/* Language-independent node constructors for parse phase of GNU compiler. Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* This file contains the low level primitives for operating on tree nodes, including allocation, list operations, interning of identifiers, construction of data type nodes and statement nodes, and construction of type conversion nodes. It also contains tables index by tree code that describe how to take apart nodes of that code. It is intended to be language-independent, but occasionally calls language-dependent routines defined (for C) in typecheck.c. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "flags.h" #include "tree.h" #include "tm_p.h" #include "function.h" #include "obstack.h" #include "toplev.h" /* get_random_seed */ #include "ggc.h" #include "hashtab.h" #include "filenames.h" #include "output.h" #include "target.h" #include "common/common-target.h" #include "langhooks.h" #include "tree-inline.h" #include "tree-iterator.h" #include "basic-block.h" #include "tree-flow.h" #include "params.h" #include "pointer-set.h" #include "tree-pass.h" #include "langhooks-def.h" #include "diagnostic.h" #include "tree-diagnostic.h" #include "tree-pretty-print.h" #include "cgraph.h" #include "except.h" #include "debug.h" #include "intl.h" /* Tree code classes. */ #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE, #define END_OF_BASE_TREE_CODES tcc_exceptional, const enum tree_code_class tree_code_type[] = { #include "all-tree.def" }; #undef DEFTREECODE #undef END_OF_BASE_TREE_CODES /* Table indexed by tree code giving number of expression operands beyond the fixed part of the node structure. Not used for types or decls. */ #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH, #define END_OF_BASE_TREE_CODES 0, const unsigned char tree_code_length[] = { #include "all-tree.def" }; #undef DEFTREECODE #undef END_OF_BASE_TREE_CODES /* Names of tree components. Used for printing out the tree and error messages. */ #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME, #define END_OF_BASE_TREE_CODES "@dummy", const char *const tree_code_name[] = { #include "all-tree.def" }; #undef DEFTREECODE #undef END_OF_BASE_TREE_CODES /* Each tree code class has an associated string representation. These must correspond to the tree_code_class entries. */ const char *const tree_code_class_strings[] = { "exceptional", "constant", "type", "declaration", "reference", "comparison", "unary", "binary", "statement", "vl_exp", "expression" }; /* obstack.[ch] explicitly declined to prototype this. */ extern int _obstack_allocated_p (struct obstack *h, void *obj); /* Statistics-gathering stuff. */ static int tree_code_counts[MAX_TREE_CODES]; int tree_node_counts[(int) all_kinds]; int tree_node_sizes[(int) all_kinds]; /* Keep in sync with tree.h:enum tree_node_kind. */ static const char * const tree_node_kind_names[] = { "decls", "types", "blocks", "stmts", "refs", "exprs", "constants", "identifiers", "vecs", "binfos", "ssa names", "constructors", "random kinds", "lang_decl kinds", "lang_type kinds", "omp clauses", }; /* Unique id for next decl created. */ static GTY(()) int next_decl_uid; /* Unique id for next type created. */ static GTY(()) int next_type_uid = 1; /* Unique id for next debug decl created. Use negative numbers, to catch erroneous uses. */ static GTY(()) int next_debug_decl_uid; /* Since we cannot rehash a type after it is in the table, we have to keep the hash code. */ struct GTY(()) type_hash { unsigned long hash; tree type; }; /* Initial size of the hash table (rounded to next prime). */ #define TYPE_HASH_INITIAL_SIZE 1000 /* Now here is the hash table. When recording a type, it is added to the slot whose index is the hash code. Note that the hash table is used for several kinds of types (function types, array types and array index range types, for now). While all these live in the same table, they are completely independent, and the hash code is computed differently for each of these. */ static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash))) htab_t type_hash_table; /* Hash table and temporary node for larger integer const values. */ static GTY (()) tree int_cst_node; static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node))) htab_t int_cst_hash_table; /* Hash table for optimization flags and target option flags. Use the same hash table for both sets of options. Nodes for building the current optimization and target option nodes. The assumption is most of the time the options created will already be in the hash table, so we avoid allocating and freeing up a node repeatably. */ static GTY (()) tree cl_optimization_node; static GTY (()) tree cl_target_option_node; static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node))) htab_t cl_option_hash_table; /* General tree->tree mapping structure for use in hash tables. */ static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map))) htab_t debug_expr_for_decl; static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map))) htab_t value_expr_for_decl; static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map))) htab_t debug_args_for_decl; static GTY ((if_marked ("tree_priority_map_marked_p"), param_is (struct tree_priority_map))) htab_t init_priority_for_decl; static void set_type_quals (tree, int); static int type_hash_eq (const void *, const void *); static hashval_t type_hash_hash (const void *); static hashval_t int_cst_hash_hash (const void *); static int int_cst_hash_eq (const void *, const void *); static hashval_t cl_option_hash_hash (const void *); static int cl_option_hash_eq (const void *, const void *); static void print_type_hash_statistics (void); static void print_debug_expr_statistics (void); static void print_value_expr_statistics (void); static int type_hash_marked_p (const void *); static unsigned int type_hash_list (const_tree, hashval_t); static unsigned int attribute_hash_list (const_tree, hashval_t); tree global_trees[TI_MAX]; tree integer_types[itk_none]; unsigned char tree_contains_struct[MAX_TREE_CODES][64]; /* Number of operands for each OpenMP clause. */ unsigned const char omp_clause_num_ops[] = { 0, /* OMP_CLAUSE_ERROR */ 1, /* OMP_CLAUSE_PRIVATE */ 1, /* OMP_CLAUSE_SHARED */ 1, /* OMP_CLAUSE_FIRSTPRIVATE */ 2, /* OMP_CLAUSE_LASTPRIVATE */ 4, /* OMP_CLAUSE_REDUCTION */ 1, /* OMP_CLAUSE_COPYIN */ 1, /* OMP_CLAUSE_COPYPRIVATE */ 1, /* OMP_CLAUSE_IF */ 1, /* OMP_CLAUSE_NUM_THREADS */ 1, /* OMP_CLAUSE_SCHEDULE */ 0, /* OMP_CLAUSE_NOWAIT */ 0, /* OMP_CLAUSE_ORDERED */ 0, /* OMP_CLAUSE_DEFAULT */ 3, /* OMP_CLAUSE_COLLAPSE */ 0, /* OMP_CLAUSE_UNTIED */ 1, /* OMP_CLAUSE_FINAL */ 0 /* OMP_CLAUSE_MERGEABLE */ }; const char * const omp_clause_code_name[] = { "error_clause", "private", "shared", "firstprivate", "lastprivate", "reduction", "copyin", "copyprivate", "if", "num_threads", "schedule", "nowait", "ordered", "default", "collapse", "untied", "final", "mergeable" }; /* Return the tree node structure used by tree code CODE. */ static inline enum tree_node_structure_enum tree_node_structure_for_code (enum tree_code code) { switch (TREE_CODE_CLASS (code)) { case tcc_declaration: { switch (code) { case FIELD_DECL: return TS_FIELD_DECL; case PARM_DECL: return TS_PARM_DECL; case VAR_DECL: return TS_VAR_DECL; case LABEL_DECL: return TS_LABEL_DECL; case RESULT_DECL: return TS_RESULT_DECL; case DEBUG_EXPR_DECL: return TS_DECL_WRTL; case CONST_DECL: return TS_CONST_DECL; case TYPE_DECL: return TS_TYPE_DECL; case FUNCTION_DECL: return TS_FUNCTION_DECL; case TRANSLATION_UNIT_DECL: return TS_TRANSLATION_UNIT_DECL; default: return TS_DECL_NON_COMMON; } } case tcc_type: return TS_TYPE_NON_COMMON; case tcc_reference: case tcc_comparison: case tcc_unary: case tcc_binary: case tcc_expression: case tcc_statement: case tcc_vl_exp: return TS_EXP; default: /* tcc_constant and tcc_exceptional */ break; } switch (code) { /* tcc_constant cases. */ case INTEGER_CST: return TS_INT_CST; case REAL_CST: return TS_REAL_CST; case FIXED_CST: return TS_FIXED_CST; case COMPLEX_CST: return TS_COMPLEX; case VECTOR_CST: return TS_VECTOR; case STRING_CST: return TS_STRING; /* tcc_exceptional cases. */ case ERROR_MARK: return TS_COMMON; case IDENTIFIER_NODE: return TS_IDENTIFIER; case TREE_LIST: return TS_LIST; case TREE_VEC: return TS_VEC; case SSA_NAME: return TS_SSA_NAME; case PLACEHOLDER_EXPR: return TS_COMMON; case STATEMENT_LIST: return TS_STATEMENT_LIST; case BLOCK: return TS_BLOCK; case CONSTRUCTOR: return TS_CONSTRUCTOR; case TREE_BINFO: return TS_BINFO; case OMP_CLAUSE: return TS_OMP_CLAUSE; case OPTIMIZATION_NODE: return TS_OPTIMIZATION; case TARGET_OPTION_NODE: return TS_TARGET_OPTION; default: gcc_unreachable (); } } /* Initialize tree_contains_struct to describe the hierarchy of tree nodes. */ static void initialize_tree_contains_struct (void) { unsigned i; for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++) { enum tree_code code; enum tree_node_structure_enum ts_code; code = (enum tree_code) i; ts_code = tree_node_structure_for_code (code); /* Mark the TS structure itself. */ tree_contains_struct[code][ts_code] = 1; /* Mark all the structures that TS is derived from. */ switch (ts_code) { case TS_TYPED: case TS_BLOCK: MARK_TS_BASE (code); break; case TS_COMMON: case TS_INT_CST: case TS_REAL_CST: case TS_FIXED_CST: case TS_VECTOR: case TS_STRING: case TS_COMPLEX: case TS_SSA_NAME: case TS_CONSTRUCTOR: case TS_EXP: case TS_STATEMENT_LIST: MARK_TS_TYPED (code); break; case TS_IDENTIFIER: case TS_DECL_MINIMAL: case TS_TYPE_COMMON: case TS_LIST: case TS_VEC: case TS_BINFO: case TS_OMP_CLAUSE: case TS_OPTIMIZATION: case TS_TARGET_OPTION: MARK_TS_COMMON (code); break; case TS_TYPE_WITH_LANG_SPECIFIC: MARK_TS_TYPE_COMMON (code); break; case TS_TYPE_NON_COMMON: MARK_TS_TYPE_WITH_LANG_SPECIFIC (code); break; case TS_DECL_COMMON: MARK_TS_DECL_MINIMAL (code); break; case TS_DECL_WRTL: case TS_CONST_DECL: MARK_TS_DECL_COMMON (code); break; case TS_DECL_NON_COMMON: MARK_TS_DECL_WITH_VIS (code); break; case TS_DECL_WITH_VIS: case TS_PARM_DECL: case TS_LABEL_DECL: case TS_RESULT_DECL: MARK_TS_DECL_WRTL (code); break; case TS_FIELD_DECL: MARK_TS_DECL_COMMON (code); break; case TS_VAR_DECL: MARK_TS_DECL_WITH_VIS (code); break; case TS_TYPE_DECL: case TS_FUNCTION_DECL: MARK_TS_DECL_NON_COMMON (code); break; case TS_TRANSLATION_UNIT_DECL: MARK_TS_DECL_COMMON (code); break; default: gcc_unreachable (); } } /* Basic consistency checks for attributes used in fold. */ gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]); gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]); gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]); gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]); gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]); gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]); gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]); gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]); gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]); gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]); gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]); gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]); gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]); gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]); gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]); gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]); gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]); gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]); gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]); gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]); gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]); gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]); gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]); gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]); gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]); gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]); gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]); gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]); gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]); gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]); gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]); gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]); gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]); gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]); gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]); gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]); gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]); gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]); } /* Init tree.c. */ void init_ttree (void) { /* Initialize the hash table of types. */ type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash, type_hash_eq, 0); debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash, tree_decl_map_eq, 0); value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash, tree_decl_map_eq, 0); init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash, tree_priority_map_eq, 0); int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash, int_cst_hash_eq, NULL); int_cst_node = make_node (INTEGER_CST); cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash, cl_option_hash_eq, NULL); cl_optimization_node = make_node (OPTIMIZATION_NODE); cl_target_option_node = make_node (TARGET_OPTION_NODE); /* Initialize the tree_contains_struct array. */ initialize_tree_contains_struct (); lang_hooks.init_ts (); } /* The name of the object as the assembler will see it (but before any translations made by ASM_OUTPUT_LABELREF). Often this is the same as DECL_NAME. It is an IDENTIFIER_NODE. */ tree decl_assembler_name (tree decl) { if (!DECL_ASSEMBLER_NAME_SET_P (decl)) lang_hooks.set_decl_assembler_name (decl); return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name; } /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */ bool decl_assembler_name_equal (tree decl, const_tree asmname) { tree decl_asmname = DECL_ASSEMBLER_NAME (decl); const char *decl_str; const char *asmname_str; bool test = false; if (decl_asmname == asmname) return true; decl_str = IDENTIFIER_POINTER (decl_asmname); asmname_str = IDENTIFIER_POINTER (asmname); /* If the target assembler name was set by the user, things are trickier. We have a leading '*' to begin with. After that, it's arguable what is the correct thing to do with -fleading-underscore. Arguably, we've historically been doing the wrong thing in assemble_alias by always printing the leading underscore. Since we're not changing that, make sure user_label_prefix follows the '*' before matching. */ if (decl_str[0] == '*') { size_t ulp_len = strlen (user_label_prefix); decl_str ++; if (ulp_len == 0) test = true; else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0) decl_str += ulp_len, test=true; else decl_str --; } if (asmname_str[0] == '*') { size_t ulp_len = strlen (user_label_prefix); asmname_str ++; if (ulp_len == 0) test = true; else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0) asmname_str += ulp_len, test=true; else asmname_str --; } if (!test) return false; return strcmp (decl_str, asmname_str) == 0; } /* Hash asmnames ignoring the user specified marks. */ hashval_t decl_assembler_name_hash (const_tree asmname) { if (IDENTIFIER_POINTER (asmname)[0] == '*') { const char *decl_str = IDENTIFIER_POINTER (asmname) + 1; size_t ulp_len = strlen (user_label_prefix); if (ulp_len == 0) ; else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0) decl_str += ulp_len; return htab_hash_string (decl_str); } return htab_hash_string (IDENTIFIER_POINTER (asmname)); } /* Compute the number of bytes occupied by a tree with code CODE. This function cannot be used for nodes that have variable sizes, including TREE_VEC, STRING_CST, and CALL_EXPR. */ size_t tree_code_size (enum tree_code code) { switch (TREE_CODE_CLASS (code)) { case tcc_declaration: /* A decl node */ { switch (code) { case FIELD_DECL: return sizeof (struct tree_field_decl); case PARM_DECL: return sizeof (struct tree_parm_decl); case VAR_DECL: return sizeof (struct tree_var_decl); case LABEL_DECL: return sizeof (struct tree_label_decl); case RESULT_DECL: return sizeof (struct tree_result_decl); case CONST_DECL: return sizeof (struct tree_const_decl); case TYPE_DECL: return sizeof (struct tree_type_decl); case FUNCTION_DECL: return sizeof (struct tree_function_decl); case DEBUG_EXPR_DECL: return sizeof (struct tree_decl_with_rtl); default: return sizeof (struct tree_decl_non_common); } } case tcc_type: /* a type node */ return sizeof (struct tree_type_non_common); case tcc_reference: /* a reference */ case tcc_expression: /* an expression */ case tcc_statement: /* an expression with side effects */ case tcc_comparison: /* a comparison expression */ case tcc_unary: /* a unary arithmetic expression */ case tcc_binary: /* a binary arithmetic expression */ return (sizeof (struct tree_exp) + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree)); case tcc_constant: /* a constant */ switch (code) { case INTEGER_CST: return sizeof (struct tree_int_cst); case REAL_CST: return sizeof (struct tree_real_cst); case FIXED_CST: return sizeof (struct tree_fixed_cst); case COMPLEX_CST: return sizeof (struct tree_complex); case VECTOR_CST: return sizeof (struct tree_vector); case STRING_CST: gcc_unreachable (); default: return lang_hooks.tree_size (code); } case tcc_exceptional: /* something random, like an identifier. */ switch (code) { case IDENTIFIER_NODE: return lang_hooks.identifier_size; case TREE_LIST: return sizeof (struct tree_list); case ERROR_MARK: case PLACEHOLDER_EXPR: return sizeof (struct tree_common); case TREE_VEC: case OMP_CLAUSE: gcc_unreachable (); case SSA_NAME: return sizeof (struct tree_ssa_name); case STATEMENT_LIST: return sizeof (struct tree_statement_list); case BLOCK: return sizeof (struct tree_block); case CONSTRUCTOR: return sizeof (struct tree_constructor); case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option); case TARGET_OPTION_NODE: return sizeof (struct tree_target_option); default: return lang_hooks.tree_size (code); } default: gcc_unreachable (); } } /* Compute the number of bytes occupied by NODE. This routine only looks at TREE_CODE, except for those nodes that have variable sizes. */ size_t tree_size (const_tree node) { const enum tree_code code = TREE_CODE (node); switch (code) { case TREE_BINFO: return (offsetof (struct tree_binfo, base_binfos) + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node))); case TREE_VEC: return (sizeof (struct tree_vec) + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree)); case VECTOR_CST: return (sizeof (struct tree_vector) + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree)); case STRING_CST: return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1; case OMP_CLAUSE: return (sizeof (struct tree_omp_clause) + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1) * sizeof (tree)); default: if (TREE_CODE_CLASS (code) == tcc_vl_exp) return (sizeof (struct tree_exp) + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree)); else return tree_code_size (code); } } /* Record interesting allocation statistics for a tree node with CODE and LENGTH. */ static void record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED, size_t length ATTRIBUTE_UNUSED) { enum tree_code_class type = TREE_CODE_CLASS (code); tree_node_kind kind; if (!GATHER_STATISTICS) return; switch (type) { case tcc_declaration: /* A decl node */ kind = d_kind; break; case tcc_type: /* a type node */ kind = t_kind; break; case tcc_statement: /* an expression with side effects */ kind = s_kind; break; case tcc_reference: /* a reference */ kind = r_kind; break; case tcc_expression: /* an expression */ case tcc_comparison: /* a comparison expression */ case tcc_unary: /* a unary arithmetic expression */ case tcc_binary: /* a binary arithmetic expression */ kind = e_kind; break; case tcc_constant: /* a constant */ kind = c_kind; break; case tcc_exceptional: /* something random, like an identifier. */ switch (code) { case IDENTIFIER_NODE: kind = id_kind; break; case TREE_VEC: kind = vec_kind; break; case TREE_BINFO: kind = binfo_kind; break; case SSA_NAME: kind = ssa_name_kind; break; case BLOCK: kind = b_kind; break; case CONSTRUCTOR: kind = constr_kind; break; case OMP_CLAUSE: kind = omp_clause_kind; break; default: kind = x_kind; break; } break; case tcc_vl_exp: kind = e_kind; break; default: gcc_unreachable (); } tree_code_counts[(int) code]++; tree_node_counts[(int) kind]++; tree_node_sizes[(int) kind] += length; } /* Allocate and return a new UID from the DECL_UID namespace. */ int allocate_decl_uid (void) { return next_decl_uid++; } /* Return a newly allocated node of code CODE. For decl and type nodes, some other fields are initialized. The rest of the node is initialized to zero. This function cannot be used for TREE_VEC or OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size. Achoo! I got a code in the node. */ tree make_node_stat (enum tree_code code MEM_STAT_DECL) { tree t; enum tree_code_class type = TREE_CODE_CLASS (code); size_t length = tree_code_size (code); record_node_allocation_statistics (code, length); t = ggc_alloc_zone_cleared_tree_node_stat ( (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone, length PASS_MEM_STAT); TREE_SET_CODE (t, code); switch (type) { case tcc_statement: TREE_SIDE_EFFECTS (t) = 1; break; case tcc_declaration: if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON)) { if (code == FUNCTION_DECL) { DECL_ALIGN (t) = FUNCTION_BOUNDARY; DECL_MODE (t) = FUNCTION_MODE; } else DECL_ALIGN (t) = 1; } DECL_SOURCE_LOCATION (t) = input_location; if (TREE_CODE (t) == DEBUG_EXPR_DECL) DECL_UID (t) = --next_debug_decl_uid; else { DECL_UID (t) = allocate_decl_uid (); SET_DECL_PT_UID (t, -1); } if (TREE_CODE (t) == LABEL_DECL) LABEL_DECL_UID (t) = -1; break; case tcc_type: TYPE_UID (t) = next_type_uid++; TYPE_ALIGN (t) = BITS_PER_UNIT; TYPE_USER_ALIGN (t) = 0; TYPE_MAIN_VARIANT (t) = t; TYPE_CANONICAL (t) = t; /* Default to no attributes for type, but let target change that. */ TYPE_ATTRIBUTES (t) = NULL_TREE; targetm.set_default_type_attributes (t); /* We have not yet computed the alias set for this type. */ TYPE_ALIAS_SET (t) = -1; break; case tcc_constant: TREE_CONSTANT (t) = 1; break; case tcc_expression: switch (code) { case INIT_EXPR: case MODIFY_EXPR: case VA_ARG_EXPR: case PREDECREMENT_EXPR: case PREINCREMENT_EXPR: case POSTDECREMENT_EXPR: case POSTINCREMENT_EXPR: /* All of these have side-effects, no matter what their operands are. */ TREE_SIDE_EFFECTS (t) = 1; break; default: break; } break; default: /* Other classes need no special treatment. */ break; } return t; } /* Return a new node with the same contents as NODE except that its TREE_CHAIN, if it has one, is zero and it has a fresh uid. */ tree copy_node_stat (tree node MEM_STAT_DECL) { tree t; enum tree_code code = TREE_CODE (node); size_t length; gcc_assert (code != STATEMENT_LIST); length = tree_size (node); record_node_allocation_statistics (code, length); t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT); memcpy (t, node, length); if (CODE_CONTAINS_STRUCT (code, TS_COMMON)) TREE_CHAIN (t) = 0; TREE_ASM_WRITTEN (t) = 0; TREE_VISITED (t) = 0; if (TREE_CODE_CLASS (code) == tcc_declaration) { if (code == DEBUG_EXPR_DECL) DECL_UID (t) = --next_debug_decl_uid; else { DECL_UID (t) = allocate_decl_uid (); if (DECL_PT_UID_SET_P (node)) SET_DECL_PT_UID (t, DECL_PT_UID (node)); } if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL) && DECL_HAS_VALUE_EXPR_P (node)) { SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node)); DECL_HAS_VALUE_EXPR_P (t) = 1; } if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node)) { SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node)); DECL_HAS_INIT_PRIORITY_P (t) = 1; } if (TREE_CODE (node) == FUNCTION_DECL) DECL_STRUCT_FUNCTION (t) = NULL; } else if (TREE_CODE_CLASS (code) == tcc_type) { TYPE_UID (t) = next_type_uid++; /* The following is so that the debug code for the copy is different from the original type. The two statements usually duplicate each other (because they clear fields of the same union), but the optimizer should catch that. */ TYPE_SYMTAB_POINTER (t) = 0; TYPE_SYMTAB_ADDRESS (t) = 0; /* Do not copy the values cache. */ if (TYPE_CACHED_VALUES_P(t)) { TYPE_CACHED_VALUES_P (t) = 0; TYPE_CACHED_VALUES (t) = NULL_TREE; } } return t; } /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field. For example, this can copy a list made of TREE_LIST nodes. */ tree copy_list (tree list) { tree head; tree prev, next; if (list == 0) return 0; head = prev = copy_node (list); next = TREE_CHAIN (list); while (next) { TREE_CHAIN (prev) = copy_node (next); prev = TREE_CHAIN (prev); next = TREE_CHAIN (next); } return head; } /* Create an INT_CST node with a LOW value sign extended to TYPE. */ tree build_int_cst (tree type, HOST_WIDE_INT low) { /* Support legacy code. */ if (!type) type = integer_type_node; return double_int_to_tree (type, double_int::from_shwi (low)); } /* Create an INT_CST node with a LOW value sign extended to TYPE. */ tree build_int_cst_type (tree type, HOST_WIDE_INT low) { gcc_assert (type); return double_int_to_tree (type, double_int::from_shwi (low)); } /* Constructs tree in type TYPE from with value given by CST. Signedness of CST is assumed to be the same as the signedness of TYPE. */ tree double_int_to_tree (tree type, double_int cst) { bool sign_extended_type = !TYPE_UNSIGNED (type); cst = cst.ext (TYPE_PRECISION (type), !sign_extended_type); return build_int_cst_wide (type, cst.low, cst.high); } /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed to be the same as the signedness of TYPE. */ bool double_int_fits_to_tree_p (const_tree type, double_int cst) { /* Size types *are* sign extended. */ bool sign_extended_type = !TYPE_UNSIGNED (type); double_int ext = cst.ext (TYPE_PRECISION (type), !sign_extended_type); return cst == ext; } /* We force the double_int CST to the range of the type TYPE by sign or zero extending it. OVERFLOWABLE indicates if we are interested in overflow of the value, when >0 we are only interested in signed overflow, for <0 we are interested in any overflow. OVERFLOWED indicates whether overflow has already occurred. CONST_OVERFLOWED indicates whether constant overflow has already occurred. We force T's value to be within range of T's type (by setting to 0 or 1 all the bits outside the type's range). We set TREE_OVERFLOWED if, OVERFLOWED is nonzero, or OVERFLOWABLE is >0 and signed overflow occurs or OVERFLOWABLE is <0 and any overflow occurs We return a new tree node for the extended double_int. The node is shared if no overflow flags are set. */ tree force_fit_type_double (tree type, double_int cst, int overflowable, bool overflowed) { bool sign_extended_type; /* Size types *are* sign extended. */ sign_extended_type = !TYPE_UNSIGNED (type); /* If we need to set overflow flags, return a new unshared node. */ if (overflowed || !double_int_fits_to_tree_p(type, cst)) { if (overflowed || overflowable < 0 || (overflowable > 0 && sign_extended_type)) { tree t = make_node (INTEGER_CST); TREE_INT_CST (t) = cst.ext (TYPE_PRECISION (type), !sign_extended_type); TREE_TYPE (t) = type; TREE_OVERFLOW (t) = 1; return t; } } /* Else build a shared node. */ return double_int_to_tree (type, cst); } /* These are the hash table functions for the hash table of INTEGER_CST nodes of a sizetype. */ /* Return the hash code code X, an INTEGER_CST. */ static hashval_t int_cst_hash_hash (const void *x) { const_tree const t = (const_tree) x; return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t) ^ htab_hash_pointer (TREE_TYPE (t))); } /* Return nonzero if the value represented by *X (an INTEGER_CST tree node) is the same as that given by *Y, which is the same. */ static int int_cst_hash_eq (const void *x, const void *y) { const_tree const xt = (const_tree) x; const_tree const yt = (const_tree) y; return (TREE_TYPE (xt) == TREE_TYPE (yt) && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt) && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt)); } /* Create an INT_CST node of TYPE and value HI:LOW. The returned node is always shared. For small integers we use a per-type vector cache, for larger ones we use a single hash table. */ tree build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi) { tree t; int ix = -1; int limit = 0; gcc_assert (type); switch (TREE_CODE (type)) { case NULLPTR_TYPE: gcc_assert (hi == 0 && low == 0); /* Fallthru. */ case POINTER_TYPE: case REFERENCE_TYPE: /* Cache NULL pointer. */ if (!hi && !low) { limit = 1; ix = 0; } break; case BOOLEAN_TYPE: /* Cache false or true. */ limit = 2; if (!hi && low < 2) ix = low; break; case INTEGER_TYPE: case OFFSET_TYPE: if (TYPE_UNSIGNED (type)) { /* Cache 0..N */ limit = INTEGER_SHARE_LIMIT; if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT) ix = low; } else { /* Cache -1..N */ limit = INTEGER_SHARE_LIMIT + 1; if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT) ix = low + 1; else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1) ix = 0; } break; case ENUMERAL_TYPE: break; default: gcc_unreachable (); } if (ix >= 0) { /* Look for it in the type's vector of small shared ints. */ if (!TYPE_CACHED_VALUES_P (type)) { TYPE_CACHED_VALUES_P (type) = 1; TYPE_CACHED_VALUES (type) = make_tree_vec (limit); } t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix); if (t) { /* Make sure no one is clobbering the shared constant. */ gcc_assert (TREE_TYPE (t) == type); gcc_assert (TREE_INT_CST_LOW (t) == low); gcc_assert (TREE_INT_CST_HIGH (t) == hi); } else { /* Create a new shared int. */ t = make_node (INTEGER_CST); TREE_INT_CST_LOW (t) = low; TREE_INT_CST_HIGH (t) = hi; TREE_TYPE (t) = type; TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t; } } else { /* Use the cache of larger shared ints. */ void **slot; TREE_INT_CST_LOW (int_cst_node) = low; TREE_INT_CST_HIGH (int_cst_node) = hi; TREE_TYPE (int_cst_node) = type; slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT); t = (tree) *slot; if (!t) { /* Insert this one into the hash table. */ t = int_cst_node; *slot = t; /* Make a new node for next time round. */ int_cst_node = make_node (INTEGER_CST); } } return t; } /* Builds an integer constant in TYPE such that lowest BITS bits are ones and the rest are zeros. */ tree build_low_bits_mask (tree type, unsigned bits) { double_int mask; gcc_assert (bits <= TYPE_PRECISION (type)); if (bits == TYPE_PRECISION (type) && !TYPE_UNSIGNED (type)) /* Sign extended all-ones mask. */ mask = double_int_minus_one; else mask = double_int::mask (bits); return build_int_cst_wide (type, mask.low, mask.high); } /* Checks that X is integer constant that can be expressed in (unsigned) HOST_WIDE_INT without loss of precision. */ bool cst_and_fits_in_hwi (const_tree x) { if (TREE_CODE (x) != INTEGER_CST) return false; if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT) return false; return (TREE_INT_CST_HIGH (x) == 0 || TREE_INT_CST_HIGH (x) == -1); } /* Build a newly constructed TREE_VEC node of length LEN. */ tree make_vector_stat (unsigned len MEM_STAT_DECL) { tree t; unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector); record_node_allocation_statistics (VECTOR_CST, length); t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT); TREE_SET_CODE (t, VECTOR_CST); TREE_CONSTANT (t) = 1; return t; } /* Return a new VECTOR_CST node whose type is TYPE and whose values are in a list pointed to by VALS. */ tree build_vector_stat (tree type, tree *vals MEM_STAT_DECL) { int over = 0; unsigned cnt = 0; tree v = make_vector (TYPE_VECTOR_SUBPARTS (type)); TREE_TYPE (v) = type; /* Iterate through elements and check for overflow. */ for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt) { tree value = vals[cnt]; VECTOR_CST_ELT (v, cnt) = value; /* Don't crash if we get an address constant. */ if (!CONSTANT_CLASS_P (value)) continue; over |= TREE_OVERFLOW (value); } TREE_OVERFLOW (v) = over; return v; } /* Return a new VECTOR_CST node whose type is TYPE and whose values are extracted from V, a vector of CONSTRUCTOR_ELT. */ tree build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v) { tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type)); unsigned HOST_WIDE_INT idx; tree value; FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value) vec[idx] = value; for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx) vec[idx] = build_zero_cst (TREE_TYPE (type)); return build_vector (type, vec); } /* Build a vector of type VECTYPE where all the elements are SCs. */ tree build_vector_from_val (tree vectype, tree sc) { int i, nunits = TYPE_VECTOR_SUBPARTS (vectype); if (sc == error_mark_node) return sc; /* Verify that the vector type is suitable for SC. Note that there is some inconsistency in the type-system with respect to restrict qualifications of pointers. Vector types always have a main-variant element type and the qualification is applied to the vector-type. So TREE_TYPE (vector-type) does not return a properly qualified vector element-type. */ gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)), TREE_TYPE (vectype))); if (CONSTANT_CLASS_P (sc)) { tree *v = XALLOCAVEC (tree, nunits); for (i = 0; i < nunits; ++i) v[i] = sc; return build_vector (vectype, v); } else { VEC(constructor_elt, gc) *v = VEC_alloc (constructor_elt, gc, nunits); for (i = 0; i < nunits; ++i) CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc); return build_constructor (vectype, v); } } /* Return a new CONSTRUCTOR node whose type is TYPE and whose values are in the VEC pointed to by VALS. */ tree build_constructor (tree type, VEC(constructor_elt,gc) *vals) { tree c = make_node (CONSTRUCTOR); unsigned int i; constructor_elt *elt; bool constant_p = true; bool side_effects_p = false; TREE_TYPE (c) = type; CONSTRUCTOR_ELTS (c) = vals; FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt) { /* Mostly ctors will have elts that don't have side-effects, so the usual case is to scan all the elements. Hence a single loop for both const and side effects, rather than one loop each (with early outs). */ if (!TREE_CONSTANT (elt->value)) constant_p = false; if (TREE_SIDE_EFFECTS (elt->value)) side_effects_p = true; } TREE_SIDE_EFFECTS (c) = side_effects_p; TREE_CONSTANT (c) = constant_p; return c; } /* Build a CONSTRUCTOR node made of a single initializer, with the specified INDEX and VALUE. */ tree build_constructor_single (tree type, tree index, tree value) { VEC(constructor_elt,gc) *v; constructor_elt elt = {index, value}; v = VEC_alloc (constructor_elt, gc, 1); VEC_quick_push (constructor_elt, v, elt); return build_constructor (type, v); } /* Return a new CONSTRUCTOR node whose type is TYPE and whose values are in a list pointed to by VALS. */ tree build_constructor_from_list (tree type, tree vals) { tree t; VEC(constructor_elt,gc) *v = NULL; if (vals) { v = VEC_alloc (constructor_elt, gc, list_length (vals)); for (t = vals; t; t = TREE_CHAIN (t)) CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t)); } return build_constructor (type, v); } /* Return a new FIXED_CST node whose type is TYPE and value is F. */ tree build_fixed (tree type, FIXED_VALUE_TYPE f) { tree v; FIXED_VALUE_TYPE *fp; v = make_node (FIXED_CST); fp = ggc_alloc_fixed_value (); memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE)); TREE_TYPE (v) = type; TREE_FIXED_CST_PTR (v) = fp; return v; } /* Return a new REAL_CST node whose type is TYPE and value is D. */ tree build_real (tree type, REAL_VALUE_TYPE d) { tree v; REAL_VALUE_TYPE *dp; int overflow = 0; /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE. Consider doing it via real_convert now. */ v = make_node (REAL_CST); dp = ggc_alloc_real_value (); memcpy (dp, &d, sizeof (REAL_VALUE_TYPE)); TREE_TYPE (v) = type; TREE_REAL_CST_PTR (v) = dp; TREE_OVERFLOW (v) = overflow; return v; } /* Return a new REAL_CST node whose type is TYPE and whose value is the integer value of the INTEGER_CST node I. */ REAL_VALUE_TYPE real_value_from_int_cst (const_tree type, const_tree i) { REAL_VALUE_TYPE d; /* Clear all bits of the real value type so that we can later do bitwise comparisons to see if two values are the same. */ memset (&d, 0, sizeof d); real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i), TYPE_UNSIGNED (TREE_TYPE (i))); return d; } /* Given a tree representing an integer constant I, return a tree representing the same value as a floating-point constant of type TYPE. */ tree build_real_from_int_cst (tree type, const_tree i) { tree v; int overflow = TREE_OVERFLOW (i); v = build_real (type, real_value_from_int_cst (type, i)); TREE_OVERFLOW (v) |= overflow; return v; } /* Return a newly constructed STRING_CST node whose value is the LEN characters at STR. Note that for a C string literal, LEN should include the trailing NUL. The TREE_TYPE is not initialized. */ tree build_string (int len, const char *str) { tree s; size_t length; /* Do not waste bytes provided by padding of struct tree_string. */ length = len + offsetof (struct tree_string, str) + 1; record_node_allocation_statistics (STRING_CST, length); s = ggc_alloc_tree_node (length); memset (s, 0, sizeof (struct tree_typed)); TREE_SET_CODE (s, STRING_CST); TREE_CONSTANT (s) = 1; TREE_STRING_LENGTH (s) = len; memcpy (s->string.str, str, len); s->string.str[len] = '\0'; return s; } /* Return a newly constructed COMPLEX_CST node whose value is specified by the real and imaginary parts REAL and IMAG. Both REAL and IMAG should be constant nodes. TYPE, if specified, will be the type of the COMPLEX_CST; otherwise a new type will be made. */ tree build_complex (tree type, tree real, tree imag) { tree t = make_node (COMPLEX_CST); TREE_REALPART (t) = real; TREE_IMAGPART (t) = imag; TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real)); TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag); return t; } /* Return a constant of arithmetic type TYPE which is the multiplicative identity of the set TYPE. */ tree build_one_cst (tree type) { switch (TREE_CODE (type)) { case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: case POINTER_TYPE: case REFERENCE_TYPE: case OFFSET_TYPE: return build_int_cst (type, 1); case REAL_TYPE: return build_real (type, dconst1); case FIXED_POINT_TYPE: /* We can only generate 1 for accum types. */ gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type))); return build_fixed (type, FCONST1(TYPE_MODE (type))); case VECTOR_TYPE: { tree scalar = build_one_cst (TREE_TYPE (type)); return build_vector_from_val (type, scalar); } case COMPLEX_TYPE: return build_complex (type, build_one_cst (TREE_TYPE (type)), build_zero_cst (TREE_TYPE (type))); default: gcc_unreachable (); } } /* Build 0 constant of type TYPE. This is used by constructor folding and thus the constant should be represented in memory by zero(es). */ tree build_zero_cst (tree type) { switch (TREE_CODE (type)) { case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: case POINTER_TYPE: case REFERENCE_TYPE: case OFFSET_TYPE: case NULLPTR_TYPE: return build_int_cst (type, 0); case REAL_TYPE: return build_real (type, dconst0); case FIXED_POINT_TYPE: return build_fixed (type, FCONST0 (TYPE_MODE (type))); case VECTOR_TYPE: { tree scalar = build_zero_cst (TREE_TYPE (type)); return build_vector_from_val (type, scalar); } case COMPLEX_TYPE: { tree zero = build_zero_cst (TREE_TYPE (type)); return build_complex (type, zero, zero); } default: if (!AGGREGATE_TYPE_P (type)) return fold_convert (type, integer_zero_node); return build_constructor (type, NULL); } } /* Build a BINFO with LEN language slots. */ tree make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL) { tree t; size_t length = (offsetof (struct tree_binfo, base_binfos) + VEC_embedded_size (tree, base_binfos)); record_node_allocation_statistics (TREE_BINFO, length); t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT); memset (t, 0, offsetof (struct tree_binfo, base_binfos)); TREE_SET_CODE (t, TREE_BINFO); VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos); return t; } /* Create a CASE_LABEL_EXPR tree node and return it. */ tree build_case_label (tree low_value, tree high_value, tree label_decl) { tree t = make_node (CASE_LABEL_EXPR); TREE_TYPE (t) = void_type_node; SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl)); CASE_LOW (t) = low_value; CASE_HIGH (t) = high_value; CASE_LABEL (t) = label_decl; CASE_CHAIN (t) = NULL_TREE; return t; } /* Build a newly constructed TREE_VEC node of length LEN. */ tree make_tree_vec_stat (int len MEM_STAT_DECL) { tree t; int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec); record_node_allocation_statistics (TREE_VEC, length); t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT); TREE_SET_CODE (t, TREE_VEC); TREE_VEC_LENGTH (t) = len; return t; } /* Return 1 if EXPR is the integer constant zero or a complex constant of zero. */ int integer_zerop (const_tree expr) { STRIP_NOPS (expr); switch (TREE_CODE (expr)) { case INTEGER_CST: return (TREE_INT_CST_LOW (expr) == 0 && TREE_INT_CST_HIGH (expr) == 0); case COMPLEX_CST: return (integer_zerop (TREE_REALPART (expr)) && integer_zerop (TREE_IMAGPART (expr))); case VECTOR_CST: { unsigned i; for (i = 0; i < VECTOR_CST_NELTS (expr); ++i) if (!integer_zerop (VECTOR_CST_ELT (expr, i))) return false; return true; } default: return false; } } /* Return 1 if EXPR is the integer constant one or the corresponding complex constant. */ int integer_onep (const_tree expr) { STRIP_NOPS (expr); switch (TREE_CODE (expr)) { case INTEGER_CST: return (TREE_INT_CST_LOW (expr) == 1 && TREE_INT_CST_HIGH (expr) == 0); case COMPLEX_CST: return (integer_onep (TREE_REALPART (expr)) && integer_zerop (TREE_IMAGPART (expr))); case VECTOR_CST: { unsigned i; for (i = 0; i < VECTOR_CST_NELTS (expr); ++i) if (!integer_onep (VECTOR_CST_ELT (expr, i))) return false; return true; } default: return false; } } /* Return 1 if EXPR is an integer containing all 1's in as much precision as it contains. Likewise for the corresponding complex constant. */ int integer_all_onesp (const_tree expr) { int prec; int uns; STRIP_NOPS (expr); if (TREE_CODE (expr) == COMPLEX_CST && integer_all_onesp (TREE_REALPART (expr)) && integer_zerop (TREE_IMAGPART (expr))) return 1; else if (TREE_CODE (expr) == VECTOR_CST) { unsigned i; for (i = 0; i < VECTOR_CST_NELTS (expr); ++i) if (!integer_all_onesp (VECTOR_CST_ELT (expr, i))) return 0; return 1; } else if (TREE_CODE (expr) != INTEGER_CST) return 0; uns = TYPE_UNSIGNED (TREE_TYPE (expr)); if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0 && TREE_INT_CST_HIGH (expr) == -1) return 1; if (!uns) return 0; prec = TYPE_PRECISION (TREE_TYPE (expr)); if (prec >= HOST_BITS_PER_WIDE_INT) { HOST_WIDE_INT high_value; int shift_amount; shift_amount = prec - HOST_BITS_PER_WIDE_INT; /* Can not handle precisions greater than twice the host int size. */ gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT); if (shift_amount == HOST_BITS_PER_WIDE_INT) /* Shifting by the host word size is undefined according to the ANSI standard, so we must handle this as a special case. */ high_value = -1; else high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1; return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0 && TREE_INT_CST_HIGH (expr) == high_value); } else return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1; } /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only one bit on). */ int integer_pow2p (const_tree expr) { int prec; unsigned HOST_WIDE_INT high, low; STRIP_NOPS (expr); if (TREE_CODE (expr) == COMPLEX_CST && integer_pow2p (TREE_REALPART (expr)) && integer_zerop (TREE_IMAGPART (expr))) return 1; if (TREE_CODE (expr) != INTEGER_CST) return 0; prec = TYPE_PRECISION (TREE_TYPE (expr)); high = TREE_INT_CST_HIGH (expr); low = TREE_INT_CST_LOW (expr); /* First clear all bits that are beyond the type's precision in case we've been sign extended. */ if (prec == HOST_BITS_PER_DOUBLE_INT) ; else if (prec > HOST_BITS_PER_WIDE_INT) high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT)); else { high = 0; if (prec < HOST_BITS_PER_WIDE_INT) low &= ~((HOST_WIDE_INT) (-1) << prec); } if (high == 0 && low == 0) return 0; return ((high == 0 && (low & (low - 1)) == 0) || (low == 0 && (high & (high - 1)) == 0)); } /* Return 1 if EXPR is an integer constant other than zero or a complex constant other than zero. */ int integer_nonzerop (const_tree expr) { STRIP_NOPS (expr); return ((TREE_CODE (expr) == INTEGER_CST && (TREE_INT_CST_LOW (expr) != 0 || TREE_INT_CST_HIGH (expr) != 0)) || (TREE_CODE (expr) == COMPLEX_CST && (integer_nonzerop (TREE_REALPART (expr)) || integer_nonzerop (TREE_IMAGPART (expr))))); } /* Return 1 if EXPR is the fixed-point constant zero. */ int fixed_zerop (const_tree expr) { return (TREE_CODE (expr) == FIXED_CST && TREE_FIXED_CST (expr).data.is_zero ()); } /* Return the power of two represented by a tree node known to be a power of two. */ int tree_log2 (const_tree expr) { int prec; HOST_WIDE_INT high, low; STRIP_NOPS (expr); if (TREE_CODE (expr) == COMPLEX_CST) return tree_log2 (TREE_REALPART (expr)); prec = TYPE_PRECISION (TREE_TYPE (expr)); high = TREE_INT_CST_HIGH (expr); low = TREE_INT_CST_LOW (expr); /* First clear all bits that are beyond the type's precision in case we've been sign extended. */ if (prec == HOST_BITS_PER_DOUBLE_INT) ; else if (prec > HOST_BITS_PER_WIDE_INT) high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT)); else { high = 0; if (prec < HOST_BITS_PER_WIDE_INT) low &= ~((HOST_WIDE_INT) (-1) << prec); } return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high) : exact_log2 (low)); } /* Similar, but return the largest integer Y such that 2 ** Y is less than or equal to EXPR. */ int tree_floor_log2 (const_tree expr) { int prec; HOST_WIDE_INT high, low; STRIP_NOPS (expr); if (TREE_CODE (expr) == COMPLEX_CST) return tree_log2 (TREE_REALPART (expr)); prec = TYPE_PRECISION (TREE_TYPE (expr)); high = TREE_INT_CST_HIGH (expr); low = TREE_INT_CST_LOW (expr); /* First clear all bits that are beyond the type's precision in case we've been sign extended. Ignore if type's precision hasn't been set since what we are doing is setting it. */ if (prec == HOST_BITS_PER_DOUBLE_INT || prec == 0) ; else if (prec > HOST_BITS_PER_WIDE_INT) high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT)); else { high = 0; if (prec < HOST_BITS_PER_WIDE_INT) low &= ~((HOST_WIDE_INT) (-1) << prec); } return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high) : floor_log2 (low)); } /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for decimal float constants, so don't return 1 for them. */ int real_zerop (const_tree expr) { STRIP_NOPS (expr); return ((TREE_CODE (expr) == REAL_CST && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0) && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))))) || (TREE_CODE (expr) == COMPLEX_CST && real_zerop (TREE_REALPART (expr)) && real_zerop (TREE_IMAGPART (expr)))); } /* Return 1 if EXPR is the real constant one in real or complex form. Trailing zeroes matter for decimal float constants, so don't return 1 for them. */ int real_onep (const_tree expr) { STRIP_NOPS (expr); return ((TREE_CODE (expr) == REAL_CST && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1) && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))))) || (TREE_CODE (expr) == COMPLEX_CST && real_onep (TREE_REALPART (expr)) && real_zerop (TREE_IMAGPART (expr)))); } /* Return 1 if EXPR is the real constant two. Trailing zeroes matter for decimal float constants, so don't return 1 for them. */ int real_twop (const_tree expr) { STRIP_NOPS (expr); return ((TREE_CODE (expr) == REAL_CST && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2) && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))))) || (TREE_CODE (expr) == COMPLEX_CST && real_twop (TREE_REALPART (expr)) && real_zerop (TREE_IMAGPART (expr)))); } /* Return 1 if EXPR is the real constant minus one. Trailing zeroes matter for decimal float constants, so don't return 1 for them. */ int real_minus_onep (const_tree expr) { STRIP_NOPS (expr); return ((TREE_CODE (expr) == REAL_CST && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1) && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))))) || (TREE_CODE (expr) == COMPLEX_CST && real_minus_onep (TREE_REALPART (expr)) && real_zerop (TREE_IMAGPART (expr)))); } /* Nonzero if EXP is a constant or a cast of a constant. */ int really_constant_p (const_tree exp) { /* This is not quite the same as STRIP_NOPS. It does more. */ while (CONVERT_EXPR_P (exp) || TREE_CODE (exp) == NON_LVALUE_EXPR) exp = TREE_OPERAND (exp, 0); return TREE_CONSTANT (exp); } /* Return first list element whose TREE_VALUE is ELEM. Return 0 if ELEM is not in LIST. */ tree value_member (tree elem, tree list) { while (list) { if (elem == TREE_VALUE (list)) return list; list = TREE_CHAIN (list); } return NULL_TREE; } /* Return first list element whose TREE_PURPOSE is ELEM. Return 0 if ELEM is not in LIST. */ tree purpose_member (const_tree elem, tree list) { while (list) { if (elem == TREE_PURPOSE (list)) return list; list = TREE_CHAIN (list); } return NULL_TREE; } /* Return true if ELEM is in V. */ bool vec_member (const_tree elem, VEC(tree,gc) *v) { unsigned ix; tree t; FOR_EACH_VEC_ELT (tree, v, ix, t) if (elem == t) return true; return false; } /* Returns element number IDX (zero-origin) of chain CHAIN, or NULL_TREE. */ tree chain_index (int idx, tree chain) { for (; chain && idx > 0; --idx) chain = TREE_CHAIN (chain); return chain; } /* Return nonzero if ELEM is part of the chain CHAIN. */ int chain_member (const_tree elem, const_tree chain) { while (chain) { if (elem == chain) return 1; chain = DECL_CHAIN (chain); } return 0; } /* Return the length of a chain of nodes chained through TREE_CHAIN. We expect a null pointer to mark the end of the chain. This is the Lisp primitive `length'. */ int list_length (const_tree t) { const_tree p = t; #ifdef ENABLE_TREE_CHECKING const_tree q = t; #endif int len = 0; while (p) { p = TREE_CHAIN (p); #ifdef ENABLE_TREE_CHECKING if (len % 2) q = TREE_CHAIN (q); gcc_assert (p != q); #endif len++; } return len; } /* Returns the number of FIELD_DECLs in TYPE. */ int fields_length (const_tree type) { tree t = TYPE_FIELDS (type); int count = 0; for (; t; t = DECL_CHAIN (t)) if (TREE_CODE (t) == FIELD_DECL) ++count; return count; } /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or UNION_TYPE TYPE, or NULL_TREE if none. */ tree first_field (const_tree type) { tree t = TYPE_FIELDS (type); while (t && TREE_CODE (t) != FIELD_DECL) t = TREE_CHAIN (t); return t; } /* Concatenate two chains of nodes (chained through TREE_CHAIN) by modifying the last node in chain 1 to point to chain 2. This is the Lisp primitive `nconc'. */ tree chainon (tree op1, tree op2) { tree t1; if (!op1) return op2; if (!op2) return op1; for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1)) continue; TREE_CHAIN (t1) = op2; #ifdef ENABLE_TREE_CHECKING { tree t2; for (t2 = op2; t2; t2 = TREE_CHAIN (t2)) gcc_assert (t2 != t1); } #endif return op1; } /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */ tree tree_last (tree chain) { tree next; if (chain) while ((next = TREE_CHAIN (chain))) chain = next; return chain; } /* Reverse the order of elements in the chain T, and return the new head of the chain (old last element). */ tree nreverse (tree t) { tree prev = 0, decl, next; for (decl = t; decl; decl = next) { /* We shouldn't be using this function to reverse BLOCK chains; we have blocks_nreverse for that. */ gcc_checking_assert (TREE_CODE (decl) != BLOCK); next = TREE_CHAIN (decl); TREE_CHAIN (decl) = prev; prev = decl; } return prev; } /* Return a newly created TREE_LIST node whose purpose and value fields are PARM and VALUE. */ tree build_tree_list_stat (tree parm, tree value MEM_STAT_DECL) { tree t = make_node_stat (TREE_LIST PASS_MEM_STAT); TREE_PURPOSE (t) = parm; TREE_VALUE (t) = value; return t; } /* Build a chain of TREE_LIST nodes from a vector. */ tree build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL) { tree ret = NULL_TREE; tree *pp = &ret; unsigned int i; tree t; FOR_EACH_VEC_ELT (tree, vec, i, t) { *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT); pp = &TREE_CHAIN (*pp); } return ret; } /* Return a newly created TREE_LIST node whose purpose and value fields are PURPOSE and VALUE and whose TREE_CHAIN is CHAIN. */ tree tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL) { tree node; node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list) PASS_MEM_STAT); memset (node, 0, sizeof (struct tree_common)); record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list)); TREE_SET_CODE (node, TREE_LIST); TREE_CHAIN (node) = chain; TREE_PURPOSE (node) = purpose; TREE_VALUE (node) = value; return node; } /* Return the values of the elements of a CONSTRUCTOR as a vector of trees. */ VEC(tree,gc) * ctor_to_vec (tree ctor) { VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor)); unsigned int ix; tree val; FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val) VEC_quick_push (tree, vec, val); return vec; } /* Return the size nominally occupied by an object of type TYPE when it resides in memory. The value is measured in units of bytes, and its data type is that normally used for type sizes (which is the first type created by make_signed_type or make_unsigned_type). */ tree size_in_bytes (const_tree type) { tree t; if (type == error_mark_node) return integer_zero_node; type = TYPE_MAIN_VARIANT (type); t = TYPE_SIZE_UNIT (type); if (t == 0) { lang_hooks.types.incomplete_type_error (NULL_TREE, type); return size_zero_node; } return t; } /* Return the size of TYPE (in bytes) as a wide integer or return -1 if the size can vary or is larger than an integer. */ HOST_WIDE_INT int_size_in_bytes (const_tree type) { tree t; if (type == error_mark_node) return 0; type = TYPE_MAIN_VARIANT (type); t = TYPE_SIZE_UNIT (type); if (t == 0 || TREE_CODE (t) != INTEGER_CST || TREE_INT_CST_HIGH (t) != 0 /* If the result would appear negative, it's too big to represent. */ || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0) return -1; return TREE_INT_CST_LOW (t); } /* Return the maximum size of TYPE (in bytes) as a wide integer or return -1 if the size can vary or is larger than an integer. */ HOST_WIDE_INT max_int_size_in_bytes (const_tree type) { HOST_WIDE_INT size = -1; tree size_tree; /* If this is an array type, check for a possible MAX_SIZE attached. */ if (TREE_CODE (type) == ARRAY_TYPE) { size_tree = TYPE_ARRAY_MAX_SIZE (type); if (size_tree && host_integerp (size_tree, 1)) size = tree_low_cst (size_tree, 1); } /* If we still haven't been able to get a size, see if the language can compute a maximum size. */ if (size == -1) { size_tree = lang_hooks.types.max_size (type); if (size_tree && host_integerp (size_tree, 1)) size = tree_low_cst (size_tree, 1); } return size; } /* Returns a tree for the size of EXP in bytes. */ tree tree_expr_size (const_tree exp) { if (DECL_P (exp) && DECL_SIZE_UNIT (exp) != 0) return DECL_SIZE_UNIT (exp); else return size_in_bytes (TREE_TYPE (exp)); } /* Return the bit position of FIELD, in bits from the start of the record. This is a tree of type bitsizetype. */ tree bit_position (const_tree field) { return bit_from_pos (DECL_FIELD_OFFSET (field), DECL_FIELD_BIT_OFFSET (field)); } /* Likewise, but return as an integer. It must be representable in that way (since it could be a signed value, we don't have the option of returning -1 like int_size_in_byte can. */ HOST_WIDE_INT int_bit_position (const_tree field) { return tree_low_cst (bit_position (field), 0); } /* Return the byte position of FIELD, in bytes from the start of the record. This is a tree of type sizetype. */ tree byte_position (const_tree field) { return byte_from_pos (DECL_FIELD_OFFSET (field), DECL_FIELD_BIT_OFFSET (field)); } /* Likewise, but return as an integer. It must be representable in that way (since it could be a signed value, we don't have the option of returning -1 like int_size_in_byte can. */ HOST_WIDE_INT int_byte_position (const_tree field) { return tree_low_cst (byte_position (field), 0); } /* Return the strictest alignment, in bits, that T is known to have. */ unsigned int expr_align (const_tree t) { unsigned int align0, align1; switch (TREE_CODE (t)) { CASE_CONVERT: case NON_LVALUE_EXPR: /* If we have conversions, we know that the alignment of the object must meet each of the alignments of the types. */ align0 = expr_align (TREE_OPERAND (t, 0)); align1 = TYPE_ALIGN (TREE_TYPE (t)); return MAX (align0, align1); case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR: case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR: case CLEANUP_POINT_EXPR: /* These don't change the alignment of an object. */ return expr_align (TREE_OPERAND (t, 0)); case COND_EXPR: /* The best we can do is say that the alignment is the least aligned of the two arms. */ align0 = expr_align (TREE_OPERAND (t, 1)); align1 = expr_align (TREE_OPERAND (t, 2)); return MIN (align0, align1); /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set meaningfully, it's always 1. */ case LABEL_DECL: case CONST_DECL: case VAR_DECL: case PARM_DECL: case RESULT_DECL: case FUNCTION_DECL: gcc_assert (DECL_ALIGN (t) != 0); return DECL_ALIGN (t); default: break; } /* Otherwise take the alignment from that of the type. */ return TYPE_ALIGN (TREE_TYPE (t)); } /* Return, as a tree node, the number of elements for TYPE (which is an ARRAY_TYPE) minus one. This counts only elements of the top array. */ tree array_type_nelts (const_tree type) { tree index_type, min, max; /* If they did it with unspecified bounds, then we should have already given an error about it before we got here. */ if (! TYPE_DOMAIN (type)) return error_mark_node; index_type = TYPE_DOMAIN (type); min = TYPE_MIN_VALUE (index_type); max = TYPE_MAX_VALUE (index_type); /* TYPE_MAX_VALUE may not be set if the array has unknown length. */ if (!max) return error_mark_node; return (integer_zerop (min) ? max : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min)); } /* If arg is static -- a reference to an object in static storage -- then return the object. This is not the same as the C meaning of `static'. If arg isn't static, return NULL. */ tree staticp (tree arg) { switch (TREE_CODE (arg)) { case FUNCTION_DECL: /* Nested functions are static, even though taking their address will involve a trampoline as we unnest the nested function and create the trampoline on the tree level. */ return arg; case VAR_DECL: return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg)) && ! DECL_THREAD_LOCAL_P (arg) && ! DECL_DLLIMPORT_P (arg) ? arg : NULL); case CONST_DECL: return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg)) ? arg : NULL); case CONSTRUCTOR: return TREE_STATIC (arg) ? arg : NULL; case LABEL_DECL: case STRING_CST: return arg; case COMPONENT_REF: /* If the thing being referenced is not a field, then it is something language specific. */ gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL); /* If we are referencing a bitfield, we can't evaluate an ADDR_EXPR at compile time and so it isn't a constant. */ if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1))) return NULL; return staticp (TREE_OPERAND (arg, 0)); case BIT_FIELD_REF: return NULL; case INDIRECT_REF: return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL; case ARRAY_REF: case ARRAY_RANGE_REF: if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST) return staticp (TREE_OPERAND (arg, 0)); else return NULL; case COMPOUND_LITERAL_EXPR: return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL; default: return NULL; } } /* Return whether OP is a DECL whose address is function-invariant. */ bool decl_address_invariant_p (const_tree op) { /* The conditions below are slightly less strict than the one in staticp. */ switch (TREE_CODE (op)) { case PARM_DECL: case RESULT_DECL: case LABEL_DECL: case FUNCTION_DECL: return true; case VAR_DECL: if ((TREE_STATIC (op) || DECL_EXTERNAL (op)) || DECL_THREAD_LOCAL_P (op) || DECL_CONTEXT (op) == current_function_decl || decl_function_context (op) == current_function_decl) return true; break; case CONST_DECL: if ((TREE_STATIC (op) || DECL_EXTERNAL (op)) || decl_function_context (op) == current_function_decl) return true; break; default: break; } return false; } /* Return whether OP is a DECL whose address is interprocedural-invariant. */ bool decl_address_ip_invariant_p (const_tree op) { /* The conditions below are slightly less strict than the one in staticp. */ switch (TREE_CODE (op)) { case LABEL_DECL: case FUNCTION_DECL: case STRING_CST: return true; case VAR_DECL: if (((TREE_STATIC (op) || DECL_EXTERNAL (op)) && !DECL_DLLIMPORT_P (op)) || DECL_THREAD_LOCAL_P (op)) return true; break; case CONST_DECL: if ((TREE_STATIC (op) || DECL_EXTERNAL (op))) return true; break; default: break; } return false; } /* Return true if T is function-invariant (internal function, does not handle arithmetic; that's handled in skip_simple_arithmetic and tree_invariant_p). */ static bool tree_invariant_p (tree t); static bool tree_invariant_p_1 (tree t) { tree op; if (TREE_CONSTANT (t) || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t))) return true; switch (TREE_CODE (t)) { case SAVE_EXPR: return true; case ADDR_EXPR: op = TREE_OPERAND (t, 0); while (handled_component_p (op)) { switch (TREE_CODE (op)) { case ARRAY_REF: case ARRAY_RANGE_REF: if (!tree_invariant_p (TREE_OPERAND (op, 1)) || TREE_OPERAND (op, 2) != NULL_TREE || TREE_OPERAND (op, 3) != NULL_TREE) return false; break; case COMPONENT_REF: if (TREE_OPERAND (op, 2) != NULL_TREE) return false; break; default:; } op = TREE_OPERAND (op, 0); } return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op); default: break; } return false; } /* Return true if T is function-invariant. */ static bool tree_invariant_p (tree t) { tree inner = skip_simple_arithmetic (t); return tree_invariant_p_1 (inner); } /* Wrap a SAVE_EXPR around EXPR, if appropriate. Do this to any expression which may be used in more than one place, but must be evaluated only once. Normally, expand_expr would reevaluate the expression each time. Calling save_expr produces something that is evaluated and recorded the first time expand_expr is called on it. Subsequent calls to expand_expr just reuse the recorded value. The call to expand_expr that generates code that actually computes the value is the first call *at compile time*. Subsequent calls *at compile time* generate code to use the saved value. This produces correct result provided that *at run time* control always flows through the insns made by the first expand_expr before reaching the other places where the save_expr was evaluated. You, the caller of save_expr, must make sure this is so. Constants, and certain read-only nodes, are returned with no SAVE_EXPR because that is safe. Expressions containing placeholders are not touched; see tree.def for an explanation of what these are used for. */ tree save_expr (tree expr) { tree t = fold (expr); tree inner; /* If the tree evaluates to a constant, then we don't want to hide that fact (i.e. this allows further folding, and direct checks for constants). However, a read-only object that has side effects cannot be bypassed. Since it is no problem to reevaluate literals, we just return the literal node. */ inner = skip_simple_arithmetic (t); if (TREE_CODE (inner) == ERROR_MARK) return inner; if (tree_invariant_p_1 (inner)) return t; /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since it means that the size or offset of some field of an object depends on the value within another field. Note that it must not be the case that T contains both a PLACEHOLDER_EXPR and some variable since it would then need to be both evaluated once and evaluated more than once. Front-ends must assure this case cannot happen by surrounding any such subexpressions in their own SAVE_EXPR and forcing evaluation at the proper time. */ if (contains_placeholder_p (inner)) return t; t = build1 (SAVE_EXPR, TREE_TYPE (expr), t); SET_EXPR_LOCATION (t, EXPR_LOCATION (expr)); /* This expression might be placed ahead of a jump to ensure that the value was computed on both sides of the jump. So make sure it isn't eliminated as dead. */ TREE_SIDE_EFFECTS (t) = 1; return t; } /* Look inside EXPR and into any simple arithmetic operations. Return the innermost non-arithmetic node. */ tree skip_simple_arithmetic (tree expr) { tree inner; /* We don't care about whether this can be used as an lvalue in this context. */ while (TREE_CODE (expr) == NON_LVALUE_EXPR) expr = TREE_OPERAND (expr, 0); /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and a constant, it will be more efficient to not make another SAVE_EXPR since it will allow better simplification and GCSE will be able to merge the computations if they actually occur. */ inner = expr; while (1) { if (UNARY_CLASS_P (inner)) inner = TREE_OPERAND (inner, 0); else if (BINARY_CLASS_P (inner)) { if (tree_invariant_p (TREE_OPERAND (inner, 1))) inner = TREE_OPERAND (inner, 0); else if (tree_invariant_p (TREE_OPERAND (inner, 0))) inner = TREE_OPERAND (inner, 1); else break; } else break; } return inner; } /* Return which tree structure is used by T. */ enum tree_node_structure_enum tree_node_structure (const_tree t) { const enum tree_code code = TREE_CODE (t); return tree_node_structure_for_code (code); } /* Set various status flags when building a CALL_EXPR object T. */ static void process_call_operands (tree t) { bool side_effects = TREE_SIDE_EFFECTS (t); bool read_only = false; int i = call_expr_flags (t); /* Calls have side-effects, except those to const or pure functions. */ if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE))) side_effects = true; /* Propagate TREE_READONLY of arguments for const functions. */ if (i & ECF_CONST) read_only = true; if (!side_effects || read_only) for (i = 1; i < TREE_OPERAND_LENGTH (t); i++) { tree op = TREE_OPERAND (t, i); if (op && TREE_SIDE_EFFECTS (op)) side_effects = true; if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op)) read_only = false; } TREE_SIDE_EFFECTS (t) = side_effects; TREE_READONLY (t) = read_only; } /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a size or offset that depends on a field within a record. */ bool contains_placeholder_p (const_tree exp) { enum tree_code code; if (!exp) return 0; code = TREE_CODE (exp); if (code == PLACEHOLDER_EXPR) return 1; switch (TREE_CODE_CLASS (code)) { case tcc_reference: /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit position computations since they will be converted into a WITH_RECORD_EXPR involving the reference, which will assume here will be valid. */ return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0)); case tcc_exceptional: if (code == TREE_LIST) return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp)) || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp))); break; case tcc_unary: case tcc_binary: case tcc_comparison: case tcc_expression: switch (code) { case COMPOUND_EXPR: /* Ignoring the first operand isn't quite right, but works best. */ return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)); case COND_EXPR: return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0)) || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)) || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2))); case SAVE_EXPR: /* The save_expr function never wraps anything containing a PLACEHOLDER_EXPR. */ return 0; default: break; } switch (TREE_CODE_LENGTH (code)) { case 1: return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0)); case 2: return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0)) || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))); default: return 0; } case tcc_vl_exp: switch (code) { case CALL_EXPR: { const_tree arg; const_call_expr_arg_iterator iter; FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp) if (CONTAINS_PLACEHOLDER_P (arg)) return 1; return 0; } default: return 0; } default: return 0; } return 0; } /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field positions. */ static bool type_contains_placeholder_1 (const_tree type) { /* If the size contains a placeholder or the parent type (component type in the case of arrays) type involves a placeholder, this type does. */ if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type)) || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type)) || (!POINTER_TYPE_P (type) && TREE_TYPE (type) && type_contains_placeholder_p (TREE_TYPE (type)))) return true; /* Now do type-specific checks. Note that the last part of the check above greatly limits what we have to do below. */ switch (TREE_CODE (type)) { case VOID_TYPE: case COMPLEX_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: case POINTER_TYPE: case OFFSET_TYPE: case REFERENCE_TYPE: case METHOD_TYPE: case FUNCTION_TYPE: case VECTOR_TYPE: case NULLPTR_TYPE: return false; case INTEGER_TYPE: case REAL_TYPE: case FIXED_POINT_TYPE: /* Here we just check the bounds. */ return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type)) || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type))); case ARRAY_TYPE: /* We have already checked the component type above, so just check the domain type. */ return type_contains_placeholder_p (TYPE_DOMAIN (type)); case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: { tree field; for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) if (TREE_CODE (field) == FIELD_DECL && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field)) || (TREE_CODE (type) == QUAL_UNION_TYPE && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field))) || type_contains_placeholder_p (TREE_TYPE (field)))) return true; return false; } default: gcc_unreachable (); } } /* Wrapper around above function used to cache its result. */ bool type_contains_placeholder_p (tree type) { bool result; /* If the contains_placeholder_bits field has been initialized, then we know the answer. */ if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0) return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1; /* Indicate that we've seen this type node, and the answer is false. This is what we want to return if we run into recursion via fields. */ TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1; /* Compute the real value. */ result = type_contains_placeholder_1 (type); /* Store the real value. */ TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1; return result; } /* Push tree EXP onto vector QUEUE if it is not already present. */ static void push_without_duplicates (tree exp, VEC (tree, heap) **queue) { unsigned int i; tree iter; FOR_EACH_VEC_ELT (tree, *queue, i, iter) if (simple_cst_equal (iter, exp) == 1) break; if (!iter) VEC_safe_push (tree, heap, *queue, exp); } /* Given a tree EXP, find all occurrences of references to fields in a PLACEHOLDER_EXPR and place them in vector REFS without duplicates. Also record VAR_DECLs and CONST_DECLs. Note that we assume here that EXP contains only arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their argument list. */ void find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs) { enum tree_code code = TREE_CODE (exp); tree inner; int i; /* We handle TREE_LIST and COMPONENT_REF separately. */ if (code == TREE_LIST) { FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs); FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs); } else if (code == COMPONENT_REF) { for (inner = TREE_OPERAND (exp, 0); REFERENCE_CLASS_P (inner); inner = TREE_OPERAND (inner, 0)) ; if (TREE_CODE (inner) == PLACEHOLDER_EXPR) push_without_duplicates (exp, refs); else FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs); } else switch (TREE_CODE_CLASS (code)) { case tcc_constant: break; case tcc_declaration: /* Variables allocated to static storage can stay. */ if (!TREE_STATIC (exp)) push_without_duplicates (exp, refs); break; case tcc_expression: /* This is the pattern built in ada/make_aligning_type. */ if (code == ADDR_EXPR && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR) { push_without_duplicates (exp, refs); break; } /* Fall through... */ case tcc_exceptional: case tcc_unary: case tcc_binary: case tcc_comparison: case tcc_reference: for (i = 0; i < TREE_CODE_LENGTH (code); i++) FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs); break; case tcc_vl_exp: for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++) FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs); break; default: gcc_unreachable (); } } /* Given a tree EXP, a FIELD_DECL F, and a replacement value R, return a tree with all occurrences of references to F in a PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and CONST_DECLs. Note that we assume here that EXP contains only arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their argument list. */ tree substitute_in_expr (tree exp, tree f, tree r) { enum tree_code code = TREE_CODE (exp); tree op0, op1, op2, op3; tree new_tree; /* We handle TREE_LIST and COMPONENT_REF separately. */ if (code == TREE_LIST) { op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r); op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r); if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp)) return exp; return tree_cons (TREE_PURPOSE (exp), op1, op0); } else if (code == COMPONENT_REF) { tree inner; /* If this expression is getting a value from a PLACEHOLDER_EXPR and it is the right field, replace it with R. */ for (inner = TREE_OPERAND (exp, 0); REFERENCE_CLASS_P (inner); inner = TREE_OPERAND (inner, 0)) ; /* The field. */ op1 = TREE_OPERAND (exp, 1); if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f) return r; /* If this expression hasn't been completed let, leave it alone. */ if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner)) return exp; op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r); if (op0 == TREE_OPERAND (exp, 0)) return exp; new_tree = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE); } else switch (TREE_CODE_CLASS (code)) { case tcc_constant: return exp; case tcc_declaration: if (exp == f) return r; else return exp; case tcc_expression: if (exp == f) return r; /* Fall through... */ case tcc_exceptional: case tcc_unary: case tcc_binary: case tcc_comparison: case tcc_reference: switch (TREE_CODE_LENGTH (code)) { case 0: return exp; case 1: op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r); if (op0 == TREE_OPERAND (exp, 0)) return exp; new_tree = fold_build1 (code, TREE_TYPE (exp), op0); break; case 2: op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r); op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r); if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)) return exp; new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1); break; case 3: op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r); op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r); op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r); if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1) && op2 == TREE_OPERAND (exp, 2)) return exp; new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2); break; case 4: op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r); op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r); op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r); op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r); if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1) && op2 == TREE_OPERAND (exp, 2) && op3 == TREE_OPERAND (exp, 3)) return exp; new_tree = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3)); break; default: gcc_unreachable (); } break; case tcc_vl_exp: { int i; new_tree = NULL_TREE; /* If we are trying to replace F with a constant, inline back functions which do nothing else than computing a value from the arguments they are passed. This makes it possible to fold partially or entirely the replacement expression. */ if (CONSTANT_CLASS_P (r) && code == CALL_EXPR) { tree t = maybe_inline_call_in_expr (exp); if (t) return SUBSTITUTE_IN_EXPR (t, f, r); } for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++) { tree op = TREE_OPERAND (exp, i); tree new_op = SUBSTITUTE_IN_EXPR (op, f, r); if (new_op != op) { if (!new_tree) new_tree = copy_node (exp); TREE_OPERAND (new_tree, i) = new_op; } } if (new_tree) { new_tree = fold (new_tree); if (TREE_CODE (new_tree) == CALL_EXPR) process_call_operands (new_tree); } else return exp; } break; default: gcc_unreachable (); } TREE_READONLY (new_tree) |= TREE_READONLY (exp); if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF) TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp); return new_tree; } /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement for it within OBJ, a tree that is an object or a chain of references. */ tree substitute_placeholder_in_expr (tree exp, tree obj) { enum tree_code code = TREE_CODE (exp); tree op0, op1, op2, op3; tree new_tree; /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type in the chain of OBJ. */ if (code == PLACEHOLDER_EXPR) { tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp)); tree elt; for (elt = obj; elt != 0; elt = ((TREE_CODE (elt) == COMPOUND_EXPR || TREE_CODE (elt) == COND_EXPR) ? TREE_OPERAND (elt, 1) : (REFERENCE_CLASS_P (elt) || UNARY_CLASS_P (elt) || BINARY_CLASS_P (elt) || VL_EXP_CLASS_P (elt) || EXPRESSION_CLASS_P (elt)) ? TREE_OPERAND (elt, 0) : 0)) if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type) return elt; for (elt = obj; elt != 0; elt = ((TREE_CODE (elt) == COMPOUND_EXPR || TREE_CODE (elt) == COND_EXPR) ? TREE_OPERAND (elt, 1) : (REFERENCE_CLASS_P (elt) || UNARY_CLASS_P (elt) || BINARY_CLASS_P (elt) || VL_EXP_CLASS_P (elt) || EXPRESSION_CLASS_P (elt)) ? TREE_OPERAND (elt, 0) : 0)) if (POINTER_TYPE_P (TREE_TYPE (elt)) && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt))) == need_type)) return fold_build1 (INDIRECT_REF, need_type, elt); /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it survives until RTL generation, there will be an error. */ return exp; } /* TREE_LIST is special because we need to look at TREE_VALUE and TREE_CHAIN, not TREE_OPERANDS. */ else if (code == TREE_LIST) { op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj); op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj); if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp)) return exp; return tree_cons (TREE_PURPOSE (exp), op1, op0); } else switch (TREE_CODE_CLASS (code)) { case tcc_constant: case tcc_declaration: return exp; case tcc_exceptional: case tcc_unary: case tcc_binary: case tcc_comparison: case tcc_expression: case tcc_reference: case tcc_statement: switch (TREE_CODE_LENGTH (code)) { case 0: return exp; case 1: op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj); if (op0 == TREE_OPERAND (exp, 0)) return exp; new_tree = fold_build1 (code, TREE_TYPE (exp), op0); break; case 2: op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj); op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj); if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)) return exp; new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1); break; case 3: op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj); op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj); op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj); if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1) && op2 == TREE_OPERAND (exp, 2)) return exp; new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2); break; case 4: op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj); op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj); op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj); op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj); if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1) && op2 == TREE_OPERAND (exp, 2) && op3 == TREE_OPERAND (exp, 3)) return exp; new_tree = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3)); break; default: gcc_unreachable (); } break; case tcc_vl_exp: { int i; new_tree = NULL_TREE; for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++) { tree op = TREE_OPERAND (exp, i); tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj); if (new_op != op) { if (!new_tree) new_tree = copy_node (exp); TREE_OPERAND (new_tree, i) = new_op; } } if (new_tree) { new_tree = fold (new_tree); if (TREE_CODE (new_tree) == CALL_EXPR) process_call_operands (new_tree); } else return exp; } break; default: gcc_unreachable (); } TREE_READONLY (new_tree) |= TREE_READONLY (exp); if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF) TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp); return new_tree; } /* Stabilize a reference so that we can use it any number of times without causing its operands to be evaluated more than once. Returns the stabilized reference. This works by means of save_expr, so see the caveats in the comments about save_expr. Also allows conversion expressions whose operands are references. Any other kind of expression is returned unchanged. */ tree stabilize_reference (tree ref) { tree result; enum tree_code code = TREE_CODE (ref); switch (code) { case VAR_DECL: case PARM_DECL: case RESULT_DECL: /* No action is needed in this case. */ return ref; CASE_CONVERT: case FLOAT_EXPR: case FIX_TRUNC_EXPR: result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0))); break; case INDIRECT_REF: result = build_nt (INDIRECT_REF, stabilize_reference_1 (TREE_OPERAND (ref, 0))); break; case COMPONENT_REF: result = build_nt (COMPONENT_REF, stabilize_reference (TREE_OPERAND (ref, 0)), TREE_OPERAND (ref, 1), NULL_TREE); break; case BIT_FIELD_REF: result = build_nt (BIT_FIELD_REF, stabilize_reference (TREE_OPERAND (ref, 0)), TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2)); break; case ARRAY_REF: result = build_nt (ARRAY_REF, stabilize_reference (TREE_OPERAND (ref, 0)), stabilize_reference_1 (TREE_OPERAND (ref, 1)), TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3)); break; case ARRAY_RANGE_REF: result = build_nt (ARRAY_RANGE_REF, stabilize_reference (TREE_OPERAND (ref, 0)), stabilize_reference_1 (TREE_OPERAND (ref, 1)), TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3)); break; case COMPOUND_EXPR: /* We cannot wrap the first expression in a SAVE_EXPR, as then it wouldn't be ignored. This matters when dealing with volatiles. */ return stabilize_reference_1 (ref); /* If arg isn't a kind of lvalue we recognize, make no change. Caller should recognize the error for an invalid lvalue. */ default: return ref; case ERROR_MARK: return error_mark_node; } TREE_TYPE (result) = TREE_TYPE (ref); TREE_READONLY (result) = TREE_READONLY (ref); TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref); TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref); return result; } /* Subroutine of stabilize_reference; this is called for subtrees of references. Any expression with side-effects must be put in a SAVE_EXPR to ensure that it is only evaluated once. We don't put SAVE_EXPR nodes around everything, because assigning very simple expressions to temporaries causes us to miss good opportunities for optimizations. Among other things, the opportunity to fold in the addition of a constant into an addressing mode often gets lost, e.g. "y[i+1] += x;". In general, we take the approach that we should not make an assignment unless we are forced into it - i.e., that any non-side effect operator should be allowed, and that cse should take care of coalescing multiple utterances of the same expression should that prove fruitful. */ tree stabilize_reference_1 (tree e) { tree result; enum tree_code code = TREE_CODE (e); /* We cannot ignore const expressions because it might be a reference to a const array but whose index contains side-effects. But we can ignore things that are actual constant or that already have been handled by this function. */ if (tree_invariant_p (e)) return e; switch (TREE_CODE_CLASS (code)) { case tcc_exceptional: case tcc_type: case tcc_declaration: case tcc_comparison: case tcc_statement: case tcc_expression: case tcc_reference: case tcc_vl_exp: /* If the expression has side-effects, then encase it in a SAVE_EXPR so that it will only be evaluated once. */ /* The reference (r) and comparison (<) classes could be handled as below, but it is generally faster to only evaluate them once. */ if (TREE_SIDE_EFFECTS (e)) return save_expr (e); return e; case tcc_constant: /* Constants need no processing. In fact, we should never reach here. */ return e; case tcc_binary: /* Division is slow and tends to be compiled with jumps, especially the division by powers of 2 that is often found inside of an array reference. So do it just once. */ if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR) return save_expr (e); /* Recursively stabilize each operand. */ result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)), stabilize_reference_1 (TREE_OPERAND (e, 1))); break; case tcc_unary: /* Recursively stabilize each operand. */ result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0))); break; default: gcc_unreachable (); } TREE_TYPE (result) = TREE_TYPE (e); TREE_READONLY (result) = TREE_READONLY (e); TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e); TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e); return result; } /* Low-level constructors for expressions. */ /* A helper function for build1 and constant folders. Set TREE_CONSTANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */ void recompute_tree_invariant_for_addr_expr (tree t) { tree node; bool tc = true, se = false; /* We started out assuming this address is both invariant and constant, but does not have side effects. Now go down any handled components and see if any of them involve offsets that are either non-constant or non-invariant. Also check for side-effects. ??? Note that this code makes no attempt to deal with the case where taking the address of something causes a copy due to misalignment. */ #define UPDATE_FLAGS(NODE) \ do { tree _node = (NODE); \ if (_node && !TREE_CONSTANT (_node)) tc = false; \ if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0) for (node = TREE_OPERAND (t, 0); handled_component_p (node); node = TREE_OPERAND (node, 0)) { /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus array reference (probably made temporarily by the G++ front end), so ignore all the operands. */ if ((TREE_CODE (node) == ARRAY_REF || TREE_CODE (node) == ARRAY_RANGE_REF) && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE) { UPDATE_FLAGS (TREE_OPERAND (node, 1)); if (TREE_OPERAND (node, 2)) UPDATE_FLAGS (TREE_OPERAND (node, 2)); if (TREE_OPERAND (node, 3)) UPDATE_FLAGS (TREE_OPERAND (node, 3)); } /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a FIELD_DECL, apparently. The G++ front end can put something else there, at least temporarily. */ else if (TREE_CODE (node) == COMPONENT_REF && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL) { if (TREE_OPERAND (node, 2)) UPDATE_FLAGS (TREE_OPERAND (node, 2)); } } node = lang_hooks.expr_to_decl (node, &tc, &se); /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from the address, since &(*a)->b is a form of addition. If it's a constant, the address is constant too. If it's a decl, its address is constant if the decl is static. Everything else is not constant and, furthermore, taking the address of a volatile variable is not volatile. */ if (TREE_CODE (node) == INDIRECT_REF || TREE_CODE (node) == MEM_REF) UPDATE_FLAGS (TREE_OPERAND (node, 0)); else if (CONSTANT_CLASS_P (node)) ; else if (DECL_P (node)) tc &= (staticp (node) != NULL_TREE); else { tc = false; se |= TREE_SIDE_EFFECTS (node); } TREE_CONSTANT (t) = tc; TREE_SIDE_EFFECTS (t) = se; #undef UPDATE_FLAGS } /* Build an expression of code CODE, data type TYPE, and operands as specified. Expressions and reference nodes can be created this way. Constants, decls, types and misc nodes cannot be. We define 5 non-variadic functions, from 0 to 4 arguments. This is enough for all extant tree codes. */ tree build0_stat (enum tree_code code, tree tt MEM_STAT_DECL) { tree t; gcc_assert (TREE_CODE_LENGTH (code) == 0); t = make_node_stat (code PASS_MEM_STAT); TREE_TYPE (t) = tt; return t; } tree build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL) { int length = sizeof (struct tree_exp); tree t; record_node_allocation_statistics (code, length); gcc_assert (TREE_CODE_LENGTH (code) == 1); t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT); memset (t, 0, sizeof (struct tree_common)); TREE_SET_CODE (t, code); TREE_TYPE (t) = type; SET_EXPR_LOCATION (t, UNKNOWN_LOCATION); TREE_OPERAND (t, 0) = node; TREE_BLOCK (t) = NULL_TREE; if (node && !TYPE_P (node)) { TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node); TREE_READONLY (t) = TREE_READONLY (node); } if (TREE_CODE_CLASS (code) == tcc_statement) TREE_SIDE_EFFECTS (t) = 1; else switch (code) { case VA_ARG_EXPR: /* All of these have side-effects, no matter what their operands are. */ TREE_SIDE_EFFECTS (t) = 1; TREE_READONLY (t) = 0; break; case INDIRECT_REF: /* Whether a dereference is readonly has nothing to do with whether its operand is readonly. */ TREE_READONLY (t) = 0; break; case ADDR_EXPR: if (node) recompute_tree_invariant_for_addr_expr (t); break; default: if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR) && node && !TYPE_P (node) && TREE_CONSTANT (node)) TREE_CONSTANT (t) = 1; if (TREE_CODE_CLASS (code) == tcc_reference && node && TREE_THIS_VOLATILE (node)) TREE_THIS_VOLATILE (t) = 1; break; } return t; } #define PROCESS_ARG(N) \ do { \ TREE_OPERAND (t, N) = arg##N; \ if (arg##N &&!TYPE_P (arg##N)) \ { \ if (TREE_SIDE_EFFECTS (arg##N)) \ side_effects = 1; \ if (!TREE_READONLY (arg##N) \ && !CONSTANT_CLASS_P (arg##N)) \ (void) (read_only = 0); \ if (!TREE_CONSTANT (arg##N)) \ (void) (constant = 0); \ } \ } while (0) tree build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL) { bool constant, read_only, side_effects; tree t; gcc_assert (TREE_CODE_LENGTH (code) == 2); if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR) && arg0 && arg1 && tt && POINTER_TYPE_P (tt) /* When sizetype precision doesn't match that of pointers we need to be able to build explicit extensions or truncations of the offset argument. */ && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt)) gcc_assert (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST); if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt) gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0)) && ptrofftype_p (TREE_TYPE (arg1))); t = make_node_stat (code PASS_MEM_STAT); TREE_TYPE (t) = tt; /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the result based on those same flags for the arguments. But if the arguments aren't really even `tree' expressions, we shouldn't be trying to do this. */ /* Expressions without side effects may be constant if their arguments are as well. */ constant = (TREE_CODE_CLASS (code) == tcc_comparison || TREE_CODE_CLASS (code) == tcc_binary); read_only = 1; side_effects = TREE_SIDE_EFFECTS (t); PROCESS_ARG(0); PROCESS_ARG(1); TREE_READONLY (t) = read_only; TREE_CONSTANT (t) = constant; TREE_SIDE_EFFECTS (t) = side_effects; TREE_THIS_VOLATILE (t) = (TREE_CODE_CLASS (code) == tcc_reference && arg0 && TREE_THIS_VOLATILE (arg0)); return t; } tree build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1, tree arg2 MEM_STAT_DECL) { bool constant, read_only, side_effects; tree t; gcc_assert (TREE_CODE_LENGTH (code) == 3); gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); t = make_node_stat (code PASS_MEM_STAT); TREE_TYPE (t) = tt; read_only = 1; /* As a special exception, if COND_EXPR has NULL branches, we assume that it is a gimple statement and always consider it to have side effects. */ if (code == COND_EXPR && tt == void_type_node && arg1 == NULL_TREE && arg2 == NULL_TREE) side_effects = true; else side_effects = TREE_SIDE_EFFECTS (t); PROCESS_ARG(0); PROCESS_ARG(1); PROCESS_ARG(2); if (code == COND_EXPR) TREE_READONLY (t) = read_only; TREE_SIDE_EFFECTS (t) = side_effects; TREE_THIS_VOLATILE (t) = (TREE_CODE_CLASS (code) == tcc_reference && arg0 && TREE_THIS_VOLATILE (arg0)); return t; } tree build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1, tree arg2, tree arg3 MEM_STAT_DECL) { bool constant, read_only, side_effects; tree t; gcc_assert (TREE_CODE_LENGTH (code) == 4); t = make_node_stat (code PASS_MEM_STAT); TREE_TYPE (t) = tt; side_effects = TREE_SIDE_EFFECTS (t); PROCESS_ARG(0); PROCESS_ARG(1); PROCESS_ARG(2); PROCESS_ARG(3); TREE_SIDE_EFFECTS (t) = side_effects; TREE_THIS_VOLATILE (t) = (TREE_CODE_CLASS (code) == tcc_reference && arg0 && TREE_THIS_VOLATILE (arg0)); return t; } tree build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1, tree arg2, tree arg3, tree arg4 MEM_STAT_DECL) { bool constant, read_only, side_effects; tree t; gcc_assert (TREE_CODE_LENGTH (code) == 5); t = make_node_stat (code PASS_MEM_STAT); TREE_TYPE (t) = tt; side_effects = TREE_SIDE_EFFECTS (t); PROCESS_ARG(0); PROCESS_ARG(1); PROCESS_ARG(2); PROCESS_ARG(3); PROCESS_ARG(4); TREE_SIDE_EFFECTS (t) = side_effects; TREE_THIS_VOLATILE (t) = (TREE_CODE_CLASS (code) == tcc_reference && arg0 && TREE_THIS_VOLATILE (arg0)); return t; } /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF on the pointer PTR. */ tree build_simple_mem_ref_loc (location_t loc, tree ptr) { HOST_WIDE_INT offset = 0; tree ptype = TREE_TYPE (ptr); tree tem; /* For convenience allow addresses that collapse to a simple base and offset. */ if (TREE_CODE (ptr) == ADDR_EXPR && (handled_component_p (TREE_OPERAND (ptr, 0)) || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF)) { ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset); gcc_assert (ptr); ptr = build_fold_addr_expr (ptr); gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr)); } tem = build2 (MEM_REF, TREE_TYPE (ptype), ptr, build_int_cst (ptype, offset)); SET_EXPR_LOCATION (tem, loc); return tem; } /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */ double_int mem_ref_offset (const_tree t) { tree toff = TREE_OPERAND (t, 1); return tree_to_double_int (toff).sext (TYPE_PRECISION (TREE_TYPE (toff))); } /* Return the pointer-type relevant for TBAA purposes from the gimple memory reference tree T. This is the type to be used for the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */ tree reference_alias_ptr_type (const_tree t) { const_tree base = t; while (handled_component_p (base)) base = TREE_OPERAND (base, 0); if (TREE_CODE (base) == MEM_REF) return TREE_TYPE (TREE_OPERAND (base, 1)); else if (TREE_CODE (base) == TARGET_MEM_REF) return TREE_TYPE (TMR_OFFSET (base)); else return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base))); } /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE offsetted by OFFSET units. */ tree build_invariant_address (tree type, tree base, HOST_WIDE_INT offset) { tree ref = fold_build2 (MEM_REF, TREE_TYPE (type), build_fold_addr_expr (base), build_int_cst (ptr_type_node, offset)); tree addr = build1 (ADDR_EXPR, type, ref); recompute_tree_invariant_for_addr_expr (addr); return addr; } /* Similar except don't specify the TREE_TYPE and leave the TREE_SIDE_EFFECTS as 0. It is permissible for arguments to be null, or even garbage if their values do not matter. */ tree build_nt (enum tree_code code, ...) { tree t; int length; int i; va_list p; gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); va_start (p, code); t = make_node (code); length = TREE_CODE_LENGTH (code); for (i = 0; i < length; i++) TREE_OPERAND (t, i) = va_arg (p, tree); va_end (p); return t; } /* Similar to build_nt, but for creating a CALL_EXPR object with a tree VEC. */ tree build_nt_call_vec (tree fn, VEC(tree,gc) *args) { tree ret, t; unsigned int ix; ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3); CALL_EXPR_FN (ret) = fn; CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE; FOR_EACH_VEC_ELT (tree, args, ix, t) CALL_EXPR_ARG (ret, ix) = t; return ret; } /* Create a DECL_... node of code CODE, name NAME and data type TYPE. We do NOT enter this node in any sort of symbol table. LOC is the location of the decl. layout_decl is used to set up the decl's storage layout. Other slots are initialized to 0 or null pointers. */ tree build_decl_stat (location_t loc, enum tree_code code, tree name, tree type MEM_STAT_DECL) { tree t; t = make_node_stat (code PASS_MEM_STAT); DECL_SOURCE_LOCATION (t) = loc; /* if (type == error_mark_node) type = integer_type_node; */ /* That is not done, deliberately, so that having error_mark_node as the type can suppress useless errors in the use of this variable. */ DECL_NAME (t) = name; TREE_TYPE (t) = type; if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL) layout_decl (t, 0); return t; } /* Builds and returns function declaration with NAME and TYPE. */ tree build_fn_decl (const char *name, tree type) { tree id = get_identifier (name); tree decl = build_decl (input_location, FUNCTION_DECL, id, type); DECL_EXTERNAL (decl) = 1; TREE_PUBLIC (decl) = 1; DECL_ARTIFICIAL (decl) = 1; TREE_NOTHROW (decl) = 1; return decl; } VEC(tree,gc) *all_translation_units; /* Builds a new translation-unit decl with name NAME, queues it in the global list of translation-unit decls and returns it. */ tree build_translation_unit_decl (tree name) { tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL, name, NULL_TREE); TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name; VEC_safe_push (tree, gc, all_translation_units, tu); return tu; } /* BLOCK nodes are used to represent the structure of binding contours and declarations, once those contours have been exited and their contents compiled. This information is used for outputting debugging info. */ tree build_block (tree vars, tree subblocks, tree supercontext, tree chain) { tree block = make_node (BLOCK); BLOCK_VARS (block) = vars; BLOCK_SUBBLOCKS (block) = subblocks; BLOCK_SUPERCONTEXT (block) = supercontext; BLOCK_CHAIN (block) = chain; return block; } /* Like SET_EXPR_LOCATION, but make sure the tree can have a location. LOC is the location to use in tree T. */ void protected_set_expr_location (tree t, location_t loc) { if (t && CAN_HAVE_LOCATION_P (t)) SET_EXPR_LOCATION (t, loc); } /* Return a declaration like DDECL except that its DECL_ATTRIBUTES is ATTRIBUTE. */ tree build_decl_attribute_variant (tree ddecl, tree attribute) { DECL_ATTRIBUTES (ddecl) = attribute; return ddecl; } /* Borrowed from hashtab.c iterative_hash implementation. */ #define mix(a,b,c) \ { \ a -= b; a -= c; a ^= (c>>13); \ b -= c; b -= a; b ^= (a<< 8); \ c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \ a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \ b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \ c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \ a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \ b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \ c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \ } /* Produce good hash value combining VAL and VAL2. */ hashval_t iterative_hash_hashval_t (hashval_t val, hashval_t val2) { /* the golden ratio; an arbitrary value. */ hashval_t a = 0x9e3779b9; mix (a, val, val2); return val2; } /* Produce good hash value combining VAL and VAL2. */ hashval_t iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2) { if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t)) return iterative_hash_hashval_t (val, val2); else { hashval_t a = (hashval_t) val; /* Avoid warnings about shifting of more than the width of the type on hosts that won't execute this path. */ int zero = 0; hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero)); mix (a, b, val2); if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t)) { hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero)); hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero)); mix (a, b, val2); } return val2; } } /* Return a type like TTYPE except that its TYPE_ATTRIBUTE is ATTRIBUTE and its qualifiers are QUALS. Record such modified types already made so we don't make duplicates. */ tree build_type_attribute_qual_variant (tree ttype, tree attribute, int quals) { if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute)) { hashval_t hashcode = 0; tree ntype; enum tree_code code = TREE_CODE (ttype); /* Building a distinct copy of a tagged type is inappropriate; it causes breakage in code that expects there to be a one-to-one relationship between a struct and its fields. build_duplicate_type is another solution (as used in handle_transparent_union_attribute), but that doesn't play well with the stronger C++ type identity model. */ if (TREE_CODE (ttype) == RECORD_TYPE || TREE_CODE (ttype) == UNION_TYPE || TREE_CODE (ttype) == QUAL_UNION_TYPE || TREE_CODE (ttype) == ENUMERAL_TYPE) { warning (OPT_Wattributes, "ignoring attributes applied to %qT after definition", TYPE_MAIN_VARIANT (ttype)); return build_qualified_type (ttype, quals); } ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED); ntype = build_distinct_type_copy (ttype); TYPE_ATTRIBUTES (ntype) = attribute; hashcode = iterative_hash_object (code, hashcode); if (TREE_TYPE (ntype)) hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)), hashcode); hashcode = attribute_hash_list (attribute, hashcode); switch (TREE_CODE (ntype)) { case FUNCTION_TYPE: hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode); break; case ARRAY_TYPE: if (TYPE_DOMAIN (ntype)) hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)), hashcode); break; case INTEGER_TYPE: hashcode = iterative_hash_object (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode); hashcode = iterative_hash_object (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode); break; case REAL_TYPE: case FIXED_POINT_TYPE: { unsigned int precision = TYPE_PRECISION (ntype); hashcode = iterative_hash_object (precision, hashcode); } break; default: break; } ntype = type_hash_canon (hashcode, ntype); /* If the target-dependent attributes make NTYPE different from its canonical type, we will need to use structural equality checks for this type. */ if (TYPE_STRUCTURAL_EQUALITY_P (ttype) || !comp_type_attributes (ntype, ttype)) SET_TYPE_STRUCTURAL_EQUALITY (ntype); else if (TYPE_CANONICAL (ntype) == ntype) TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype); ttype = build_qualified_type (ntype, quals); } else if (TYPE_QUALS (ttype) != quals) ttype = build_qualified_type (ttype, quals); return ttype; } /* Compare two attributes for their value identity. Return true if the attribute values are known to be equal; otherwise return false. */ static bool attribute_value_equal (const_tree attr1, const_tree attr2) { if (TREE_VALUE (attr1) == TREE_VALUE (attr2)) return true; if (TREE_VALUE (attr1) != NULL_TREE && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST && TREE_VALUE (attr2) != NULL && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST) return (simple_cst_list_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1); return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1); } /* Return 0 if the attributes for two types are incompatible, 1 if they are compatible, and 2 if they are nearly compatible (which causes a warning to be generated). */ int comp_type_attributes (const_tree type1, const_tree type2) { const_tree a1 = TYPE_ATTRIBUTES (type1); const_tree a2 = TYPE_ATTRIBUTES (type2); const_tree a; if (a1 == a2) return 1; for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a)) { const struct attribute_spec *as; const_tree attr; as = lookup_attribute_spec (TREE_PURPOSE (a)); if (!as || as->affects_type_identity == false) continue; attr = lookup_attribute (as->name, CONST_CAST_TREE (a2)); if (!attr || !attribute_value_equal (a, attr)) break; } if (!a) { for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a)) { const struct attribute_spec *as; as = lookup_attribute_spec (TREE_PURPOSE (a)); if (!as || as->affects_type_identity == false) continue; if (!lookup_attribute (as->name, CONST_CAST_TREE (a1))) break; /* We don't need to compare trees again, as we did this already in first loop. */ } /* All types - affecting identity - are equal, so there is no need to call target hook for comparison. */ if (!a) return 1; } /* As some type combinations - like default calling-convention - might be compatible, we have to call the target hook to get the final result. */ return targetm.comp_type_attributes (type1, type2); } /* Return a type like TTYPE except that its TYPE_ATTRIBUTE is ATTRIBUTE. Record such modified types already made so we don't make duplicates. */ tree build_type_attribute_variant (tree ttype, tree attribute) { return build_type_attribute_qual_variant (ttype, attribute, TYPE_QUALS (ttype)); } /* Reset the expression *EXPR_P, a size or position. ??? We could reset all non-constant sizes or positions. But it's cheap enough to not do so and refrain from adding workarounds to dwarf2out.c. We need to reset self-referential sizes or positions because they cannot be gimplified and thus can contain a CALL_EXPR after the gimplification is finished, which will run afoul of LTO streaming. And they need to be reset to something essentially dummy but not constant, so as to preserve the properties of the object they are attached to. */ static inline void free_lang_data_in_one_sizepos (tree *expr_p) { tree expr = *expr_p; if (CONTAINS_PLACEHOLDER_P (expr)) *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr)); } /* Reset all the fields in a binfo node BINFO. We only keep BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */ static void free_lang_data_in_binfo (tree binfo) { unsigned i; tree t; gcc_assert (TREE_CODE (binfo) == TREE_BINFO); BINFO_VIRTUALS (binfo) = NULL_TREE; BINFO_BASE_ACCESSES (binfo) = NULL; BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE; BINFO_SUBVTT_INDEX (binfo) = NULL_TREE; FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t) free_lang_data_in_binfo (t); } /* Reset all language specific information still present in TYPE. */ static void free_lang_data_in_type (tree type) { gcc_assert (TYPE_P (type)); /* Give the FE a chance to remove its own data first. */ lang_hooks.free_lang_data (type); TREE_LANG_FLAG_0 (type) = 0; TREE_LANG_FLAG_1 (type) = 0; TREE_LANG_FLAG_2 (type) = 0; TREE_LANG_FLAG_3 (type) = 0; TREE_LANG_FLAG_4 (type) = 0; TREE_LANG_FLAG_5 (type) = 0; TREE_LANG_FLAG_6 (type) = 0; if (TREE_CODE (type) == FUNCTION_TYPE) { /* Remove the const and volatile qualifiers from arguments. The C++ front end removes them, but the C front end does not, leading to false ODR violation errors when merging two instances of the same function signature compiled by different front ends. */ tree p; for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p)) { tree arg_type = TREE_VALUE (p); if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type)) { int quals = TYPE_QUALS (arg_type) & ~TYPE_QUAL_CONST & ~TYPE_QUAL_VOLATILE; TREE_VALUE (p) = build_qualified_type (arg_type, quals); free_lang_data_in_type (TREE_VALUE (p)); } } } /* Remove members that are not actually FIELD_DECLs from the field list of an aggregate. These occur in C++. */ if (RECORD_OR_UNION_TYPE_P (type)) { tree prev, member; /* Note that TYPE_FIELDS can be shared across distinct TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is to be removed, we cannot set its TREE_CHAIN to NULL. Otherwise, we would not be able to find all the other fields in the other instances of this TREE_TYPE. This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */ prev = NULL_TREE; member = TYPE_FIELDS (type); while (member) { if (TREE_CODE (member) == FIELD_DECL || TREE_CODE (member) == TYPE_DECL) { if (prev) TREE_CHAIN (prev) = member; else TYPE_FIELDS (type) = member; prev = member; } member = TREE_CHAIN (member); } if (prev) TREE_CHAIN (prev) = NULL_TREE; else TYPE_FIELDS (type) = NULL_TREE; TYPE_METHODS (type) = NULL_TREE; if (TYPE_BINFO (type)) free_lang_data_in_binfo (TYPE_BINFO (type)); } else { /* For non-aggregate types, clear out the language slot (which overloads TYPE_BINFO). */ TYPE_LANG_SLOT_1 (type) = NULL_TREE; if (INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type) || FIXED_POINT_TYPE_P (type)) { free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type)); free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type)); } } free_lang_data_in_one_sizepos (&TYPE_SIZE (type)); free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type)); if (TYPE_CONTEXT (type) && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK) { tree ctx = TYPE_CONTEXT (type); do { ctx = BLOCK_SUPERCONTEXT (ctx); } while (ctx && TREE_CODE (ctx) == BLOCK); TYPE_CONTEXT (type) = ctx; } } /* Return true if DECL may need an assembler name to be set. */ static inline bool need_assembler_name_p (tree decl) { /* Only FUNCTION_DECLs and VAR_DECLs are considered. */ if (TREE_CODE (decl) != FUNCTION_DECL && TREE_CODE (decl) != VAR_DECL) return false; /* If DECL already has its assembler name set, it does not need a new one. */ if (!HAS_DECL_ASSEMBLER_NAME_P (decl) || DECL_ASSEMBLER_NAME_SET_P (decl)) return false; /* Abstract decls do not need an assembler name. */ if (DECL_ABSTRACT (decl)) return false; /* For VAR_DECLs, only static, public and external symbols need an assembler name. */ if (TREE_CODE (decl) == VAR_DECL && !TREE_STATIC (decl) && !TREE_PUBLIC (decl) && !DECL_EXTERNAL (decl)) return false; if (TREE_CODE (decl) == FUNCTION_DECL) { /* Do not set assembler name on builtins. Allow RTL expansion to decide whether to expand inline or via a regular call. */ if (DECL_BUILT_IN (decl) && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND) return false; /* Functions represented in the callgraph need an assembler name. */ if (cgraph_get_node (decl) != NULL) return true; /* Unused and not public functions don't need an assembler name. */ if (!TREE_USED (decl) && !TREE_PUBLIC (decl)) return false; } return true; } /* Reset all language specific information still present in symbol DECL. */ static void free_lang_data_in_decl (tree decl) { gcc_assert (DECL_P (decl)); /* Give the FE a chance to remove its own data first. */ lang_hooks.free_lang_data (decl); TREE_LANG_FLAG_0 (decl) = 0; TREE_LANG_FLAG_1 (decl) = 0; TREE_LANG_FLAG_2 (decl) = 0; TREE_LANG_FLAG_3 (decl) = 0; TREE_LANG_FLAG_4 (decl) = 0; TREE_LANG_FLAG_5 (decl) = 0; TREE_LANG_FLAG_6 (decl) = 0; free_lang_data_in_one_sizepos (&DECL_SIZE (decl)); free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl)); if (TREE_CODE (decl) == FIELD_DECL) { free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl)); if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE) DECL_QUALIFIER (decl) = NULL_TREE; } if (TREE_CODE (decl) == FUNCTION_DECL) { if (gimple_has_body_p (decl)) { tree t; /* If DECL has a gimple body, then the context for its arguments must be DECL. Otherwise, it doesn't really matter, as we will not be emitting any code for DECL. In general, there may be other instances of DECL created by the front end and since PARM_DECLs are generally shared, their DECL_CONTEXT changes as the replicas of DECL are created. The only time where DECL_CONTEXT is important is for the FUNCTION_DECLs that have a gimple body (since the PARM_DECL will be used in the function's body). */ for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t)) DECL_CONTEXT (t) = decl; } /* DECL_SAVED_TREE holds the GENERIC representation for DECL. At this point, it is not needed anymore. */ DECL_SAVED_TREE (decl) = NULL_TREE; /* Clear the abstract origin if it refers to a method. Otherwise dwarf2out.c will ICE as we clear TYPE_METHODS and thus the origin will not be output correctly. */ if (DECL_ABSTRACT_ORIGIN (decl) && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl)) && RECORD_OR_UNION_TYPE_P (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl)))) DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE; /* Sometimes the C++ frontend doesn't manage to transform a temporary DECL_VINDEX referring to itself into a vtable slot number as it should. Happens with functions that are copied and then forgotten about. Just clear it, it won't matter anymore. */ if (DECL_VINDEX (decl) && !host_integerp (DECL_VINDEX (decl), 0)) DECL_VINDEX (decl) = NULL_TREE; } else if (TREE_CODE (decl) == VAR_DECL) { if ((DECL_EXTERNAL (decl) && (!TREE_STATIC (decl) || !TREE_READONLY (decl))) || (decl_function_context (decl) && !TREE_STATIC (decl))) DECL_INITIAL (decl) = NULL_TREE; } else if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == FIELD_DECL) DECL_INITIAL (decl) = NULL_TREE; else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL && DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) == BLOCK) { /* Strip builtins from the translation-unit BLOCK. We still have targets without builtin_decl_explicit support and also builtins are shared nodes and thus we can't use TREE_CHAIN in multiple lists. */ tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl)); while (*nextp) { tree var = *nextp; if (TREE_CODE (var) == FUNCTION_DECL && DECL_BUILT_IN (var)) *nextp = TREE_CHAIN (var); else nextp = &TREE_CHAIN (var); } } } /* Data used when collecting DECLs and TYPEs for language data removal. */ struct free_lang_data_d { /* Worklist to avoid excessive recursion. */ VEC(tree,heap) *worklist; /* Set of traversed objects. Used to avoid duplicate visits. */ struct pointer_set_t *pset; /* Array of symbols to process with free_lang_data_in_decl. */ VEC(tree,heap) *decls; /* Array of types to process with free_lang_data_in_type. */ VEC(tree,heap) *types; }; /* Save all language fields needed to generate proper debug information for DECL. This saves most fields cleared out by free_lang_data_in_decl. */ static void save_debug_info_for_decl (tree t) { /*struct saved_debug_info_d *sdi;*/ gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t)); /* FIXME. Partial implementation for saving debug info removed. */ } /* Save all language fields needed to generate proper debug information for TYPE. This saves most fields cleared out by free_lang_data_in_type. */ static void save_debug_info_for_type (tree t) { /*struct saved_debug_info_d *sdi;*/ gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t)); /* FIXME. Partial implementation for saving debug info removed. */ } /* Add type or decl T to one of the list of tree nodes that need their language data removed. The lists are held inside FLD. */ static void add_tree_to_fld_list (tree t, struct free_lang_data_d *fld) { if (DECL_P (t)) { VEC_safe_push (tree, heap, fld->decls, t); if (debug_info_level > DINFO_LEVEL_TERSE) save_debug_info_for_decl (t); } else if (TYPE_P (t)) { VEC_safe_push (tree, heap, fld->types, t); if (debug_info_level > DINFO_LEVEL_TERSE) save_debug_info_for_type (t); } else gcc_unreachable (); } /* Push tree node T into FLD->WORKLIST. */ static inline void fld_worklist_push (tree t, struct free_lang_data_d *fld) { if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t)) VEC_safe_push (tree, heap, fld->worklist, (t)); } /* Operand callback helper for free_lang_data_in_node. *TP is the subtree operand being considered. */ static tree find_decls_types_r (tree *tp, int *ws, void *data) { tree t = *tp; struct free_lang_data_d *fld = (struct free_lang_data_d *) data; if (TREE_CODE (t) == TREE_LIST) return NULL_TREE; /* Language specific nodes will be removed, so there is no need to gather anything under them. */ if (is_lang_specific (t)) { *ws = 0; return NULL_TREE; } if (DECL_P (t)) { /* Note that walk_tree does not traverse every possible field in decls, so we have to do our own traversals here. */ add_tree_to_fld_list (t, fld); fld_worklist_push (DECL_NAME (t), fld); fld_worklist_push (DECL_CONTEXT (t), fld); fld_worklist_push (DECL_SIZE (t), fld); fld_worklist_push (DECL_SIZE_UNIT (t), fld); /* We are going to remove everything under DECL_INITIAL for TYPE_DECLs. No point walking them. */ if (TREE_CODE (t) != TYPE_DECL) fld_worklist_push (DECL_INITIAL (t), fld); fld_worklist_push (DECL_ATTRIBUTES (t), fld); fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld); if (TREE_CODE (t) == FUNCTION_DECL) { fld_worklist_push (DECL_ARGUMENTS (t), fld); fld_worklist_push (DECL_RESULT (t), fld); } else if (TREE_CODE (t) == TYPE_DECL) { fld_worklist_push (DECL_ARGUMENT_FLD (t), fld); fld_worklist_push (DECL_VINDEX (t), fld); fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld); } else if (TREE_CODE (t) == FIELD_DECL) { fld_worklist_push (DECL_FIELD_OFFSET (t), fld); fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld); fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld); fld_worklist_push (DECL_FCONTEXT (t), fld); } else if (TREE_CODE (t) == VAR_DECL) { fld_worklist_push (DECL_SECTION_NAME (t), fld); fld_worklist_push (DECL_COMDAT_GROUP (t), fld); } if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL) && DECL_HAS_VALUE_EXPR_P (t)) fld_worklist_push (DECL_VALUE_EXPR (t), fld); if (TREE_CODE (t) != FIELD_DECL && TREE_CODE (t) != TYPE_DECL) fld_worklist_push (TREE_CHAIN (t), fld); *ws = 0; } else if (TYPE_P (t)) { /* Note that walk_tree does not traverse every possible field in types, so we have to do our own traversals here. */ add_tree_to_fld_list (t, fld); if (!RECORD_OR_UNION_TYPE_P (t)) fld_worklist_push (TYPE_CACHED_VALUES (t), fld); fld_worklist_push (TYPE_SIZE (t), fld); fld_worklist_push (TYPE_SIZE_UNIT (t), fld); fld_worklist_push (TYPE_ATTRIBUTES (t), fld); fld_worklist_push (TYPE_POINTER_TO (t), fld); fld_worklist_push (TYPE_REFERENCE_TO (t), fld); fld_worklist_push (TYPE_NAME (t), fld); /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream them and thus do not and want not to reach unused pointer types this way. */ if (!POINTER_TYPE_P (t)) fld_worklist_push (TYPE_MINVAL (t), fld); if (!RECORD_OR_UNION_TYPE_P (t)) fld_worklist_push (TYPE_MAXVAL (t), fld); fld_worklist_push (TYPE_MAIN_VARIANT (t), fld); /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus do not and want not to reach unused variants this way. */ if (TYPE_CONTEXT (t)) { tree ctx = TYPE_CONTEXT (t); /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one. So push that instead. */ while (ctx && TREE_CODE (ctx) == BLOCK) ctx = BLOCK_SUPERCONTEXT (ctx); fld_worklist_push (ctx, fld); } /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not and want not to reach unused types this way. */ if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t)) { unsigned i; tree tem; for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem); ++i) fld_worklist_push (TREE_TYPE (tem), fld); tem = BINFO_VIRTUALS (TYPE_BINFO (t)); if (tem /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */ && TREE_CODE (tem) == TREE_LIST) do { fld_worklist_push (TREE_VALUE (tem), fld); tem = TREE_CHAIN (tem); } while (tem); } if (RECORD_OR_UNION_TYPE_P (t)) { tree tem; /* Push all TYPE_FIELDS - there can be interleaving interesting and non-interesting things. */ tem = TYPE_FIELDS (t); while (tem) { if (TREE_CODE (tem) == FIELD_DECL || TREE_CODE (tem) == TYPE_DECL) fld_worklist_push (tem, fld); tem = TREE_CHAIN (tem); } } fld_worklist_push (TYPE_STUB_DECL (t), fld); *ws = 0; } else if (TREE_CODE (t) == BLOCK) { tree tem; for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem)) fld_worklist_push (tem, fld); for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem)) fld_worklist_push (tem, fld); fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld); } if (TREE_CODE (t) != IDENTIFIER_NODE && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED)) fld_worklist_push (TREE_TYPE (t), fld); return NULL_TREE; } /* Find decls and types in T. */ static void find_decls_types (tree t, struct free_lang_data_d *fld) { while (1) { if (!pointer_set_contains (fld->pset, t)) walk_tree (&t, find_decls_types_r, fld, fld->pset); if (VEC_empty (tree, fld->worklist)) break; t = VEC_pop (tree, fld->worklist); } } /* Translate all the types in LIST with the corresponding runtime types. */ static tree get_eh_types_for_runtime (tree list) { tree head, prev; if (list == NULL_TREE) return NULL_TREE; head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list))); prev = head; list = TREE_CHAIN (list); while (list) { tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list))); TREE_CHAIN (prev) = n; prev = TREE_CHAIN (prev); list = TREE_CHAIN (list); } return head; } /* Find decls and types referenced in EH region R and store them in FLD->DECLS and FLD->TYPES. */ static void find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld) { switch (r->type) { case ERT_CLEANUP: break; case ERT_TRY: { eh_catch c; /* The types referenced in each catch must first be changed to the EH types used at runtime. This removes references to FE types in the region. */ for (c = r->u.eh_try.first_catch; c ; c = c->next_catch) { c->type_list = get_eh_types_for_runtime (c->type_list); walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset); } } break; case ERT_ALLOWED_EXCEPTIONS: r->u.allowed.type_list = get_eh_types_for_runtime (r->u.allowed.type_list); walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset); break; case ERT_MUST_NOT_THROW: walk_tree (&r->u.must_not_throw.failure_decl, find_decls_types_r, fld, fld->pset); break; } } /* Find decls and types referenced in cgraph node N and store them in FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will look for *every* kind of DECL and TYPE node reachable from N, including those embedded inside types and decls (i.e,, TYPE_DECLs, NAMESPACE_DECLs, etc). */ static void find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld) { basic_block bb; struct function *fn; unsigned ix; tree t; find_decls_types (n->symbol.decl, fld); if (!gimple_has_body_p (n->symbol.decl)) return; gcc_assert (current_function_decl == NULL_TREE && cfun == NULL); fn = DECL_STRUCT_FUNCTION (n->symbol.decl); /* Traverse locals. */ FOR_EACH_LOCAL_DECL (fn, ix, t) find_decls_types (t, fld); /* Traverse EH regions in FN. */ { eh_region r; FOR_ALL_EH_REGION_FN (r, fn) find_decls_types_in_eh_region (r, fld); } /* Traverse every statement in FN. */ FOR_EACH_BB_FN (bb, fn) { gimple_stmt_iterator si; unsigned i; for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) { gimple phi = gsi_stmt (si); for (i = 0; i < gimple_phi_num_args (phi); i++) { tree *arg_p = gimple_phi_arg_def_ptr (phi, i); find_decls_types (*arg_p, fld); } } for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) { gimple stmt = gsi_stmt (si); if (is_gimple_call (stmt)) find_decls_types (gimple_call_fntype (stmt), fld); for (i = 0; i < gimple_num_ops (stmt); i++) { tree arg = gimple_op (stmt, i); find_decls_types (arg, fld); } } } } /* Find decls and types referenced in varpool node N and store them in FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will look for *every* kind of DECL and TYPE node reachable from N, including those embedded inside types and decls (i.e,, TYPE_DECLs, NAMESPACE_DECLs, etc). */ static void find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld) { find_decls_types (v->symbol.decl, fld); } /* If T needs an assembler name, have one created for it. */ void assign_assembler_name_if_neeeded (tree t) { if (need_assembler_name_p (t)) { /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit diagnostics that use input_location to show locus information. The problem here is that, at this point, input_location is generally anchored to the end of the file (since the parser is long gone), so we don't have a good position to pin it to. To alleviate this problem, this uses the location of T's declaration. Examples of this are testsuite/g++.dg/template/cond2.C and testsuite/g++.dg/template/pr35240.C. */ location_t saved_location = input_location; input_location = DECL_SOURCE_LOCATION (t); decl_assembler_name (t); input_location = saved_location; } } /* Free language specific information for every operand and expression in every node of the call graph. This process operates in three stages: 1- Every callgraph node and varpool node is traversed looking for decls and types embedded in them. This is a more exhaustive search than that done by find_referenced_vars, because it will also collect individual fields, decls embedded in types, etc. 2- All the decls found are sent to free_lang_data_in_decl. 3- All the types found are sent to free_lang_data_in_type. The ordering between decls and types is important because free_lang_data_in_decl sets assembler names, which includes mangling. So types cannot be freed up until assembler names have been set up. */ static void free_lang_data_in_cgraph (void) { struct cgraph_node *n; struct varpool_node *v; struct free_lang_data_d fld; tree t; unsigned i; alias_pair *p; /* Initialize sets and arrays to store referenced decls and types. */ fld.pset = pointer_set_create (); fld.worklist = NULL; fld.decls = VEC_alloc (tree, heap, 100); fld.types = VEC_alloc (tree, heap, 100); /* Find decls and types in the body of every function in the callgraph. */ FOR_EACH_FUNCTION (n) find_decls_types_in_node (n, &fld); FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p) find_decls_types (p->decl, &fld); /* Find decls and types in every varpool symbol. */ FOR_EACH_VARIABLE (v) find_decls_types_in_var (v, &fld); /* Set the assembler name on every decl found. We need to do this now because free_lang_data_in_decl will invalidate data needed for mangling. This breaks mangling on interdependent decls. */ FOR_EACH_VEC_ELT (tree, fld.decls, i, t) assign_assembler_name_if_neeeded (t); /* Traverse every decl found freeing its language data. */ FOR_EACH_VEC_ELT (tree, fld.decls, i, t) free_lang_data_in_decl (t); /* Traverse every type found freeing its language data. */ FOR_EACH_VEC_ELT (tree, fld.types, i, t) free_lang_data_in_type (t); pointer_set_destroy (fld.pset); VEC_free (tree, heap, fld.worklist); VEC_free (tree, heap, fld.decls); VEC_free (tree, heap, fld.types); } /* Free resources that are used by FE but are not needed once they are done. */ static unsigned free_lang_data (void) { unsigned i; /* If we are the LTO frontend we have freed lang-specific data already. */ if (in_lto_p || !flag_generate_lto) return 0; /* Allocate and assign alias sets to the standard integer types while the slots are still in the way the frontends generated them. */ for (i = 0; i < itk_none; ++i) if (integer_types[i]) TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]); /* Traverse the IL resetting language specific information for operands, expressions, etc. */ free_lang_data_in_cgraph (); /* Create gimple variants for common types. */ ptrdiff_type_node = integer_type_node; fileptr_type_node = ptr_type_node; /* Reset some langhooks. Do not reset types_compatible_p, it may still be used indirectly via the get_alias_set langhook. */ lang_hooks.dwarf_name = lhd_dwarf_name; lang_hooks.decl_printable_name = gimple_decl_printable_name; /* We do not want the default decl_assembler_name implementation, rather if we have fixed everything we want a wrapper around it asserting that all non-local symbols already got their assembler name and only produce assembler names for local symbols. Or rather make sure we never call decl_assembler_name on local symbols and devise a separate, middle-end private scheme for it. */ /* Reset diagnostic machinery. */ tree_diagnostics_defaults (global_dc); return 0; } struct simple_ipa_opt_pass pass_ipa_free_lang_data = { { SIMPLE_IPA_PASS, "*free_lang_data", /* name */ NULL, /* gate */ free_lang_data, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_IPA_FREE_LANG_DATA, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_ggc_collect /* todo_flags_finish */ } }; /* The backbone of is_attribute_p(). ATTR_LEN is the string length of ATTR_NAME. Also used internally by remove_attribute(). */ bool private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident) { size_t ident_len = IDENTIFIER_LENGTH (ident); if (ident_len == attr_len) { if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0) return true; } else if (ident_len == attr_len + 4) { /* There is the possibility that ATTR is 'text' and IDENT is '__text__'. */ const char *p = IDENTIFIER_POINTER (ident); if (p[0] == '_' && p[1] == '_' && p[ident_len - 2] == '_' && p[ident_len - 1] == '_' && strncmp (attr_name, p + 2, attr_len) == 0) return true; } return false; } /* The backbone of lookup_attribute(). ATTR_LEN is the string length of ATTR_NAME, and LIST is not NULL_TREE. */ tree private_lookup_attribute (const char *attr_name, size_t attr_len, tree list) { while (list) { size_t ident_len = IDENTIFIER_LENGTH (TREE_PURPOSE (list)); if (ident_len == attr_len) { if (strcmp (attr_name, IDENTIFIER_POINTER (TREE_PURPOSE (list))) == 0) break; } /* TODO: If we made sure that attributes were stored in the canonical form without '__...__' (ie, as in 'text' as opposed to '__text__') then we could avoid the following case. */ else if (ident_len == attr_len + 4) { const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list)); if (p[0] == '_' && p[1] == '_' && p[ident_len - 2] == '_' && p[ident_len - 1] == '_' && strncmp (attr_name, p + 2, attr_len) == 0) break; } list = TREE_CHAIN (list); } return list; } /* A variant of lookup_attribute() that can be used with an identifier as the first argument, and where the identifier can be either 'text' or '__text__'. Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST, return a pointer to the attribute's list element if the attribute is part of the list, or NULL_TREE if not found. If the attribute appears more than once, this only returns the first occurrence; the TREE_CHAIN of the return value should be passed back in if further occurrences are wanted. ATTR_IDENTIFIER must be an identifier but can be in the form 'text' or '__text__'. */ static tree lookup_ident_attribute (tree attr_identifier, tree list) { gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE); while (list) { gcc_checking_assert (TREE_CODE (TREE_PURPOSE (list)) == IDENTIFIER_NODE); /* Identifiers can be compared directly for equality. */ if (attr_identifier == TREE_PURPOSE (list)) break; /* If they are not equal, they may still be one in the form 'text' while the other one is in the form '__text__'. TODO: If we were storing attributes in normalized 'text' form, then this could all go away and we could take full advantage of the fact that we're comparing identifiers. :-) */ { size_t attr_len = IDENTIFIER_LENGTH (attr_identifier); size_t ident_len = IDENTIFIER_LENGTH (TREE_PURPOSE (list)); if (ident_len == attr_len + 4) { const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list)); const char *q = IDENTIFIER_POINTER (attr_identifier); if (p[0] == '_' && p[1] == '_' && p[ident_len - 2] == '_' && p[ident_len - 1] == '_' && strncmp (q, p + 2, attr_len) == 0) break; } else if (ident_len + 4 == attr_len) { const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list)); const char *q = IDENTIFIER_POINTER (attr_identifier); if (q[0] == '_' && q[1] == '_' && q[attr_len - 2] == '_' && q[attr_len - 1] == '_' && strncmp (q + 2, p, ident_len) == 0) break; } } list = TREE_CHAIN (list); } return list; } /* Remove any instances of attribute ATTR_NAME in LIST and return the modified list. */ tree remove_attribute (const char *attr_name, tree list) { tree *p; size_t attr_len = strlen (attr_name); gcc_checking_assert (attr_name[0] != '_'); for (p = &list; *p; ) { tree l = *p; /* TODO: If we were storing attributes in normalized form, here we could use a simple strcmp(). */ if (private_is_attribute_p (attr_name, attr_len, TREE_PURPOSE (l))) *p = TREE_CHAIN (l); else p = &TREE_CHAIN (l); } return list; } /* Return an attribute list that is the union of a1 and a2. */ tree merge_attributes (tree a1, tree a2) { tree attributes; /* Either one unset? Take the set one. */ if ((attributes = a1) == 0) attributes = a2; /* One that completely contains the other? Take it. */ else if (a2 != 0 && ! attribute_list_contained (a1, a2)) { if (attribute_list_contained (a2, a1)) attributes = a2; else { /* Pick the longest list, and hang on the other list. */ if (list_length (a1) < list_length (a2)) attributes = a2, a2 = a1; for (; a2 != 0; a2 = TREE_CHAIN (a2)) { tree a; for (a = lookup_ident_attribute (TREE_PURPOSE (a2), attributes); a != NULL_TREE && !attribute_value_equal (a, a2); a = lookup_ident_attribute (TREE_PURPOSE (a2), TREE_CHAIN (a))) ; if (a == NULL_TREE) { a1 = copy_node (a2); TREE_CHAIN (a1) = attributes; attributes = a1; } } } } return attributes; } /* Given types T1 and T2, merge their attributes and return the result. */ tree merge_type_attributes (tree t1, tree t2) { return merge_attributes (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)); } /* Given decls OLDDECL and NEWDECL, merge their attributes and return the result. */ tree merge_decl_attributes (tree olddecl, tree newdecl) { return merge_attributes (DECL_ATTRIBUTES (olddecl), DECL_ATTRIBUTES (newdecl)); } #if TARGET_DLLIMPORT_DECL_ATTRIBUTES /* Specialization of merge_decl_attributes for various Windows targets. This handles the following situation: __declspec (dllimport) int foo; int foo; The second instance of `foo' nullifies the dllimport. */ tree merge_dllimport_decl_attributes (tree old, tree new_tree) { tree a; int delete_dllimport_p = 1; /* What we need to do here is remove from `old' dllimport if it doesn't appear in `new'. dllimport behaves like extern: if a declaration is marked dllimport and a definition appears later, then the object is not dllimport'd. We also remove a `new' dllimport if the old list contains dllexport: dllexport always overrides dllimport, regardless of the order of declaration. */ if (!VAR_OR_FUNCTION_DECL_P (new_tree)) delete_dllimport_p = 0; else if (DECL_DLLIMPORT_P (new_tree) && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old))) { DECL_DLLIMPORT_P (new_tree) = 0; warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: " "dllimport ignored", new_tree); } else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree)) { /* Warn about overriding a symbol that has already been used, e.g.: extern int __attribute__ ((dllimport)) foo; int* bar () {return &foo;} int foo; */ if (TREE_USED (old)) { warning (0, "%q+D redeclared without dllimport attribute " "after being referenced with dll linkage", new_tree); /* If we have used a variable's address with dllimport linkage, keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the decl may already have had TREE_CONSTANT computed. We still remove the attribute so that assembler code refers to '&foo rather than '_imp__foo'. */ if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old)) DECL_DLLIMPORT_P (new_tree) = 1; } /* Let an inline definition silently override the external reference, but otherwise warn about attribute inconsistency. */ else if (TREE_CODE (new_tree) == VAR_DECL || !DECL_DECLARED_INLINE_P (new_tree)) warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: " "previous dllimport ignored", new_tree); } else delete_dllimport_p = 0; a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree)); if (delete_dllimport_p) a = remove_attribute ("dllimport", a); return a; } /* Handle a "dllimport" or "dllexport" attribute; arguments as in struct attribute_spec.handler. */ tree handle_dll_attribute (tree * pnode, tree name, tree args, int flags, bool *no_add_attrs) { tree node = *pnode; bool is_dllimport; /* These attributes may apply to structure and union types being created, but otherwise should pass to the declaration involved. */ if (!DECL_P (node)) { if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT | (int) ATTR_FLAG_ARRAY_NEXT)) { *no_add_attrs = true; return tree_cons (name, args, NULL_TREE); } if (TREE_CODE (node) == RECORD_TYPE || TREE_CODE (node) == UNION_TYPE) { node = TYPE_NAME (node); if (!node) return NULL_TREE; } else { warning (OPT_Wattributes, "%qE attribute ignored", name); *no_add_attrs = true; return NULL_TREE; } } if (TREE_CODE (node) != FUNCTION_DECL && TREE_CODE (node) != VAR_DECL && TREE_CODE (node) != TYPE_DECL) { *no_add_attrs = true; warning (OPT_Wattributes, "%qE attribute ignored", name); return NULL_TREE; } if (TREE_CODE (node) == TYPE_DECL && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE) { *no_add_attrs = true; warning (OPT_Wattributes, "%qE attribute ignored", name); return NULL_TREE; } is_dllimport = is_attribute_p ("dllimport", name); /* Report error on dllimport ambiguities seen now before they cause any damage. */ if (is_dllimport) { /* Honor any target-specific overrides. */ if (!targetm.valid_dllimport_attribute_p (node)) *no_add_attrs = true; else if (TREE_CODE (node) == FUNCTION_DECL && DECL_DECLARED_INLINE_P (node)) { warning (OPT_Wattributes, "inline function %q+D declared as " " dllimport: attribute ignored", node); *no_add_attrs = true; } /* Like MS, treat definition of dllimported variables and non-inlined functions on declaration as syntax errors. */ else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node)) { error ("function %q+D definition is marked dllimport", node); *no_add_attrs = true; } else if (TREE_CODE (node) == VAR_DECL) { if (DECL_INITIAL (node)) { error ("variable %q+D definition is marked dllimport", node); *no_add_attrs = true; } /* `extern' needn't be specified with dllimport. Specify `extern' now and hope for the best. Sigh. */ DECL_EXTERNAL (node) = 1; /* Also, implicitly give dllimport'd variables declared within a function global scope, unless declared static. */ if (current_function_decl != NULL_TREE && !TREE_STATIC (node)) TREE_PUBLIC (node) = 1; } if (*no_add_attrs == false) DECL_DLLIMPORT_P (node) = 1; } else if (TREE_CODE (node) == FUNCTION_DECL && DECL_DECLARED_INLINE_P (node) && flag_keep_inline_dllexport) /* An exported function, even if inline, must be emitted. */ DECL_EXTERNAL (node) = 0; /* Report error if symbol is not accessible at global scope. */ if (!TREE_PUBLIC (node) && (TREE_CODE (node) == VAR_DECL || TREE_CODE (node) == FUNCTION_DECL)) { error ("external linkage required for symbol %q+D because of " "%qE attribute", node, name); *no_add_attrs = true; } /* A dllexport'd entity must have default visibility so that other program units (shared libraries or the main executable) can see it. A dllimport'd entity must have default visibility so that the linker knows that undefined references within this program unit can be resolved by the dynamic linker. */ if (!*no_add_attrs) { if (DECL_VISIBILITY_SPECIFIED (node) && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT) error ("%qE implies default visibility, but %qD has already " "been declared with a different visibility", name, node); DECL_VISIBILITY (node) = VISIBILITY_DEFAULT; DECL_VISIBILITY_SPECIFIED (node) = 1; } return NULL_TREE; } #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */ /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask of the various TYPE_QUAL values. */ static void set_type_quals (tree type, int type_quals) { TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0; TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0; TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0; TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals); } /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */ bool check_qualified_type (const_tree cand, const_tree base, int type_quals) { return (TYPE_QUALS (cand) == type_quals && TYPE_NAME (cand) == TYPE_NAME (base) /* Apparently this is needed for Objective-C. */ && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base) /* Check alignment. */ && TYPE_ALIGN (cand) == TYPE_ALIGN (base) && attribute_list_equal (TYPE_ATTRIBUTES (cand), TYPE_ATTRIBUTES (base))); } /* Returns true iff CAND is equivalent to BASE with ALIGN. */ static bool check_aligned_type (const_tree cand, const_tree base, unsigned int align) { return (TYPE_QUALS (cand) == TYPE_QUALS (base) && TYPE_NAME (cand) == TYPE_NAME (base) /* Apparently this is needed for Objective-C. */ && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base) /* Check alignment. */ && TYPE_ALIGN (cand) == align && attribute_list_equal (TYPE_ATTRIBUTES (cand), TYPE_ATTRIBUTES (base))); } /* Return a version of the TYPE, qualified as indicated by the TYPE_QUALS, if one exists. If no qualified version exists yet, return NULL_TREE. */ tree get_qualified_type (tree type, int type_quals) { tree t; if (TYPE_QUALS (type) == type_quals) return type; /* Search the chain of variants to see if there is already one there just like the one we need to have. If so, use that existing one. We must preserve the TYPE_NAME, since there is code that depends on this. */ for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t)) if (check_qualified_type (t, type, type_quals)) return t; return NULL_TREE; } /* Like get_qualified_type, but creates the type if it does not exist. This function never returns NULL_TREE. */ tree build_qualified_type (tree type, int type_quals) { tree t; /* See if we already have the appropriate qualified variant. */ t = get_qualified_type (type, type_quals); /* If not, build it. */ if (!t) { t = build_variant_type_copy (type); set_type_quals (t, type_quals); if (TYPE_STRUCTURAL_EQUALITY_P (type)) /* Propagate structural equality. */ SET_TYPE_STRUCTURAL_EQUALITY (t); else if (TYPE_CANONICAL (type) != type) /* Build the underlying canonical type, since it is different from TYPE. */ TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type), type_quals); else /* T is its own canonical type. */ TYPE_CANONICAL (t) = t; } return t; } /* Create a variant of type T with alignment ALIGN. */ tree build_aligned_type (tree type, unsigned int align) { tree t; if (TYPE_PACKED (type) || TYPE_ALIGN (type) == align) return type; for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t)) if (check_aligned_type (t, type, align)) return t; t = build_variant_type_copy (type); TYPE_ALIGN (t) = align; return t; } /* Create a new distinct copy of TYPE. The new type is made its own MAIN_VARIANT. If TYPE requires structural equality checks, the resulting type requires structural equality checks; otherwise, its TYPE_CANONICAL points to itself. */ tree build_distinct_type_copy (tree type) { tree t = copy_node (type); TYPE_POINTER_TO (t) = 0; TYPE_REFERENCE_TO (t) = 0; /* Set the canonical type either to a new equivalence class, or propagate the need for structural equality checks. */ if (TYPE_STRUCTURAL_EQUALITY_P (type)) SET_TYPE_STRUCTURAL_EQUALITY (t); else TYPE_CANONICAL (t) = t; /* Make it its own variant. */ TYPE_MAIN_VARIANT (t) = t; TYPE_NEXT_VARIANT (t) = 0; /* Note that it is now possible for TYPE_MIN_VALUE to be a value whose TREE_TYPE is not t. This can also happen in the Ada frontend when using subtypes. */ return t; } /* Create a new variant of TYPE, equivalent but distinct. This is so the caller can modify it. TYPE_CANONICAL for the return type will be equivalent to TYPE_CANONICAL of TYPE, indicating that the types are considered equal by the language itself (or that both types require structural equality checks). */ tree build_variant_type_copy (tree type) { tree t, m = TYPE_MAIN_VARIANT (type); t = build_distinct_type_copy (type); /* Since we're building a variant, assume that it is a non-semantic variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */ TYPE_CANONICAL (t) = TYPE_CANONICAL (type); /* Add the new type to the chain of variants of TYPE. */ TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m); TYPE_NEXT_VARIANT (m) = t; TYPE_MAIN_VARIANT (t) = m; return t; } /* Return true if the from tree in both tree maps are equal. */ int tree_map_base_eq (const void *va, const void *vb) { const struct tree_map_base *const a = (const struct tree_map_base *) va, *const b = (const struct tree_map_base *) vb; return (a->from == b->from); } /* Hash a from tree in a tree_base_map. */ unsigned int tree_map_base_hash (const void *item) { return htab_hash_pointer (((const struct tree_map_base *)item)->from); } /* Return true if this tree map structure is marked for garbage collection purposes. We simply return true if the from tree is marked, so that this structure goes away when the from tree goes away. */ int tree_map_base_marked_p (const void *p) { return ggc_marked_p (((const struct tree_map_base *) p)->from); } /* Hash a from tree in a tree_map. */ unsigned int tree_map_hash (const void *item) { return (((const struct tree_map *) item)->hash); } /* Hash a from tree in a tree_decl_map. */ unsigned int tree_decl_map_hash (const void *item) { return DECL_UID (((const struct tree_decl_map *) item)->base.from); } /* Return the initialization priority for DECL. */ priority_type decl_init_priority_lookup (tree decl) { struct tree_priority_map *h; struct tree_map_base in; gcc_assert (VAR_OR_FUNCTION_DECL_P (decl)); in.from = decl; h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in); return h ? h->init : DEFAULT_INIT_PRIORITY; } /* Return the finalization priority for DECL. */ priority_type decl_fini_priority_lookup (tree decl) { struct tree_priority_map *h; struct tree_map_base in; gcc_assert (TREE_CODE (decl) == FUNCTION_DECL); in.from = decl; h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in); return h ? h->fini : DEFAULT_INIT_PRIORITY; } /* Return the initialization and finalization priority information for DECL. If there is no previous priority information, a freshly allocated structure is returned. */ static struct tree_priority_map * decl_priority_info (tree decl) { struct tree_priority_map in; struct tree_priority_map *h; void **loc; in.base.from = decl; loc = htab_find_slot (init_priority_for_decl, &in, INSERT); h = (struct tree_priority_map *) *loc; if (!h) { h = ggc_alloc_cleared_tree_priority_map (); *loc = h; h->base.from = decl; h->init = DEFAULT_INIT_PRIORITY; h->fini = DEFAULT_INIT_PRIORITY; } return h; } /* Set the initialization priority for DECL to PRIORITY. */ void decl_init_priority_insert (tree decl, priority_type priority) { struct tree_priority_map *h; gcc_assert (VAR_OR_FUNCTION_DECL_P (decl)); if (priority == DEFAULT_INIT_PRIORITY) return; h = decl_priority_info (decl); h->init = priority; } /* Set the finalization priority for DECL to PRIORITY. */ void decl_fini_priority_insert (tree decl, priority_type priority) { struct tree_priority_map *h; gcc_assert (TREE_CODE (decl) == FUNCTION_DECL); if (priority == DEFAULT_INIT_PRIORITY) return; h = decl_priority_info (decl); h->fini = priority; } /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */ static void print_debug_expr_statistics (void) { fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n", (long) htab_size (debug_expr_for_decl), (long) htab_elements (debug_expr_for_decl), htab_collisions (debug_expr_for_decl)); } /* Print out the statistics for the DECL_VALUE_EXPR hash table. */ static void print_value_expr_statistics (void) { fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n", (long) htab_size (value_expr_for_decl), (long) htab_elements (value_expr_for_decl), htab_collisions (value_expr_for_decl)); } /* Lookup a debug expression for FROM, and return it if we find one. */ tree decl_debug_expr_lookup (tree from) { struct tree_decl_map *h, in; in.base.from = from; h = (struct tree_decl_map *) htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from)); if (h) return h->to; return NULL_TREE; } /* Insert a mapping FROM->TO in the debug expression hashtable. */ void decl_debug_expr_insert (tree from, tree to) { struct tree_decl_map *h; void **loc; h = ggc_alloc_tree_decl_map (); h->base.from = from; h->to = to; loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from), INSERT); *(struct tree_decl_map **) loc = h; } /* Lookup a value expression for FROM, and return it if we find one. */ tree decl_value_expr_lookup (tree from) { struct tree_decl_map *h, in; in.base.from = from; h = (struct tree_decl_map *) htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from)); if (h) return h->to; return NULL_TREE; } /* Insert a mapping FROM->TO in the value expression hashtable. */ void decl_value_expr_insert (tree from, tree to) { struct tree_decl_map *h; void **loc; h = ggc_alloc_tree_decl_map (); h->base.from = from; h->to = to; loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from), INSERT); *(struct tree_decl_map **) loc = h; } /* Lookup a vector of debug arguments for FROM, and return it if we find one. */ VEC(tree, gc) ** decl_debug_args_lookup (tree from) { struct tree_vec_map *h, in; if (!DECL_HAS_DEBUG_ARGS_P (from)) return NULL; gcc_checking_assert (debug_args_for_decl != NULL); in.base.from = from; h = (struct tree_vec_map *) htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from)); if (h) return &h->to; return NULL; } /* Insert a mapping FROM->empty vector of debug arguments in the value expression hashtable. */ VEC(tree, gc) ** decl_debug_args_insert (tree from) { struct tree_vec_map *h; void **loc; if (DECL_HAS_DEBUG_ARGS_P (from)) return decl_debug_args_lookup (from); if (debug_args_for_decl == NULL) debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash, tree_vec_map_eq, 0); h = ggc_alloc_tree_vec_map (); h->base.from = from; h->to = NULL; loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from), INSERT); *(struct tree_vec_map **) loc = h; DECL_HAS_DEBUG_ARGS_P (from) = 1; return &h->to; } /* Hashing of types so that we don't make duplicates. The entry point is `type_hash_canon'. */ /* Compute a hash code for a list of types (chain of TREE_LIST nodes with types in the TREE_VALUE slots), by adding the hash codes of the individual types. */ static unsigned int type_hash_list (const_tree list, hashval_t hashcode) { const_tree tail; for (tail = list; tail; tail = TREE_CHAIN (tail)) if (TREE_VALUE (tail) != error_mark_node) hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)), hashcode); return hashcode; } /* These are the Hashtable callback functions. */ /* Returns true iff the types are equivalent. */ static int type_hash_eq (const void *va, const void *vb) { const struct type_hash *const a = (const struct type_hash *) va, *const b = (const struct type_hash *) vb; /* First test the things that are the same for all types. */ if (a->hash != b->hash || TREE_CODE (a->type) != TREE_CODE (b->type) || TREE_TYPE (a->type) != TREE_TYPE (b->type) || !attribute_list_equal (TYPE_ATTRIBUTES (a->type), TYPE_ATTRIBUTES (b->type)) || (TREE_CODE (a->type) != COMPLEX_TYPE && TYPE_NAME (a->type) != TYPE_NAME (b->type))) return 0; /* Be careful about comparing arrays before and after the element type has been completed; don't compare TYPE_ALIGN unless both types are complete. */ if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type) && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type) || TYPE_MODE (a->type) != TYPE_MODE (b->type))) return 0; switch (TREE_CODE (a->type)) { case VOID_TYPE: case COMPLEX_TYPE: case POINTER_TYPE: case REFERENCE_TYPE: case NULLPTR_TYPE: return 1; case VECTOR_TYPE: return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type); case ENUMERAL_TYPE: if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type) && !(TYPE_VALUES (a->type) && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST && TYPE_VALUES (b->type) && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST && type_list_equal (TYPE_VALUES (a->type), TYPE_VALUES (b->type)))) return 0; /* ... fall through ... */ case INTEGER_TYPE: case REAL_TYPE: case BOOLEAN_TYPE: return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type) || tree_int_cst_equal (TYPE_MAX_VALUE (a->type), TYPE_MAX_VALUE (b->type))) && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type) || tree_int_cst_equal (TYPE_MIN_VALUE (a->type), TYPE_MIN_VALUE (b->type)))); case FIXED_POINT_TYPE: return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type); case OFFSET_TYPE: return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type); case METHOD_TYPE: if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type) && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type) || (TYPE_ARG_TYPES (a->type) && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST && TYPE_ARG_TYPES (b->type) && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST && type_list_equal (TYPE_ARG_TYPES (a->type), TYPE_ARG_TYPES (b->type))))) break; return 0; case ARRAY_TYPE: return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type); case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type) || (TYPE_FIELDS (a->type) && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST && TYPE_FIELDS (b->type) && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST && type_list_equal (TYPE_FIELDS (a->type), TYPE_FIELDS (b->type)))); case FUNCTION_TYPE: if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type) || (TYPE_ARG_TYPES (a->type) && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST && TYPE_ARG_TYPES (b->type) && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST && type_list_equal (TYPE_ARG_TYPES (a->type), TYPE_ARG_TYPES (b->type)))) break; return 0; default: return 0; } if (lang_hooks.types.type_hash_eq != NULL) return lang_hooks.types.type_hash_eq (a->type, b->type); return 1; } /* Return the cached hash value. */ static hashval_t type_hash_hash (const void *item) { return ((const struct type_hash *) item)->hash; } /* Look in the type hash table for a type isomorphic to TYPE. If one is found, return it. Otherwise return 0. */ tree type_hash_lookup (hashval_t hashcode, tree type) { struct type_hash *h, in; /* The TYPE_ALIGN field of a type is set by layout_type(), so we must call that routine before comparing TYPE_ALIGNs. */ layout_type (type); in.hash = hashcode; in.type = type; h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in, hashcode); if (h) return h->type; return NULL_TREE; } /* Add an entry to the type-hash-table for a type TYPE whose hash code is HASHCODE. */ void type_hash_add (hashval_t hashcode, tree type) { struct type_hash *h; void **loc; h = ggc_alloc_type_hash (); h->hash = hashcode; h->type = type; loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT); *loc = (void *)h; } /* Given TYPE, and HASHCODE its hash code, return the canonical object for an identical type if one already exists. Otherwise, return TYPE, and record it as the canonical object. To use this function, first create a type of the sort you want. Then compute its hash code from the fields of the type that make it different from other similar types. Then call this function and use the value. */ tree type_hash_canon (unsigned int hashcode, tree type) { tree t1; /* The hash table only contains main variants, so ensure that's what we're being passed. */ gcc_assert (TYPE_MAIN_VARIANT (type) == type); /* See if the type is in the hash table already. If so, return it. Otherwise, add the type. */ t1 = type_hash_lookup (hashcode, type); if (t1 != 0) { if (GATHER_STATISTICS) { tree_code_counts[(int) TREE_CODE (type)]--; tree_node_counts[(int) t_kind]--; tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common); } return t1; } else { type_hash_add (hashcode, type); return type; } } /* See if the data pointed to by the type hash table is marked. We consider it marked if the type is marked or if a debug type number or symbol table entry has been made for the type. */ static int type_hash_marked_p (const void *p) { const_tree const type = ((const struct type_hash *) p)->type; return ggc_marked_p (type); } static void print_type_hash_statistics (void) { fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n", (long) htab_size (type_hash_table), (long) htab_elements (type_hash_table), htab_collisions (type_hash_table)); } /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots), by adding the hash codes of the individual attributes. */ static unsigned int attribute_hash_list (const_tree list, hashval_t hashcode) { const_tree tail; for (tail = list; tail; tail = TREE_CHAIN (tail)) /* ??? Do we want to add in TREE_VALUE too? */ hashcode = iterative_hash_object (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode); return hashcode; } /* Given two lists of attributes, return true if list l2 is equivalent to l1. */ int attribute_list_equal (const_tree l1, const_tree l2) { if (l1 == l2) return 1; return attribute_list_contained (l1, l2) && attribute_list_contained (l2, l1); } /* Given two lists of attributes, return true if list L2 is completely contained within L1. */ /* ??? This would be faster if attribute names were stored in a canonicalized form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method must be used to show these elements are equivalent (which they are). */ /* ??? It's not clear that attributes with arguments will always be handled correctly. */ int attribute_list_contained (const_tree l1, const_tree l2) { const_tree t1, t2; /* First check the obvious, maybe the lists are identical. */ if (l1 == l2) return 1; /* Maybe the lists are similar. */ for (t1 = l1, t2 = l2; t1 != 0 && t2 != 0 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2) && TREE_VALUE (t1) == TREE_VALUE (t2); t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2)) ; /* Maybe the lists are equal. */ if (t1 == 0 && t2 == 0) return 1; for (; t2 != 0; t2 = TREE_CHAIN (t2)) { const_tree attr; /* This CONST_CAST is okay because lookup_attribute does not modify its argument and the return value is assigned to a const_tree. */ for (attr = lookup_ident_attribute (TREE_PURPOSE (t2), CONST_CAST_TREE(l1)); attr != NULL_TREE && !attribute_value_equal (t2, attr); attr = lookup_ident_attribute (TREE_PURPOSE (t2), TREE_CHAIN (attr))) ; if (attr == NULL_TREE) return 0; } return 1; } /* Given two lists of types (chains of TREE_LIST nodes with types in the TREE_VALUE slots) return 1 if the lists contain the same types in the same order. Also, the TREE_PURPOSEs must match. */ int type_list_equal (const_tree l1, const_tree l2) { const_tree t1, t2; for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2)) if (TREE_VALUE (t1) != TREE_VALUE (t2) || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2) && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)) && (TREE_TYPE (TREE_PURPOSE (t1)) == TREE_TYPE (TREE_PURPOSE (t2)))))) return 0; return t1 == t2; } /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE given by TYPE. If the argument list accepts variable arguments, then this function counts only the ordinary arguments. */ int type_num_arguments (const_tree type) { int i = 0; tree t; for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t)) /* If the function does not take a variable number of arguments, the last element in the list will have type `void'. */ if (VOID_TYPE_P (TREE_VALUE (t))) break; else ++i; return i; } /* Nonzero if integer constants T1 and T2 represent the same constant value. */ int tree_int_cst_equal (const_tree t1, const_tree t2) { if (t1 == t2) return 1; if (t1 == 0 || t2 == 0) return 0; if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2) && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2)) return 1; return 0; } /* Nonzero if integer constants T1 and T2 represent values that satisfy <. The precise way of comparison depends on their data type. */ int tree_int_cst_lt (const_tree t1, const_tree t2) { if (t1 == t2) return 0; if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2))) { int t1_sgn = tree_int_cst_sgn (t1); int t2_sgn = tree_int_cst_sgn (t2); if (t1_sgn < t2_sgn) return 1; else if (t1_sgn > t2_sgn) return 0; /* Otherwise, both are non-negative, so we compare them as unsigned just in case one of them would overflow a signed type. */ } else if (!TYPE_UNSIGNED (TREE_TYPE (t1))) return INT_CST_LT (t1, t2); return INT_CST_LT_UNSIGNED (t1, t2); } /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */ int tree_int_cst_compare (const_tree t1, const_tree t2) { if (tree_int_cst_lt (t1, t2)) return -1; else if (tree_int_cst_lt (t2, t1)) return 1; else return 0; } /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on the host. If POS is zero, the value can be represented in a single HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can be represented in a single unsigned HOST_WIDE_INT. */ int host_integerp (const_tree t, int pos) { if (t == NULL_TREE) return 0; return (TREE_CODE (t) == INTEGER_CST && ((TREE_INT_CST_HIGH (t) == 0 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0) || (! pos && TREE_INT_CST_HIGH (t) == -1 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0 && !TYPE_UNSIGNED (TREE_TYPE (t))) || (pos && TREE_INT_CST_HIGH (t) == 0))); } /* Return the HOST_WIDE_INT least significant bits of T if it is an INTEGER_CST and there is no overflow. POS is nonzero if the result must be non-negative. We must be able to satisfy the above conditions. */ HOST_WIDE_INT tree_low_cst (const_tree t, int pos) { gcc_assert (host_integerp (t, pos)); return TREE_INT_CST_LOW (t); } /* Return the HOST_WIDE_INT least significant bits of T, a sizetype kind INTEGER_CST. This makes sure to properly sign-extend the constant. */ HOST_WIDE_INT size_low_cst (const_tree t) { double_int d = tree_to_double_int (t); return d.sext (TYPE_PRECISION (TREE_TYPE (t))).low; } /* Return the most significant (sign) bit of T. */ int tree_int_cst_sign_bit (const_tree t) { unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1; unsigned HOST_WIDE_INT w; if (bitno < HOST_BITS_PER_WIDE_INT) w = TREE_INT_CST_LOW (t); else { w = TREE_INT_CST_HIGH (t); bitno -= HOST_BITS_PER_WIDE_INT; } return (w >> bitno) & 1; } /* Return an indication of the sign of the integer constant T. The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0. Note that -1 will never be returned if T's type is unsigned. */ int tree_int_cst_sgn (const_tree t) { if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0) return 0; else if (TYPE_UNSIGNED (TREE_TYPE (t))) return 1; else if (TREE_INT_CST_HIGH (t) < 0) return -1; else return 1; } /* Return the minimum number of bits needed to represent VALUE in a signed or unsigned type, UNSIGNEDP says which. */ unsigned int tree_int_cst_min_precision (tree value, bool unsignedp) { int log; /* If the value is negative, compute its negative minus 1. The latter adjustment is because the absolute value of the largest negative value is one larger than the largest positive value. This is equivalent to a bit-wise negation, so use that operation instead. */ if (tree_int_cst_sgn (value) < 0) value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value); /* Return the number of bits needed, taking into account the fact that we need one more bit for a signed than unsigned type. */ if (integer_zerop (value)) log = 0; else log = tree_floor_log2 (value); return log + 1 + !unsignedp; } /* Compare two constructor-element-type constants. Return 1 if the lists are known to be equal; otherwise return 0. */ int simple_cst_list_equal (const_tree l1, const_tree l2) { while (l1 != NULL_TREE && l2 != NULL_TREE) { if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1) return 0; l1 = TREE_CHAIN (l1); l2 = TREE_CHAIN (l2); } return l1 == l2; } /* Return truthvalue of whether T1 is the same tree structure as T2. Return 1 if they are the same. Return 0 if they are understandably different. Return -1 if either contains tree structure not understood by this function. */ int simple_cst_equal (const_tree t1, const_tree t2) { enum tree_code code1, code2; int cmp; int i; if (t1 == t2) return 1; if (t1 == 0 || t2 == 0) return 0; code1 = TREE_CODE (t1); code2 = TREE_CODE (t2); if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR) { if (CONVERT_EXPR_CODE_P (code2) || code2 == NON_LVALUE_EXPR) return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); else return simple_cst_equal (TREE_OPERAND (t1, 0), t2); } else if (CONVERT_EXPR_CODE_P (code2) || code2 == NON_LVALUE_EXPR) return simple_cst_equal (t1, TREE_OPERAND (t2, 0)); if (code1 != code2) return 0; switch (code1) { case INTEGER_CST: return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2) && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2)); case REAL_CST: return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2)); case FIXED_CST: return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2)); case STRING_CST: return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2) && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2), TREE_STRING_LENGTH (t1))); case CONSTRUCTOR: { unsigned HOST_WIDE_INT idx; VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1); VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2); if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2)) return false; for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx) /* ??? Should we handle also fields here? */ if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx).value, VEC_index (constructor_elt, v2, idx).value)) return false; return true; } case SAVE_EXPR: return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); case CALL_EXPR: cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2)); if (cmp <= 0) return cmp; if (call_expr_nargs (t1) != call_expr_nargs (t2)) return 0; { const_tree arg1, arg2; const_call_expr_arg_iterator iter1, iter2; for (arg1 = first_const_call_expr_arg (t1, &iter1), arg2 = first_const_call_expr_arg (t2, &iter2); arg1 && arg2; arg1 = next_const_call_expr_arg (&iter1), arg2 = next_const_call_expr_arg (&iter2)) { cmp = simple_cst_equal (arg1, arg2); if (cmp <= 0) return cmp; } return arg1 == arg2; } case TARGET_EXPR: /* Special case: if either target is an unallocated VAR_DECL, it means that it's going to be unified with whatever the TARGET_EXPR is really supposed to initialize, so treat it as being equivalent to anything. */ if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0))) || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0)))) cmp = 1; else cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); if (cmp <= 0) return cmp; return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)); case WITH_CLEANUP_EXPR: cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); if (cmp <= 0) return cmp; return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1)); case COMPONENT_REF: if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1)) return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); return 0; case VAR_DECL: case PARM_DECL: case CONST_DECL: case FUNCTION_DECL: return 0; default: break; } /* This general rule works for most tree codes. All exceptions should be handled above. If this is a language-specific tree code, we can't trust what might be in the operand, so say we don't know the situation. */ if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE) return -1; switch (TREE_CODE_CLASS (code1)) { case tcc_unary: case tcc_binary: case tcc_comparison: case tcc_expression: case tcc_reference: case tcc_statement: cmp = 1; for (i = 0; i < TREE_CODE_LENGTH (code1); i++) { cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)); if (cmp <= 0) return cmp; } return cmp; default: return -1; } } /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value. Return -1, 0, or 1 if the value of T is less than, equal to, or greater than U, respectively. */ int compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u) { if (tree_int_cst_sgn (t) < 0) return -1; else if (TREE_INT_CST_HIGH (t) != 0) return 1; else if (TREE_INT_CST_LOW (t) == u) return 0; else if (TREE_INT_CST_LOW (t) < u) return -1; else return 1; } /* Return true if SIZE represents a constant size that is in bounds of what the middle-end and the backend accepts (covering not more than half of the address-space). */ bool valid_constant_size_p (const_tree size) { if (! host_integerp (size, 1) || TREE_OVERFLOW (size) || tree_int_cst_sign_bit (size) != 0) return false; return true; } /* Return true if CODE represents an associative tree code. Otherwise return false. */ bool associative_tree_code (enum tree_code code) { switch (code) { case BIT_IOR_EXPR: case BIT_AND_EXPR: case BIT_XOR_EXPR: case PLUS_EXPR: case MULT_EXPR: case MIN_EXPR: case MAX_EXPR: return true; default: break; } return false; } /* Return true if CODE represents a commutative tree code. Otherwise return false. */ bool commutative_tree_code (enum tree_code code) { switch (code) { case PLUS_EXPR: case MULT_EXPR: case MULT_HIGHPART_EXPR: case MIN_EXPR: case MAX_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: case BIT_AND_EXPR: case NE_EXPR: case EQ_EXPR: case UNORDERED_EXPR: case ORDERED_EXPR: case UNEQ_EXPR: case LTGT_EXPR: case TRUTH_AND_EXPR: case TRUTH_XOR_EXPR: case TRUTH_OR_EXPR: case WIDEN_MULT_EXPR: case VEC_WIDEN_MULT_HI_EXPR: case VEC_WIDEN_MULT_LO_EXPR: case VEC_WIDEN_MULT_EVEN_EXPR: case VEC_WIDEN_MULT_ODD_EXPR: return true; default: break; } return false; } /* Return true if CODE represents a ternary tree code for which the first two operands are commutative. Otherwise return false. */ bool commutative_ternary_tree_code (enum tree_code code) { switch (code) { case WIDEN_MULT_PLUS_EXPR: case WIDEN_MULT_MINUS_EXPR: return true; default: break; } return false; } /* Generate a hash value for an expression. This can be used iteratively by passing a previous result as the VAL argument. This function is intended to produce the same hash for expressions which would compare equal using operand_equal_p. */ hashval_t iterative_hash_expr (const_tree t, hashval_t val) { int i; enum tree_code code; char tclass; if (t == NULL_TREE) return iterative_hash_hashval_t (0, val); code = TREE_CODE (t); switch (code) { /* Alas, constants aren't shared, so we can't rely on pointer identity. */ case INTEGER_CST: val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val); return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val); case REAL_CST: { unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t)); return iterative_hash_hashval_t (val2, val); } case FIXED_CST: { unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t)); return iterative_hash_hashval_t (val2, val); } case STRING_CST: return iterative_hash (TREE_STRING_POINTER (t), TREE_STRING_LENGTH (t), val); case COMPLEX_CST: val = iterative_hash_expr (TREE_REALPART (t), val); return iterative_hash_expr (TREE_IMAGPART (t), val); case VECTOR_CST: { unsigned i; for (i = 0; i < VECTOR_CST_NELTS (t); ++i) val = iterative_hash_expr (VECTOR_CST_ELT (t, i), val); return val; } case SSA_NAME: /* We can just compare by pointer. */ return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val); case PLACEHOLDER_EXPR: /* The node itself doesn't matter. */ return val; case TREE_LIST: /* A list of expressions, for a CALL_EXPR or as the elements of a VECTOR_CST. */ for (; t; t = TREE_CHAIN (t)) val = iterative_hash_expr (TREE_VALUE (t), val); return val; case CONSTRUCTOR: { unsigned HOST_WIDE_INT idx; tree field, value; FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value) { val = iterative_hash_expr (field, val); val = iterative_hash_expr (value, val); } return val; } case MEM_REF: { /* The type of the second operand is relevant, except for its top-level qualifiers. */ tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1))); val = iterative_hash_object (TYPE_HASH (type), val); /* We could use the standard hash computation from this point on. */ val = iterative_hash_object (code, val); val = iterative_hash_expr (TREE_OPERAND (t, 1), val); val = iterative_hash_expr (TREE_OPERAND (t, 0), val); return val; } case FUNCTION_DECL: /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form. Otherwise nodes that compare equal according to operand_equal_p might get different hash codes. However, don't do this for machine specific or front end builtins, since the function code is overloaded in those cases. */ if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t))) { t = builtin_decl_explicit (DECL_FUNCTION_CODE (t)); code = TREE_CODE (t); } /* FALL THROUGH */ default: tclass = TREE_CODE_CLASS (code); if (tclass == tcc_declaration) { /* DECL's have a unique ID */ val = iterative_hash_host_wide_int (DECL_UID (t), val); } else { gcc_assert (IS_EXPR_CODE_CLASS (tclass)); val = iterative_hash_object (code, val); /* Don't hash the type, that can lead to having nodes which compare equal according to operand_equal_p, but which have different hash codes. */ if (CONVERT_EXPR_CODE_P (code) || code == NON_LVALUE_EXPR) { /* Make sure to include signness in the hash computation. */ val += TYPE_UNSIGNED (TREE_TYPE (t)); val = iterative_hash_expr (TREE_OPERAND (t, 0), val); } else if (commutative_tree_code (code)) { /* It's a commutative expression. We want to hash it the same however it appears. We do this by first hashing both operands and then rehashing based on the order of their independent hashes. */ hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0); hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0); hashval_t t; if (one > two) t = one, one = two, two = t; val = iterative_hash_hashval_t (one, val); val = iterative_hash_hashval_t (two, val); } else for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i) val = iterative_hash_expr (TREE_OPERAND (t, i), val); } return val; } } /* Generate a hash value for a pair of expressions. This can be used iteratively by passing a previous result as the VAL argument. The same hash value is always returned for a given pair of expressions, regardless of the order in which they are presented. This is useful in hashing the operands of commutative functions. */ hashval_t iterative_hash_exprs_commutative (const_tree t1, const_tree t2, hashval_t val) { hashval_t one = iterative_hash_expr (t1, 0); hashval_t two = iterative_hash_expr (t2, 0); hashval_t t; if (one > two) t = one, one = two, two = t; val = iterative_hash_hashval_t (one, val); val = iterative_hash_hashval_t (two, val); return val; } /* Constructors for pointer, array and function types. (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are constructed by language-dependent code, not here.) */ /* Construct, lay out and return the type of pointers to TO_TYPE with mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can reference all of memory. If such a type has already been constructed, reuse it. */ tree build_pointer_type_for_mode (tree to_type, enum machine_mode mode, bool can_alias_all) { tree t; if (to_type == error_mark_node) return error_mark_node; /* If the pointed-to type has the may_alias attribute set, force a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */ if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type))) can_alias_all = true; /* In some cases, languages will have things that aren't a POINTER_TYPE (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO. In that case, return that type without regard to the rest of our operands. ??? This is a kludge, but consistent with the way this function has always operated and there doesn't seem to be a good way to avoid this at the moment. */ if (TYPE_POINTER_TO (to_type) != 0 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE) return TYPE_POINTER_TO (to_type); /* First, if we already have a type for pointers to TO_TYPE and it's the proper mode, use it. */ for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t)) if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all) return t; t = make_node (POINTER_TYPE); TREE_TYPE (t) = to_type; SET_TYPE_MODE (t, mode); TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all; TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type); TYPE_POINTER_TO (to_type) = t; if (TYPE_STRUCTURAL_EQUALITY_P (to_type)) SET_TYPE_STRUCTURAL_EQUALITY (t); else if (TYPE_CANONICAL (to_type) != to_type) TYPE_CANONICAL (t) = build_pointer_type_for_mode (TYPE_CANONICAL (to_type), mode, can_alias_all); /* Lay out the type. This function has many callers that are concerned with expression-construction, and this simplifies them all. */ layout_type (t); return t; } /* By default build pointers in ptr_mode. */ tree build_pointer_type (tree to_type) { addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC : TYPE_ADDR_SPACE (to_type); enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as); return build_pointer_type_for_mode (to_type, pointer_mode, false); } /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */ tree build_reference_type_for_mode (tree to_type, enum machine_mode mode, bool can_alias_all) { tree t; if (to_type == error_mark_node) return error_mark_node; /* If the pointed-to type has the may_alias attribute set, force a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */ if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type))) can_alias_all = true; /* In some cases, languages will have things that aren't a REFERENCE_TYPE (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO. In that case, return that type without regard to the rest of our operands. ??? This is a kludge, but consistent with the way this function has always operated and there doesn't seem to be a good way to avoid this at the moment. */ if (TYPE_REFERENCE_TO (to_type) != 0 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE) return TYPE_REFERENCE_TO (to_type); /* First, if we already have a type for pointers to TO_TYPE and it's the proper mode, use it. */ for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t)) if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all) return t; t = make_node (REFERENCE_TYPE); TREE_TYPE (t) = to_type; SET_TYPE_MODE (t, mode); TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all; TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type); TYPE_REFERENCE_TO (to_type) = t; if (TYPE_STRUCTURAL_EQUALITY_P (to_type)) SET_TYPE_STRUCTURAL_EQUALITY (t); else if (TYPE_CANONICAL (to_type) != to_type) TYPE_CANONICAL (t) = build_reference_type_for_mode (TYPE_CANONICAL (to_type), mode, can_alias_all); layout_type (t); return t; } /* Build the node for the type of references-to-TO_TYPE by default in ptr_mode. */ tree build_reference_type (tree to_type) { addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC : TYPE_ADDR_SPACE (to_type); enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as); return build_reference_type_for_mode (to_type, pointer_mode, false); } /* Build a type that is compatible with t but has no cv quals anywhere in its type, thus const char *const *const * -> char ***. */ tree build_type_no_quals (tree t) { switch (TREE_CODE (t)) { case POINTER_TYPE: return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)), TYPE_MODE (t), TYPE_REF_CAN_ALIAS_ALL (t)); case REFERENCE_TYPE: return build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)), TYPE_MODE (t), TYPE_REF_CAN_ALIAS_ALL (t)); default: return TYPE_MAIN_VARIANT (t); } } #define MAX_INT_CACHED_PREC \ (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64) static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2]; /* Builds a signed or unsigned integer type of precision PRECISION. Used for C bitfields whose precision does not match that of built-in target types. */ tree build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision, int unsignedp) { tree itype, ret; if (unsignedp) unsignedp = MAX_INT_CACHED_PREC + 1; if (precision <= MAX_INT_CACHED_PREC) { itype = nonstandard_integer_type_cache[precision + unsignedp]; if (itype) return itype; } itype = make_node (INTEGER_TYPE); TYPE_PRECISION (itype) = precision; if (unsignedp) fixup_unsigned_type (itype); else fixup_signed_type (itype); ret = itype; if (host_integerp (TYPE_MAX_VALUE (itype), 1)) ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype); if (precision <= MAX_INT_CACHED_PREC) nonstandard_integer_type_cache[precision + unsignedp] = ret; return ret; } /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED is true, reuse such a type that has already been constructed. */ static tree build_range_type_1 (tree type, tree lowval, tree highval, bool shared) { tree itype = make_node (INTEGER_TYPE); hashval_t hashcode = 0; TREE_TYPE (itype) = type; TYPE_MIN_VALUE (itype) = fold_convert (type, lowval); TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL; TYPE_PRECISION (itype) = TYPE_PRECISION (type); SET_TYPE_MODE (itype, TYPE_MODE (type)); TYPE_SIZE (itype) = TYPE_SIZE (type); TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type); TYPE_ALIGN (itype) = TYPE_ALIGN (type); TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type); if (!shared) return itype; if ((TYPE_MIN_VALUE (itype) && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST) || (TYPE_MAX_VALUE (itype) && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST)) { /* Since we cannot reliably merge this type, we need to compare it using structural equality checks. */ SET_TYPE_STRUCTURAL_EQUALITY (itype); return itype; } hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode); hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode); hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode); itype = type_hash_canon (hashcode, itype); return itype; } /* Wrapper around build_range_type_1 with SHARED set to true. */ tree build_range_type (tree type, tree lowval, tree highval) { return build_range_type_1 (type, lowval, highval, true); } /* Wrapper around build_range_type_1 with SHARED set to false. */ tree build_nonshared_range_type (tree type, tree lowval, tree highval) { return build_range_type_1 (type, lowval, highval, false); } /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE. MAXVAL should be the maximum value in the domain (one less than the length of the array). The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT. We don't enforce this limit, that is up to caller (e.g. language front end). The limit exists because the result is a signed type and we don't handle sizes that use more than one HOST_WIDE_INT. */ tree build_index_type (tree maxval) { return build_range_type (sizetype, size_zero_node, maxval); } /* Return true if the debug information for TYPE, a subtype, should be emitted as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the high bound, respectively. Sometimes doing so unnecessarily obfuscates the debug info and doesn't reflect the source code. */ bool subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval) { tree base_type = TREE_TYPE (type), low, high; /* Subrange types have a base type which is an integral type. */ if (!INTEGRAL_TYPE_P (base_type)) return false; /* Get the real bounds of the subtype. */ if (lang_hooks.types.get_subrange_bounds) lang_hooks.types.get_subrange_bounds (type, &low, &high); else { low = TYPE_MIN_VALUE (type); high = TYPE_MAX_VALUE (type); } /* If the type and its base type have the same representation and the same name, then the type is not a subrange but a copy of the base type. */ if ((TREE_CODE (base_type) == INTEGER_TYPE || TREE_CODE (base_type) == BOOLEAN_TYPE) && int_size_in_bytes (type) == int_size_in_bytes (base_type) && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type)) && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))) { tree type_name = TYPE_NAME (type); tree base_type_name = TYPE_NAME (base_type); if (type_name && TREE_CODE (type_name) == TYPE_DECL) type_name = DECL_NAME (type_name); if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL) base_type_name = DECL_NAME (base_type_name); if (type_name == base_type_name) return false; } if (lowval) *lowval = low; if (highval) *highval = high; return true; } /* Construct, lay out and return the type of arrays of elements with ELT_TYPE and number of elements specified by the range of values of INDEX_TYPE. If SHARED is true, reuse such a type that has already been constructed. */ static tree build_array_type_1 (tree elt_type, tree index_type, bool shared) { tree t; if (TREE_CODE (elt_type) == FUNCTION_TYPE) { error ("arrays of functions are not meaningful"); elt_type = integer_type_node; } t = make_node (ARRAY_TYPE); TREE_TYPE (t) = elt_type; TYPE_DOMAIN (t) = index_type; TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type); layout_type (t); /* If the element type is incomplete at this point we get marked for structural equality. Do not record these types in the canonical type hashtable. */ if (TYPE_STRUCTURAL_EQUALITY_P (t)) return t; if (shared) { hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0); if (index_type) hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode); t = type_hash_canon (hashcode, t); } if (TYPE_CANONICAL (t) == t) { if (TYPE_STRUCTURAL_EQUALITY_P (elt_type) || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))) SET_TYPE_STRUCTURAL_EQUALITY (t); else if (TYPE_CANONICAL (elt_type) != elt_type || (index_type && TYPE_CANONICAL (index_type) != index_type)) TYPE_CANONICAL (t) = build_array_type_1 (TYPE_CANONICAL (elt_type), index_type ? TYPE_CANONICAL (index_type) : NULL_TREE, shared); } return t; } /* Wrapper around build_array_type_1 with SHARED set to true. */ tree build_array_type (tree elt_type, tree index_type) { return build_array_type_1 (elt_type, index_type, true); } /* Wrapper around build_array_type_1 with SHARED set to false. */ tree build_nonshared_array_type (tree elt_type, tree index_type) { return build_array_type_1 (elt_type, index_type, false); } /* Return a representation of ELT_TYPE[NELTS], using indices of type sizetype. */ tree build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts) { return build_array_type (elt_type, build_index_type (size_int (nelts - 1))); } /* Recursively examines the array elements of TYPE, until a non-array element type is found. */ tree strip_array_types (tree type) { while (TREE_CODE (type) == ARRAY_TYPE) type = TREE_TYPE (type); return type; } /* Computes the canonical argument types from the argument type list ARGTYPES. Upon return, *ANY_STRUCTURAL_P will be true iff either it was true on entry to this function, or if any of the ARGTYPES are structural. Upon return, *ANY_NONCANONICAL_P will be true iff either it was true on entry to this function, or if any of the ARGTYPES are non-canonical. Returns a canonical argument list, which may be ARGTYPES when the canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is true) or would not differ from ARGTYPES. */ static tree maybe_canonicalize_argtypes(tree argtypes, bool *any_structural_p, bool *any_noncanonical_p) { tree arg; bool any_noncanonical_argtypes_p = false; for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg)) { if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node) /* Fail gracefully by stating that the type is structural. */ *any_structural_p = true; else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg))) *any_structural_p = true; else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg) || TREE_PURPOSE (arg)) /* If the argument has a default argument, we consider it non-canonical even though the type itself is canonical. That way, different variants of function and method types with default arguments will all point to the variant with no defaults as their canonical type. */ any_noncanonical_argtypes_p = true; } if (*any_structural_p) return argtypes; if (any_noncanonical_argtypes_p) { /* Build the canonical list of argument types. */ tree canon_argtypes = NULL_TREE; bool is_void = false; for (arg = argtypes; arg; arg = TREE_CHAIN (arg)) { if (arg == void_list_node) is_void = true; else canon_argtypes = tree_cons (NULL_TREE, TYPE_CANONICAL (TREE_VALUE (arg)), canon_argtypes); } canon_argtypes = nreverse (canon_argtypes); if (is_void) canon_argtypes = chainon (canon_argtypes, void_list_node); /* There is a non-canonical type. */ *any_noncanonical_p = true; return canon_argtypes; } /* The canonical argument types are the same as ARGTYPES. */ return argtypes; } /* Construct, lay out and return the type of functions returning type VALUE_TYPE given arguments of types ARG_TYPES. ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs are data type nodes for the arguments of the function. If such a type has already been constructed, reuse it. */ tree build_function_type (tree value_type, tree arg_types) { tree t; hashval_t hashcode = 0; bool any_structural_p, any_noncanonical_p; tree canon_argtypes; if (TREE_CODE (value_type) == FUNCTION_TYPE) { error ("function return type cannot be function"); value_type = integer_type_node; } /* Make a node of the sort we want. */ t = make_node (FUNCTION_TYPE); TREE_TYPE (t) = value_type; TYPE_ARG_TYPES (t) = arg_types; /* If we already have such a type, use the old one. */ hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode); hashcode = type_hash_list (arg_types, hashcode); t = type_hash_canon (hashcode, t); /* Set up the canonical type. */ any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type); any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type; canon_argtypes = maybe_canonicalize_argtypes (arg_types, &any_structural_p, &any_noncanonical_p); if (any_structural_p) SET_TYPE_STRUCTURAL_EQUALITY (t); else if (any_noncanonical_p) TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type), canon_argtypes); if (!COMPLETE_TYPE_P (t)) layout_type (t); return t; } /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP and the return value if SKIP_RETURN is true. */ static tree build_function_type_skip_args (tree orig_type, bitmap args_to_skip, bool skip_return) { tree new_type = NULL; tree args, new_args = NULL, t; tree new_reversed; int i = 0; for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node; args = TREE_CHAIN (args), i++) if (!args_to_skip || !bitmap_bit_p (args_to_skip, i)) new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args); new_reversed = nreverse (new_args); if (args) { if (new_reversed) TREE_CHAIN (new_args) = void_list_node; else new_reversed = void_list_node; } /* Use copy_node to preserve as much as possible from original type (debug info, attribute lists etc.) Exception is METHOD_TYPEs must have THIS argument. When we are asked to remove it, we need to build new FUNCTION_TYPE instead. */ if (TREE_CODE (orig_type) != METHOD_TYPE || !args_to_skip || !bitmap_bit_p (args_to_skip, 0)) { new_type = build_distinct_type_copy (orig_type); TYPE_ARG_TYPES (new_type) = new_reversed; } else { new_type = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type), new_reversed)); TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type); } if (skip_return) TREE_TYPE (new_type) = void_type_node; /* This is a new type, not a copy of an old type. Need to reassociate variants. We can handle everything except the main variant lazily. */ t = TYPE_MAIN_VARIANT (orig_type); if (t != orig_type) { t = build_function_type_skip_args (t, args_to_skip, skip_return); TYPE_MAIN_VARIANT (new_type) = t; TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t); TYPE_NEXT_VARIANT (t) = new_type; } else { TYPE_MAIN_VARIANT (new_type) = new_type; TYPE_NEXT_VARIANT (new_type) = NULL; } return new_type; } /* Build variant of function decl ORIG_DECL skipping ARGS_TO_SKIP and the return value if SKIP_RETURN is true. Arguments from DECL_ARGUMENTS list can't be removed now, since they are linked by TREE_CHAIN directly. The caller is responsible for eliminating them when they are being duplicated (i.e. copy_arguments_for_versioning). */ tree build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip, bool skip_return) { tree new_decl = copy_node (orig_decl); tree new_type; new_type = TREE_TYPE (orig_decl); if (prototype_p (new_type) || (skip_return && !VOID_TYPE_P (TREE_TYPE (new_type)))) new_type = build_function_type_skip_args (new_type, args_to_skip, skip_return); TREE_TYPE (new_decl) = new_type; /* For declarations setting DECL_VINDEX (i.e. methods) we expect first argument to be THIS pointer. */ if (args_to_skip && bitmap_bit_p (args_to_skip, 0)) DECL_VINDEX (new_decl) = NULL_TREE; /* When signature changes, we need to clear builtin info. */ if (DECL_BUILT_IN (new_decl) && args_to_skip && !bitmap_empty_p (args_to_skip)) { DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN; DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0; } return new_decl; } /* Build a function type. The RETURN_TYPE is the type returned by the function. If VAARGS is set, no void_type_node is appended to the the list. ARGP must be always be terminated be a NULL_TREE. */ static tree build_function_type_list_1 (bool vaargs, tree return_type, va_list argp) { tree t, args, last; t = va_arg (argp, tree); for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree)) args = tree_cons (NULL_TREE, t, args); if (vaargs) { last = args; if (args != NULL_TREE) args = nreverse (args); gcc_assert (last != void_list_node); } else if (args == NULL_TREE) args = void_list_node; else { last = args; args = nreverse (args); TREE_CHAIN (last) = void_list_node; } args = build_function_type (return_type, args); return args; } /* Build a function type. The RETURN_TYPE is the type returned by the function. If additional arguments are provided, they are additional argument types. The list of argument types must always be terminated by NULL_TREE. */ tree build_function_type_list (tree return_type, ...) { tree args; va_list p; va_start (p, return_type); args = build_function_type_list_1 (false, return_type, p); va_end (p); return args; } /* Build a variable argument function type. The RETURN_TYPE is the type returned by the function. If additional arguments are provided, they are additional argument types. The list of argument types must always be terminated by NULL_TREE. */ tree build_varargs_function_type_list (tree return_type, ...) { tree args; va_list p; va_start (p, return_type); args = build_function_type_list_1 (true, return_type, p); va_end (p); return args; } /* Build a function type. RETURN_TYPE is the type returned by the function; VAARGS indicates whether the function takes varargs. The function takes N named arguments, the types of which are provided in ARG_TYPES. */ static tree build_function_type_array_1 (bool vaargs, tree return_type, int n, tree *arg_types) { int i; tree t = vaargs ? NULL_TREE : void_list_node; for (i = n - 1; i >= 0; i--) t = tree_cons (NULL_TREE, arg_types[i], t); return build_function_type (return_type, t); } /* Build a function type. RETURN_TYPE is the type returned by the function. The function takes N named arguments, the types of which are provided in ARG_TYPES. */ tree build_function_type_array (tree return_type, int n, tree *arg_types) { return build_function_type_array_1 (false, return_type, n, arg_types); } /* Build a variable argument function type. RETURN_TYPE is the type returned by the function. The function takes N named arguments, the types of which are provided in ARG_TYPES. */ tree build_varargs_function_type_array (tree return_type, int n, tree *arg_types) { return build_function_type_array_1 (true, return_type, n, arg_types); } /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE) and ARGTYPES (a TREE_LIST) are the return type and arguments types for the method. An implicit additional parameter (of type pointer-to-BASETYPE) is added to the ARGTYPES. */ tree build_method_type_directly (tree basetype, tree rettype, tree argtypes) { tree t; tree ptype; int hashcode = 0; bool any_structural_p, any_noncanonical_p; tree canon_argtypes; /* Make a node of the sort we want. */ t = make_node (METHOD_TYPE); TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype); TREE_TYPE (t) = rettype; ptype = build_pointer_type (basetype); /* The actual arglist for this function includes a "hidden" argument which is "this". Put it into the list of argument types. */ argtypes = tree_cons (NULL_TREE, ptype, argtypes); TYPE_ARG_TYPES (t) = argtypes; /* If we already have such a type, use the old one. */ hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode); hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode); hashcode = type_hash_list (argtypes, hashcode); t = type_hash_canon (hashcode, t); /* Set up the canonical type. */ any_structural_p = (TYPE_STRUCTURAL_EQUALITY_P (basetype) || TYPE_STRUCTURAL_EQUALITY_P (rettype)); any_noncanonical_p = (TYPE_CANONICAL (basetype) != basetype || TYPE_CANONICAL (rettype) != rettype); canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes), &any_structural_p, &any_noncanonical_p); if (any_structural_p) SET_TYPE_STRUCTURAL_EQUALITY (t); else if (any_noncanonical_p) TYPE_CANONICAL (t) = build_method_type_directly (TYPE_CANONICAL (basetype), TYPE_CANONICAL (rettype), canon_argtypes); if (!COMPLETE_TYPE_P (t)) layout_type (t); return t; } /* Construct, lay out and return the type of methods belonging to class BASETYPE and whose arguments and values are described by TYPE. If that type exists already, reuse it. TYPE must be a FUNCTION_TYPE node. */ tree build_method_type (tree basetype, tree type) { gcc_assert (TREE_CODE (type) == FUNCTION_TYPE); return build_method_type_directly (basetype, TREE_TYPE (type), TYPE_ARG_TYPES (type)); } /* Construct, lay out and return the type of offsets to a value of type TYPE, within an object of type BASETYPE. If a suitable offset type exists already, reuse it. */ tree build_offset_type (tree basetype, tree type) { tree t; hashval_t hashcode = 0; /* Make a node of the sort we want. */ t = make_node (OFFSET_TYPE); TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype); TREE_TYPE (t) = type; /* If we already have such a type, use the old one. */ hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode); hashcode = iterative_hash_object (TYPE_HASH (type), hashcode); t = type_hash_canon (hashcode, t); if (!COMPLETE_TYPE_P (t)) layout_type (t); if (TYPE_CANONICAL (t) == t) { if (TYPE_STRUCTURAL_EQUALITY_P (basetype) || TYPE_STRUCTURAL_EQUALITY_P (type)) SET_TYPE_STRUCTURAL_EQUALITY (t); else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype || TYPE_CANONICAL (type) != type) TYPE_CANONICAL (t) = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)), TYPE_CANONICAL (type)); } return t; } /* Create a complex type whose components are COMPONENT_TYPE. */ tree build_complex_type (tree component_type) { tree t; hashval_t hashcode; gcc_assert (INTEGRAL_TYPE_P (component_type) || SCALAR_FLOAT_TYPE_P (component_type) || FIXED_POINT_TYPE_P (component_type)); /* Make a node of the sort we want. */ t = make_node (COMPLEX_TYPE); TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type); /* If we already have such a type, use the old one. */ hashcode = iterative_hash_object (TYPE_HASH (component_type), 0); t = type_hash_canon (hashcode, t); if (!COMPLETE_TYPE_P (t)) layout_type (t); if (TYPE_CANONICAL (t) == t) { if (TYPE_STRUCTURAL_EQUALITY_P (component_type)) SET_TYPE_STRUCTURAL_EQUALITY (t); else if (TYPE_CANONICAL (component_type) != component_type) TYPE_CANONICAL (t) = build_complex_type (TYPE_CANONICAL (component_type)); } /* We need to create a name, since complex is a fundamental type. */ if (! TYPE_NAME (t)) { const char *name; if (component_type == char_type_node) name = "complex char"; else if (component_type == signed_char_type_node) name = "complex signed char"; else if (component_type == unsigned_char_type_node) name = "complex unsigned char"; else if (component_type == short_integer_type_node) name = "complex short int"; else if (component_type == short_unsigned_type_node) name = "complex short unsigned int"; else if (component_type == integer_type_node) name = "complex int"; else if (component_type == unsigned_type_node) name = "complex unsigned int"; else if (component_type == long_integer_type_node) name = "complex long int"; else if (component_type == long_unsigned_type_node) name = "complex long unsigned int"; else if (component_type == long_long_integer_type_node) name = "complex long long int"; else if (component_type == long_long_unsigned_type_node) name = "complex long long unsigned int"; else name = 0; if (name != 0) TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL, get_identifier (name), t); } return build_qualified_type (t, TYPE_QUALS (component_type)); } /* If TYPE is a real or complex floating-point type and the target does not directly support arithmetic on TYPE then return the wider type to be used for arithmetic on TYPE. Otherwise, return NULL_TREE. */ tree excess_precision_type (tree type) { if (flag_excess_precision != EXCESS_PRECISION_FAST) { int flt_eval_method = TARGET_FLT_EVAL_METHOD; switch (TREE_CODE (type)) { case REAL_TYPE: switch (flt_eval_method) { case 1: if (TYPE_MODE (type) == TYPE_MODE (float_type_node)) return double_type_node; break; case 2: if (TYPE_MODE (type) == TYPE_MODE (float_type_node) || TYPE_MODE (type) == TYPE_MODE (double_type_node)) return long_double_type_node; break; default: gcc_unreachable (); } break; case COMPLEX_TYPE: if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE) return NULL_TREE; switch (flt_eval_method) { case 1: if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)) return complex_double_type_node; break; case 2: if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node) || (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (double_type_node))) return complex_long_double_type_node; break; default: gcc_unreachable (); } break; default: break; } } return NULL_TREE; } /* Return OP, stripped of any conversions to wider types as much as is safe. Converting the value back to OP's type makes a value equivalent to OP. If FOR_TYPE is nonzero, we return a value which, if converted to type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE. OP must have integer, real or enumeral type. Pointers are not allowed! There are some cases where the obvious value we could return would regenerate to OP if converted to OP's type, but would not extend like OP to wider types. If FOR_TYPE indicates such extension is contemplated, we eschew such values. For example, if OP is (unsigned short)(signed char)-1, we avoid returning (signed char)-1 if FOR_TYPE is int, even though extending that to an unsigned short would regenerate OP, since the result of extending (signed char)-1 to (int) is different from (int) OP. */ tree get_unwidened (tree op, tree for_type) { /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */ tree type = TREE_TYPE (op); unsigned final_prec = TYPE_PRECISION (for_type != 0 ? for_type : type); int uns = (for_type != 0 && for_type != type && final_prec > TYPE_PRECISION (type) && TYPE_UNSIGNED (type)); tree win = op; while (CONVERT_EXPR_P (op)) { int bitschange; /* TYPE_PRECISION on vector types has different meaning (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions, so avoid them here. */ if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE) break; bitschange = TYPE_PRECISION (TREE_TYPE (op)) - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))); /* Truncations are many-one so cannot be removed. Unless we are later going to truncate down even farther. */ if (bitschange < 0 && final_prec > TYPE_PRECISION (TREE_TYPE (op))) break; /* See what's inside this conversion. If we decide to strip it, we will set WIN. */ op = TREE_OPERAND (op, 0); /* If we have not stripped any zero-extensions (uns is 0), we can strip any kind of extension. If we have previously stripped a zero-extension, only zero-extensions can safely be stripped. Any extension can be stripped if the bits it would produce are all going to be discarded later by truncating to FOR_TYPE. */ if (bitschange > 0) { if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op))) win = op; /* TYPE_UNSIGNED says whether this is a zero-extension. Let's avoid computing it if it does not affect WIN and if UNS will not be needed again. */ if ((uns || CONVERT_EXPR_P (op)) && TYPE_UNSIGNED (TREE_TYPE (op))) { uns = 1; win = op; } } } /* If we finally reach a constant see if it fits in for_type and in that case convert it. */ if (for_type && TREE_CODE (win) == INTEGER_CST && TREE_TYPE (win) != for_type && int_fits_type_p (win, for_type)) win = fold_convert (for_type, win); return win; } /* Return OP or a simpler expression for a narrower value which can be sign-extended or zero-extended to give back OP. Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended or 0 if the value should be sign-extended. */ tree get_narrower (tree op, int *unsignedp_ptr) { int uns = 0; int first = 1; tree win = op; bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op)); while (TREE_CODE (op) == NOP_EXPR) { int bitschange = (TYPE_PRECISION (TREE_TYPE (op)) - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)))); /* Truncations are many-one so cannot be removed. */ if (bitschange < 0) break; /* See what's inside this conversion. If we decide to strip it, we will set WIN. */ if (bitschange > 0) { op = TREE_OPERAND (op, 0); /* An extension: the outermost one can be stripped, but remember whether it is zero or sign extension. */ if (first) uns = TYPE_UNSIGNED (TREE_TYPE (op)); /* Otherwise, if a sign extension has been stripped, only sign extensions can now be stripped; if a zero extension has been stripped, only zero-extensions. */ else if (uns != TYPE_UNSIGNED (TREE_TYPE (op))) break; first = 0; } else /* bitschange == 0 */ { /* A change in nominal type can always be stripped, but we must preserve the unsignedness. */ if (first) uns = TYPE_UNSIGNED (TREE_TYPE (op)); first = 0; op = TREE_OPERAND (op, 0); /* Keep trying to narrow, but don't assign op to win if it would turn an integral type into something else. */ if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p) continue; } win = op; } if (TREE_CODE (op) == COMPONENT_REF /* Since type_for_size always gives an integer type. */ && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE /* Ensure field is laid out already. */ && DECL_SIZE (TREE_OPERAND (op, 1)) != 0 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1)) { unsigned HOST_WIDE_INT innerprec = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1); int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1)) || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1)))); tree type = lang_hooks.types.type_for_size (innerprec, unsignedp); /* We can get this structure field in a narrower type that fits it, but the resulting extension to its nominal type (a fullword type) must satisfy the same conditions as for other extensions. Do this only for fields that are aligned (not bit-fields), because when bit-field insns will be used there is no advantage in doing this. */ if (innerprec < TYPE_PRECISION (TREE_TYPE (op)) && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)) && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1))) && type != 0) { if (first) uns = DECL_UNSIGNED (TREE_OPERAND (op, 1)); win = fold_convert (type, op); } } *unsignedp_ptr = uns; return win; } /* Returns true if integer constant C has a value that is permissible for type TYPE (an INTEGER_TYPE). */ bool int_fits_type_p (const_tree c, const_tree type) { tree type_low_bound, type_high_bound; bool ok_for_low_bound, ok_for_high_bound, unsc; double_int dc, dd; dc = tree_to_double_int (c); unsc = TYPE_UNSIGNED (TREE_TYPE (c)); retry: type_low_bound = TYPE_MIN_VALUE (type); type_high_bound = TYPE_MAX_VALUE (type); /* If at least one bound of the type is a constant integer, we can check ourselves and maybe make a decision. If no such decision is possible, but this type is a subtype, try checking against that. Otherwise, use double_int_fits_to_tree_p, which checks against the precision. Compute the status for each possibly constant bound, and return if we see one does not match. Use ok_for_xxx_bound for this purpose, assigning -1 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1 for "constant known to fit". */ /* Check if c >= type_low_bound. */ if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST) { dd = tree_to_double_int (type_low_bound); if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound))) { int c_neg = (!unsc && dc.is_negative ()); int t_neg = (unsc && dd.is_negative ()); if (c_neg && !t_neg) return false; if ((c_neg || !t_neg) && dc.ult (dd)) return false; } else if (dc.cmp (dd, unsc) < 0) return false; ok_for_low_bound = true; } else ok_for_low_bound = false; /* Check if c <= type_high_bound. */ if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST) { dd = tree_to_double_int (type_high_bound); if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound))) { int c_neg = (!unsc && dc.is_negative ()); int t_neg = (unsc && dd.is_negative ()); if (t_neg && !c_neg) return false; if ((t_neg || !c_neg) && dc.ugt (dd)) return false; } else if (dc.cmp (dd, unsc) > 0) return false; ok_for_high_bound = true; } else ok_for_high_bound = false; /* If the constant fits both bounds, the result is known. */ if (ok_for_low_bound && ok_for_high_bound) return true; /* Perform some generic filtering which may allow making a decision even if the bounds are not constant. First, negative integers never fit in unsigned types, */ if (TYPE_UNSIGNED (type) && !unsc && dc.is_negative ()) return false; /* Second, narrower types always fit in wider ones. */ if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c))) return true; /* Third, unsigned integers with top bit set never fit signed types. */ if (! TYPE_UNSIGNED (type) && unsc) { int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1; if (prec < HOST_BITS_PER_WIDE_INT) { if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0) return false; } else if (((((unsigned HOST_WIDE_INT) 1) << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0) return false; } /* If we haven't been able to decide at this point, there nothing more we can check ourselves here. Look at the base type if we have one and it has the same precision. */ if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type))) { type = TREE_TYPE (type); goto retry; } /* Or to double_int_fits_to_tree_p, if nothing else. */ return double_int_fits_to_tree_p (type, dc); } /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be represented (assuming two's-complement arithmetic) within the bit precision of the type are returned instead. */ void get_type_static_bounds (const_tree type, mpz_t min, mpz_t max) { if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type) && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST) mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)), TYPE_UNSIGNED (type)); else { if (TYPE_UNSIGNED (type)) mpz_set_ui (min, 0); else { double_int mn; mn = double_int::mask (TYPE_PRECISION (type) - 1); mn = (mn + double_int_one).sext (TYPE_PRECISION (type)); mpz_set_double_int (min, mn, false); } } if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type) && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST) mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)), TYPE_UNSIGNED (type)); else { if (TYPE_UNSIGNED (type)) mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)), true); else mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type) - 1), true); } } /* Return true if VAR is an automatic variable defined in function FN. */ bool auto_var_in_fn_p (const_tree var, const_tree fn) { return (DECL_P (var) && DECL_CONTEXT (var) == fn && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var)) || TREE_CODE (var) == PARM_DECL) && ! TREE_STATIC (var)) || TREE_CODE (var) == LABEL_DECL || TREE_CODE (var) == RESULT_DECL)); } /* Subprogram of following function. Called by walk_tree. Return *TP if it is an automatic variable or parameter of the function passed in as DATA. */ static tree find_var_from_fn (tree *tp, int *walk_subtrees, void *data) { tree fn = (tree) data; if (TYPE_P (*tp)) *walk_subtrees = 0; else if (DECL_P (*tp) && auto_var_in_fn_p (*tp, fn)) return *tp; return NULL_TREE; } /* Returns true if T is, contains, or refers to a type with variable size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the arguments, but not the return type. If FN is nonzero, only return true if a modifier of the type or position of FN is a variable or parameter inside FN. This concept is more general than that of C99 'variably modified types': in C99, a struct type is never variably modified because a VLA may not appear as a structure member. However, in GNU C code like: struct S { int i[f()]; }; is valid, and other languages may define similar constructs. */ bool variably_modified_type_p (tree type, tree fn) { tree t; /* Test if T is either variable (if FN is zero) or an expression containing a variable in FN. */ #define RETURN_TRUE_IF_VAR(T) \ do { tree _t = (T); \ if (_t != NULL_TREE \ && _t != error_mark_node \ && TREE_CODE (_t) != INTEGER_CST \ && TREE_CODE (_t) != PLACEHOLDER_EXPR \ && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \ return true; } while (0) if (type == error_mark_node) return false; /* If TYPE itself has variable size, it is variably modified. */ RETURN_TRUE_IF_VAR (TYPE_SIZE (type)); RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type)); switch (TREE_CODE (type)) { case POINTER_TYPE: case REFERENCE_TYPE: case VECTOR_TYPE: if (variably_modified_type_p (TREE_TYPE (type), fn)) return true; break; case FUNCTION_TYPE: case METHOD_TYPE: /* If TYPE is a function type, it is variably modified if the return type is variably modified. */ if (variably_modified_type_p (TREE_TYPE (type), fn)) return true; break; case INTEGER_TYPE: case REAL_TYPE: case FIXED_POINT_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: /* Scalar types are variably modified if their end points aren't constant. */ RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type)); RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type)); break; case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: /* We can't see if any of the fields are variably-modified by the definition we normally use, since that would produce infinite recursion via pointers. */ /* This is variably modified if some field's type is. */ for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t)) if (TREE_CODE (t) == FIELD_DECL) { RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t)); RETURN_TRUE_IF_VAR (DECL_SIZE (t)); RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t)); if (TREE_CODE (type) == QUAL_UNION_TYPE) RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t)); } break; case ARRAY_TYPE: /* Do not call ourselves to avoid infinite recursion. This is variably modified if the element type is. */ RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type))); RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type))); break; default: break; } /* The current language may have other cases to check, but in general, all other types are not variably modified. */ return lang_hooks.tree_inlining.var_mod_type_p (type, fn); #undef RETURN_TRUE_IF_VAR } /* Given a DECL or TYPE, return the scope in which it was declared, or NULL_TREE if there is no containing scope. */ tree get_containing_scope (const_tree t) { return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t)); } /* Return the innermost context enclosing DECL that is a FUNCTION_DECL, or zero if none. */ tree decl_function_context (const_tree decl) { tree context; if (TREE_CODE (decl) == ERROR_MARK) return 0; /* C++ virtual functions use DECL_CONTEXT for the class of the vtable where we look up the function at runtime. Such functions always take a first argument of type 'pointer to real context'. C++ should really be fixed to use DECL_CONTEXT for the real context, and use something else for the "virtual context". */ else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl)) context = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))))); else context = DECL_CONTEXT (decl); while (context && TREE_CODE (context) != FUNCTION_DECL) { if (TREE_CODE (context) == BLOCK) context = BLOCK_SUPERCONTEXT (context); else context = get_containing_scope (context); } return context; } /* Return the innermost context enclosing DECL that is a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none. TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */ tree decl_type_context (const_tree decl) { tree context = DECL_CONTEXT (decl); while (context) switch (TREE_CODE (context)) { case NAMESPACE_DECL: case TRANSLATION_UNIT_DECL: return NULL_TREE; case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: return context; case TYPE_DECL: case FUNCTION_DECL: context = DECL_CONTEXT (context); break; case BLOCK: context = BLOCK_SUPERCONTEXT (context); break; default: gcc_unreachable (); } return NULL_TREE; } /* CALL is a CALL_EXPR. Return the declaration for the function called, or NULL_TREE if the called function cannot be determined. */ tree get_callee_fndecl (const_tree call) { tree addr; if (call == error_mark_node) return error_mark_node; /* It's invalid to call this function with anything but a CALL_EXPR. */ gcc_assert (TREE_CODE (call) == CALL_EXPR); /* The first operand to the CALL is the address of the function called. */ addr = CALL_EXPR_FN (call); STRIP_NOPS (addr); /* If this is a readonly function pointer, extract its initial value. */ if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr) && DECL_INITIAL (addr)) addr = DECL_INITIAL (addr); /* If the address is just `&f' for some function `f', then we know that `f' is being called. */ if (TREE_CODE (addr) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL) return TREE_OPERAND (addr, 0); /* We couldn't figure out what was being called. */ return NULL_TREE; } /* Print debugging information about tree nodes generated during the compile, and any language-specific information. */ void dump_tree_statistics (void) { if (GATHER_STATISTICS) { int i; int total_nodes, total_bytes; fprintf (stderr, "Kind Nodes Bytes\n"); fprintf (stderr, "---------------------------------------\n"); total_nodes = total_bytes = 0; for (i = 0; i < (int) all_kinds; i++) { fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i], tree_node_counts[i], tree_node_sizes[i]); total_nodes += tree_node_counts[i]; total_bytes += tree_node_sizes[i]; } fprintf (stderr, "---------------------------------------\n"); fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes); fprintf (stderr, "---------------------------------------\n"); fprintf (stderr, "Code Nodes\n"); fprintf (stderr, "----------------------------\n"); for (i = 0; i < (int) MAX_TREE_CODES; i++) fprintf (stderr, "%-20s %7d\n", tree_code_name[i], tree_code_counts[i]); fprintf (stderr, "----------------------------\n"); ssanames_print_statistics (); phinodes_print_statistics (); } else fprintf (stderr, "(No per-node statistics)\n"); print_type_hash_statistics (); print_debug_expr_statistics (); print_value_expr_statistics (); lang_hooks.print_statistics (); } #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s" /* Generate a crc32 of a byte. */ static unsigned crc32_unsigned_bits (unsigned chksum, unsigned value, unsigned bits) { unsigned ix; for (ix = bits; ix--; value <<= 1) { unsigned feedback; feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0; chksum <<= 1; chksum ^= feedback; } return chksum; } /* Generate a crc32 of a 32-bit unsigned. */ unsigned crc32_unsigned (unsigned chksum, unsigned value) { return crc32_unsigned_bits (chksum, value, 32); } /* Generate a crc32 of a byte. */ unsigned crc32_byte (unsigned chksum, char byte) { return crc32_unsigned_bits (chksum, (unsigned) byte << 24, 8); } /* Generate a crc32 of a string. */ unsigned crc32_string (unsigned chksum, const char *string) { do { chksum = crc32_byte (chksum, *string); } while (*string++); return chksum; } /* P is a string that will be used in a symbol. Mask out any characters that are not valid in that context. */ void clean_symbol_name (char *p) { for (; *p; p++) if (! (ISALNUM (*p) #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */ || *p == '$' #endif #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */ || *p == '.' #endif )) *p = '_'; } /* Generate a name for a special-purpose function. The generated name may need to be unique across the whole link. Changes to this function may also require corresponding changes to xstrdup_mask_random. TYPE is some string to identify the purpose of this function to the linker or collect2; it must start with an uppercase letter, one of: I - for constructors D - for destructors N - for C++ anonymous namespaces F - for DWARF unwind frame information. */ tree get_file_function_name (const char *type) { char *buf; const char *p; char *q; /* If we already have a name we know to be unique, just use that. */ if (first_global_object_name) p = q = ASTRDUP (first_global_object_name); /* If the target is handling the constructors/destructors, they will be local to this file and the name is only necessary for debugging purposes. We also assign sub_I and sub_D sufixes to constructors called from the global static constructors. These are always local. */ else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors) || (strncmp (type, "sub_", 4) == 0 && (type[4] == 'I' || type[4] == 'D'))) { const char *file = main_input_filename; if (! file) file = input_filename; /* Just use the file's basename, because the full pathname might be quite long. */ p = q = ASTRDUP (lbasename (file)); } else { /* Otherwise, the name must be unique across the entire link. We don't have anything that we know to be unique to this translation unit, so use what we do have and throw in some randomness. */ unsigned len; const char *name = weak_global_object_name; const char *file = main_input_filename; if (! name) name = ""; if (! file) file = input_filename; len = strlen (file); q = (char *) alloca (9 + 17 + len + 1); memcpy (q, file, len + 1); snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX, crc32_string (0, name), get_random_seed (false)); p = q; } clean_symbol_name (q); buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type)); /* Set up the name of the file-level functions we may need. Use a global object (which is already required to be unique over the program) rather than the file name (which imposes extra constraints). */ sprintf (buf, FILE_FUNCTION_FORMAT, type, p); return get_identifier (buf); } #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007) /* Complain that the tree code of NODE does not match the expected 0 terminated list of trailing codes. The trailing code list can be empty, for a more vague error message. FILE, LINE, and FUNCTION are of the caller. */ void tree_check_failed (const_tree node, const char *file, int line, const char *function, ...) { va_list args; const char *buffer; unsigned length = 0; int code; va_start (args, function); while ((code = va_arg (args, int))) length += 4 + strlen (tree_code_name[code]); va_end (args); if (length) { char *tmp; va_start (args, function); length += strlen ("expected "); buffer = tmp = (char *) alloca (length); length = 0; while ((code = va_arg (args, int))) { const char *prefix = length ? " or " : "expected "; strcpy (tmp + length, prefix); length += strlen (prefix); strcpy (tmp + length, tree_code_name[code]); length += strlen (tree_code_name[code]); } va_end (args); } else buffer = "unexpected node"; internal_error ("tree check: %s, have %s in %s, at %s:%d", buffer, tree_code_name[TREE_CODE (node)], function, trim_filename (file), line); } /* Complain that the tree code of NODE does match the expected 0 terminated list of trailing codes. FILE, LINE, and FUNCTION are of the caller. */ void tree_not_check_failed (const_tree node, const char *file, int line, const char *function, ...) { va_list args; char *buffer; unsigned length = 0; int code; va_start (args, function); while ((code = va_arg (args, int))) length += 4 + strlen (tree_code_name[code]); va_end (args); va_start (args, function); buffer = (char *) alloca (length); length = 0; while ((code = va_arg (args, int))) { if (length) { strcpy (buffer + length, " or "); length += 4; } strcpy (buffer + length, tree_code_name[code]); length += strlen (tree_code_name[code]); } va_end (args); internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d", buffer, tree_code_name[TREE_CODE (node)], function, trim_filename (file), line); } /* Similar to tree_check_failed, except that we check for a class of tree code, given in CL. */ void tree_class_check_failed (const_tree node, const enum tree_code_class cl, const char *file, int line, const char *function) { internal_error ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d", TREE_CODE_CLASS_STRING (cl), TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))), tree_code_name[TREE_CODE (node)], function, trim_filename (file), line); } /* Similar to tree_check_failed, except that instead of specifying a dozen codes, use the knowledge that they're all sequential. */ void tree_range_check_failed (const_tree node, const char *file, int line, const char *function, enum tree_code c1, enum tree_code c2) { char *buffer; unsigned length = 0; unsigned int c; for (c = c1; c <= c2; ++c) length += 4 + strlen (tree_code_name[c]); length += strlen ("expected "); buffer = (char *) alloca (length); length = 0; for (c = c1; c <= c2; ++c) { const char *prefix = length ? " or " : "expected "; strcpy (buffer + length, prefix); length += strlen (prefix); strcpy (buffer + length, tree_code_name[c]); length += strlen (tree_code_name[c]); } internal_error ("tree check: %s, have %s in %s, at %s:%d", buffer, tree_code_name[TREE_CODE (node)], function, trim_filename (file), line); } /* Similar to tree_check_failed, except that we check that a tree does not have the specified code, given in CL. */ void tree_not_class_check_failed (const_tree node, const enum tree_code_class cl, const char *file, int line, const char *function) { internal_error ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d", TREE_CODE_CLASS_STRING (cl), TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))), tree_code_name[TREE_CODE (node)], function, trim_filename (file), line); } /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */ void omp_clause_check_failed (const_tree node, const char *file, int line, const char *function, enum omp_clause_code code) { internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d", omp_clause_code_name[code], tree_code_name[TREE_CODE (node)], function, trim_filename (file), line); } /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */ void omp_clause_range_check_failed (const_tree node, const char *file, int line, const char *function, enum omp_clause_code c1, enum omp_clause_code c2) { char *buffer; unsigned length = 0; unsigned int c; for (c = c1; c <= c2; ++c) length += 4 + strlen (omp_clause_code_name[c]); length += strlen ("expected "); buffer = (char *) alloca (length); length = 0; for (c = c1; c <= c2; ++c) { const char *prefix = length ? " or " : "expected "; strcpy (buffer + length, prefix); length += strlen (prefix); strcpy (buffer + length, omp_clause_code_name[c]); length += strlen (omp_clause_code_name[c]); } internal_error ("tree check: %s, have %s in %s, at %s:%d", buffer, omp_clause_code_name[TREE_CODE (node)], function, trim_filename (file), line); } #undef DEFTREESTRUCT #define DEFTREESTRUCT(VAL, NAME) NAME, static const char *ts_enum_names[] = { #include "treestruct.def" }; #undef DEFTREESTRUCT #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)]) /* Similar to tree_class_check_failed, except that we check for whether CODE contains the tree structure identified by EN. */ void tree_contains_struct_check_failed (const_tree node, const enum tree_node_structure_enum en, const char *file, int line, const char *function) { internal_error ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d", TS_ENUM_NAME(en), tree_code_name[TREE_CODE (node)], function, trim_filename (file), line); } /* Similar to above, except that the check is for the bounds of a TREE_VEC's (dynamically sized) vector. */ void tree_vec_elt_check_failed (int idx, int len, const char *file, int line, const char *function) { internal_error ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d", idx + 1, len, function, trim_filename (file), line); } /* Similar to above, except that the check is for the bounds of the operand vector of an expression node EXP. */ void tree_operand_check_failed (int idx, const_tree exp, const char *file, int line, const char *function) { int code = TREE_CODE (exp); internal_error ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d", idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp), function, trim_filename (file), line); } /* Similar to above, except that the check is for the number of operands of an OMP_CLAUSE node. */ void omp_clause_operand_check_failed (int idx, const_tree t, const char *file, int line, const char *function) { internal_error ("tree check: accessed operand %d of omp_clause %s with %d operands " "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)], omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function, trim_filename (file), line); } #endif /* ENABLE_TREE_CHECKING */ /* Create a new vector type node holding SUBPARTS units of type INNERTYPE, and mapped to the machine mode MODE. Initialize its fields and build the information necessary for debugging output. */ static tree make_vector_type (tree innertype, int nunits, enum machine_mode mode) { tree t; hashval_t hashcode = 0; t = make_node (VECTOR_TYPE); TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype); SET_TYPE_VECTOR_SUBPARTS (t, nunits); SET_TYPE_MODE (t, mode); if (TYPE_STRUCTURAL_EQUALITY_P (innertype)) SET_TYPE_STRUCTURAL_EQUALITY (t); else if (TYPE_CANONICAL (innertype) != innertype || mode != VOIDmode) TYPE_CANONICAL (t) = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode); layout_type (t); hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode); hashcode = iterative_hash_host_wide_int (nunits, hashcode); hashcode = iterative_hash_host_wide_int (mode, hashcode); hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode); t = type_hash_canon (hashcode, t); /* We have built a main variant, based on the main variant of the inner type. Use it to build the variant we return. */ if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype)) && TREE_TYPE (t) != innertype) return build_type_attribute_qual_variant (t, TYPE_ATTRIBUTES (innertype), TYPE_QUALS (innertype)); return t; } static tree make_or_reuse_type (unsigned size, int unsignedp) { if (size == INT_TYPE_SIZE) return unsignedp ? unsigned_type_node : integer_type_node; if (size == CHAR_TYPE_SIZE) return unsignedp ? unsigned_char_type_node : signed_char_type_node; if (size == SHORT_TYPE_SIZE) return unsignedp ? short_unsigned_type_node : short_integer_type_node; if (size == LONG_TYPE_SIZE) return unsignedp ? long_unsigned_type_node : long_integer_type_node; if (size == LONG_LONG_TYPE_SIZE) return (unsignedp ? long_long_unsigned_type_node : long_long_integer_type_node); if (size == 128 && int128_integer_type_node) return (unsignedp ? int128_unsigned_type_node : int128_integer_type_node); if (unsignedp) return make_unsigned_type (size); else return make_signed_type (size); } /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */ static tree make_or_reuse_fract_type (unsigned size, int unsignedp, int satp) { if (satp) { if (size == SHORT_FRACT_TYPE_SIZE) return unsignedp ? sat_unsigned_short_fract_type_node : sat_short_fract_type_node; if (size == FRACT_TYPE_SIZE) return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node; if (size == LONG_FRACT_TYPE_SIZE) return unsignedp ? sat_unsigned_long_fract_type_node : sat_long_fract_type_node; if (size == LONG_LONG_FRACT_TYPE_SIZE) return unsignedp ? sat_unsigned_long_long_fract_type_node : sat_long_long_fract_type_node; } else { if (size == SHORT_FRACT_TYPE_SIZE) return unsignedp ? unsigned_short_fract_type_node : short_fract_type_node; if (size == FRACT_TYPE_SIZE) return unsignedp ? unsigned_fract_type_node : fract_type_node; if (size == LONG_FRACT_TYPE_SIZE) return unsignedp ? unsigned_long_fract_type_node : long_fract_type_node; if (size == LONG_LONG_FRACT_TYPE_SIZE) return unsignedp ? unsigned_long_long_fract_type_node : long_long_fract_type_node; } return make_fract_type (size, unsignedp, satp); } /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */ static tree make_or_reuse_accum_type (unsigned size, int unsignedp, int satp) { if (satp) { if (size == SHORT_ACCUM_TYPE_SIZE) return unsignedp ? sat_unsigned_short_accum_type_node : sat_short_accum_type_node; if (size == ACCUM_TYPE_SIZE) return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node; if (size == LONG_ACCUM_TYPE_SIZE) return unsignedp ? sat_unsigned_long_accum_type_node : sat_long_accum_type_node; if (size == LONG_LONG_ACCUM_TYPE_SIZE) return unsignedp ? sat_unsigned_long_long_accum_type_node : sat_long_long_accum_type_node; } else { if (size == SHORT_ACCUM_TYPE_SIZE) return unsignedp ? unsigned_short_accum_type_node : short_accum_type_node; if (size == ACCUM_TYPE_SIZE) return unsignedp ? unsigned_accum_type_node : accum_type_node; if (size == LONG_ACCUM_TYPE_SIZE) return unsignedp ? unsigned_long_accum_type_node : long_accum_type_node; if (size == LONG_LONG_ACCUM_TYPE_SIZE) return unsignedp ? unsigned_long_long_accum_type_node : long_long_accum_type_node; } return make_accum_type (size, unsignedp, satp); } /* Create nodes for all integer types (and error_mark_node) using the sizes of C datatypes. SIGNED_CHAR specifies whether char is signed, SHORT_DOUBLE specifies whether double should be of the same precision as float. */ void build_common_tree_nodes (bool signed_char, bool short_double) { error_mark_node = make_node (ERROR_MARK); TREE_TYPE (error_mark_node) = error_mark_node; initialize_sizetypes (); /* Define both `signed char' and `unsigned char'. */ signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE); TYPE_STRING_FLAG (signed_char_type_node) = 1; unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE); TYPE_STRING_FLAG (unsigned_char_type_node) = 1; /* Define `char', which is like either `signed char' or `unsigned char' but not the same as either. */ char_type_node = (signed_char ? make_signed_type (CHAR_TYPE_SIZE) : make_unsigned_type (CHAR_TYPE_SIZE)); TYPE_STRING_FLAG (char_type_node) = 1; short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE); short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE); integer_type_node = make_signed_type (INT_TYPE_SIZE); unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE); long_integer_type_node = make_signed_type (LONG_TYPE_SIZE); long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE); long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE); long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE); #if HOST_BITS_PER_WIDE_INT >= 64 /* TODO: This isn't correct, but as logic depends at the moment on host's instead of target's wide-integer. If there is a target not supporting TImode, but has an 128-bit integer-scalar register, this target check needs to be adjusted. */ if (targetm.scalar_mode_supported_p (TImode)) { int128_integer_type_node = make_signed_type (128); int128_unsigned_type_node = make_unsigned_type (128); } #endif /* Define a boolean type. This type only represents boolean values but may be larger than char depending on the value of BOOL_TYPE_SIZE. Front ends which want to override this size (i.e. Java) can redefine boolean_type_node before calling build_common_tree_nodes_2. */ boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE); TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE); TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1); TYPE_PRECISION (boolean_type_node) = 1; /* Define what type to use for size_t. */ if (strcmp (SIZE_TYPE, "unsigned int") == 0) size_type_node = unsigned_type_node; else if (strcmp (SIZE_TYPE, "long unsigned int") == 0) size_type_node = long_unsigned_type_node; else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0) size_type_node = long_long_unsigned_type_node; else if (strcmp (SIZE_TYPE, "short unsigned int") == 0) size_type_node = short_unsigned_type_node; else gcc_unreachable (); /* Fill in the rest of the sized types. Reuse existing type nodes when possible. */ intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0); intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0); intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0); intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0); intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0); unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1); unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1); unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1); unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1); unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1); access_public_node = get_identifier ("public"); access_protected_node = get_identifier ("protected"); access_private_node = get_identifier ("private"); /* Define these next since types below may used them. */ integer_zero_node = build_int_cst (integer_type_node, 0); integer_one_node = build_int_cst (integer_type_node, 1); integer_three_node = build_int_cst (integer_type_node, 3); integer_minus_one_node = build_int_cst (integer_type_node, -1); size_zero_node = size_int (0); size_one_node = size_int (1); bitsize_zero_node = bitsize_int (0); bitsize_one_node = bitsize_int (1); bitsize_unit_node = bitsize_int (BITS_PER_UNIT); boolean_false_node = TYPE_MIN_VALUE (boolean_type_node); boolean_true_node = TYPE_MAX_VALUE (boolean_type_node); void_type_node = make_node (VOID_TYPE); layout_type (void_type_node); /* We are not going to have real types in C with less than byte alignment, so we might as well not have any types that claim to have it. */ TYPE_ALIGN (void_type_node) = BITS_PER_UNIT; TYPE_USER_ALIGN (void_type_node) = 0; null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0); layout_type (TREE_TYPE (null_pointer_node)); ptr_type_node = build_pointer_type (void_type_node); const_ptr_type_node = build_pointer_type (build_type_variant (void_type_node, 1, 0)); fileptr_type_node = ptr_type_node; float_type_node = make_node (REAL_TYPE); TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE; layout_type (float_type_node); double_type_node = make_node (REAL_TYPE); if (short_double) TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE; else TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE; layout_type (double_type_node); long_double_type_node = make_node (REAL_TYPE); TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE; layout_type (long_double_type_node); float_ptr_type_node = build_pointer_type (float_type_node); double_ptr_type_node = build_pointer_type (double_type_node); long_double_ptr_type_node = build_pointer_type (long_double_type_node); integer_ptr_type_node = build_pointer_type (integer_type_node); /* Fixed size integer types. */ uint16_type_node = build_nonstandard_integer_type (16, true); uint32_type_node = build_nonstandard_integer_type (32, true); uint64_type_node = build_nonstandard_integer_type (64, true); /* Decimal float types. */ dfloat32_type_node = make_node (REAL_TYPE); TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE; layout_type (dfloat32_type_node); SET_TYPE_MODE (dfloat32_type_node, SDmode); dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node); dfloat64_type_node = make_node (REAL_TYPE); TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE; layout_type (dfloat64_type_node); SET_TYPE_MODE (dfloat64_type_node, DDmode); dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node); dfloat128_type_node = make_node (REAL_TYPE); TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE; layout_type (dfloat128_type_node); SET_TYPE_MODE (dfloat128_type_node, TDmode); dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node); complex_integer_type_node = build_complex_type (integer_type_node); complex_float_type_node = build_complex_type (float_type_node); complex_double_type_node = build_complex_type (double_type_node); complex_long_double_type_node = build_complex_type (long_double_type_node); /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */ #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \ sat_ ## KIND ## _type_node = \ make_sat_signed_ ## KIND ## _type (SIZE); \ sat_unsigned_ ## KIND ## _type_node = \ make_sat_unsigned_ ## KIND ## _type (SIZE); \ KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \ unsigned_ ## KIND ## _type_node = \ make_unsigned_ ## KIND ## _type (SIZE); #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \ sat_ ## WIDTH ## KIND ## _type_node = \ make_sat_signed_ ## KIND ## _type (SIZE); \ sat_unsigned_ ## WIDTH ## KIND ## _type_node = \ make_sat_unsigned_ ## KIND ## _type (SIZE); \ WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \ unsigned_ ## WIDTH ## KIND ## _type_node = \ make_unsigned_ ## KIND ## _type (SIZE); /* Make fixed-point type nodes based on four different widths. */ #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \ MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \ MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \ MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \ MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE) /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */ #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \ NAME ## _type_node = \ make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \ u ## NAME ## _type_node = \ make_or_reuse_unsigned_ ## KIND ## _type \ (GET_MODE_BITSIZE (U ## MODE ## mode)); \ sat_ ## NAME ## _type_node = \ make_or_reuse_sat_signed_ ## KIND ## _type \ (GET_MODE_BITSIZE (MODE ## mode)); \ sat_u ## NAME ## _type_node = \ make_or_reuse_sat_unsigned_ ## KIND ## _type \ (GET_MODE_BITSIZE (U ## MODE ## mode)); /* Fixed-point type and mode nodes. */ MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT) MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM) MAKE_FIXED_MODE_NODE (fract, qq, QQ) MAKE_FIXED_MODE_NODE (fract, hq, HQ) MAKE_FIXED_MODE_NODE (fract, sq, SQ) MAKE_FIXED_MODE_NODE (fract, dq, DQ) MAKE_FIXED_MODE_NODE (fract, tq, TQ) MAKE_FIXED_MODE_NODE (accum, ha, HA) MAKE_FIXED_MODE_NODE (accum, sa, SA) MAKE_FIXED_MODE_NODE (accum, da, DA) MAKE_FIXED_MODE_NODE (accum, ta, TA) { tree t = targetm.build_builtin_va_list (); /* Many back-ends define record types without setting TYPE_NAME. If we copied the record type here, we'd keep the original record type without a name. This breaks name mangling. So, don't copy record types and let c_common_nodes_and_builtins() declare the type to be __builtin_va_list. */ if (TREE_CODE (t) != RECORD_TYPE) t = build_variant_type_copy (t); va_list_type_node = t; } } /* A subroutine of build_common_builtin_nodes. Define a builtin function. */ static void local_define_builtin (const char *name, tree type, enum built_in_function code, const char *library_name, int ecf_flags) { tree decl; decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL, library_name, NULL_TREE); if (ecf_flags & ECF_CONST) TREE_READONLY (decl) = 1; if (ecf_flags & ECF_PURE) DECL_PURE_P (decl) = 1; if (ecf_flags & ECF_LOOPING_CONST_OR_PURE) DECL_LOOPING_CONST_OR_PURE_P (decl) = 1; if (ecf_flags & ECF_NORETURN) TREE_THIS_VOLATILE (decl) = 1; if (ecf_flags & ECF_NOTHROW) TREE_NOTHROW (decl) = 1; if (ecf_flags & ECF_MALLOC) DECL_IS_MALLOC (decl) = 1; if (ecf_flags & ECF_LEAF) DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"), NULL, DECL_ATTRIBUTES (decl)); if ((ecf_flags & ECF_TM_PURE) && flag_tm) apply_tm_attr (decl, get_identifier ("transaction_pure")); set_builtin_decl (code, decl, true); } /* Call this function after instantiating all builtins that the language front end cares about. This will build the rest of the builtins that are relied upon by the tree optimizers and the middle-end. */ void build_common_builtin_nodes (void) { tree tmp, ftype; int ecf_flags; if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY) || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE)) { ftype = build_function_type_list (ptr_type_node, ptr_type_node, const_ptr_type_node, size_type_node, NULL_TREE); if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)) local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY, "memcpy", ECF_NOTHROW | ECF_LEAF); if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE)) local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE, "memmove", ECF_NOTHROW | ECF_LEAF); } if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP)) { ftype = build_function_type_list (integer_type_node, const_ptr_type_node, const_ptr_type_node, size_type_node, NULL_TREE); local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP, "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF); } if (!builtin_decl_explicit_p (BUILT_IN_MEMSET)) { ftype = build_function_type_list (ptr_type_node, ptr_type_node, integer_type_node, size_type_node, NULL_TREE); local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET, "memset", ECF_NOTHROW | ECF_LEAF); } if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA)) { ftype = build_function_type_list (ptr_type_node, size_type_node, NULL_TREE); local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA, "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF); } ftype = build_function_type_list (ptr_type_node, size_type_node, size_type_node, NULL_TREE); local_define_builtin ("__builtin_alloca_with_align", ftype, BUILT_IN_ALLOCA_WITH_ALIGN, "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF); /* If we're checking the stack, `alloca' can throw. */ if (flag_stack_check) { TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0; TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0; } ftype = build_function_type_list (void_type_node, ptr_type_node, ptr_type_node, ptr_type_node, NULL_TREE); local_define_builtin ("__builtin_init_trampoline", ftype, BUILT_IN_INIT_TRAMPOLINE, "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF); local_define_builtin ("__builtin_init_heap_trampoline", ftype, BUILT_IN_INIT_HEAP_TRAMPOLINE, "__builtin_init_heap_trampoline", ECF_NOTHROW | ECF_LEAF); ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE); local_define_builtin ("__builtin_adjust_trampoline", ftype, BUILT_IN_ADJUST_TRAMPOLINE, "__builtin_adjust_trampoline", ECF_CONST | ECF_NOTHROW); ftype = build_function_type_list (void_type_node, ptr_type_node, ptr_type_node, NULL_TREE); local_define_builtin ("__builtin_nonlocal_goto", ftype, BUILT_IN_NONLOCAL_GOTO, "__builtin_nonlocal_goto", ECF_NORETURN | ECF_NOTHROW); ftype = build_function_type_list (void_type_node, ptr_type_node, ptr_type_node, NULL_TREE); local_define_builtin ("__builtin_setjmp_setup", ftype, BUILT_IN_SETJMP_SETUP, "__builtin_setjmp_setup", ECF_NOTHROW); ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE); local_define_builtin ("__builtin_setjmp_dispatcher", ftype, BUILT_IN_SETJMP_DISPATCHER, "__builtin_setjmp_dispatcher", ECF_PURE | ECF_NOTHROW); ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); local_define_builtin ("__builtin_setjmp_receiver", ftype, BUILT_IN_SETJMP_RECEIVER, "__builtin_setjmp_receiver", ECF_NOTHROW); ftype = build_function_type_list (ptr_type_node, NULL_TREE); local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE, "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF); ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); local_define_builtin ("__builtin_stack_restore", ftype, BUILT_IN_STACK_RESTORE, "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF); /* If there's a possibility that we might use the ARM EABI, build the alternate __cxa_end_cleanup node used to resume from C++ and Java. */ if (targetm.arm_eabi_unwinder) { ftype = build_function_type_list (void_type_node, NULL_TREE); local_define_builtin ("__builtin_cxa_end_cleanup", ftype, BUILT_IN_CXA_END_CLEANUP, "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF); } ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); local_define_builtin ("__builtin_unwind_resume", ftype, BUILT_IN_UNWIND_RESUME, ((targetm_common.except_unwind_info (&global_options) == UI_SJLJ) ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"), ECF_NORETURN); if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE) { ftype = build_function_type_list (ptr_type_node, integer_type_node, NULL_TREE); local_define_builtin ("__builtin_return_address", ftype, BUILT_IN_RETURN_ADDRESS, "__builtin_return_address", ECF_NOTHROW); } if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER) || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT)) { ftype = build_function_type_list (void_type_node, ptr_type_node, ptr_type_node, NULL_TREE); if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)) local_define_builtin ("__cyg_profile_func_enter", ftype, BUILT_IN_PROFILE_FUNC_ENTER, "__cyg_profile_func_enter", 0); if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT)) local_define_builtin ("__cyg_profile_func_exit", ftype, BUILT_IN_PROFILE_FUNC_EXIT, "__cyg_profile_func_exit", 0); } /* The exception object and filter values from the runtime. The argument must be zero before exception lowering, i.e. from the front end. After exception lowering, it will be the region number for the exception landing pad. These functions are PURE instead of CONST to prevent them from being hoisted past the exception edge that will initialize its value in the landing pad. */ ftype = build_function_type_list (ptr_type_node, integer_type_node, NULL_TREE); ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF; /* Only use TM_PURE if we we have TM language support. */ if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1)) ecf_flags |= ECF_TM_PURE; local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER, "__builtin_eh_pointer", ecf_flags); tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0); ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE); local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER, "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF); ftype = build_function_type_list (void_type_node, integer_type_node, integer_type_node, NULL_TREE); local_define_builtin ("__builtin_eh_copy_values", ftype, BUILT_IN_EH_COPY_VALUES, "__builtin_eh_copy_values", ECF_NOTHROW); /* Complex multiplication and division. These are handled as builtins rather than optabs because emit_library_call_value doesn't support complex. Further, we can do slightly better with folding these beasties if the real and complex parts of the arguments are separate. */ { int mode; for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode) { char mode_name_buf[4], *q; const char *p; enum built_in_function mcode, dcode; tree type, inner_type; const char *prefix = "__"; if (targetm.libfunc_gnu_prefix) prefix = "__gnu_"; type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0); if (type == NULL) continue; inner_type = TREE_TYPE (type); ftype = build_function_type_list (type, inner_type, inner_type, inner_type, inner_type, NULL_TREE); mcode = ((enum built_in_function) (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); dcode = ((enum built_in_function) (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++) *q = TOLOWER (*p); *q = '\0'; built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3", NULL); local_define_builtin (built_in_names[mcode], ftype, mcode, built_in_names[mcode], ECF_CONST | ECF_NOTHROW | ECF_LEAF); built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3", NULL); local_define_builtin (built_in_names[dcode], ftype, dcode, built_in_names[dcode], ECF_CONST | ECF_NOTHROW | ECF_LEAF); } } } /* HACK. GROSS. This is absolutely disgusting. I wish there was a better way. If we requested a pointer to a vector, build up the pointers that we stripped off while looking for the inner type. Similarly for return values from functions. The argument TYPE is the top of the chain, and BOTTOM is the new type which we will point to. */ tree reconstruct_complex_type (tree type, tree bottom) { tree inner, outer; if (TREE_CODE (type) == POINTER_TYPE) { inner = reconstruct_complex_type (TREE_TYPE (type), bottom); outer = build_pointer_type_for_mode (inner, TYPE_MODE (type), TYPE_REF_CAN_ALIAS_ALL (type)); } else if (TREE_CODE (type) == REFERENCE_TYPE) { inner = reconstruct_complex_type (TREE_TYPE (type), bottom); outer = build_reference_type_for_mode (inner, TYPE_MODE (type), TYPE_REF_CAN_ALIAS_ALL (type)); } else if (TREE_CODE (type) == ARRAY_TYPE) { inner = reconstruct_complex_type (TREE_TYPE (type), bottom); outer = build_array_type (inner, TYPE_DOMAIN (type)); } else if (TREE_CODE (type) == FUNCTION_TYPE) { inner = reconstruct_complex_type (TREE_TYPE (type), bottom); outer = build_function_type (inner, TYPE_ARG_TYPES (type)); } else if (TREE_CODE (type) == METHOD_TYPE) { inner = reconstruct_complex_type (TREE_TYPE (type), bottom); /* The build_method_type_directly() routine prepends 'this' to argument list, so we must compensate by getting rid of it. */ outer = build_method_type_directly (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))), inner, TREE_CHAIN (TYPE_ARG_TYPES (type))); } else if (TREE_CODE (type) == OFFSET_TYPE) { inner = reconstruct_complex_type (TREE_TYPE (type), bottom); outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner); } else return bottom; return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type), TYPE_QUALS (type)); } /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and the inner type. */ tree build_vector_type_for_mode (tree innertype, enum machine_mode mode) { int nunits; switch (GET_MODE_CLASS (mode)) { case MODE_VECTOR_INT: case MODE_VECTOR_FLOAT: case MODE_VECTOR_FRACT: case MODE_VECTOR_UFRACT: case MODE_VECTOR_ACCUM: case MODE_VECTOR_UACCUM: nunits = GET_MODE_NUNITS (mode); break; case MODE_INT: /* Check that there are no leftover bits. */ gcc_assert (GET_MODE_BITSIZE (mode) % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0); nunits = GET_MODE_BITSIZE (mode) / TREE_INT_CST_LOW (TYPE_SIZE (innertype)); break; default: gcc_unreachable (); } return make_vector_type (innertype, nunits, mode); } /* Similarly, but takes the inner type and number of units, which must be a power of two. */ tree build_vector_type (tree innertype, int nunits) { return make_vector_type (innertype, nunits, VOIDmode); } /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */ tree build_opaque_vector_type (tree innertype, int nunits) { tree t = make_vector_type (innertype, nunits, VOIDmode); tree cand; /* We always build the non-opaque variant before the opaque one, so if it already exists, it is TYPE_NEXT_VARIANT of this one. */ cand = TYPE_NEXT_VARIANT (t); if (cand && TYPE_VECTOR_OPAQUE (cand) && check_qualified_type (cand, t, TYPE_QUALS (t))) return cand; /* Othewise build a variant type and make sure to queue it after the non-opaque type. */ cand = build_distinct_type_copy (t); TYPE_VECTOR_OPAQUE (cand) = true; TYPE_CANONICAL (cand) = TYPE_CANONICAL (t); TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t); TYPE_NEXT_VARIANT (t) = cand; TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t); return cand; } /* Given an initializer INIT, return TRUE if INIT is zero or some aggregate of zeros. Otherwise return FALSE. */ bool initializer_zerop (const_tree init) { tree elt; STRIP_NOPS (init); switch (TREE_CODE (init)) { case INTEGER_CST: return integer_zerop (init); case REAL_CST: /* ??? Note that this is not correct for C4X float formats. There, a bit pattern of all zeros is 1.0; 0.0 is encoded with the most negative exponent. */ return real_zerop (init) && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)); case FIXED_CST: return fixed_zerop (init); case COMPLEX_CST: return integer_zerop (init) || (real_zerop (init) && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init))) && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))); case VECTOR_CST: { unsigned i; for (i = 0; i < VECTOR_CST_NELTS (init); ++i) if (!initializer_zerop (VECTOR_CST_ELT (init, i))) return false; return true; } case CONSTRUCTOR: { unsigned HOST_WIDE_INT idx; FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt) if (!initializer_zerop (elt)) return false; return true; } case STRING_CST: { int i; /* We need to loop through all elements to handle cases like "\0" and "\0foobar". */ for (i = 0; i < TREE_STRING_LENGTH (init); ++i) if (TREE_STRING_POINTER (init)[i] != '\0') return false; return true; } default: return false; } } /* Build an empty statement at location LOC. */ tree build_empty_stmt (location_t loc) { tree t = build1 (NOP_EXPR, void_type_node, size_zero_node); SET_EXPR_LOCATION (t, loc); return t; } /* Build an OpenMP clause with code CODE. LOC is the location of the clause. */ tree build_omp_clause (location_t loc, enum omp_clause_code code) { tree t; int size, length; length = omp_clause_num_ops[code]; size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree)); record_node_allocation_statistics (OMP_CLAUSE, size); t = ggc_alloc_tree_node (size); memset (t, 0, size); TREE_SET_CODE (t, OMP_CLAUSE); OMP_CLAUSE_SET_CODE (t, code); OMP_CLAUSE_LOCATION (t) = loc; return t; } /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1. Except for the CODE and operand count field, other storage for the object is initialized to zeros. */ tree build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL) { tree t; int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp); gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp); gcc_assert (len >= 1); record_node_allocation_statistics (code, length); t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT); TREE_SET_CODE (t, code); /* Can't use TREE_OPERAND to store the length because if checking is enabled, it will try to check the length before we store it. :-P */ t->exp.operands[0] = build_int_cst (sizetype, len); return t; } /* Helper function for build_call_* functions; build a CALL_EXPR with indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of the argument slots. */ static tree build_call_1 (tree return_type, tree fn, int nargs) { tree t; t = build_vl_exp (CALL_EXPR, nargs + 3); TREE_TYPE (t) = return_type; CALL_EXPR_FN (t) = fn; CALL_EXPR_STATIC_CHAIN (t) = NULL; return t; } /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and FN and a null static chain slot. NARGS is the number of call arguments which are specified as "..." arguments. */ tree build_call_nary (tree return_type, tree fn, int nargs, ...) { tree ret; va_list args; va_start (args, nargs); ret = build_call_valist (return_type, fn, nargs, args); va_end (args); return ret; } /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and FN and a null static chain slot. NARGS is the number of call arguments which are specified as a va_list ARGS. */ tree build_call_valist (tree return_type, tree fn, int nargs, va_list args) { tree t; int i; t = build_call_1 (return_type, fn, nargs); for (i = 0; i < nargs; i++) CALL_EXPR_ARG (t, i) = va_arg (args, tree); process_call_operands (t); return t; } /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and FN and a null static chain slot. NARGS is the number of call arguments which are specified as a tree array ARGS. */ tree build_call_array_loc (location_t loc, tree return_type, tree fn, int nargs, const tree *args) { tree t; int i; t = build_call_1 (return_type, fn, nargs); for (i = 0; i < nargs; i++) CALL_EXPR_ARG (t, i) = args[i]; process_call_operands (t); SET_EXPR_LOCATION (t, loc); return t; } /* Like build_call_array, but takes a VEC. */ tree build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args) { tree ret, t; unsigned int ix; ret = build_call_1 (return_type, fn, VEC_length (tree, args)); FOR_EACH_VEC_ELT (tree, args, ix, t) CALL_EXPR_ARG (ret, ix) = t; process_call_operands (ret); return ret; } /* Returns true if it is possible to prove that the index of an array access REF (an ARRAY_REF expression) falls into the array bounds. */ bool in_array_bounds_p (tree ref) { tree idx = TREE_OPERAND (ref, 1); tree min, max; if (TREE_CODE (idx) != INTEGER_CST) return false; min = array_ref_low_bound (ref); max = array_ref_up_bound (ref); if (!min || !max || TREE_CODE (min) != INTEGER_CST || TREE_CODE (max) != INTEGER_CST) return false; if (tree_int_cst_lt (idx, min) || tree_int_cst_lt (max, idx)) return false; return true; } /* Returns true if it is possible to prove that the range of an array access REF (an ARRAY_RANGE_REF expression) falls into the array bounds. */ bool range_in_array_bounds_p (tree ref) { tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref)); tree range_min, range_max, min, max; range_min = TYPE_MIN_VALUE (domain_type); range_max = TYPE_MAX_VALUE (domain_type); if (!range_min || !range_max || TREE_CODE (range_min) != INTEGER_CST || TREE_CODE (range_max) != INTEGER_CST) return false; min = array_ref_low_bound (ref); max = array_ref_up_bound (ref); if (!min || !max || TREE_CODE (min) != INTEGER_CST || TREE_CODE (max) != INTEGER_CST) return false; if (tree_int_cst_lt (range_min, min) || tree_int_cst_lt (max, range_max)) return false; return true; } /* Return true if T (assumed to be a DECL) must be assigned a memory location. */ bool needs_to_live_in_memory (const_tree t) { return (TREE_ADDRESSABLE (t) || is_global_var (t) || (TREE_CODE (t) == RESULT_DECL && !DECL_BY_REFERENCE (t) && aggregate_value_p (t, current_function_decl))); } /* Return value of a constant X and sign-extend it. */ HOST_WIDE_INT int_cst_value (const_tree x) { unsigned bits = TYPE_PRECISION (TREE_TYPE (x)); unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x); /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */ gcc_assert (TREE_INT_CST_HIGH (x) == 0 || TREE_INT_CST_HIGH (x) == -1); if (bits < HOST_BITS_PER_WIDE_INT) { bool negative = ((val >> (bits - 1)) & 1) != 0; if (negative) val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1; else val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1); } return val; } /* Return value of a constant X and sign-extend it. */ HOST_WIDEST_INT widest_int_cst_value (const_tree x) { unsigned bits = TYPE_PRECISION (TREE_TYPE (x)); unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x); #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT gcc_assert (HOST_BITS_PER_WIDEST_INT >= HOST_BITS_PER_DOUBLE_INT); val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x)) << HOST_BITS_PER_WIDE_INT); #else /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */ gcc_assert (TREE_INT_CST_HIGH (x) == 0 || TREE_INT_CST_HIGH (x) == -1); #endif if (bits < HOST_BITS_PER_WIDEST_INT) { bool negative = ((val >> (bits - 1)) & 1) != 0; if (negative) val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1; else val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1); } return val; } /* If TYPE is an integral or pointer type, return an integer type with the same precision which is unsigned iff UNSIGNEDP is true, or itself if TYPE is already an integer type of signedness UNSIGNEDP. */ tree signed_or_unsigned_type_for (int unsignedp, tree type) { if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp) return type; if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type)) return NULL_TREE; return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp); } /* If TYPE is an integral or pointer type, return an integer type with the same precision which is unsigned, or itself if TYPE is already an unsigned integer type. */ tree unsigned_type_for (tree type) { return signed_or_unsigned_type_for (1, type); } /* If TYPE is an integral or pointer type, return an integer type with the same precision which is signed, or itself if TYPE is already a signed integer type. */ tree signed_type_for (tree type) { return signed_or_unsigned_type_for (0, type); } /* Returns the largest value obtainable by casting something in INNER type to OUTER type. */ tree upper_bound_in_type (tree outer, tree inner) { double_int high; unsigned int det = 0; unsigned oprec = TYPE_PRECISION (outer); unsigned iprec = TYPE_PRECISION (inner); unsigned prec; /* Compute a unique number for every combination. */ det |= (oprec > iprec) ? 4 : 0; det |= TYPE_UNSIGNED (outer) ? 2 : 0; det |= TYPE_UNSIGNED (inner) ? 1 : 0; /* Determine the exponent to use. */ switch (det) { case 0: case 1: /* oprec <= iprec, outer: signed, inner: don't care. */ prec = oprec - 1; break; case 2: case 3: /* oprec <= iprec, outer: unsigned, inner: don't care. */ prec = oprec; break; case 4: /* oprec > iprec, outer: signed, inner: signed. */ prec = iprec - 1; break; case 5: /* oprec > iprec, outer: signed, inner: unsigned. */ prec = iprec; break; case 6: /* oprec > iprec, outer: unsigned, inner: signed. */ prec = oprec; break; case 7: /* oprec > iprec, outer: unsigned, inner: unsigned. */ prec = iprec; break; default: gcc_unreachable (); } /* Compute 2^^prec - 1. */ if (prec <= HOST_BITS_PER_WIDE_INT) { high.high = 0; high.low = ((~(unsigned HOST_WIDE_INT) 0) >> (HOST_BITS_PER_WIDE_INT - prec)); } else { high.high = ((~(unsigned HOST_WIDE_INT) 0) >> (HOST_BITS_PER_DOUBLE_INT - prec)); high.low = ~(unsigned HOST_WIDE_INT) 0; } return double_int_to_tree (outer, high); } /* Returns the smallest value obtainable by casting something in INNER type to OUTER type. */ tree lower_bound_in_type (tree outer, tree inner) { double_int low; unsigned oprec = TYPE_PRECISION (outer); unsigned iprec = TYPE_PRECISION (inner); /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type and obtain 0. */ if (TYPE_UNSIGNED (outer) /* If we are widening something of an unsigned type, OUTER type contains all values of INNER type. In particular, both INNER and OUTER types have zero in common. */ || (oprec > iprec && TYPE_UNSIGNED (inner))) low.low = low.high = 0; else { /* If we are widening a signed type to another signed type, we want to obtain -2^^(iprec-1). If we are keeping the precision or narrowing to a signed type, we want to obtain -2^(oprec-1). */ unsigned prec = oprec > iprec ? iprec : oprec; if (prec <= HOST_BITS_PER_WIDE_INT) { low.high = ~(unsigned HOST_WIDE_INT) 0; low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1); } else { low.high = ((~(unsigned HOST_WIDE_INT) 0) << (prec - HOST_BITS_PER_WIDE_INT - 1)); low.low = 0; } } return double_int_to_tree (outer, low); } /* Return nonzero if two operands that are suitable for PHI nodes are necessarily equal. Specifically, both ARG0 and ARG1 must be either SSA_NAME or invariant. Note that this is strictly an optimization. That is, callers of this function can directly call operand_equal_p and get the same result, only slower. */ int operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1) { if (arg0 == arg1) return 1; if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME) return 0; return operand_equal_p (arg0, arg1, 0); } /* Returns number of zeros at the end of binary representation of X. ??? Use ffs if available? */ tree num_ending_zeros (const_tree x) { unsigned HOST_WIDE_INT fr, nfr; unsigned num, abits; tree type = TREE_TYPE (x); if (TREE_INT_CST_LOW (x) == 0) { num = HOST_BITS_PER_WIDE_INT; fr = TREE_INT_CST_HIGH (x); } else { num = 0; fr = TREE_INT_CST_LOW (x); } for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2) { nfr = fr >> abits; if (nfr << abits == fr) { num += abits; fr = nfr; } } if (num > TYPE_PRECISION (type)) num = TYPE_PRECISION (type); return build_int_cst_type (type, num); } #define WALK_SUBTREE(NODE) \ do \ { \ result = walk_tree_1 (&(NODE), func, data, pset, lh); \ if (result) \ return result; \ } \ while (0) /* This is a subroutine of walk_tree that walks field of TYPE that are to be walked whenever a type is seen in the tree. Rest of operands and return value are as for walk_tree. */ static tree walk_type_fields (tree type, walk_tree_fn func, void *data, struct pointer_set_t *pset, walk_tree_lh lh) { tree result = NULL_TREE; switch (TREE_CODE (type)) { case POINTER_TYPE: case REFERENCE_TYPE: /* We have to worry about mutually recursive pointers. These can't be written in C. They can in Ada. It's pathological, but there's an ACATS test (c38102a) that checks it. Deal with this by checking if we're pointing to another pointer, that one points to another pointer, that one does too, and we have no htab. If so, get a hash table. We check three levels deep to avoid the cost of the hash table if we don't need one. */ if (POINTER_TYPE_P (TREE_TYPE (type)) && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type))) && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type)))) && !pset) { result = walk_tree_without_duplicates (&TREE_TYPE (type), func, data); if (result) return result; break; } /* ... fall through ... */ case COMPLEX_TYPE: WALK_SUBTREE (TREE_TYPE (type)); break; case METHOD_TYPE: WALK_SUBTREE (TYPE_METHOD_BASETYPE (type)); /* Fall through. */ case FUNCTION_TYPE: WALK_SUBTREE (TREE_TYPE (type)); { tree arg; /* We never want to walk into default arguments. */ for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg)) WALK_SUBTREE (TREE_VALUE (arg)); } break; case ARRAY_TYPE: /* Don't follow this nodes's type if a pointer for fear that we'll have infinite recursion. If we have a PSET, then we need not fear. */ if (pset || (!POINTER_TYPE_P (TREE_TYPE (type)) && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE)) WALK_SUBTREE (TREE_TYPE (type)); WALK_SUBTREE (TYPE_DOMAIN (type)); break; case OFFSET_TYPE: WALK_SUBTREE (TREE_TYPE (type)); WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type)); break; default: break; } return NULL_TREE; } /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is called with the DATA and the address of each sub-tree. If FUNC returns a non-NULL value, the traversal is stopped, and the value returned by FUNC is returned. If PSET is non-NULL it is used to record the nodes visited, and to avoid visiting a node more than once. */ tree walk_tree_1 (tree *tp, walk_tree_fn func, void *data, struct pointer_set_t *pset, walk_tree_lh lh) { enum tree_code code; int walk_subtrees; tree result; #define WALK_SUBTREE_TAIL(NODE) \ do \ { \ tp = & (NODE); \ goto tail_recurse; \ } \ while (0) tail_recurse: /* Skip empty subtrees. */ if (!*tp) return NULL_TREE; /* Don't walk the same tree twice, if the user has requested that we avoid doing so. */ if (pset && pointer_set_insert (pset, *tp)) return NULL_TREE; /* Call the function. */ walk_subtrees = 1; result = (*func) (tp, &walk_subtrees, data); /* If we found something, return it. */ if (result) return result; code = TREE_CODE (*tp); /* Even if we didn't, FUNC may have decided that there was nothing interesting below this point in the tree. */ if (!walk_subtrees) { /* But we still need to check our siblings. */ if (code == TREE_LIST) WALK_SUBTREE_TAIL (TREE_CHAIN (*tp)); else if (code == OMP_CLAUSE) WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp)); else return NULL_TREE; } if (lh) { result = (*lh) (tp, &walk_subtrees, func, data, pset); if (result || !walk_subtrees) return result; } switch (code) { case ERROR_MARK: case IDENTIFIER_NODE: case INTEGER_CST: case REAL_CST: case FIXED_CST: case VECTOR_CST: case STRING_CST: case BLOCK: case PLACEHOLDER_EXPR: case SSA_NAME: case FIELD_DECL: case RESULT_DECL: /* None of these have subtrees other than those already walked above. */ break; case TREE_LIST: WALK_SUBTREE (TREE_VALUE (*tp)); WALK_SUBTREE_TAIL (TREE_CHAIN (*tp)); break; case TREE_VEC: { int len = TREE_VEC_LENGTH (*tp); if (len == 0) break; /* Walk all elements but the first. */ while (--len) WALK_SUBTREE (TREE_VEC_ELT (*tp, len)); /* Now walk the first one as a tail call. */ WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0)); } case COMPLEX_CST: WALK_SUBTREE (TREE_REALPART (*tp)); WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp)); case CONSTRUCTOR: { unsigned HOST_WIDE_INT idx; constructor_elt *ce; for (idx = 0; VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce); idx++) WALK_SUBTREE (ce->value); } break; case SAVE_EXPR: WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0)); case BIND_EXPR: { tree decl; for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl)) { /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk into declarations that are just mentioned, rather than declared; they don't really belong to this part of the tree. And, we can see cycles: the initializer for a declaration can refer to the declaration itself. */ WALK_SUBTREE (DECL_INITIAL (decl)); WALK_SUBTREE (DECL_SIZE (decl)); WALK_SUBTREE (DECL_SIZE_UNIT (decl)); } WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp)); } case STATEMENT_LIST: { tree_stmt_iterator i; for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i)) WALK_SUBTREE (*tsi_stmt_ptr (i)); } break; case OMP_CLAUSE: switch (OMP_CLAUSE_CODE (*tp)) { case OMP_CLAUSE_PRIVATE: case OMP_CLAUSE_SHARED: case OMP_CLAUSE_FIRSTPRIVATE: case OMP_CLAUSE_COPYIN: case OMP_CLAUSE_COPYPRIVATE: case OMP_CLAUSE_FINAL: case OMP_CLAUSE_IF: case OMP_CLAUSE_NUM_THREADS: case OMP_CLAUSE_SCHEDULE: WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0)); /* FALLTHRU */ case OMP_CLAUSE_NOWAIT: case OMP_CLAUSE_ORDERED: case OMP_CLAUSE_DEFAULT: case OMP_CLAUSE_UNTIED: case OMP_CLAUSE_MERGEABLE: WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp)); case OMP_CLAUSE_LASTPRIVATE: WALK_SUBTREE (OMP_CLAUSE_DECL (*tp)); WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp)); WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp)); case OMP_CLAUSE_COLLAPSE: { int i; for (i = 0; i < 3; i++) WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i)); WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp)); } case OMP_CLAUSE_REDUCTION: { int i; for (i = 0; i < 4; i++) WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i)); WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp)); } default: gcc_unreachable (); } break; case TARGET_EXPR: { int i, len; /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same. But, we only want to walk once. */ len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3; for (i = 0; i < len; ++i) WALK_SUBTREE (TREE_OPERAND (*tp, i)); WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len)); } case DECL_EXPR: /* If this is a TYPE_DECL, walk into the fields of the type that it's defining. We only want to walk into these fields of a type in this case and not in the general case of a mere reference to the type. The criterion is as follows: if the field can be an expression, it must be walked only here. This should be in keeping with the fields that are directly gimplified in gimplify_type_sizes in order for the mark/copy-if-shared/unmark machinery of the gimplifier to work with variable-sized types. Note that DECLs get walked as part of processing the BIND_EXPR. */ if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL) { tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp)); if (TREE_CODE (*type_p) == ERROR_MARK) return NULL_TREE; /* Call the function for the type. See if it returns anything or doesn't want us to continue. If we are to continue, walk both the normal fields and those for the declaration case. */ result = (*func) (type_p, &walk_subtrees, data); if (result || !walk_subtrees) return result; /* But do not walk a pointed-to type since it may itself need to be walked in the declaration case if it isn't anonymous. */ if (!POINTER_TYPE_P (*type_p)) { result = walk_type_fields (*type_p, func, data, pset, lh); if (result) return result; } /* If this is a record type, also walk the fields. */ if (RECORD_OR_UNION_TYPE_P (*type_p)) { tree field; for (field = TYPE_FIELDS (*type_p); field; field = DECL_CHAIN (field)) { /* We'd like to look at the type of the field, but we can easily get infinite recursion. So assume it's pointed to elsewhere in the tree. Also, ignore things that aren't fields. */ if (TREE_CODE (field) != FIELD_DECL) continue; WALK_SUBTREE (DECL_FIELD_OFFSET (field)); WALK_SUBTREE (DECL_SIZE (field)); WALK_SUBTREE (DECL_SIZE_UNIT (field)); if (TREE_CODE (*type_p) == QUAL_UNION_TYPE) WALK_SUBTREE (DECL_QUALIFIER (field)); } } /* Same for scalar types. */ else if (TREE_CODE (*type_p) == BOOLEAN_TYPE || TREE_CODE (*type_p) == ENUMERAL_TYPE || TREE_CODE (*type_p) == INTEGER_TYPE || TREE_CODE (*type_p) == FIXED_POINT_TYPE || TREE_CODE (*type_p) == REAL_TYPE) { WALK_SUBTREE (TYPE_MIN_VALUE (*type_p)); WALK_SUBTREE (TYPE_MAX_VALUE (*type_p)); } WALK_SUBTREE (TYPE_SIZE (*type_p)); WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p)); } /* FALLTHRU */ default: if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))) { int i, len; /* Walk over all the sub-trees of this operand. */ len = TREE_OPERAND_LENGTH (*tp); /* Go through the subtrees. We need to do this in forward order so that the scope of a FOR_EXPR is handled properly. */ if (len) { for (i = 0; i < len - 1; ++i) WALK_SUBTREE (TREE_OPERAND (*tp, i)); WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1)); } } /* If this is a type, walk the needed fields in the type. */ else if (TYPE_P (*tp)) return walk_type_fields (*tp, func, data, pset, lh); break; } /* We didn't find what we were looking for. */ return NULL_TREE; #undef WALK_SUBTREE_TAIL } #undef WALK_SUBTREE /* Like walk_tree, but does not walk duplicate nodes more than once. */ tree walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data, walk_tree_lh lh) { tree result; struct pointer_set_t *pset; pset = pointer_set_create (); result = walk_tree_1 (tp, func, data, pset, lh); pointer_set_destroy (pset); return result; } tree * tree_block (tree t) { char const c = TREE_CODE_CLASS (TREE_CODE (t)); if (IS_EXPR_CODE_CLASS (c)) return &t->exp.block; gcc_unreachable (); return NULL; } /* Create a nameless artificial label and put it in the current function context. The label has a location of LOC. Returns the newly created label. */ tree create_artificial_label (location_t loc) { tree lab = build_decl (loc, LABEL_DECL, NULL_TREE, void_type_node); DECL_ARTIFICIAL (lab) = 1; DECL_IGNORED_P (lab) = 1; DECL_CONTEXT (lab) = current_function_decl; return lab; } /* Given a tree, try to return a useful variable name that we can use to prefix a temporary that is being assigned the value of the tree. I.E. given = &A, return A. */ const char * get_name (tree t) { tree stripped_decl; stripped_decl = t; STRIP_NOPS (stripped_decl); if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl)) return IDENTIFIER_POINTER (DECL_NAME (stripped_decl)); else if (TREE_CODE (stripped_decl) == SSA_NAME) { tree name = SSA_NAME_IDENTIFIER (stripped_decl); if (!name) return NULL; return IDENTIFIER_POINTER (name); } else { switch (TREE_CODE (stripped_decl)) { case ADDR_EXPR: return get_name (TREE_OPERAND (stripped_decl, 0)); default: return NULL; } } } /* Return true if TYPE has a variable argument list. */ bool stdarg_p (const_tree fntype) { function_args_iterator args_iter; tree n = NULL_TREE, t; if (!fntype) return false; FOREACH_FUNCTION_ARGS(fntype, t, args_iter) { n = t; } return n != NULL_TREE && n != void_type_node; } /* Return true if TYPE has a prototype. */ bool prototype_p (tree fntype) { tree t; gcc_assert (fntype != NULL_TREE); t = TYPE_ARG_TYPES (fntype); return (t != NULL_TREE); } /* If BLOCK is inlined from an __attribute__((__artificial__)) routine, return pointer to location from where it has been called. */ location_t * block_nonartificial_location (tree block) { location_t *ret = NULL; while (block && TREE_CODE (block) == BLOCK && BLOCK_ABSTRACT_ORIGIN (block)) { tree ao = BLOCK_ABSTRACT_ORIGIN (block); while (TREE_CODE (ao) == BLOCK && BLOCK_ABSTRACT_ORIGIN (ao) && BLOCK_ABSTRACT_ORIGIN (ao) != ao) ao = BLOCK_ABSTRACT_ORIGIN (ao); if (TREE_CODE (ao) == FUNCTION_DECL) { /* If AO is an artificial inline, point RET to the call site locus at which it has been inlined and continue the loop, in case AO's caller is also an artificial inline. */ if (DECL_DECLARED_INLINE_P (ao) && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao))) ret = &BLOCK_SOURCE_LOCATION (block); else break; } else if (TREE_CODE (ao) != BLOCK) break; block = BLOCK_SUPERCONTEXT (block); } return ret; } /* If EXP is inlined from an __attribute__((__artificial__)) function, return the location of the original call expression. */ location_t tree_nonartificial_location (tree exp) { location_t *loc = block_nonartificial_location (TREE_BLOCK (exp)); if (loc) return *loc; else return EXPR_LOCATION (exp); } /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq nodes. */ /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */ static hashval_t cl_option_hash_hash (const void *x) { const_tree const t = (const_tree) x; const char *p; size_t i; size_t len = 0; hashval_t hash = 0; if (TREE_CODE (t) == OPTIMIZATION_NODE) { p = (const char *)TREE_OPTIMIZATION (t); len = sizeof (struct cl_optimization); } else if (TREE_CODE (t) == TARGET_OPTION_NODE) { p = (const char *)TREE_TARGET_OPTION (t); len = sizeof (struct cl_target_option); } else gcc_unreachable (); /* assume most opt flags are just 0/1, some are 2-3, and a few might be something else. */ for (i = 0; i < len; i++) if (p[i]) hash = (hash << 4) ^ ((i << 2) | p[i]); return hash; } /* Return nonzero if the value represented by *X (an OPTIMIZATION or TARGET_OPTION tree node) is the same as that given by *Y, which is the same. */ static int cl_option_hash_eq (const void *x, const void *y) { const_tree const xt = (const_tree) x; const_tree const yt = (const_tree) y; const char *xp; const char *yp; size_t len; if (TREE_CODE (xt) != TREE_CODE (yt)) return 0; if (TREE_CODE (xt) == OPTIMIZATION_NODE) { xp = (const char *)TREE_OPTIMIZATION (xt); yp = (const char *)TREE_OPTIMIZATION (yt); len = sizeof (struct cl_optimization); } else if (TREE_CODE (xt) == TARGET_OPTION_NODE) { xp = (const char *)TREE_TARGET_OPTION (xt); yp = (const char *)TREE_TARGET_OPTION (yt); len = sizeof (struct cl_target_option); } else gcc_unreachable (); return (memcmp (xp, yp, len) == 0); } /* Build an OPTIMIZATION_NODE based on the current options. */ tree build_optimization_node (void) { tree t; void **slot; /* Use the cache of optimization nodes. */ cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node), &global_options); slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT); t = (tree) *slot; if (!t) { /* Insert this one into the hash table. */ t = cl_optimization_node; *slot = t; /* Make a new node for next time round. */ cl_optimization_node = make_node (OPTIMIZATION_NODE); } return t; } /* Build a TARGET_OPTION_NODE based on the current options. */ tree build_target_option_node (void) { tree t; void **slot; /* Use the cache of optimization nodes. */ cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node), &global_options); slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT); t = (tree) *slot; if (!t) { /* Insert this one into the hash table. */ t = cl_target_option_node; *slot = t; /* Make a new node for next time round. */ cl_target_option_node = make_node (TARGET_OPTION_NODE); } return t; } /* Determine the "ultimate origin" of a block. The block may be an inlined instance of an inlined instance of a block which is local to an inline function, so we have to trace all of the way back through the origin chain to find out what sort of node actually served as the original seed for the given block. */ tree block_ultimate_origin (const_tree block) { tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block); /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the nodes in the function to point to themselves; ignore that if we're trying to output the abstract instance of this function. */ if (BLOCK_ABSTRACT (block) && immediate_origin == block) return NULL_TREE; if (immediate_origin == NULL_TREE) return NULL_TREE; else { tree ret_val; tree lookahead = immediate_origin; do { ret_val = lookahead; lookahead = (TREE_CODE (ret_val) == BLOCK ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL); } while (lookahead != NULL && lookahead != ret_val); /* The block's abstract origin chain may not be the *ultimate* origin of the block. It could lead to a DECL that has an abstract origin set. If so, we want that DECL's abstract origin (which is what DECL_ORIGIN will give us if it has one). Note that DECL's abstract origins are supposed to be the most distant ancestor (or so decl_ultimate_origin claims), so we don't need to loop following the DECL origins. */ if (DECL_P (ret_val)) return DECL_ORIGIN (ret_val); return ret_val; } } /* Return true if T1 and T2 are equivalent lists. */ bool list_equal_p (const_tree t1, const_tree t2) { for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2)) if (TREE_VALUE (t1) != TREE_VALUE (t2)) return false; return !t1 && !t2; } /* Return true iff conversion in EXP generates no instruction. Mark it inline so that we fully inline into the stripping functions even though we have two uses of this function. */ static inline bool tree_nop_conversion (const_tree exp) { tree outer_type, inner_type; if (!CONVERT_EXPR_P (exp) && TREE_CODE (exp) != NON_LVALUE_EXPR) return false; if (TREE_OPERAND (exp, 0) == error_mark_node) return false; outer_type = TREE_TYPE (exp); inner_type = TREE_TYPE (TREE_OPERAND (exp, 0)); if (!inner_type) return false; /* Use precision rather then machine mode when we can, which gives the correct answer even for submode (bit-field) types. */ if ((INTEGRAL_TYPE_P (outer_type) || POINTER_TYPE_P (outer_type) || TREE_CODE (outer_type) == OFFSET_TYPE) && (INTEGRAL_TYPE_P (inner_type) || POINTER_TYPE_P (inner_type) || TREE_CODE (inner_type) == OFFSET_TYPE)) return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type); /* Otherwise fall back on comparing machine modes (e.g. for aggregate types, floats). */ return TYPE_MODE (outer_type) == TYPE_MODE (inner_type); } /* Return true iff conversion in EXP generates no instruction. Don't consider conversions changing the signedness. */ static bool tree_sign_nop_conversion (const_tree exp) { tree outer_type, inner_type; if (!tree_nop_conversion (exp)) return false; outer_type = TREE_TYPE (exp); inner_type = TREE_TYPE (TREE_OPERAND (exp, 0)); return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type) && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type)); } /* Strip conversions from EXP according to tree_nop_conversion and return the resulting expression. */ tree tree_strip_nop_conversions (tree exp) { while (tree_nop_conversion (exp)) exp = TREE_OPERAND (exp, 0); return exp; } /* Strip conversions from EXP according to tree_sign_nop_conversion and return the resulting expression. */ tree tree_strip_sign_nop_conversions (tree exp) { while (tree_sign_nop_conversion (exp)) exp = TREE_OPERAND (exp, 0); return exp; } /* Avoid any floating point extensions from EXP. */ tree strip_float_extensions (tree exp) { tree sub, expt, subt; /* For floating point constant look up the narrowest type that can hold it properly and handle it like (type)(narrowest_type)constant. This way we can optimize for instance a=a*2.0 where "a" is float but 2.0 is double constant. */ if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp))) { REAL_VALUE_TYPE orig; tree type = NULL; orig = TREE_REAL_CST (exp); if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node) && exact_real_truncate (TYPE_MODE (float_type_node), &orig)) type = float_type_node; else if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (double_type_node) && exact_real_truncate (TYPE_MODE (double_type_node), &orig)) type = double_type_node; if (type) return build_real (type, real_value_truncate (TYPE_MODE (type), orig)); } if (!CONVERT_EXPR_P (exp)) return exp; sub = TREE_OPERAND (exp, 0); subt = TREE_TYPE (sub); expt = TREE_TYPE (exp); if (!FLOAT_TYPE_P (subt)) return exp; if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt)) return exp; if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt)) return exp; return strip_float_extensions (sub); } /* Strip out all handled components that produce invariant offsets. */ const_tree strip_invariant_refs (const_tree op) { while (handled_component_p (op)) { switch (TREE_CODE (op)) { case ARRAY_REF: case ARRAY_RANGE_REF: if (!is_gimple_constant (TREE_OPERAND (op, 1)) || TREE_OPERAND (op, 2) != NULL_TREE || TREE_OPERAND (op, 3) != NULL_TREE) return NULL; break; case COMPONENT_REF: if (TREE_OPERAND (op, 2) != NULL_TREE) return NULL; break; default:; } op = TREE_OPERAND (op, 0); } return op; } static GTY(()) tree gcc_eh_personality_decl; /* Return the GCC personality function decl. */ tree lhd_gcc_personality (void) { if (!gcc_eh_personality_decl) gcc_eh_personality_decl = build_personality_function ("gcc"); return gcc_eh_personality_decl; } /* Try to find a base info of BINFO that would have its field decl at offset OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be found, return, otherwise return NULL_TREE. */ tree get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type) { tree type = BINFO_TYPE (binfo); while (true) { HOST_WIDE_INT pos, size; tree fld; int i; if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type)) return binfo; if (offset < 0) return NULL_TREE; for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld)) { if (TREE_CODE (fld) != FIELD_DECL) continue; pos = int_bit_position (fld); size = tree_low_cst (DECL_SIZE (fld), 1); if (pos <= offset && (pos + size) > offset) break; } if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE) return NULL_TREE; if (!DECL_ARTIFICIAL (fld)) { binfo = TYPE_BINFO (TREE_TYPE (fld)); if (!binfo) return NULL_TREE; } /* Offset 0 indicates the primary base, whose vtable contents are represented in the binfo for the derived class. */ else if (offset != 0) { tree base_binfo, found_binfo = NULL_TREE; for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) if (TREE_TYPE (base_binfo) == TREE_TYPE (fld)) { found_binfo = base_binfo; break; } if (!found_binfo) return NULL_TREE; binfo = found_binfo; } type = TREE_TYPE (fld); offset -= pos; } } /* Returns true if X is a typedef decl. */ bool is_typedef_decl (tree x) { return (x && TREE_CODE (x) == TYPE_DECL && DECL_ORIGINAL_TYPE (x) != NULL_TREE); } /* Returns true iff TYPE is a type variant created for a typedef. */ bool typedef_variant_p (tree type) { return is_typedef_decl (TYPE_NAME (type)); } /* Warn about a use of an identifier which was marked deprecated. */ void warn_deprecated_use (tree node, tree attr) { const char *msg; if (node == 0 || !warn_deprecated_decl) return; if (!attr) { if (DECL_P (node)) attr = DECL_ATTRIBUTES (node); else if (TYPE_P (node)) { tree decl = TYPE_STUB_DECL (node); if (decl) attr = lookup_attribute ("deprecated", TYPE_ATTRIBUTES (TREE_TYPE (decl))); } } if (attr) attr = lookup_attribute ("deprecated", attr); if (attr) msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))); else msg = NULL; if (DECL_P (node)) { expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node)); if (msg) warning (OPT_Wdeprecated_declarations, "%qD is deprecated (declared at %s:%d): %s", node, xloc.file, xloc.line, msg); else warning (OPT_Wdeprecated_declarations, "%qD is deprecated (declared at %s:%d)", node, xloc.file, xloc.line); } else if (TYPE_P (node)) { tree what = NULL_TREE; tree decl = TYPE_STUB_DECL (node); if (TYPE_NAME (node)) { if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE) what = TYPE_NAME (node); else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL && DECL_NAME (TYPE_NAME (node))) what = DECL_NAME (TYPE_NAME (node)); } if (decl) { expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (decl)); if (what) { if (msg) warning (OPT_Wdeprecated_declarations, "%qE is deprecated (declared at %s:%d): %s", what, xloc.file, xloc.line, msg); else warning (OPT_Wdeprecated_declarations, "%qE is deprecated (declared at %s:%d)", what, xloc.file, xloc.line); } else { if (msg) warning (OPT_Wdeprecated_declarations, "type is deprecated (declared at %s:%d): %s", xloc.file, xloc.line, msg); else warning (OPT_Wdeprecated_declarations, "type is deprecated (declared at %s:%d)", xloc.file, xloc.line); } } else { if (what) { if (msg) warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s", what, msg); else warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what); } else { if (msg) warning (OPT_Wdeprecated_declarations, "type is deprecated: %s", msg); else warning (OPT_Wdeprecated_declarations, "type is deprecated"); } } } } #include "gt-tree.h"