs = vNULL;
if (tm_clone_hash == NULL)
return;
/* We need a determenistic order for the .tm_clone_table, otherwise
we will get bootstrap comparison failures, so dump the hash table
to a vector, sort it, and dump the vector. */
/* Dump the hashtable to a vector. */
tree_map *map;
hash_table::iterator iter;
FOR_EACH_HASH_TABLE_ELEMENT (*tm_clone_hash, map, tree_map *, iter)
{
tm_alias_pair p = {DECL_UID (map->base.from), map->base.from, map->to};
tm_alias_pairs.safe_push (p);
}
/* Sort it. */
tm_alias_pairs.qsort (tm_alias_pair_cmp);
/* Dump it. */
dump_tm_clone_pairs (tm_alias_pairs);
tm_clone_hash->empty ();
tm_clone_hash = NULL;
tm_alias_pairs.release ();
}
/* Emit an assembler directive to set symbol for DECL visibility to
the visibility type VIS, which must not be VISIBILITY_DEFAULT. */
void
default_assemble_visibility (tree decl ATTRIBUTE_UNUSED,
int vis ATTRIBUTE_UNUSED)
{
#ifdef HAVE_GAS_HIDDEN
static const char * const visibility_types[] = {
NULL, "protected", "hidden", "internal"
};
const char *name, *type;
tree id;
id = DECL_ASSEMBLER_NAME (decl);
ultimate_transparent_alias_target (&id);
name = IDENTIFIER_POINTER (id);
type = visibility_types[vis];
fprintf (asm_out_file, "\t.%s\t", type);
assemble_name (asm_out_file, name);
fprintf (asm_out_file, "\n");
#else
if (!DECL_ARTIFICIAL (decl))
warning (OPT_Wattributes, "visibility attribute not supported "
"in this configuration; ignored");
#endif
}
/* A helper function to call assemble_visibility when needed for a decl. */
bool
maybe_assemble_visibility (tree decl)
{
enum symbol_visibility vis = DECL_VISIBILITY (decl);
if (vis != VISIBILITY_DEFAULT)
{
targetm.asm_out.assemble_visibility (decl, vis);
return true;
}
else
return false;
}
/* Returns true if the target configuration supports defining public symbols
so that one of them will be chosen at link time instead of generating a
multiply-defined symbol error, whether through the use of weak symbols or
a target-specific mechanism for having duplicates discarded. */
bool
supports_one_only (void)
{
if (SUPPORTS_ONE_ONLY)
return true;
if (TARGET_SUPPORTS_WEAK)
return true;
return false;
}
/* Set up DECL as a public symbol that can be defined in multiple
translation units without generating a linker error. */
void
make_decl_one_only (tree decl, tree comdat_group)
{
struct symtab_node *symbol;
gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
TREE_PUBLIC (decl) = 1;
if (VAR_P (decl))
symbol = varpool_node::get_create (decl);
else
symbol = cgraph_node::get_create (decl);
if (SUPPORTS_ONE_ONLY)
{
#ifdef MAKE_DECL_ONE_ONLY
MAKE_DECL_ONE_ONLY (decl);
#endif
symbol->set_comdat_group (comdat_group);
}
else if (VAR_P (decl)
&& (DECL_INITIAL (decl) == 0
|| (!in_lto_p && DECL_INITIAL (decl) == error_mark_node)))
DECL_COMMON (decl) = 1;
else
{
gcc_assert (TARGET_SUPPORTS_WEAK);
DECL_WEAK (decl) = 1;
}
}
void
init_varasm_once (void)
{
section_htab = hash_table::create_ggc (31);
object_block_htab = hash_table::create_ggc (31);
const_desc_htab = hash_table::create_ggc (1009);
shared_constant_pool = create_constant_pool ();
#ifdef TEXT_SECTION_ASM_OP
text_section = get_unnamed_section (SECTION_CODE, output_section_asm_op,
TEXT_SECTION_ASM_OP);
#endif
#ifdef DATA_SECTION_ASM_OP
data_section = get_unnamed_section (SECTION_WRITE, output_section_asm_op,
DATA_SECTION_ASM_OP);
#endif
#ifdef SDATA_SECTION_ASM_OP
sdata_section = get_unnamed_section (SECTION_WRITE, output_section_asm_op,
SDATA_SECTION_ASM_OP);
#endif
#ifdef READONLY_DATA_SECTION_ASM_OP
readonly_data_section = get_unnamed_section (0, output_section_asm_op,
READONLY_DATA_SECTION_ASM_OP);
#endif
#ifdef CTORS_SECTION_ASM_OP
ctors_section = get_unnamed_section (0, output_section_asm_op,
CTORS_SECTION_ASM_OP);
#endif
#ifdef DTORS_SECTION_ASM_OP
dtors_section = get_unnamed_section (0, output_section_asm_op,
DTORS_SECTION_ASM_OP);
#endif
#ifdef BSS_SECTION_ASM_OP
bss_section = get_unnamed_section (SECTION_WRITE | SECTION_BSS,
output_section_asm_op,
BSS_SECTION_ASM_OP);
#endif
#ifdef SBSS_SECTION_ASM_OP
sbss_section = get_unnamed_section (SECTION_WRITE | SECTION_BSS,
output_section_asm_op,
SBSS_SECTION_ASM_OP);
#endif
tls_comm_section = get_noswitch_section (SECTION_WRITE | SECTION_BSS
| SECTION_COMMON, emit_tls_common);
lcomm_section = get_noswitch_section (SECTION_WRITE | SECTION_BSS
| SECTION_COMMON, emit_local);
comm_section = get_noswitch_section (SECTION_WRITE | SECTION_BSS
| SECTION_COMMON, emit_common);
#if defined ASM_OUTPUT_ALIGNED_BSS
bss_noswitch_section = get_noswitch_section (SECTION_WRITE | SECTION_BSS,
emit_bss);
#endif
targetm.asm_out.init_sections ();
if (readonly_data_section == NULL)
readonly_data_section = text_section;
#ifdef ASM_OUTPUT_EXTERNAL
pending_assemble_externals_set = new hash_set;
#endif
}
/* Determine whether SYMBOL is used in any optimized function. */
static bool
have_optimized_refs (struct symtab_node *symbol)
{
struct ipa_ref *ref;
for (int i = 0; symbol->iterate_referring (i, ref); i++)
{
cgraph_node *cnode = dyn_cast (ref->referring);
if (cnode && opt_for_fn (cnode->decl, optimize))
return true;
}
return false;
}
/* Check if promoting general-dynamic TLS access model to local-dynamic is
desirable for DECL. */
static bool
optimize_dyn_tls_for_decl_p (const_tree decl)
{
if (cfun)
return optimize;
return symtab->state >= IPA && have_optimized_refs (symtab_node::get (decl));
}
enum tls_model
decl_default_tls_model (const_tree decl)
{
enum tls_model kind;
bool is_local;
is_local = targetm.binds_local_p (decl);
if (!flag_shlib)
{
if (is_local)
kind = TLS_MODEL_LOCAL_EXEC;
else
kind = TLS_MODEL_INITIAL_EXEC;
}
/* Local dynamic is inefficient when we're not combining the
parts of the address. */
else if (is_local && optimize_dyn_tls_for_decl_p (decl))
kind = TLS_MODEL_LOCAL_DYNAMIC;
else
kind = TLS_MODEL_GLOBAL_DYNAMIC;
if (kind < flag_tls_default)
kind = flag_tls_default;
return kind;
}
/* Select a set of attributes for section NAME based on the properties
of DECL and whether or not RELOC indicates that DECL's initializer
might contain runtime relocations.
We make the section read-only and executable for a function decl,
read-only for a const data decl, and writable for a non-const data decl. */
unsigned int
default_section_type_flags (tree decl, const char *name, int reloc)
{
unsigned int flags;
if (decl && TREE_CODE (decl) == FUNCTION_DECL)
flags = SECTION_CODE;
else if (decl)
{
enum section_category category
= categorize_decl_for_section (decl, reloc);
if (decl_readonly_section_1 (category))
flags = 0;
else if (category == SECCAT_DATA_REL_RO
|| category == SECCAT_DATA_REL_RO_LOCAL)
flags = SECTION_WRITE | SECTION_RELRO;
else
flags = SECTION_WRITE;
}
else
{
flags = SECTION_WRITE;
if (strcmp (name, ".data.rel.ro") == 0
|| strcmp (name, ".data.rel.ro.local") == 0)
flags |= SECTION_RELRO;
}
if (decl && DECL_P (decl) && DECL_COMDAT_GROUP (decl))
flags |= SECTION_LINKONCE;
if (strcmp (name, ".vtable_map_vars") == 0)
flags |= SECTION_LINKONCE;
if (decl && VAR_P (decl) && DECL_THREAD_LOCAL_P (decl))
flags |= SECTION_TLS | SECTION_WRITE;
if (strcmp (name, ".bss") == 0
|| startswith (name, ".bss.")
|| startswith (name, ".gnu.linkonce.b.")
|| strcmp (name, ".persistent.bss") == 0
|| strcmp (name, ".sbss") == 0
|| startswith (name, ".sbss.")
|| startswith (name, ".gnu.linkonce.sb."))
flags |= SECTION_BSS;
if (strcmp (name, ".tdata") == 0
|| startswith (name, ".tdata.")
|| startswith (name, ".gnu.linkonce.td."))
flags |= SECTION_TLS;
if (strcmp (name, ".tbss") == 0
|| startswith (name, ".tbss.")
|| startswith (name, ".gnu.linkonce.tb."))
flags |= SECTION_TLS | SECTION_BSS;
if (strcmp (name, ".noinit") == 0)
flags |= SECTION_WRITE | SECTION_BSS | SECTION_NOTYPE;
if (strcmp (name, ".persistent") == 0)
flags |= SECTION_WRITE | SECTION_NOTYPE;
/* Various sections have special ELF types that the assembler will
assign by default based on the name. They are neither SHT_PROGBITS
nor SHT_NOBITS, so when changing sections we don't want to print a
section type (@progbits or @nobits). Rather than duplicating the
assembler's knowledge of what those special name patterns are, just
let the assembler choose the type if we don't know a specific
reason to set it to something other than the default. SHT_PROGBITS
is the default for sections whose name is not specially known to
the assembler, so it does no harm to leave the choice to the
assembler when @progbits is the best thing we know to use. If
someone is silly enough to emit code or TLS variables to one of
these sections, then don't handle them specially.
default_elf_asm_named_section (below) handles the BSS, TLS, ENTSIZE, and
LINKONCE cases when NOTYPE is not set, so leave those to its logic. */
if (!(flags & (SECTION_CODE | SECTION_BSS | SECTION_TLS | SECTION_ENTSIZE))
&& !(HAVE_COMDAT_GROUP && (flags & SECTION_LINKONCE)))
flags |= SECTION_NOTYPE;
return flags;
}
/* Return true if the target supports some form of global BSS,
either through bss_noswitch_section, or by selecting a BSS
section in TARGET_ASM_SELECT_SECTION. */
bool
have_global_bss_p (void)
{
return bss_noswitch_section || targetm.have_switchable_bss_sections;
}
/* Output assembly to switch to section NAME with attribute FLAGS.
Four variants for common object file formats. */
void
default_no_named_section (const char *name ATTRIBUTE_UNUSED,
unsigned int flags ATTRIBUTE_UNUSED,
tree decl ATTRIBUTE_UNUSED)
{
/* Some object formats don't support named sections at all. The
front-end should already have flagged this as an error. */
gcc_unreachable ();
}
#ifndef TLS_SECTION_ASM_FLAG
#define TLS_SECTION_ASM_FLAG 'T'
#endif
void
default_elf_asm_named_section (const char *name, unsigned int flags,
tree decl)
{
char flagchars[11], *f = flagchars;
unsigned int numeric_value = 0;
/* If we have already declared this section, we can use an
abbreviated form to switch back to it -- unless this section is
part of a COMDAT groups or with SHF_GNU_RETAIN or with SHF_LINK_ORDER,
in which case GAS requires the full declaration every time. */
if (!(HAVE_COMDAT_GROUP && (flags & SECTION_LINKONCE))
&& !(flags & (SECTION_RETAIN | SECTION_LINK_ORDER))
&& (flags & SECTION_DECLARED))
{
fprintf (asm_out_file, "\t.section\t%s\n", name);
return;
}
/* If we have a machine specific flag, then use the numeric value to pass
this on to GAS. */
if (targetm.asm_out.elf_flags_numeric (flags, &numeric_value))
snprintf (f, sizeof (flagchars), "0x%08x", numeric_value);
else
{
if (!(flags & SECTION_DEBUG))
*f++ = 'a';
#if HAVE_GAS_SECTION_EXCLUDE
if (flags & SECTION_EXCLUDE)
*f++ = 'e';
#endif
if (flags & SECTION_WRITE)
*f++ = 'w';
if (flags & SECTION_CODE)
*f++ = 'x';
if (flags & SECTION_SMALL)
*f++ = 's';
if (flags & SECTION_MERGE)
*f++ = 'M';
if (flags & SECTION_STRINGS)
*f++ = 'S';
if (flags & SECTION_TLS)
*f++ = TLS_SECTION_ASM_FLAG;
if (HAVE_COMDAT_GROUP && (flags & SECTION_LINKONCE))
*f++ = 'G';
if (flags & SECTION_RETAIN)
*f++ = 'R';
if (flags & SECTION_LINK_ORDER)
*f++ = 'o';
#ifdef MACH_DEP_SECTION_ASM_FLAG
if (flags & SECTION_MACH_DEP)
*f++ = MACH_DEP_SECTION_ASM_FLAG;
#endif
*f = '\0';
}
fprintf (asm_out_file, "\t.section\t%s,\"%s\"", name, flagchars);
/* default_section_type_flags (above) knows which flags need special
handling here, and sets NOTYPE when none of these apply so that the
assembler's logic for default types can apply to user-chosen
section names. */
if (!(flags & SECTION_NOTYPE))
{
const char *type;
const char *format;
if (flags & SECTION_BSS)
type = "nobits";
else
type = "progbits";
format = ",@%s";
/* On platforms that use "@" as the assembly comment character,
use "%" instead. */
if (strcmp (ASM_COMMENT_START, "@") == 0)
format = ",%%%s";
fprintf (asm_out_file, format, type);
if (flags & SECTION_ENTSIZE)
fprintf (asm_out_file, ",%d", flags & SECTION_ENTSIZE);
if (flags & SECTION_LINK_ORDER)
{
/* For now, only section "__patchable_function_entries"
adopts flag SECTION_LINK_ORDER, internal label LPFE*
was emitted in default_print_patchable_function_entry,
just place it here for linked_to section. */
gcc_assert (!strcmp (name, "__patchable_function_entries"));
fprintf (asm_out_file, ",");
char buf[256];
ASM_GENERATE_INTERNAL_LABEL (buf, "LPFE",
current_function_funcdef_no);
assemble_name_raw (asm_out_file, buf);
}
if (HAVE_COMDAT_GROUP && (flags & SECTION_LINKONCE))
{
if (TREE_CODE (decl) == IDENTIFIER_NODE)
fprintf (asm_out_file, ",%s,comdat", IDENTIFIER_POINTER (decl));
else
fprintf (asm_out_file, ",%s,comdat",
IDENTIFIER_POINTER (DECL_COMDAT_GROUP (decl)));
}
}
putc ('\n', asm_out_file);
}
void
default_coff_asm_named_section (const char *name, unsigned int flags,
tree decl ATTRIBUTE_UNUSED)
{
char flagchars[8], *f = flagchars;
if (flags & SECTION_WRITE)
*f++ = 'w';
if (flags & SECTION_CODE)
*f++ = 'x';
*f = '\0';
fprintf (asm_out_file, "\t.section\t%s,\"%s\"\n", name, flagchars);
}
void
default_pe_asm_named_section (const char *name, unsigned int flags,
tree decl)
{
default_coff_asm_named_section (name, flags, decl);
if (flags & SECTION_LINKONCE)
{
/* Functions may have been compiled at various levels of
optimization so we can't use `same_size' here.
Instead, have the linker pick one. */
fprintf (asm_out_file, "\t.linkonce %s\n",
(flags & SECTION_CODE ? "discard" : "same_size"));
}
}
/* The lame default section selector. */
section *
default_select_section (tree decl, int reloc,
unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
{
if (DECL_P (decl))
{
if (decl_readonly_section (decl, reloc))
return readonly_data_section;
}
else if (TREE_CODE (decl) == CONSTRUCTOR)
{
if (! ((flag_pic && reloc)
|| !TREE_READONLY (decl)
|| !TREE_CONSTANT (decl)))
return readonly_data_section;
}
else if (TREE_CODE (decl) == STRING_CST)
return readonly_data_section;
else if (! (flag_pic && reloc))
return readonly_data_section;
return data_section;
}
enum section_category
categorize_decl_for_section (const_tree decl, int reloc)
{
enum section_category ret;
if (TREE_CODE (decl) == FUNCTION_DECL)
return SECCAT_TEXT;
else if (TREE_CODE (decl) == STRING_CST)
{
if ((flag_sanitize & SANITIZE_ADDRESS)
&& asan_protect_global (CONST_CAST_TREE (decl)))
/* or !flag_merge_constants */
return SECCAT_RODATA;
else
return SECCAT_RODATA_MERGE_STR;
}
else if (VAR_P (decl))
{
tree d = CONST_CAST_TREE (decl);
if (bss_initializer_p (decl))
ret = SECCAT_BSS;
else if (! TREE_READONLY (decl)
|| (DECL_INITIAL (decl)
&& ! TREE_CONSTANT (DECL_INITIAL (decl))))
{
/* Here the reloc_rw_mask is not testing whether the section should
be read-only or not, but whether the dynamic link will have to
do something. If so, we wish to segregate the data in order to
minimize cache misses inside the dynamic linker. */
if (reloc & targetm.asm_out.reloc_rw_mask ())
ret = reloc == 1 ? SECCAT_DATA_REL_LOCAL : SECCAT_DATA_REL;
else
ret = SECCAT_DATA;
}
else if (reloc & targetm.asm_out.reloc_rw_mask ())
ret = reloc == 1 ? SECCAT_DATA_REL_RO_LOCAL : SECCAT_DATA_REL_RO;
else if (reloc || (flag_merge_constants < 2 && !DECL_MERGEABLE (decl))
|| ((flag_sanitize & SANITIZE_ADDRESS)
/* PR 81697: for architectures that use section anchors we
need to ignore DECL_RTL_SET_P (decl) for string constants
inside this asan_protect_global call because otherwise
we'll wrongly put them into SECCAT_RODATA_MERGE_CONST
section, set DECL_RTL (decl) later on and add DECL to
protected globals via successive asan_protect_global
calls. In this scenario we'll end up with wrong
alignment of these strings at runtime and possible ASan
false positives. */
&& asan_protect_global (d, use_object_blocks_p ()
&& use_blocks_for_decl_p (d))))
/* C and C++ don't allow different variables to share the same
location. -fmerge-all-constants allows even that (at the
expense of not conforming). */
ret = SECCAT_RODATA;
else if (DECL_INITIAL (decl)
&& TREE_CODE (DECL_INITIAL (decl)) == STRING_CST)
ret = SECCAT_RODATA_MERGE_STR_INIT;
else
ret = SECCAT_RODATA_MERGE_CONST;
}
else if (TREE_CODE (decl) == CONSTRUCTOR)
{
if ((reloc & targetm.asm_out.reloc_rw_mask ())
|| ! TREE_CONSTANT (decl))
ret = SECCAT_DATA;
else
ret = SECCAT_RODATA;
}
else
ret = SECCAT_RODATA;
/* There are no read-only thread-local sections. */
if (VAR_P (decl) && DECL_THREAD_LOCAL_P (decl))
{
/* Note that this would be *just* SECCAT_BSS, except that there's
no concept of a read-only thread-local-data section. */
if (ret == SECCAT_BSS
|| DECL_INITIAL (decl) == NULL
|| (flag_zero_initialized_in_bss
&& initializer_zerop (DECL_INITIAL (decl))))
ret = SECCAT_TBSS;
else
ret = SECCAT_TDATA;
}
/* If the target uses small data sections, select it. */
else if (targetm.in_small_data_p (decl))
{
if (ret == SECCAT_BSS)
ret = SECCAT_SBSS;
else if (targetm.have_srodata_section && ret == SECCAT_RODATA)
ret = SECCAT_SRODATA;
else
ret = SECCAT_SDATA;
}
return ret;
}
static bool
decl_readonly_section_1 (enum section_category category)
{
switch (category)
{
case SECCAT_RODATA:
case SECCAT_RODATA_MERGE_STR:
case SECCAT_RODATA_MERGE_STR_INIT:
case SECCAT_RODATA_MERGE_CONST:
case SECCAT_SRODATA:
return true;
default:
return false;
}
}
bool
decl_readonly_section (const_tree decl, int reloc)
{
return decl_readonly_section_1 (categorize_decl_for_section (decl, reloc));
}
/* Select a section based on the above categorization. */
section *
default_elf_select_section (tree decl, int reloc,
unsigned HOST_WIDE_INT align)
{
const char *sname;
switch (categorize_decl_for_section (decl, reloc))
{
case SECCAT_TEXT:
/* We're not supposed to be called on FUNCTION_DECLs. */
gcc_unreachable ();
case SECCAT_RODATA:
return readonly_data_section;
case SECCAT_RODATA_MERGE_STR:
return mergeable_string_section (decl, align, 0);
case SECCAT_RODATA_MERGE_STR_INIT:
return mergeable_string_section (DECL_INITIAL (decl), align, 0);
case SECCAT_RODATA_MERGE_CONST:
return mergeable_constant_section (DECL_MODE (decl), align, 0);
case SECCAT_SRODATA:
sname = ".sdata2";
break;
case SECCAT_DATA:
if (DECL_P (decl) && DECL_PERSISTENT_P (decl))
{
sname = ".persistent";
break;
}
return data_section;
case SECCAT_DATA_REL:
sname = ".data.rel";
break;
case SECCAT_DATA_REL_LOCAL:
sname = ".data.rel.local";
break;
case SECCAT_DATA_REL_RO:
sname = ".data.rel.ro";
break;
case SECCAT_DATA_REL_RO_LOCAL:
sname = ".data.rel.ro.local";
break;
case SECCAT_SDATA:
sname = ".sdata";
break;
case SECCAT_TDATA:
sname = ".tdata";
break;
case SECCAT_BSS:
if (DECL_P (decl) && DECL_NOINIT_P (decl))
{
sname = ".noinit";
break;
}
if (bss_section)
return bss_section;
sname = ".bss";
break;
case SECCAT_SBSS:
sname = ".sbss";
break;
case SECCAT_TBSS:
sname = ".tbss";
break;
default:
gcc_unreachable ();
}
return get_named_section (decl, sname, reloc);
}
/* Construct a unique section name based on the decl name and the
categorization performed above. */
void
default_unique_section (tree decl, int reloc)
{
/* We only need to use .gnu.linkonce if we don't have COMDAT groups. */
bool one_only = DECL_ONE_ONLY (decl) && !HAVE_COMDAT_GROUP;
const char *prefix, *name, *linkonce;
char *string;
tree id;
switch (categorize_decl_for_section (decl, reloc))
{
case SECCAT_TEXT:
prefix = one_only ? ".t" : ".text";
break;
case SECCAT_RODATA:
case SECCAT_RODATA_MERGE_STR:
case SECCAT_RODATA_MERGE_STR_INIT:
case SECCAT_RODATA_MERGE_CONST:
prefix = one_only ? ".r" : ".rodata";
break;
case SECCAT_SRODATA:
prefix = one_only ? ".s2" : ".sdata2";
break;
case SECCAT_DATA:
prefix = one_only ? ".d" : ".data";
if (DECL_P (decl) && DECL_PERSISTENT_P (decl))
{
prefix = one_only ? ".p" : ".persistent";
break;
}
break;
case SECCAT_DATA_REL:
prefix = one_only ? ".d.rel" : ".data.rel";
break;
case SECCAT_DATA_REL_LOCAL:
prefix = one_only ? ".d.rel.local" : ".data.rel.local";
break;
case SECCAT_DATA_REL_RO:
prefix = one_only ? ".d.rel.ro" : ".data.rel.ro";
break;
case SECCAT_DATA_REL_RO_LOCAL:
prefix = one_only ? ".d.rel.ro.local" : ".data.rel.ro.local";
break;
case SECCAT_SDATA:
prefix = one_only ? ".s" : ".sdata";
break;
case SECCAT_BSS:
if (DECL_P (decl) && DECL_NOINIT_P (decl))
{
prefix = one_only ? ".n" : ".noinit";
break;
}
prefix = one_only ? ".b" : ".bss";
break;
case SECCAT_SBSS:
prefix = one_only ? ".sb" : ".sbss";
break;
case SECCAT_TDATA:
prefix = one_only ? ".td" : ".tdata";
break;
case SECCAT_TBSS:
prefix = one_only ? ".tb" : ".tbss";
break;
default:
gcc_unreachable ();
}
id = DECL_ASSEMBLER_NAME (decl);
ultimate_transparent_alias_target (&id);
name = IDENTIFIER_POINTER (id);
name = targetm.strip_name_encoding (name);
/* If we're using one_only, then there needs to be a .gnu.linkonce
prefix to the section name. */
linkonce = one_only ? ".gnu.linkonce" : "";
string = ACONCAT ((linkonce, prefix, ".", name, NULL));
set_decl_section_name (decl, string);
}
/* Subroutine of compute_reloc_for_rtx for leaf rtxes. */
static int
compute_reloc_for_rtx_1 (const_rtx x)
{
switch (GET_CODE (x))
{
case SYMBOL_REF:
return SYMBOL_REF_LOCAL_P (x) ? 1 : 2;
case LABEL_REF:
return 1;
default:
return 0;
}
}
/* Like compute_reloc_for_constant, except for an RTX. The return value
is a mask for which bit 1 indicates a global relocation, and bit 0
indicates a local relocation. Used by default_select_rtx_section
and default_elf_select_rtx_section. */
static int
compute_reloc_for_rtx (const_rtx x)
{
switch (GET_CODE (x))
{
case SYMBOL_REF:
case LABEL_REF:
return compute_reloc_for_rtx_1 (x);
case CONST:
{
int reloc = 0;
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, ALL)
reloc |= compute_reloc_for_rtx_1 (*iter);
return reloc;
}
default:
return 0;
}
}
section *
default_select_rtx_section (machine_mode mode ATTRIBUTE_UNUSED,
rtx x,
unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
{
if (compute_reloc_for_rtx (x) & targetm.asm_out.reloc_rw_mask ())
return data_section;
else
return readonly_data_section;
}
section *
default_elf_select_rtx_section (machine_mode mode, rtx x,
unsigned HOST_WIDE_INT align)
{
int reloc = compute_reloc_for_rtx (x);
/* ??? Handle small data here somehow. */
if (reloc & targetm.asm_out.reloc_rw_mask ())
{
if (reloc == 1)
return get_named_section (NULL, ".data.rel.ro.local", 1);
else
return get_named_section (NULL, ".data.rel.ro", 3);
}
return mergeable_constant_section (mode, align, 0);
}
/* Set the generally applicable flags on the SYMBOL_REF for EXP. */
void
default_encode_section_info (tree decl, rtx rtl, int first ATTRIBUTE_UNUSED)
{
rtx symbol;
int flags;
/* Careful not to prod global register variables. */
if (!MEM_P (rtl))
return;
symbol = XEXP (rtl, 0);
if (GET_CODE (symbol) != SYMBOL_REF)
return;
flags = SYMBOL_REF_FLAGS (symbol) & SYMBOL_FLAG_HAS_BLOCK_INFO;
if (TREE_CODE (decl) == FUNCTION_DECL)
flags |= SYMBOL_FLAG_FUNCTION;
if (targetm.binds_local_p (decl))
flags |= SYMBOL_FLAG_LOCAL;
if (VAR_P (decl) && DECL_THREAD_LOCAL_P (decl))
flags |= DECL_TLS_MODEL (decl) << SYMBOL_FLAG_TLS_SHIFT;
else if (targetm.in_small_data_p (decl))
flags |= SYMBOL_FLAG_SMALL;
/* ??? Why is DECL_EXTERNAL ever set for non-PUBLIC names? Without
being PUBLIC, the thing *must* be defined in this translation unit.
Prevent this buglet from being propagated into rtl code as well. */
if (DECL_P (decl) && DECL_EXTERNAL (decl) && TREE_PUBLIC (decl))
flags |= SYMBOL_FLAG_EXTERNAL;
SYMBOL_REF_FLAGS (symbol) = flags;
}
/* By default, we do nothing for encode_section_info, so we need not
do anything but discard the '*' marker. */
const char *
default_strip_name_encoding (const char *str)
{
return str + (*str == '*');
}
#ifdef ASM_OUTPUT_DEF
/* The default implementation of TARGET_ASM_OUTPUT_ANCHOR. Define the
anchor relative to ".", the current section position. */
void
default_asm_output_anchor (rtx symbol)
{
gcc_checking_assert (TARGET_SUPPORTS_ALIASES);
char buffer[100];
sprintf (buffer, "*. + " HOST_WIDE_INT_PRINT_DEC,
SYMBOL_REF_BLOCK_OFFSET (symbol));
ASM_OUTPUT_DEF (asm_out_file, XSTR (symbol, 0), buffer);
}
#endif
/* The default implementation of TARGET_USE_ANCHORS_FOR_SYMBOL_P. */
bool
default_use_anchors_for_symbol_p (const_rtx symbol)
{
tree decl;
section *sect = SYMBOL_REF_BLOCK (symbol)->sect;
/* This function should only be called with non-zero SYMBOL_REF_BLOCK,
furthermore get_block_for_section should not create object blocks
for mergeable sections. */
gcc_checking_assert (sect && !(sect->common.flags & SECTION_MERGE));
/* Don't use anchors for small data sections. The small data register
acts as an anchor for such sections. */
if (sect->common.flags & SECTION_SMALL)
return false;
decl = SYMBOL_REF_DECL (symbol);
if (decl && DECL_P (decl))
{
/* Don't use section anchors for decls that might be defined or
usurped by other modules. */
if (TREE_PUBLIC (decl) && !decl_binds_to_current_def_p (decl))
return false;
/* Don't use section anchors for decls that will be placed in a
small data section. */
/* ??? Ideally, this check would be redundant with the SECTION_SMALL
one above. The problem is that we only use SECTION_SMALL for
sections that should be marked as small in the section directive. */
if (targetm.in_small_data_p (decl))
return false;
/* Don't use section anchors for decls that won't fit inside a single
anchor range to reduce the amount of instructions required to refer
to the entire declaration. */
if (DECL_SIZE_UNIT (decl) == NULL_TREE
|| !tree_fits_uhwi_p (DECL_SIZE_UNIT (decl))
|| (tree_to_uhwi (DECL_SIZE_UNIT (decl))
>= (unsigned HOST_WIDE_INT) targetm.max_anchor_offset))
return false;
}
return true;
}
/* Return true when RESOLUTION indicate that symbol will be bound to the
definition provided by current .o file. */
static bool
resolution_to_local_definition_p (enum ld_plugin_symbol_resolution resolution)
{
return (resolution == LDPR_PREVAILING_DEF
|| resolution == LDPR_PREVAILING_DEF_IRONLY_EXP
|| resolution == LDPR_PREVAILING_DEF_IRONLY);
}
/* Return true when RESOLUTION indicate that symbol will be bound locally
within current executable or DSO. */
static bool
resolution_local_p (enum ld_plugin_symbol_resolution resolution)
{
return (resolution == LDPR_PREVAILING_DEF
|| resolution == LDPR_PREVAILING_DEF_IRONLY
|| resolution == LDPR_PREVAILING_DEF_IRONLY_EXP
|| resolution == LDPR_PREEMPTED_REG
|| resolution == LDPR_PREEMPTED_IR
|| resolution == LDPR_RESOLVED_IR
|| resolution == LDPR_RESOLVED_EXEC);
}
/* COMMON_LOCAL_P is true means that the linker can guarantee that an
uninitialized common symbol in the executable will still be defined
(through COPY relocation) in the executable. */
bool
default_binds_local_p_3 (const_tree exp, bool shlib, bool weak_dominate,
bool extern_protected_data, bool common_local_p)
{
/* A non-decl is an entry in the constant pool. */
if (!DECL_P (exp))
return true;
/* Weakrefs may not bind locally, even though the weakref itself is always
static and therefore local. Similarly, the resolver for ifunc functions
might resolve to a non-local function.
FIXME: We can resolve the weakref case more curefuly by looking at the
weakref alias. */
if (lookup_attribute ("weakref", DECL_ATTRIBUTES (exp))
|| (!targetm.ifunc_ref_local_ok ()
&& TREE_CODE (exp) == FUNCTION_DECL
&& cgraph_node::get (exp)
&& cgraph_node::get (exp)->ifunc_resolver))
return false;
/* Static variables are always local. */
if (! TREE_PUBLIC (exp))
return true;
/* With resolution file in hand, take look into resolutions.
We can't just return true for resolved_locally symbols,
because dynamic linking might overwrite symbols
in shared libraries. */
bool resolved_locally = false;
bool uninited_common = (DECL_COMMON (exp)
&& (DECL_INITIAL (exp) == NULL
|| (!in_lto_p
&& DECL_INITIAL (exp) == error_mark_node)));
/* A non-external variable is defined locally only if it isn't
uninitialized COMMON variable or common_local_p is true. */
bool defined_locally = (!DECL_EXTERNAL (exp)
&& (!uninited_common || common_local_p));
if (symtab_node *node = symtab_node::get (exp))
{
if (node->in_other_partition)
defined_locally = true;
if (node->can_be_discarded_p ())
;
else if (resolution_to_local_definition_p (node->resolution))
defined_locally = resolved_locally = true;
else if (resolution_local_p (node->resolution))
resolved_locally = true;
}
if (defined_locally && weak_dominate && !shlib)
resolved_locally = true;
/* Undefined weak symbols are never defined locally. */
if (DECL_WEAK (exp) && !defined_locally)
return false;
/* A symbol is local if the user has said explicitly that it will be,
or if we have a definition for the symbol. We cannot infer visibility
for undefined symbols. */
if (DECL_VISIBILITY (exp) != VISIBILITY_DEFAULT
&& (TREE_CODE (exp) == FUNCTION_DECL
|| !extern_protected_data
|| DECL_VISIBILITY (exp) != VISIBILITY_PROTECTED)
&& (DECL_VISIBILITY_SPECIFIED (exp) || defined_locally))
return true;
/* If PIC, then assume that any global name can be overridden by
symbols resolved from other modules. */
if (shlib)
return false;
/* Variables defined outside this object might not be local. */
if (DECL_EXTERNAL (exp) && !resolved_locally)
return false;
/* Non-dominant weak symbols are not defined locally. */
if (DECL_WEAK (exp) && !resolved_locally)
return false;
/* Uninitialized COMMON variable may be unified with symbols
resolved from other modules. */
if (uninited_common && !resolved_locally)
return false;
/* Otherwise we're left with initialized (or non-common) global data
which is of necessity defined locally. */
return true;
}
/* Assume ELF-ish defaults, since that's pretty much the most liberal
wrt cross-module name binding. */
bool
default_binds_local_p (const_tree exp)
{
return default_binds_local_p_3 (exp, flag_shlib != 0, true, false, false);
}
/* Similar to default_binds_local_p, but common symbol may be local and
extern protected data is non-local. */
bool
default_binds_local_p_2 (const_tree exp)
{
return default_binds_local_p_3 (exp, flag_shlib != 0, true, true,
!flag_pic);
}
bool
default_binds_local_p_1 (const_tree exp, int shlib)
{
return default_binds_local_p_3 (exp, shlib != 0, false, false, false);
}
/* Return true when references to DECL must bind to current definition in
final executable.
The condition is usually equivalent to whether the function binds to the
current module (shared library or executable), that is to binds_local_p.
We use this fact to avoid need for another target hook and implement
the logic using binds_local_p and just special cases where
decl_binds_to_current_def_p is stronger than binds_local_p. In particular
the weak definitions (that can be overwritten at linktime by other
definition from different object file) and when resolution info is available
we simply use the knowledge passed to us by linker plugin. */
bool
decl_binds_to_current_def_p (const_tree decl)
{
gcc_assert (DECL_P (decl));
if (!targetm.binds_local_p (decl))
return false;
if (!TREE_PUBLIC (decl))
return true;
/* When resolution is available, just use it. */
if (symtab_node *node = symtab_node::get (decl))
{
if (node->resolution != LDPR_UNKNOWN
&& !node->can_be_discarded_p ())
return resolution_to_local_definition_p (node->resolution);
}
/* Otherwise we have to assume the worst for DECL_WEAK (hidden weaks
binds locally but still can be overwritten), DECL_COMMON (can be merged
with a non-common definition somewhere in the same module) or
DECL_EXTERNAL.
This rely on fact that binds_local_p behave as decl_replaceable_p
for all other declaration types. */
if (DECL_WEAK (decl))
return false;
if (DECL_COMMON (decl)
&& (DECL_INITIAL (decl) == NULL
|| (!in_lto_p && DECL_INITIAL (decl) == error_mark_node)))
return false;
if (DECL_EXTERNAL (decl))
return false;
return true;
}
/* A replaceable function or variable is one which may be replaced
at link-time with an entirely different definition, provided that the
replacement has the same type. For example, functions declared
with __attribute__((weak)) on most systems are replaceable.
If SEMANTIC_INTERPOSITION_P is false allow interposition only on
symbols explicitly declared weak.
COMDAT functions are not replaceable, since all definitions of the
function must be equivalent. It is important that COMDAT functions
not be treated as replaceable so that use of C++ template
instantiations is not penalized. */
bool
decl_replaceable_p (tree decl, bool semantic_interposition_p)
{
gcc_assert (DECL_P (decl));
if (!TREE_PUBLIC (decl) || DECL_COMDAT (decl))
return false;
if (!semantic_interposition_p
&& !DECL_WEAK (decl))
return false;
return !decl_binds_to_current_def_p (decl);
}
/* Default function to output code that will globalize a label. A
target must define GLOBAL_ASM_OP or provide its own function to
globalize a label. */
#ifdef GLOBAL_ASM_OP
void
default_globalize_label (FILE * stream, const char *name)
{
fputs (GLOBAL_ASM_OP, stream);
assemble_name (stream, name);
putc ('\n', stream);
}
#endif /* GLOBAL_ASM_OP */
/* Default function to output code that will globalize a declaration. */
void
default_globalize_decl_name (FILE * stream, tree decl)
{
const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
targetm.asm_out.globalize_label (stream, name);
}
/* Default function to output a label for unwind information. The
default is to do nothing. A target that needs nonlocal labels for
unwind information must provide its own function to do this. */
void
default_emit_unwind_label (FILE * stream ATTRIBUTE_UNUSED,
tree decl ATTRIBUTE_UNUSED,
int for_eh ATTRIBUTE_UNUSED,
int empty ATTRIBUTE_UNUSED)
{
}
/* Default function to output a label to divide up the exception table.
The default is to do nothing. A target that needs/wants to divide
up the table must provide it's own function to do this. */
void
default_emit_except_table_label (FILE * stream ATTRIBUTE_UNUSED)
{
}
/* This is how to output an internal numbered label where PREFIX is
the class of label and LABELNO is the number within the class. */
void
default_generate_internal_label (char *buf, const char *prefix,
unsigned long labelno)
{
ASM_GENERATE_INTERNAL_LABEL (buf, prefix, labelno);
}
/* This is how to output an internal numbered label where PREFIX is
the class of label and LABELNO is the number within the class. */
void
default_internal_label (FILE *stream, const char *prefix,
unsigned long labelno)
{
char *const buf = (char *) alloca (40 + strlen (prefix));
ASM_GENERATE_INTERNAL_LABEL (buf, prefix, labelno);
ASM_OUTPUT_INTERNAL_LABEL (stream, buf);
}
/* The default implementation of ASM_DECLARE_CONSTANT_NAME. */
void
default_asm_declare_constant_name (FILE *file, const char *name,
const_tree exp ATTRIBUTE_UNUSED,
HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
assemble_label (file, name);
}
/* This is the default behavior at the beginning of a file. It's
controlled by two other target-hook toggles. */
void
default_file_start (void)
{
if (targetm.asm_file_start_app_off
&& !(flag_verbose_asm || flag_debug_asm || flag_dump_rtl_in_asm))
fputs (ASM_APP_OFF, asm_out_file);
if (targetm.asm_file_start_file_directive)
{
/* LTO produced units have no meaningful main_input_filename. */
if (in_lto_p)
output_file_directive (asm_out_file, "");
else
output_file_directive (asm_out_file, main_input_filename);
}
}
/* This is a generic routine suitable for use as TARGET_ASM_FILE_END
which emits a special section directive used to indicate whether or
not this object file needs an executable stack. This is primarily
a GNU extension to ELF but could be used on other targets. */
int trampolines_created;
void
file_end_indicate_exec_stack (void)
{
unsigned int flags = SECTION_DEBUG;
if (trampolines_created)
flags |= SECTION_CODE;
switch_to_section (get_section (".note.GNU-stack", flags, NULL));
}
/* Emit a special section directive to indicate that this object file
was compiled with -fsplit-stack. This is used to let the linker
detect calls between split-stack code and non-split-stack code, so
that it can modify the split-stack code to allocate a sufficiently
large stack. We emit another special section if there are any
functions in this file which have the no_split_stack attribute, to
prevent the linker from warning about being unable to convert the
functions if they call non-split-stack code. */
void
file_end_indicate_split_stack (void)
{
if (flag_split_stack)
{
switch_to_section (get_section (".note.GNU-split-stack", SECTION_DEBUG,
NULL));
if (saw_no_split_stack)
switch_to_section (get_section (".note.GNU-no-split-stack",
SECTION_DEBUG, NULL));
}
}
/* Output DIRECTIVE (a C string) followed by a newline. This is used as
a get_unnamed_section callback. */
void
output_section_asm_op (const char *directive)
{
fprintf (asm_out_file, "%s\n", directive);
}
/* Emit assembly code to switch to section NEW_SECTION. Do nothing if
the current section is NEW_SECTION. */
void
switch_to_section (section *new_section, tree decl)
{
bool retain_p;
if ((new_section->common.flags & SECTION_NAMED)
&& decl != nullptr
&& DECL_P (decl)
&& ((retain_p = !!lookup_attribute ("retain",
DECL_ATTRIBUTES (decl)))
!= !!(new_section->common.flags & SECTION_RETAIN)))
{
/* If the SECTION_RETAIN bit doesn't match, switch to a new
section. */
tree used_decl, no_used_decl;
if (retain_p)
{
new_section->common.flags |= SECTION_RETAIN;
used_decl = decl;
no_used_decl = new_section->named.decl;
}
else
{
new_section->common.flags &= ~(SECTION_RETAIN
| SECTION_DECLARED);
used_decl = new_section->named.decl;
no_used_decl = decl;
}
if (no_used_decl != used_decl)
{
warning (OPT_Wattributes,
"%+qD without % attribute and %qD with "
"% attribute are placed in a section with "
"the same name", no_used_decl, used_decl);
inform (DECL_SOURCE_LOCATION (used_decl),
"%qD was declared here", used_decl);
}
}
else if (in_section == new_section)
return;
in_section = new_section;
switch (SECTION_STYLE (new_section))
{
case SECTION_NAMED:
targetm.asm_out.named_section (new_section->named.name,
new_section->named.common.flags,
new_section->named.decl);
break;
case SECTION_UNNAMED:
new_section->unnamed.callback (new_section->unnamed.data);
break;
case SECTION_NOSWITCH:
gcc_unreachable ();
break;
}
new_section->common.flags |= SECTION_DECLARED;
}
/* If block symbol SYMBOL has not yet been assigned an offset, place
it at the end of its block. */
void
place_block_symbol (rtx symbol)
{
unsigned HOST_WIDE_INT size, mask, offset;
class constant_descriptor_rtx *desc;
unsigned int alignment;
struct object_block *block;
tree decl;
gcc_assert (SYMBOL_REF_BLOCK (symbol));
if (SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0)
return;
/* Work out the symbol's size and alignment. */
if (CONSTANT_POOL_ADDRESS_P (symbol))
{
desc = SYMBOL_REF_CONSTANT (symbol);
alignment = desc->align;
size = GET_MODE_SIZE (desc->mode);
}
else if (TREE_CONSTANT_POOL_ADDRESS_P (symbol))
{
decl = SYMBOL_REF_DECL (symbol);
gcc_checking_assert (DECL_IN_CONSTANT_POOL (decl));
alignment = DECL_ALIGN (decl);
size = get_constant_size (DECL_INITIAL (decl));
if ((flag_sanitize & SANITIZE_ADDRESS)
&& TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
&& asan_protect_global (DECL_INITIAL (decl)))
{
size += asan_red_zone_size (size);
alignment = MAX (alignment,
ASAN_RED_ZONE_SIZE * BITS_PER_UNIT);
}
}
else
{
struct symtab_node *snode;
decl = SYMBOL_REF_DECL (symbol);
snode = symtab_node::get (decl);
if (snode->alias)
{
rtx target = DECL_RTL (snode->ultimate_alias_target ()->decl);
gcc_assert (MEM_P (target)
&& GET_CODE (XEXP (target, 0)) == SYMBOL_REF
&& SYMBOL_REF_HAS_BLOCK_INFO_P (XEXP (target, 0)));
target = XEXP (target, 0);
place_block_symbol (target);
SYMBOL_REF_BLOCK_OFFSET (symbol) = SYMBOL_REF_BLOCK_OFFSET (target);
return;
}
alignment = get_variable_align (decl);
size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
if ((flag_sanitize & SANITIZE_ADDRESS)
&& asan_protect_global (decl))
{
size += asan_red_zone_size (size);
alignment = MAX (alignment,
ASAN_RED_ZONE_SIZE * BITS_PER_UNIT);
}
}
/* Calculate the object's offset from the start of the block. */
block = SYMBOL_REF_BLOCK (symbol);
mask = alignment / BITS_PER_UNIT - 1;
offset = (block->size + mask) & ~mask;
SYMBOL_REF_BLOCK_OFFSET (symbol) = offset;
/* Record the block's new alignment and size. */
block->alignment = MAX (block->alignment, alignment);
block->size = offset + size;
vec_safe_push (block->objects, symbol);
}
/* Return the anchor that should be used to address byte offset OFFSET
from the first object in BLOCK. MODEL is the TLS model used
to access it. */
rtx
get_section_anchor (struct object_block *block, HOST_WIDE_INT offset,
enum tls_model model)
{
char label[100];
unsigned int begin, middle, end;
unsigned HOST_WIDE_INT min_offset, max_offset, range, bias, delta;
rtx anchor;
/* Work out the anchor's offset. Use an offset of 0 for the first
anchor so that we don't pessimize the case where we take the address
of a variable at the beginning of the block. This is particularly
useful when a block has only one variable assigned to it.
We try to place anchors RANGE bytes apart, so there can then be
anchors at +/-RANGE, +/-2 * RANGE, and so on, up to the limits of
a ptr_mode offset. With some target settings, the lowest such
anchor might be out of range for the lowest ptr_mode offset;
likewise the highest anchor for the highest offset. Use anchors
at the extreme ends of the ptr_mode range in such cases.
All arithmetic uses unsigned integers in order to avoid
signed overflow. */
max_offset = (unsigned HOST_WIDE_INT) targetm.max_anchor_offset;
min_offset = (unsigned HOST_WIDE_INT) targetm.min_anchor_offset;
range = max_offset - min_offset + 1;
if (range == 0)
offset = 0;
else
{
bias = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (ptr_mode) - 1);
if (offset < 0)
{
delta = -(unsigned HOST_WIDE_INT) offset + max_offset;
delta -= delta % range;
if (delta > bias)
delta = bias;
offset = (HOST_WIDE_INT) (-delta);
}
else
{
delta = (unsigned HOST_WIDE_INT) offset - min_offset;
delta -= delta % range;
if (delta > bias - 1)
delta = bias - 1;
offset = (HOST_WIDE_INT) delta;
}
}
/* Do a binary search to see if there's already an anchor we can use.
Set BEGIN to the new anchor's index if not. */
begin = 0;
end = vec_safe_length (block->anchors);
while (begin != end)
{
middle = (end + begin) / 2;
anchor = (*block->anchors)[middle];
if (SYMBOL_REF_BLOCK_OFFSET (anchor) > offset)
end = middle;
else if (SYMBOL_REF_BLOCK_OFFSET (anchor) < offset)
begin = middle + 1;
else if (SYMBOL_REF_TLS_MODEL (anchor) > model)
end = middle;
else if (SYMBOL_REF_TLS_MODEL (anchor) < model)
begin = middle + 1;
else
return anchor;
}
/* Create a new anchor with a unique label. */
ASM_GENERATE_INTERNAL_LABEL (label, "LANCHOR", anchor_labelno++);
anchor = create_block_symbol (ggc_strdup (label), block, offset);
SYMBOL_REF_FLAGS (anchor) |= SYMBOL_FLAG_LOCAL | SYMBOL_FLAG_ANCHOR;
SYMBOL_REF_FLAGS (anchor) |= model << SYMBOL_FLAG_TLS_SHIFT;
/* Insert it at index BEGIN. */
vec_safe_insert (block->anchors, begin, anchor);
return anchor;
}
/* Output the objects in BLOCK. */
static void
output_object_block (struct object_block *block)
{
class constant_descriptor_rtx *desc;
unsigned int i;
HOST_WIDE_INT offset;
tree decl;
rtx symbol;
if (!block->objects)
return;
/* Switch to the section and make sure that the first byte is
suitably aligned. */
/* Special case VTV comdat sections similar to assemble_variable. */
if (SECTION_STYLE (block->sect) == SECTION_NAMED
&& block->sect->named.name
&& (strcmp (block->sect->named.name, ".vtable_map_vars") == 0))
handle_vtv_comdat_section (block->sect, block->sect->named.decl);
else
switch_to_section (block->sect, SYMBOL_REF_DECL ((*block->objects)[0]));
gcc_checking_assert (!(block->sect->common.flags & SECTION_MERGE));
assemble_align (block->alignment);
/* Define the values of all anchors relative to the current section
position. */
FOR_EACH_VEC_SAFE_ELT (block->anchors, i, symbol)
targetm.asm_out.output_anchor (symbol);
/* Output the objects themselves. */
offset = 0;
FOR_EACH_VEC_ELT (*block->objects, i, symbol)
{
/* Move to the object's offset, padding with zeros if necessary. */
assemble_zeros (SYMBOL_REF_BLOCK_OFFSET (symbol) - offset);
offset = SYMBOL_REF_BLOCK_OFFSET (symbol);
if (CONSTANT_POOL_ADDRESS_P (symbol))
{
desc = SYMBOL_REF_CONSTANT (symbol);
/* Pass 1 for align as we have already laid out everything in the block.
So aligning shouldn't be necessary. */
output_constant_pool_1 (desc, 1);
offset += GET_MODE_SIZE (desc->mode);
}
else if (TREE_CONSTANT_POOL_ADDRESS_P (symbol))
{
HOST_WIDE_INT size;
decl = SYMBOL_REF_DECL (symbol);
assemble_constant_contents (DECL_INITIAL (decl), XSTR (symbol, 0),
DECL_ALIGN (decl), false);
size = get_constant_size (DECL_INITIAL (decl));
offset += size;
if ((flag_sanitize & SANITIZE_ADDRESS)
&& TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
&& asan_protect_global (DECL_INITIAL (decl)))
{
size = asan_red_zone_size (size);
assemble_zeros (size);
offset += size;
}
}
else
{
HOST_WIDE_INT size;
decl = SYMBOL_REF_DECL (symbol);
assemble_variable_contents (decl, XSTR (symbol, 0), false, false);
size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
offset += size;
if ((flag_sanitize & SANITIZE_ADDRESS)
&& asan_protect_global (decl))
{
size = asan_red_zone_size (size);
assemble_zeros (size);
offset += size;
}
}
}
}
/* A callback for qsort to compare object_blocks. */
static int
output_object_block_compare (const void *x, const void *y)
{
object_block *p1 = *(object_block * const*)x;
object_block *p2 = *(object_block * const*)y;
if (p1->sect->common.flags & SECTION_NAMED
&& !(p2->sect->common.flags & SECTION_NAMED))
return 1;
if (!(p1->sect->common.flags & SECTION_NAMED)
&& p2->sect->common.flags & SECTION_NAMED)
return -1;
if (p1->sect->common.flags & SECTION_NAMED
&& p2->sect->common.flags & SECTION_NAMED)
return strcmp (p1->sect->named.name, p2->sect->named.name);
unsigned f1 = p1->sect->common.flags;
unsigned f2 = p2->sect->common.flags;
if (f1 == f2)
return 0;
return f1 < f2 ? -1 : 1;
}
/* Output the definitions of all object_blocks. */
void
output_object_blocks (void)
{
vec v;
v.create (object_block_htab->elements ());
object_block *obj;
hash_table::iterator hi;
FOR_EACH_HASH_TABLE_ELEMENT (*object_block_htab, obj, object_block *, hi)
v.quick_push (obj);
/* Sort them in order to output them in a deterministic manner,
otherwise we may get .rodata sections in different orders with
and without -g. */
v.qsort (output_object_block_compare);
unsigned i;
FOR_EACH_VEC_ELT (v, i, obj)
output_object_block (obj);
v.release ();
}
/* This function provides a possible implementation of the
TARGET_ASM_RECORD_GCC_SWITCHES target hook for ELF targets. When triggered
by -frecord-gcc-switches it creates a new mergeable, string section in the
assembler output file called TARGET_ASM_RECORD_GCC_SWITCHES_SECTION which
contains the switches in ASCII format.
FIXME: This code does not correctly handle double quote characters
that appear inside strings, (it strips them rather than preserving them).
FIXME: ASM_OUTPUT_ASCII, as defined in config/elfos.h will not emit NUL
characters - instead it treats them as sub-string separators. Since
we want to emit NUL strings terminators into the object file we have to use
ASM_OUTPUT_SKIP. */
void
elf_record_gcc_switches (const char *options)
{
section *sec = get_section (targetm.asm_out.record_gcc_switches_section,
SECTION_DEBUG | SECTION_MERGE
| SECTION_STRINGS | (SECTION_ENTSIZE & 1), NULL);
switch_to_section (sec);
ASM_OUTPUT_ASCII (asm_out_file, options, strlen (options) + 1);
}
/* Emit text to declare externally defined symbols. It is needed to
properly support non-default visibility. */
void
default_elf_asm_output_external (FILE *file ATTRIBUTE_UNUSED,
tree decl,
const char *name ATTRIBUTE_UNUSED)
{
/* We output the name if and only if TREE_SYMBOL_REFERENCED is
set in order to avoid putting out names that are never really
used. Always output visibility specified in the source. */
if (TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl))
&& (DECL_VISIBILITY_SPECIFIED (decl)
|| targetm.binds_local_p (decl)))
maybe_assemble_visibility (decl);
}
/* The default hook for TARGET_ASM_OUTPUT_SOURCE_FILENAME. */
void
default_asm_output_source_filename (FILE *file, const char *name)
{
#ifdef ASM_OUTPUT_SOURCE_FILENAME
ASM_OUTPUT_SOURCE_FILENAME (file, name);
#else
fprintf (file, "\t.file\t");
output_quoted_string (file, name);
putc ('\n', file);
#endif
}
/* Output a file name in the form wanted by System V. */
void
output_file_directive (FILE *asm_file, const char *input_name)
{
int len;
const char *na;
if (input_name == NULL)
input_name = "";
else
input_name = remap_debug_filename (input_name);
len = strlen (input_name);
na = input_name + len;
/* NA gets INPUT_NAME sans directory names. */
while (na > input_name)
{
if (IS_DIR_SEPARATOR (na[-1]))
break;
na--;
}
targetm.asm_out.output_source_filename (asm_file, na);
}
/* Create a DEBUG_EXPR_DECL / DEBUG_EXPR pair from RTL expression
EXP. */
rtx
make_debug_expr_from_rtl (const_rtx exp)
{
tree ddecl = make_node (DEBUG_EXPR_DECL), type;
machine_mode mode = GET_MODE (exp);
rtx dval;
DECL_ARTIFICIAL (ddecl) = 1;
if (REG_P (exp) && REG_EXPR (exp))
type = TREE_TYPE (REG_EXPR (exp));
else if (MEM_P (exp) && MEM_EXPR (exp))
type = TREE_TYPE (MEM_EXPR (exp));
else
type = NULL_TREE;
if (type && TYPE_MODE (type) == mode)
TREE_TYPE (ddecl) = type;
else
TREE_TYPE (ddecl) = lang_hooks.types.type_for_mode (mode, 1);
SET_DECL_MODE (ddecl, mode);
dval = gen_rtx_DEBUG_EXPR (mode);
DEBUG_EXPR_TREE_DECL (dval) = ddecl;
SET_DECL_RTL (ddecl, dval);
return dval;
}
#ifdef ELF_ASCII_ESCAPES
/* Default ASM_OUTPUT_LIMITED_STRING for ELF targets. */
void
default_elf_asm_output_limited_string (FILE *f, const char *s)
{
int escape;
unsigned char c;
fputs (STRING_ASM_OP, f);
putc ('"', f);
while (*s != '\0')
{
c = *s;
escape = ELF_ASCII_ESCAPES[c];
switch (escape)
{
case 0:
putc (c, f);
break;
case 1:
putc ('\\', f);
putc ('0'+((c>>6)&7), f);
putc ('0'+((c>>3)&7), f);
putc ('0'+(c&7), f);
break;
default:
putc ('\\', f);
putc (escape, f);
break;
}
s++;
}
putc ('\"', f);
putc ('\n', f);
}
/* Default ASM_OUTPUT_ASCII for ELF targets. */
void
default_elf_asm_output_ascii (FILE *f, const char *s, unsigned int len)
{
const char *limit = s + len;
const char *last_null = NULL;
unsigned bytes_in_chunk = 0;
unsigned char c;
int escape;
for (; s < limit; s++)
{
const char *p;
if (bytes_in_chunk >= 60)
{
putc ('\"', f);
putc ('\n', f);
bytes_in_chunk = 0;
}
if (s > last_null)
{
for (p = s; p < limit && *p != '\0'; p++)
continue;
last_null = p;
}
else
p = last_null;
if (p < limit && (p - s) <= (long) ELF_STRING_LIMIT)
{
if (bytes_in_chunk > 0)
{
putc ('\"', f);
putc ('\n', f);
bytes_in_chunk = 0;
}
default_elf_asm_output_limited_string (f, s);
s = p;
}
else
{
if (bytes_in_chunk == 0)
fputs (ASCII_DATA_ASM_OP "\"", f);
c = *s;
escape = ELF_ASCII_ESCAPES[c];
switch (escape)
{
case 0:
putc (c, f);
bytes_in_chunk++;
break;
case 1:
putc ('\\', f);
putc ('0'+((c>>6)&7), f);
putc ('0'+((c>>3)&7), f);
putc ('0'+(c&7), f);
bytes_in_chunk += 4;
break;
default:
putc ('\\', f);
putc (escape, f);
bytes_in_chunk += 2;
break;
}
}
}
if (bytes_in_chunk > 0)
{
putc ('\"', f);
putc ('\n', f);
}
}
#endif
static GTY(()) section *elf_init_array_section;
static GTY(()) section *elf_fini_array_section;
static section *
get_elf_initfini_array_priority_section (int priority,
bool constructor_p)
{
section *sec;
if (priority != DEFAULT_INIT_PRIORITY)
{
char buf[18];
sprintf (buf, "%s.%.5u",
constructor_p ? ".init_array" : ".fini_array",
priority);
sec = get_section (buf, SECTION_WRITE | SECTION_NOTYPE, NULL_TREE);
}
else
{
if (constructor_p)
{
if (elf_init_array_section == NULL)
elf_init_array_section
= get_section (".init_array",
SECTION_WRITE | SECTION_NOTYPE, NULL_TREE);
sec = elf_init_array_section;
}
else
{
if (elf_fini_array_section == NULL)
elf_fini_array_section
= get_section (".fini_array",
SECTION_WRITE | SECTION_NOTYPE, NULL_TREE);
sec = elf_fini_array_section;
}
}
return sec;
}
/* Use .init_array section for constructors. */
void
default_elf_init_array_asm_out_constructor (rtx symbol, int priority)
{
section *sec = get_elf_initfini_array_priority_section (priority,
true);
assemble_addr_to_section (symbol, sec);
}
/* Use .fini_array section for destructors. */
void
default_elf_fini_array_asm_out_destructor (rtx symbol, int priority)
{
section *sec = get_elf_initfini_array_priority_section (priority,
false);
assemble_addr_to_section (symbol, sec);
}
/* Default TARGET_ASM_OUTPUT_IDENT hook.
This is a bit of a cheat. The real default is a no-op, but this
hook is the default for all targets with a .ident directive. */
void
default_asm_output_ident_directive (const char *ident_str)
{
const char *ident_asm_op = "\t.ident\t";
/* If we are still in the front end, do not write out the string
to asm_out_file. Instead, add a fake top-level asm statement.
This allows the front ends to use this hook without actually
writing to asm_out_file, to handle #ident or Pragma Ident. */
if (symtab->state == PARSING)
{
char *buf = ACONCAT ((ident_asm_op, "\"", ident_str, "\"\n", NULL));
symtab->finalize_toplevel_asm (build_string (strlen (buf), buf));
}
else
fprintf (asm_out_file, "%s\"%s\"\n", ident_asm_op, ident_str);
}
/* Switch to a COMDAT section with COMDAT name of decl.
FIXME: resolve_unique_section needs to deal better with
decls with both DECL_SECTION_NAME and DECL_ONE_ONLY. Once
that is fixed, this if-else statement can be replaced with
a single call to "switch_to_section (sect)". */
void
switch_to_comdat_section (section *sect, tree decl)
{
#if defined (OBJECT_FORMAT_ELF)
targetm.asm_out.named_section (sect->named.name,
sect->named.common.flags
| SECTION_LINKONCE,
decl);
in_section = sect;
#else
/* Neither OBJECT_FORMAT_PE, nor OBJECT_FORMAT_COFF is set here.
Therefore the following check is used.
In case a the target is PE or COFF a comdat group section
is created, e.g. .vtable_map_vars$foo. The linker places
everything in .vtable_map_vars at the end.
A fix could be made in
gcc/config/i386/winnt.cc: i386_pe_unique_section. */
if (TARGET_PECOFF)
{
char *name;
if (TREE_CODE (decl) == IDENTIFIER_NODE)
name = ACONCAT ((sect->named.name, "$",
IDENTIFIER_POINTER (decl), NULL));
else
name = ACONCAT ((sect->named.name, "$",
IDENTIFIER_POINTER (DECL_COMDAT_GROUP (decl)),
NULL));
targetm.asm_out.named_section (name,
sect->named.common.flags
| SECTION_LINKONCE,
decl);
in_section = sect;
}
else
switch_to_section (sect);
#endif
}
/* This function ensures that vtable_map variables are not only
in the comdat section, but that each variable has its own unique
comdat name. Without this the variables end up in the same section
with a single comdat name. */
static void
handle_vtv_comdat_section (section *sect, const_tree decl ATTRIBUTE_UNUSED)
{
switch_to_comdat_section(sect, DECL_NAME (decl));
}
#include "gt-varasm.h"