/* Support routines for Value Range Propagation (VRP). Copyright (C) 2005-2018 Free Software Foundation, Inc. Contributed by Diego Novillo . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "insn-codes.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "cfghooks.h" #include "tree-pass.h" #include "ssa.h" #include "optabs-tree.h" #include "gimple-pretty-print.h" #include "diagnostic-core.h" #include "flags.h" #include "fold-const.h" #include "stor-layout.h" #include "calls.h" #include "cfganal.h" #include "gimple-fold.h" #include "tree-eh.h" #include "gimple-iterator.h" #include "gimple-walk.h" #include "tree-cfg.h" #include "tree-dfa.h" #include "tree-ssa-loop-manip.h" #include "tree-ssa-loop-niter.h" #include "tree-ssa-loop.h" #include "tree-into-ssa.h" #include "tree-ssa.h" #include "intl.h" #include "cfgloop.h" #include "tree-scalar-evolution.h" #include "tree-ssa-propagate.h" #include "tree-chrec.h" #include "tree-ssa-threadupdate.h" #include "tree-ssa-scopedtables.h" #include "tree-ssa-threadedge.h" #include "omp-general.h" #include "target.h" #include "case-cfn-macros.h" #include "params.h" #include "alloc-pool.h" #include "domwalk.h" #include "tree-cfgcleanup.h" #include "stringpool.h" #include "attribs.h" #include "vr-values.h" #include "builtins.h" /* Set of SSA names found live during the RPO traversal of the function for still active basic-blocks. */ static sbitmap *live; /* Return true if the SSA name NAME is live on the edge E. */ static bool live_on_edge (edge e, tree name) { return (live[e->dest->index] && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name))); } /* Location information for ASSERT_EXPRs. Each instance of this structure describes an ASSERT_EXPR for an SSA name. Since a single SSA name may have more than one assertion associated with it, these locations are kept in a linked list attached to the corresponding SSA name. */ struct assert_locus { /* Basic block where the assertion would be inserted. */ basic_block bb; /* Some assertions need to be inserted on an edge (e.g., assertions generated by COND_EXPRs). In those cases, BB will be NULL. */ edge e; /* Pointer to the statement that generated this assertion. */ gimple_stmt_iterator si; /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */ enum tree_code comp_code; /* Value being compared against. */ tree val; /* Expression to compare. */ tree expr; /* Next node in the linked list. */ assert_locus *next; }; /* If bit I is present, it means that SSA name N_i has a list of assertions that should be inserted in the IL. */ static bitmap need_assert_for; /* Array of locations lists where to insert assertions. ASSERTS_FOR[I] holds a list of ASSERT_LOCUS_T nodes that describe where ASSERT_EXPRs for SSA name N_I should be inserted. */ static assert_locus **asserts_for; vec to_remove_edges; vec to_update_switch_stmts; /* Return the maximum value for TYPE. */ tree vrp_val_max (const_tree type) { if (!INTEGRAL_TYPE_P (type)) return NULL_TREE; return TYPE_MAX_VALUE (type); } /* Return the minimum value for TYPE. */ tree vrp_val_min (const_tree type) { if (!INTEGRAL_TYPE_P (type)) return NULL_TREE; return TYPE_MIN_VALUE (type); } /* Return whether VAL is equal to the maximum value of its type. We can't do a simple equality comparison with TYPE_MAX_VALUE because C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE is not == to the integer constant with the same value in the type. */ bool vrp_val_is_max (const_tree val) { tree type_max = vrp_val_max (TREE_TYPE (val)); return (val == type_max || (type_max != NULL_TREE && operand_equal_p (val, type_max, 0))); } /* Return whether VAL is equal to the minimum value of its type. */ bool vrp_val_is_min (const_tree val) { tree type_min = vrp_val_min (TREE_TYPE (val)); return (val == type_min || (type_min != NULL_TREE && operand_equal_p (val, type_min, 0))); } /* VR_TYPE describes a range with mininum value *MIN and maximum value *MAX. Restrict the range to the set of values that have no bits set outside NONZERO_BITS. Update *MIN and *MAX and return the new range type. SGN gives the sign of the values described by the range. */ enum value_range_type intersect_range_with_nonzero_bits (enum value_range_type vr_type, wide_int *min, wide_int *max, const wide_int &nonzero_bits, signop sgn) { if (vr_type == VR_ANTI_RANGE) { /* The VR_ANTI_RANGE is equivalent to the union of the ranges A: [-INF, *MIN) and B: (*MAX, +INF]. First use NONZERO_BITS to create an inclusive upper bound for A and an inclusive lower bound for B. */ wide_int a_max = wi::round_down_for_mask (*min - 1, nonzero_bits); wide_int b_min = wi::round_up_for_mask (*max + 1, nonzero_bits); /* If the calculation of A_MAX wrapped, A is effectively empty and A_MAX is the highest value that satisfies NONZERO_BITS. Likewise if the calculation of B_MIN wrapped, B is effectively empty and B_MIN is the lowest value that satisfies NONZERO_BITS. */ bool a_empty = wi::ge_p (a_max, *min, sgn); bool b_empty = wi::le_p (b_min, *max, sgn); /* If both A and B are empty, there are no valid values. */ if (a_empty && b_empty) return VR_UNDEFINED; /* If exactly one of A or B is empty, return a VR_RANGE for the other one. */ if (a_empty || b_empty) { *min = b_min; *max = a_max; gcc_checking_assert (wi::le_p (*min, *max, sgn)); return VR_RANGE; } /* Update the VR_ANTI_RANGE bounds. */ *min = a_max + 1; *max = b_min - 1; gcc_checking_assert (wi::le_p (*min, *max, sgn)); /* Now check whether the excluded range includes any values that satisfy NONZERO_BITS. If not, switch to a full VR_RANGE. */ if (wi::round_up_for_mask (*min, nonzero_bits) == b_min) { unsigned int precision = min->get_precision (); *min = wi::min_value (precision, sgn); *max = wi::max_value (precision, sgn); vr_type = VR_RANGE; } } if (vr_type == VR_RANGE) { *max = wi::round_down_for_mask (*max, nonzero_bits); /* Check that the range contains at least one valid value. */ if (wi::gt_p (*min, *max, sgn)) return VR_UNDEFINED; *min = wi::round_up_for_mask (*min, nonzero_bits); gcc_checking_assert (wi::le_p (*min, *max, sgn)); } return vr_type; } /* Set value range VR to VR_UNDEFINED. */ static inline void set_value_range_to_undefined (value_range *vr) { vr->type = VR_UNDEFINED; vr->min = vr->max = NULL_TREE; if (vr->equiv) bitmap_clear (vr->equiv); } /* Set value range VR to VR_VARYING. */ void set_value_range_to_varying (value_range *vr) { vr->type = VR_VARYING; vr->min = vr->max = NULL_TREE; if (vr->equiv) bitmap_clear (vr->equiv); } /* Set value range VR to {T, MIN, MAX, EQUIV}. */ void set_value_range (value_range *vr, enum value_range_type t, tree min, tree max, bitmap equiv) { /* Check the validity of the range. */ if (flag_checking && (t == VR_RANGE || t == VR_ANTI_RANGE)) { int cmp; gcc_assert (min && max); gcc_assert (!TREE_OVERFLOW_P (min) && !TREE_OVERFLOW_P (max)); if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE) gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max)); cmp = compare_values (min, max); gcc_assert (cmp == 0 || cmp == -1 || cmp == -2); } if (flag_checking && (t == VR_UNDEFINED || t == VR_VARYING)) { gcc_assert (min == NULL_TREE && max == NULL_TREE); gcc_assert (equiv == NULL || bitmap_empty_p (equiv)); } vr->type = t; vr->min = min; vr->max = max; /* Since updating the equivalence set involves deep copying the bitmaps, only do it if absolutely necessary. All equivalence bitmaps are allocated from the same obstack. So we can use the obstack associated with EQUIV to allocate vr->equiv. */ if (vr->equiv == NULL && equiv != NULL) vr->equiv = BITMAP_ALLOC (equiv->obstack); if (equiv != vr->equiv) { if (equiv && !bitmap_empty_p (equiv)) bitmap_copy (vr->equiv, equiv); else bitmap_clear (vr->equiv); } } /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}. This means adjusting T, MIN and MAX representing the case of a wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX] as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges. In corner cases where MAX+1 or MIN-1 wraps this will fall back to varying. This routine exists to ease canonicalization in the case where we extract ranges from var + CST op limit. */ void set_and_canonicalize_value_range (value_range *vr, enum value_range_type t, tree min, tree max, bitmap equiv) { /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */ if (t == VR_UNDEFINED) { set_value_range_to_undefined (vr); return; } else if (t == VR_VARYING) { set_value_range_to_varying (vr); return; } /* Nothing to canonicalize for symbolic ranges. */ if (TREE_CODE (min) != INTEGER_CST || TREE_CODE (max) != INTEGER_CST) { set_value_range (vr, t, min, max, equiv); return; } /* Wrong order for min and max, to swap them and the VR type we need to adjust them. */ if (tree_int_cst_lt (max, min)) { tree one, tmp; /* For one bit precision if max < min, then the swapped range covers all values, so for VR_RANGE it is varying and for VR_ANTI_RANGE empty range, so drop to varying as well. */ if (TYPE_PRECISION (TREE_TYPE (min)) == 1) { set_value_range_to_varying (vr); return; } one = build_int_cst (TREE_TYPE (min), 1); tmp = int_const_binop (PLUS_EXPR, max, one); max = int_const_binop (MINUS_EXPR, min, one); min = tmp; /* There's one corner case, if we had [C+1, C] before we now have that again. But this represents an empty value range, so drop to varying in this case. */ if (tree_int_cst_lt (max, min)) { set_value_range_to_varying (vr); return; } t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE; } /* Anti-ranges that can be represented as ranges should be so. */ if (t == VR_ANTI_RANGE) { /* For -fstrict-enums we may receive out-of-range ranges so consider values < -INF and values > INF as -INF/INF as well. */ tree type = TREE_TYPE (min); bool is_min = (INTEGRAL_TYPE_P (type) && tree_int_cst_compare (min, TYPE_MIN_VALUE (type)) <= 0); bool is_max = (INTEGRAL_TYPE_P (type) && tree_int_cst_compare (max, TYPE_MAX_VALUE (type)) >= 0); if (is_min && is_max) { /* We cannot deal with empty ranges, drop to varying. ??? This could be VR_UNDEFINED instead. */ set_value_range_to_varying (vr); return; } else if (TYPE_PRECISION (TREE_TYPE (min)) == 1 && (is_min || is_max)) { /* Non-empty boolean ranges can always be represented as a singleton range. */ if (is_min) min = max = vrp_val_max (TREE_TYPE (min)); else min = max = vrp_val_min (TREE_TYPE (min)); t = VR_RANGE; } else if (is_min /* As a special exception preserve non-null ranges. */ && !(TYPE_UNSIGNED (TREE_TYPE (min)) && integer_zerop (max))) { tree one = build_int_cst (TREE_TYPE (max), 1); min = int_const_binop (PLUS_EXPR, max, one); max = vrp_val_max (TREE_TYPE (max)); t = VR_RANGE; } else if (is_max) { tree one = build_int_cst (TREE_TYPE (min), 1); max = int_const_binop (MINUS_EXPR, min, one); min = vrp_val_min (TREE_TYPE (min)); t = VR_RANGE; } } /* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky to make sure VRP iteration terminates, otherwise we can get into oscillations. */ set_value_range (vr, t, min, max, equiv); } /* Copy value range FROM into value range TO. */ void copy_value_range (value_range *to, value_range *from) { set_value_range (to, from->type, from->min, from->max, from->equiv); } /* Set value range VR to a single value. This function is only called with values we get from statements, and exists to clear the TREE_OVERFLOW flag. */ void set_value_range_to_value (value_range *vr, tree val, bitmap equiv) { gcc_assert (is_gimple_min_invariant (val)); if (TREE_OVERFLOW_P (val)) val = drop_tree_overflow (val); set_value_range (vr, VR_RANGE, val, val, equiv); } /* Set value range VR to a non-NULL range of type TYPE. */ void set_value_range_to_nonnull (value_range *vr, tree type) { tree zero = build_int_cst (type, 0); set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv); } /* Set value range VR to a NULL range of type TYPE. */ void set_value_range_to_null (value_range *vr, tree type) { set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv); } /* If abs (min) < abs (max), set VR to [-max, max], if abs (min) >= abs (max), set VR to [-min, min]. */ static void abs_extent_range (value_range *vr, tree min, tree max) { int cmp; gcc_assert (TREE_CODE (min) == INTEGER_CST); gcc_assert (TREE_CODE (max) == INTEGER_CST); gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min))); gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min))); min = fold_unary (ABS_EXPR, TREE_TYPE (min), min); max = fold_unary (ABS_EXPR, TREE_TYPE (max), max); if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max)) { set_value_range_to_varying (vr); return; } cmp = compare_values (min, max); if (cmp == -1) min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max); else if (cmp == 0 || cmp == 1) { max = min; min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min); } else { set_value_range_to_varying (vr); return; } set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL); } /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */ bool vrp_operand_equal_p (const_tree val1, const_tree val2) { if (val1 == val2) return true; if (!val1 || !val2 || !operand_equal_p (val1, val2, 0)) return false; return true; } /* Return true, if the bitmaps B1 and B2 are equal. */ bool vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2) { return (b1 == b2 || ((!b1 || bitmap_empty_p (b1)) && (!b2 || bitmap_empty_p (b2))) || (b1 && b2 && bitmap_equal_p (b1, b2))); } /* Return true if VR is ~[0, 0]. */ bool range_is_nonnull (value_range *vr) { return vr->type == VR_ANTI_RANGE && integer_zerop (vr->min) && integer_zerop (vr->max); } /* Return true if VR is [0, 0]. */ static inline bool range_is_null (value_range *vr) { return vr->type == VR_RANGE && integer_zerop (vr->min) && integer_zerop (vr->max); } /* Return true if max and min of VR are INTEGER_CST. It's not necessary a singleton. */ bool range_int_cst_p (value_range *vr) { return (vr->type == VR_RANGE && TREE_CODE (vr->max) == INTEGER_CST && TREE_CODE (vr->min) == INTEGER_CST); } /* Return true if VR is a INTEGER_CST singleton. */ bool range_int_cst_singleton_p (value_range *vr) { return (range_int_cst_p (vr) && tree_int_cst_equal (vr->min, vr->max)); } /* Return true if value range VR involves at least one symbol. */ bool symbolic_range_p (value_range *vr) { return (!is_gimple_min_invariant (vr->min) || !is_gimple_min_invariant (vr->max)); } /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE otherwise. We only handle additive operations and set NEG to true if the symbol is negated and INV to the invariant part, if any. */ tree get_single_symbol (tree t, bool *neg, tree *inv) { bool neg_; tree inv_; *inv = NULL_TREE; *neg = false; if (TREE_CODE (t) == PLUS_EXPR || TREE_CODE (t) == POINTER_PLUS_EXPR || TREE_CODE (t) == MINUS_EXPR) { if (is_gimple_min_invariant (TREE_OPERAND (t, 0))) { neg_ = (TREE_CODE (t) == MINUS_EXPR); inv_ = TREE_OPERAND (t, 0); t = TREE_OPERAND (t, 1); } else if (is_gimple_min_invariant (TREE_OPERAND (t, 1))) { neg_ = false; inv_ = TREE_OPERAND (t, 1); t = TREE_OPERAND (t, 0); } else return NULL_TREE; } else { neg_ = false; inv_ = NULL_TREE; } if (TREE_CODE (t) == NEGATE_EXPR) { t = TREE_OPERAND (t, 0); neg_ = !neg_; } if (TREE_CODE (t) != SSA_NAME) return NULL_TREE; if (inv_ && TREE_OVERFLOW_P (inv_)) inv_ = drop_tree_overflow (inv_); *neg = neg_; *inv = inv_; return t; } /* The reverse operation: build a symbolic expression with TYPE from symbol SYM, negated according to NEG, and invariant INV. */ static tree build_symbolic_expr (tree type, tree sym, bool neg, tree inv) { const bool pointer_p = POINTER_TYPE_P (type); tree t = sym; if (neg) t = build1 (NEGATE_EXPR, type, t); if (integer_zerop (inv)) return t; return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv); } /* Return 1 if VAL < VAL2 0 if !(VAL < VAL2) -2 if those are incomparable. */ int operand_less_p (tree val, tree val2) { /* LT is folded faster than GE and others. Inline the common case. */ if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST) return tree_int_cst_lt (val, val2); else { tree tcmp; fold_defer_overflow_warnings (); tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2); fold_undefer_and_ignore_overflow_warnings (); if (!tcmp || TREE_CODE (tcmp) != INTEGER_CST) return -2; if (!integer_zerop (tcmp)) return 1; } return 0; } /* Compare two values VAL1 and VAL2. Return -2 if VAL1 and VAL2 cannot be compared at compile-time, -1 if VAL1 < VAL2, 0 if VAL1 == VAL2, +1 if VAL1 > VAL2, and +2 if VAL1 != VAL2 This is similar to tree_int_cst_compare but supports pointer values and values that cannot be compared at compile time. If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to true if the return value is only valid if we assume that signed overflow is undefined. */ int compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p) { if (val1 == val2) return 0; /* Below we rely on the fact that VAL1 and VAL2 are both pointers or both integers. */ gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1)) == POINTER_TYPE_P (TREE_TYPE (val2))); /* Convert the two values into the same type. This is needed because sizetype causes sign extension even for unsigned types. */ val2 = fold_convert (TREE_TYPE (val1), val2); STRIP_USELESS_TYPE_CONVERSION (val2); const bool overflow_undefined = INTEGRAL_TYPE_P (TREE_TYPE (val1)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)); tree inv1, inv2; bool neg1, neg2; tree sym1 = get_single_symbol (val1, &neg1, &inv1); tree sym2 = get_single_symbol (val2, &neg2, &inv2); /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1 accordingly. If VAL1 and VAL2 don't use the same name, return -2. */ if (sym1 && sym2) { /* Both values must use the same name with the same sign. */ if (sym1 != sym2 || neg1 != neg2) return -2; /* [-]NAME + CST == [-]NAME + CST. */ if (inv1 == inv2) return 0; /* If overflow is defined we cannot simplify more. */ if (!overflow_undefined) return -2; if (strict_overflow_p != NULL /* Symbolic range building sets TREE_NO_WARNING to declare that overflow doesn't happen. */ && (!inv1 || !TREE_NO_WARNING (val1)) && (!inv2 || !TREE_NO_WARNING (val2))) *strict_overflow_p = true; if (!inv1) inv1 = build_int_cst (TREE_TYPE (val1), 0); if (!inv2) inv2 = build_int_cst (TREE_TYPE (val2), 0); return wi::cmp (wi::to_wide (inv1), wi::to_wide (inv2), TYPE_SIGN (TREE_TYPE (val1))); } const bool cst1 = is_gimple_min_invariant (val1); const bool cst2 = is_gimple_min_invariant (val2); /* If one is of the form '[-]NAME + CST' and the other is constant, then it might be possible to say something depending on the constants. */ if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1)) { if (!overflow_undefined) return -2; if (strict_overflow_p != NULL /* Symbolic range building sets TREE_NO_WARNING to declare that overflow doesn't happen. */ && (!sym1 || !TREE_NO_WARNING (val1)) && (!sym2 || !TREE_NO_WARNING (val2))) *strict_overflow_p = true; const signop sgn = TYPE_SIGN (TREE_TYPE (val1)); tree cst = cst1 ? val1 : val2; tree inv = cst1 ? inv2 : inv1; /* Compute the difference between the constants. If it overflows or underflows, this means that we can trivially compare the NAME with it and, consequently, the two values with each other. */ wide_int diff = wi::to_wide (cst) - wi::to_wide (inv); if (wi::cmp (0, wi::to_wide (inv), sgn) != wi::cmp (diff, wi::to_wide (cst), sgn)) { const int res = wi::cmp (wi::to_wide (cst), wi::to_wide (inv), sgn); return cst1 ? res : -res; } return -2; } /* We cannot say anything more for non-constants. */ if (!cst1 || !cst2) return -2; if (!POINTER_TYPE_P (TREE_TYPE (val1))) { /* We cannot compare overflowed values. */ if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2)) return -2; if (TREE_CODE (val1) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST) return tree_int_cst_compare (val1, val2); if (poly_int_tree_p (val1) && poly_int_tree_p (val2)) { if (known_eq (wi::to_poly_widest (val1), wi::to_poly_widest (val2))) return 0; if (known_lt (wi::to_poly_widest (val1), wi::to_poly_widest (val2))) return -1; if (known_gt (wi::to_poly_widest (val1), wi::to_poly_widest (val2))) return 1; } return -2; } else { tree t; /* First see if VAL1 and VAL2 are not the same. */ if (val1 == val2 || operand_equal_p (val1, val2, 0)) return 0; /* If VAL1 is a lower address than VAL2, return -1. */ if (operand_less_p (val1, val2) == 1) return -1; /* If VAL1 is a higher address than VAL2, return +1. */ if (operand_less_p (val2, val1) == 1) return 1; /* If VAL1 is different than VAL2, return +2. For integer constants we either have already returned -1 or 1 or they are equivalent. We still might succeed in proving something about non-trivial operands. */ if (TREE_CODE (val1) != INTEGER_CST || TREE_CODE (val2) != INTEGER_CST) { t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2); if (t && integer_onep (t)) return 2; } return -2; } } /* Compare values like compare_values_warnv. */ int compare_values (tree val1, tree val2) { bool sop; return compare_values_warnv (val1, val2, &sop); } /* Return 1 if VAL is inside value range MIN <= VAL <= MAX, 0 if VAL is not inside [MIN, MAX], -2 if we cannot tell either way. Benchmark compile/20001226-1.c compilation time after changing this function. */ int value_inside_range (tree val, tree min, tree max) { int cmp1, cmp2; cmp1 = operand_less_p (val, min); if (cmp1 == -2) return -2; if (cmp1 == 1) return 0; cmp2 = operand_less_p (max, val); if (cmp2 == -2) return -2; return !cmp2; } /* Return true if value ranges VR0 and VR1 have a non-empty intersection. Benchmark compile/20001226-1.c compilation time after changing this function. */ static inline bool value_ranges_intersect_p (value_range *vr0, value_range *vr1) { /* The value ranges do not intersect if the maximum of the first range is less than the minimum of the second range or vice versa. When those relations are unknown, we can't do any better. */ if (operand_less_p (vr0->max, vr1->min) != 0) return false; if (operand_less_p (vr1->max, vr0->min) != 0) return false; return true; } /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not include the value zero, -2 if we cannot tell. */ int range_includes_zero_p (tree min, tree max) { tree zero = build_int_cst (TREE_TYPE (min), 0); return value_inside_range (zero, min, max); } /* Return true if *VR is know to only contain nonnegative values. */ static inline bool value_range_nonnegative_p (value_range *vr) { /* Testing for VR_ANTI_RANGE is not useful here as any anti-range which would return a useful value should be encoded as a VR_RANGE. */ if (vr->type == VR_RANGE) { int result = compare_values (vr->min, integer_zero_node); return (result == 0 || result == 1); } return false; } /* If *VR has a value rante that is a single constant value return that, otherwise return NULL_TREE. */ tree value_range_constant_singleton (value_range *vr) { if (vr->type == VR_RANGE && vrp_operand_equal_p (vr->min, vr->max) && is_gimple_min_invariant (vr->min)) return vr->min; return NULL_TREE; } /* Wrapper around int_const_binop. Return true if we can compute the result; i.e. if the operation doesn't overflow or if the overflow is undefined. In the latter case (if the operation overflows and overflow is undefined), then adjust the result to be -INF or +INF depending on CODE, VAL1 and VAL2. Return the value in *RES. Return false for division by zero, for which the result is indeterminate. */ static bool vrp_int_const_binop (enum tree_code code, tree val1, tree val2, wide_int *res) { bool overflow = false; signop sign = TYPE_SIGN (TREE_TYPE (val1)); switch (code) { case RSHIFT_EXPR: case LSHIFT_EXPR: { wide_int wval2 = wi::to_wide (val2, TYPE_PRECISION (TREE_TYPE (val1))); if (wi::neg_p (wval2)) { wval2 = -wval2; if (code == RSHIFT_EXPR) code = LSHIFT_EXPR; else code = RSHIFT_EXPR; } if (code == RSHIFT_EXPR) /* It's unclear from the C standard whether shifts can overflow. The following code ignores overflow; perhaps a C standard interpretation ruling is needed. */ *res = wi::rshift (wi::to_wide (val1), wval2, sign); else *res = wi::lshift (wi::to_wide (val1), wval2); break; } case MULT_EXPR: *res = wi::mul (wi::to_wide (val1), wi::to_wide (val2), sign, &overflow); break; case TRUNC_DIV_EXPR: case EXACT_DIV_EXPR: if (val2 == 0) return false; else *res = wi::div_trunc (wi::to_wide (val1), wi::to_wide (val2), sign, &overflow); break; case FLOOR_DIV_EXPR: if (val2 == 0) return false; *res = wi::div_floor (wi::to_wide (val1), wi::to_wide (val2), sign, &overflow); break; case CEIL_DIV_EXPR: if (val2 == 0) return false; *res = wi::div_ceil (wi::to_wide (val1), wi::to_wide (val2), sign, &overflow); break; case ROUND_DIV_EXPR: if (val2 == 0) return false; *res = wi::div_round (wi::to_wide (val1), wi::to_wide (val2), sign, &overflow); break; default: gcc_unreachable (); } if (overflow && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1))) { /* If the operation overflowed return -INF or +INF depending on the operation and the combination of signs of the operands. */ int sgn1 = tree_int_cst_sgn (val1); int sgn2 = tree_int_cst_sgn (val2); /* Notice that we only need to handle the restricted set of operations handled by extract_range_from_binary_expr. Among them, only multiplication, addition and subtraction can yield overflow without overflown operands because we are working with integral types only... except in the case VAL1 = -INF and VAL2 = -1 which overflows to +INF for division too. */ /* For multiplication, the sign of the overflow is given by the comparison of the signs of the operands. */ if ((code == MULT_EXPR && sgn1 == sgn2) /* For addition, the operands must be of the same sign to yield an overflow. Its sign is therefore that of one of the operands, for example the first. */ || (code == PLUS_EXPR && sgn1 >= 0) /* For subtraction, operands must be of different signs to yield an overflow. Its sign is therefore that of the first operand or the opposite of that of the second operand. A first operand of 0 counts as positive here, for the corner case 0 - (-INF), which overflows, but must yield +INF. */ || (code == MINUS_EXPR && sgn1 >= 0) /* For division, the only case is -INF / -1 = +INF. */ || code == TRUNC_DIV_EXPR || code == FLOOR_DIV_EXPR || code == CEIL_DIV_EXPR || code == EXACT_DIV_EXPR || code == ROUND_DIV_EXPR) *res = wi::max_value (TYPE_PRECISION (TREE_TYPE (val1)), TYPE_SIGN (TREE_TYPE (val1))); else *res = wi::min_value (TYPE_PRECISION (TREE_TYPE (val1)), TYPE_SIGN (TREE_TYPE (val1))); return true; } return !overflow; } /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO bitmask if some bit is unset, it means for all numbers in the range the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO bitmask if some bit is set, it means for all numbers in the range the bit is 1, otherwise it might be 0 or 1. */ bool zero_nonzero_bits_from_vr (const tree expr_type, value_range *vr, wide_int *may_be_nonzero, wide_int *must_be_nonzero) { *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type)); *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type)); if (!range_int_cst_p (vr)) return false; if (range_int_cst_singleton_p (vr)) { *may_be_nonzero = wi::to_wide (vr->min); *must_be_nonzero = *may_be_nonzero; } else if (tree_int_cst_sgn (vr->min) >= 0 || tree_int_cst_sgn (vr->max) < 0) { wide_int xor_mask = wi::to_wide (vr->min) ^ wi::to_wide (vr->max); *may_be_nonzero = wi::to_wide (vr->min) | wi::to_wide (vr->max); *must_be_nonzero = wi::to_wide (vr->min) & wi::to_wide (vr->max); if (xor_mask != 0) { wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false, may_be_nonzero->get_precision ()); *may_be_nonzero = *may_be_nonzero | mask; *must_be_nonzero = wi::bit_and_not (*must_be_nonzero, mask); } } return true; } /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR so that *VR0 U *VR1 == *AR. Returns true if that is possible, false otherwise. If *AR can be represented with a single range *VR1 will be VR_UNDEFINED. */ static bool ranges_from_anti_range (value_range *ar, value_range *vr0, value_range *vr1) { tree type = TREE_TYPE (ar->min); vr0->type = VR_UNDEFINED; vr1->type = VR_UNDEFINED; if (ar->type != VR_ANTI_RANGE || TREE_CODE (ar->min) != INTEGER_CST || TREE_CODE (ar->max) != INTEGER_CST || !vrp_val_min (type) || !vrp_val_max (type)) return false; if (!vrp_val_is_min (ar->min)) { vr0->type = VR_RANGE; vr0->min = vrp_val_min (type); vr0->max = wide_int_to_tree (type, wi::to_wide (ar->min) - 1); } if (!vrp_val_is_max (ar->max)) { vr1->type = VR_RANGE; vr1->min = wide_int_to_tree (type, wi::to_wide (ar->max) + 1); vr1->max = vrp_val_max (type); } if (vr0->type == VR_UNDEFINED) { *vr0 = *vr1; vr1->type = VR_UNDEFINED; } return vr0->type != VR_UNDEFINED; } /* Helper to extract a value-range *VR for a multiplicative operation *VR0 CODE *VR1. */ static void extract_range_from_multiplicative_op_1 (value_range *vr, enum tree_code code, value_range *vr0, value_range *vr1) { enum value_range_type rtype; wide_int val, min, max; tree type; /* Multiplications, divisions and shifts are a bit tricky to handle, depending on the mix of signs we have in the two ranges, we need to operate on different values to get the minimum and maximum values for the new range. One approach is to figure out all the variations of range combinations and do the operations. However, this involves several calls to compare_values and it is pretty convoluted. It's simpler to do the 4 operations (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP MAX1) and then figure the smallest and largest values to form the new range. */ gcc_assert (code == MULT_EXPR || code == TRUNC_DIV_EXPR || code == FLOOR_DIV_EXPR || code == CEIL_DIV_EXPR || code == EXACT_DIV_EXPR || code == ROUND_DIV_EXPR || code == RSHIFT_EXPR || code == LSHIFT_EXPR); gcc_assert (vr0->type == VR_RANGE && vr0->type == vr1->type); rtype = vr0->type; type = TREE_TYPE (vr0->min); signop sgn = TYPE_SIGN (type); /* Compute the 4 cross operations and their minimum and maximum value. */ if (!vrp_int_const_binop (code, vr0->min, vr1->min, &val)) { set_value_range_to_varying (vr); return; } min = max = val; if (vr1->max != vr1->min) { if (!vrp_int_const_binop (code, vr0->min, vr1->max, &val)) { set_value_range_to_varying (vr); return; } if (wi::lt_p (val, min, sgn)) min = val; else if (wi::gt_p (val, max, sgn)) max = val; } if (vr0->max != vr0->min) { if (!vrp_int_const_binop (code, vr0->max, vr1->min, &val)) { set_value_range_to_varying (vr); return; } if (wi::lt_p (val, min, sgn)) min = val; else if (wi::gt_p (val, max, sgn)) max = val; } if (vr0->min != vr0->max && vr1->min != vr1->max) { if (!vrp_int_const_binop (code, vr0->max, vr1->max, &val)) { set_value_range_to_varying (vr); return; } if (wi::lt_p (val, min, sgn)) min = val; else if (wi::gt_p (val, max, sgn)) max = val; } /* If the new range has its limits swapped around (MIN > MAX), then the operation caused one of them to wrap around, mark the new range VARYING. */ if (wi::gt_p (min, max, sgn)) { set_value_range_to_varying (vr); return; } /* We punt for [-INF, +INF]. We learn nothing when we have INF on both sides. Note that we do accept [-INF, -INF] and [+INF, +INF]. */ if (wi::eq_p (min, wi::min_value (TYPE_PRECISION (type), sgn)) && wi::eq_p (max, wi::max_value (TYPE_PRECISION (type), sgn))) { set_value_range_to_varying (vr); return; } set_value_range (vr, rtype, wide_int_to_tree (type, min), wide_int_to_tree (type, max), NULL); } /* Extract range information from a binary operation CODE based on the ranges of each of its operands *VR0 and *VR1 with resulting type EXPR_TYPE. The resulting range is stored in *VR. */ void extract_range_from_binary_expr_1 (value_range *vr, enum tree_code code, tree expr_type, value_range *vr0_, value_range *vr1_) { value_range vr0 = *vr0_, vr1 = *vr1_; value_range vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER; enum value_range_type type; tree min = NULL_TREE, max = NULL_TREE; int cmp; if (!INTEGRAL_TYPE_P (expr_type) && !POINTER_TYPE_P (expr_type)) { set_value_range_to_varying (vr); return; } /* Not all binary expressions can be applied to ranges in a meaningful way. Handle only arithmetic operations. */ if (code != PLUS_EXPR && code != MINUS_EXPR && code != POINTER_PLUS_EXPR && code != MULT_EXPR && code != TRUNC_DIV_EXPR && code != FLOOR_DIV_EXPR && code != CEIL_DIV_EXPR && code != EXACT_DIV_EXPR && code != ROUND_DIV_EXPR && code != TRUNC_MOD_EXPR && code != RSHIFT_EXPR && code != LSHIFT_EXPR && code != MIN_EXPR && code != MAX_EXPR && code != BIT_AND_EXPR && code != BIT_IOR_EXPR && code != BIT_XOR_EXPR) { set_value_range_to_varying (vr); return; } /* If both ranges are UNDEFINED, so is the result. */ if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED) { set_value_range_to_undefined (vr); return; } /* If one of the ranges is UNDEFINED drop it to VARYING for the following code. At some point we may want to special-case operations that have UNDEFINED result for all or some value-ranges of the not UNDEFINED operand. */ else if (vr0.type == VR_UNDEFINED) set_value_range_to_varying (&vr0); else if (vr1.type == VR_UNDEFINED) set_value_range_to_varying (&vr1); /* We get imprecise results from ranges_from_anti_range when code is EXACT_DIV_EXPR. We could mask out bits in the resulting range, but then we also need to hack up vrp_meet. It's just easier to special case when vr0 is ~[0,0] for EXACT_DIV_EXPR. */ if (code == EXACT_DIV_EXPR && vr0.type == VR_ANTI_RANGE && vr0.min == vr0.max && integer_zerop (vr0.min)) { set_value_range_to_nonnull (vr, expr_type); return; } /* Now canonicalize anti-ranges to ranges when they are not symbolic and express ~[] op X as ([]' op X) U ([]'' op X). */ if (vr0.type == VR_ANTI_RANGE && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1)) { extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_); if (vrtem1.type != VR_UNDEFINED) { value_range vrres = VR_INITIALIZER; extract_range_from_binary_expr_1 (&vrres, code, expr_type, &vrtem1, vr1_); vrp_meet (vr, &vrres); } return; } /* Likewise for X op ~[]. */ if (vr1.type == VR_ANTI_RANGE && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1)) { extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0); if (vrtem1.type != VR_UNDEFINED) { value_range vrres = VR_INITIALIZER; extract_range_from_binary_expr_1 (&vrres, code, expr_type, vr0_, &vrtem1); vrp_meet (vr, &vrres); } return; } /* The type of the resulting value range defaults to VR0.TYPE. */ type = vr0.type; /* Refuse to operate on VARYING ranges, ranges of different kinds and symbolic ranges. As an exception, we allow BIT_{AND,IOR} because we may be able to derive a useful range even if one of the operands is VR_VARYING or symbolic range. Similarly for divisions, MIN/MAX and PLUS/MINUS. TODO, we may be able to derive anti-ranges in some cases. */ if (code != BIT_AND_EXPR && code != BIT_IOR_EXPR && code != TRUNC_DIV_EXPR && code != FLOOR_DIV_EXPR && code != CEIL_DIV_EXPR && code != EXACT_DIV_EXPR && code != ROUND_DIV_EXPR && code != TRUNC_MOD_EXPR && code != MIN_EXPR && code != MAX_EXPR && code != PLUS_EXPR && code != MINUS_EXPR && code != RSHIFT_EXPR && (vr0.type == VR_VARYING || vr1.type == VR_VARYING || vr0.type != vr1.type || symbolic_range_p (&vr0) || symbolic_range_p (&vr1))) { set_value_range_to_varying (vr); return; } /* Now evaluate the expression to determine the new range. */ if (POINTER_TYPE_P (expr_type)) { if (code == MIN_EXPR || code == MAX_EXPR) { /* For MIN/MAX expressions with pointers, we only care about nullness, if both are non null, then the result is nonnull. If both are null, then the result is null. Otherwise they are varying. */ if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1)) set_value_range_to_nonnull (vr, expr_type); else if (range_is_null (&vr0) && range_is_null (&vr1)) set_value_range_to_null (vr, expr_type); else set_value_range_to_varying (vr); } else if (code == POINTER_PLUS_EXPR) { /* For pointer types, we are really only interested in asserting whether the expression evaluates to non-NULL. */ if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1)) set_value_range_to_nonnull (vr, expr_type); else if (range_is_null (&vr0) && range_is_null (&vr1)) set_value_range_to_null (vr, expr_type); else set_value_range_to_varying (vr); } else if (code == BIT_AND_EXPR) { /* For pointer types, we are really only interested in asserting whether the expression evaluates to non-NULL. */ if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1)) set_value_range_to_nonnull (vr, expr_type); else if (range_is_null (&vr0) || range_is_null (&vr1)) set_value_range_to_null (vr, expr_type); else set_value_range_to_varying (vr); } else set_value_range_to_varying (vr); return; } /* For integer ranges, apply the operation to each end of the range and see what we end up with. */ if (code == PLUS_EXPR || code == MINUS_EXPR) { const bool minus_p = (code == MINUS_EXPR); tree min_op0 = vr0.min; tree min_op1 = minus_p ? vr1.max : vr1.min; tree max_op0 = vr0.max; tree max_op1 = minus_p ? vr1.min : vr1.max; tree sym_min_op0 = NULL_TREE; tree sym_min_op1 = NULL_TREE; tree sym_max_op0 = NULL_TREE; tree sym_max_op1 = NULL_TREE; bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1; /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or single-symbolic ranges, try to compute the precise resulting range, but only if we know that this resulting range will also be constant or single-symbolic. */ if (vr0.type == VR_RANGE && vr1.type == VR_RANGE && (TREE_CODE (min_op0) == INTEGER_CST || (sym_min_op0 = get_single_symbol (min_op0, &neg_min_op0, &min_op0))) && (TREE_CODE (min_op1) == INTEGER_CST || (sym_min_op1 = get_single_symbol (min_op1, &neg_min_op1, &min_op1))) && (!(sym_min_op0 && sym_min_op1) || (sym_min_op0 == sym_min_op1 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1))) && (TREE_CODE (max_op0) == INTEGER_CST || (sym_max_op0 = get_single_symbol (max_op0, &neg_max_op0, &max_op0))) && (TREE_CODE (max_op1) == INTEGER_CST || (sym_max_op1 = get_single_symbol (max_op1, &neg_max_op1, &max_op1))) && (!(sym_max_op0 && sym_max_op1) || (sym_max_op0 == sym_max_op1 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1)))) { const signop sgn = TYPE_SIGN (expr_type); const unsigned int prec = TYPE_PRECISION (expr_type); wide_int type_min, type_max, wmin, wmax; int min_ovf = 0; int max_ovf = 0; /* Get the lower and upper bounds of the type. */ if (TYPE_OVERFLOW_WRAPS (expr_type)) { type_min = wi::min_value (prec, sgn); type_max = wi::max_value (prec, sgn); } else { type_min = wi::to_wide (vrp_val_min (expr_type)); type_max = wi::to_wide (vrp_val_max (expr_type)); } /* Combine the lower bounds, if any. */ if (min_op0 && min_op1) { if (minus_p) { wmin = wi::to_wide (min_op0) - wi::to_wide (min_op1); /* Check for overflow. */ if (wi::cmp (0, wi::to_wide (min_op1), sgn) != wi::cmp (wmin, wi::to_wide (min_op0), sgn)) min_ovf = wi::cmp (wi::to_wide (min_op0), wi::to_wide (min_op1), sgn); } else { wmin = wi::to_wide (min_op0) + wi::to_wide (min_op1); /* Check for overflow. */ if (wi::cmp (wi::to_wide (min_op1), 0, sgn) != wi::cmp (wmin, wi::to_wide (min_op0), sgn)) min_ovf = wi::cmp (wi::to_wide (min_op0), wmin, sgn); } } else if (min_op0) wmin = wi::to_wide (min_op0); else if (min_op1) { if (minus_p) { wmin = -wi::to_wide (min_op1); /* Check for overflow. */ if (sgn == SIGNED && wi::neg_p (wi::to_wide (min_op1)) && wi::neg_p (wmin)) min_ovf = 1; else if (sgn == UNSIGNED && wi::to_wide (min_op1) != 0) min_ovf = -1; } else wmin = wi::to_wide (min_op1); } else wmin = wi::shwi (0, prec); /* Combine the upper bounds, if any. */ if (max_op0 && max_op1) { if (minus_p) { wmax = wi::to_wide (max_op0) - wi::to_wide (max_op1); /* Check for overflow. */ if (wi::cmp (0, wi::to_wide (max_op1), sgn) != wi::cmp (wmax, wi::to_wide (max_op0), sgn)) max_ovf = wi::cmp (wi::to_wide (max_op0), wi::to_wide (max_op1), sgn); } else { wmax = wi::to_wide (max_op0) + wi::to_wide (max_op1); if (wi::cmp (wi::to_wide (max_op1), 0, sgn) != wi::cmp (wmax, wi::to_wide (max_op0), sgn)) max_ovf = wi::cmp (wi::to_wide (max_op0), wmax, sgn); } } else if (max_op0) wmax = wi::to_wide (max_op0); else if (max_op1) { if (minus_p) { wmax = -wi::to_wide (max_op1); /* Check for overflow. */ if (sgn == SIGNED && wi::neg_p (wi::to_wide (max_op1)) && wi::neg_p (wmax)) max_ovf = 1; else if (sgn == UNSIGNED && wi::to_wide (max_op1) != 0) max_ovf = -1; } else wmax = wi::to_wide (max_op1); } else wmax = wi::shwi (0, prec); /* Check for type overflow. */ if (min_ovf == 0) { if (wi::cmp (wmin, type_min, sgn) == -1) min_ovf = -1; else if (wi::cmp (wmin, type_max, sgn) == 1) min_ovf = 1; } if (max_ovf == 0) { if (wi::cmp (wmax, type_min, sgn) == -1) max_ovf = -1; else if (wi::cmp (wmax, type_max, sgn) == 1) max_ovf = 1; } /* If the resulting range will be symbolic, we need to eliminate any explicit or implicit overflow introduced in the above computation because compare_values could make an incorrect use of it. That's why we require one of the ranges to be a singleton. */ if ((sym_min_op0 != sym_min_op1 || sym_max_op0 != sym_max_op1) && (min_ovf || max_ovf || (min_op0 != max_op0 && min_op1 != max_op1))) { set_value_range_to_varying (vr); return; } if (TYPE_OVERFLOW_WRAPS (expr_type)) { /* If overflow wraps, truncate the values and adjust the range kind and bounds appropriately. */ wide_int tmin = wide_int::from (wmin, prec, sgn); wide_int tmax = wide_int::from (wmax, prec, sgn); if (min_ovf == max_ovf) { /* No overflow or both overflow or underflow. The range kind stays VR_RANGE. */ min = wide_int_to_tree (expr_type, tmin); max = wide_int_to_tree (expr_type, tmax); } else if ((min_ovf == -1 && max_ovf == 0) || (max_ovf == 1 && min_ovf == 0)) { /* Min underflow or max overflow. The range kind changes to VR_ANTI_RANGE. */ bool covers = false; wide_int tem = tmin; type = VR_ANTI_RANGE; tmin = tmax + 1; if (wi::cmp (tmin, tmax, sgn) < 0) covers = true; tmax = tem - 1; if (wi::cmp (tmax, tem, sgn) > 0) covers = true; /* If the anti-range would cover nothing, drop to varying. Likewise if the anti-range bounds are outside of the types values. */ if (covers || wi::cmp (tmin, tmax, sgn) > 0) { set_value_range_to_varying (vr); return; } min = wide_int_to_tree (expr_type, tmin); max = wide_int_to_tree (expr_type, tmax); } else { /* Other underflow and/or overflow, drop to VR_VARYING. */ set_value_range_to_varying (vr); return; } } else { /* If overflow does not wrap, saturate to the types min/max value. */ if (min_ovf == -1) min = wide_int_to_tree (expr_type, type_min); else if (min_ovf == 1) min = wide_int_to_tree (expr_type, type_max); else min = wide_int_to_tree (expr_type, wmin); if (max_ovf == -1) max = wide_int_to_tree (expr_type, type_min); else if (max_ovf == 1) max = wide_int_to_tree (expr_type, type_max); else max = wide_int_to_tree (expr_type, wmax); } /* If the result lower bound is constant, we're done; otherwise, build the symbolic lower bound. */ if (sym_min_op0 == sym_min_op1) ; else if (sym_min_op0) min = build_symbolic_expr (expr_type, sym_min_op0, neg_min_op0, min); else if (sym_min_op1) { /* We may not negate if that might introduce undefined overflow. */ if (! minus_p || neg_min_op1 || TYPE_OVERFLOW_WRAPS (expr_type)) min = build_symbolic_expr (expr_type, sym_min_op1, neg_min_op1 ^ minus_p, min); else min = NULL_TREE; } /* Likewise for the upper bound. */ if (sym_max_op0 == sym_max_op1) ; else if (sym_max_op0) max = build_symbolic_expr (expr_type, sym_max_op0, neg_max_op0, max); else if (sym_max_op1) { /* We may not negate if that might introduce undefined overflow. */ if (! minus_p || neg_max_op1 || TYPE_OVERFLOW_WRAPS (expr_type)) max = build_symbolic_expr (expr_type, sym_max_op1, neg_max_op1 ^ minus_p, max); else max = NULL_TREE; } } else { /* For other cases, for example if we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort to compute a precise range for such a case. ??? General even mixed range kind operations can be expressed by for example transforming ~[3, 5] + [1, 2] to range-only operations and a union primitive: [-INF, 2] + [1, 2] U [5, +INF] + [1, 2] [-INF+1, 4] U [6, +INF(OVF)] though usually the union is not exactly representable with a single range or anti-range as the above is [-INF+1, +INF(OVF)] intersected with ~[5, 5] but one could use a scheme similar to equivalences for this. */ set_value_range_to_varying (vr); return; } } else if (code == MIN_EXPR || code == MAX_EXPR) { if (vr0.type == VR_RANGE && !symbolic_range_p (&vr0)) { type = VR_RANGE; if (vr1.type == VR_RANGE && !symbolic_range_p (&vr1)) { /* For operations that make the resulting range directly proportional to the original ranges, apply the operation to the same end of each range. */ min = int_const_binop (code, vr0.min, vr1.min); max = int_const_binop (code, vr0.max, vr1.max); } else if (code == MIN_EXPR) { min = vrp_val_min (expr_type); max = vr0.max; } else if (code == MAX_EXPR) { min = vr0.min; max = vrp_val_max (expr_type); } } else if (vr1.type == VR_RANGE && !symbolic_range_p (&vr1)) { type = VR_RANGE; if (code == MIN_EXPR) { min = vrp_val_min (expr_type); max = vr1.max; } else if (code == MAX_EXPR) { min = vr1.min; max = vrp_val_max (expr_type); } } else { set_value_range_to_varying (vr); return; } } else if (code == MULT_EXPR) { /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not drop to varying. This test requires 2*prec bits if both operands are signed and 2*prec + 2 bits if either is not. */ signop sign = TYPE_SIGN (expr_type); unsigned int prec = TYPE_PRECISION (expr_type); if (!range_int_cst_p (&vr0) || !range_int_cst_p (&vr1)) { set_value_range_to_varying (vr); return; } if (TYPE_OVERFLOW_WRAPS (expr_type)) { typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int; typedef generic_wide_int > vrp_int_cst; vrp_int sizem1 = wi::mask (prec, false); vrp_int size = sizem1 + 1; /* Extend the values using the sign of the result to PREC2. From here on out, everthing is just signed math no matter what the input types were. */ vrp_int min0 = vrp_int_cst (vr0.min); vrp_int max0 = vrp_int_cst (vr0.max); vrp_int min1 = vrp_int_cst (vr1.min); vrp_int max1 = vrp_int_cst (vr1.max); /* Canonicalize the intervals. */ if (sign == UNSIGNED) { if (wi::ltu_p (size, min0 + max0)) { min0 -= size; max0 -= size; } if (wi::ltu_p (size, min1 + max1)) { min1 -= size; max1 -= size; } } vrp_int prod0 = min0 * min1; vrp_int prod1 = min0 * max1; vrp_int prod2 = max0 * min1; vrp_int prod3 = max0 * max1; /* Sort the 4 products so that min is in prod0 and max is in prod3. */ /* min0min1 > max0max1 */ if (prod0 > prod3) std::swap (prod0, prod3); /* min0max1 > max0min1 */ if (prod1 > prod2) std::swap (prod1, prod2); if (prod0 > prod1) std::swap (prod0, prod1); if (prod2 > prod3) std::swap (prod2, prod3); /* diff = max - min. */ prod2 = prod3 - prod0; if (wi::geu_p (prod2, sizem1)) { /* the range covers all values. */ set_value_range_to_varying (vr); return; } /* The following should handle the wrapping and selecting VR_ANTI_RANGE for us. */ min = wide_int_to_tree (expr_type, prod0); max = wide_int_to_tree (expr_type, prod3); set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL); return; } /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort to compute a precise range for such a case. For example, if we have op0 == 65536 and op1 == 65536 with their ranges both being ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so we cannot claim that the product is in ~[0,0]. Note that we are guaranteed to have vr0.type == vr1.type at this point. */ if (vr0.type == VR_ANTI_RANGE && !TYPE_OVERFLOW_UNDEFINED (expr_type)) { set_value_range_to_varying (vr); return; } extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1); return; } else if (code == RSHIFT_EXPR || code == LSHIFT_EXPR) { /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1], then drop to VR_VARYING. Outside of this range we get undefined behavior from the shift operation. We cannot even trust SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl shifts, and the operation at the tree level may be widened. */ if (range_int_cst_p (&vr1) && compare_tree_int (vr1.min, 0) >= 0 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1) { if (code == RSHIFT_EXPR) { /* Even if vr0 is VARYING or otherwise not usable, we can derive useful ranges just from the shift count. E.g. x >> 63 for signed 64-bit x is always [-1, 0]. */ if (vr0.type != VR_RANGE || symbolic_range_p (&vr0)) { vr0.type = type = VR_RANGE; vr0.min = vrp_val_min (expr_type); vr0.max = vrp_val_max (expr_type); } extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1); return; } /* We can map lshifts by constants to MULT_EXPR handling. */ else if (code == LSHIFT_EXPR && range_int_cst_singleton_p (&vr1)) { bool saved_flag_wrapv; value_range vr1p = VR_INITIALIZER; vr1p.type = VR_RANGE; vr1p.min = (wide_int_to_tree (expr_type, wi::set_bit_in_zero (tree_to_shwi (vr1.min), TYPE_PRECISION (expr_type)))); vr1p.max = vr1p.min; /* We have to use a wrapping multiply though as signed overflow on lshifts is implementation defined in C89. */ saved_flag_wrapv = flag_wrapv; flag_wrapv = 1; extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type, &vr0, &vr1p); flag_wrapv = saved_flag_wrapv; return; } else if (code == LSHIFT_EXPR && range_int_cst_p (&vr0)) { int prec = TYPE_PRECISION (expr_type); int overflow_pos = prec; int bound_shift; wide_int low_bound, high_bound; bool uns = TYPE_UNSIGNED (expr_type); bool in_bounds = false; if (!uns) overflow_pos -= 1; bound_shift = overflow_pos - tree_to_shwi (vr1.max); /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can overflow. However, for that to happen, vr1.max needs to be zero, which means vr1 is a singleton range of zero, which means it should be handled by the previous LSHIFT_EXPR if-clause. */ wide_int bound = wi::set_bit_in_zero (bound_shift, prec); wide_int complement = ~(bound - 1); if (uns) { low_bound = bound; high_bound = complement; if (wi::ltu_p (wi::to_wide (vr0.max), low_bound)) { /* [5, 6] << [1, 2] == [10, 24]. */ /* We're shifting out only zeroes, the value increases monotonically. */ in_bounds = true; } else if (wi::ltu_p (high_bound, wi::to_wide (vr0.min))) { /* [0xffffff00, 0xffffffff] << [1, 2] == [0xfffffc00, 0xfffffffe]. */ /* We're shifting out only ones, the value decreases monotonically. */ in_bounds = true; } } else { /* [-1, 1] << [1, 2] == [-4, 4]. */ low_bound = complement; high_bound = bound; if (wi::lts_p (wi::to_wide (vr0.max), high_bound) && wi::lts_p (low_bound, wi::to_wide (vr0.min))) { /* For non-negative numbers, we're shifting out only zeroes, the value increases monotonically. For negative numbers, we're shifting out only ones, the value decreases monotomically. */ in_bounds = true; } } if (in_bounds) { extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1); return; } } } set_value_range_to_varying (vr); return; } else if (code == TRUNC_DIV_EXPR || code == FLOOR_DIV_EXPR || code == CEIL_DIV_EXPR || code == EXACT_DIV_EXPR || code == ROUND_DIV_EXPR) { if (vr0.type != VR_RANGE || symbolic_range_p (&vr0)) { /* For division, if op1 has VR_RANGE but op0 does not, something can be deduced just from that range. Say [min, max] / [4, max] gives [min / 4, max / 4] range. */ if (vr1.type == VR_RANGE && !symbolic_range_p (&vr1) && range_includes_zero_p (vr1.min, vr1.max) == 0) { vr0.type = type = VR_RANGE; vr0.min = vrp_val_min (expr_type); vr0.max = vrp_val_max (expr_type); } else { set_value_range_to_varying (vr); return; } } /* For divisions, if flag_non_call_exceptions is true, we must not eliminate a division by zero. */ if (cfun->can_throw_non_call_exceptions && (vr1.type != VR_RANGE || range_includes_zero_p (vr1.min, vr1.max) != 0)) { set_value_range_to_varying (vr); return; } /* For divisions, if op0 is VR_RANGE, we can deduce a range even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can include 0. */ if (vr0.type == VR_RANGE && (vr1.type != VR_RANGE || range_includes_zero_p (vr1.min, vr1.max) != 0)) { tree zero = build_int_cst (TREE_TYPE (vr0.min), 0); int cmp; min = NULL_TREE; max = NULL_TREE; if (TYPE_UNSIGNED (expr_type) || value_range_nonnegative_p (&vr1)) { /* For unsigned division or when divisor is known to be non-negative, the range has to cover all numbers from 0 to max for positive max and all numbers from min to 0 for negative min. */ cmp = compare_values (vr0.max, zero); if (cmp == -1) { /* When vr0.max < 0, vr1.min != 0 and value ranges for dividend and divisor are available. */ if (vr1.type == VR_RANGE && !symbolic_range_p (&vr0) && !symbolic_range_p (&vr1) && compare_values (vr1.min, zero) != 0) max = int_const_binop (code, vr0.max, vr1.min); else max = zero; } else if (cmp == 0 || cmp == 1) max = vr0.max; else type = VR_VARYING; cmp = compare_values (vr0.min, zero); if (cmp == 1) { /* For unsigned division when value ranges for dividend and divisor are available. */ if (vr1.type == VR_RANGE && !symbolic_range_p (&vr0) && !symbolic_range_p (&vr1) && compare_values (vr1.max, zero) != 0) min = int_const_binop (code, vr0.min, vr1.max); else min = zero; } else if (cmp == 0 || cmp == -1) min = vr0.min; else type = VR_VARYING; } else { /* Otherwise the range is -max .. max or min .. -min depending on which bound is bigger in absolute value, as the division can change the sign. */ abs_extent_range (vr, vr0.min, vr0.max); return; } if (type == VR_VARYING) { set_value_range_to_varying (vr); return; } } else if (range_int_cst_p (&vr0) && range_int_cst_p (&vr1)) { extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1); return; } } else if (code == TRUNC_MOD_EXPR) { if (range_is_null (&vr1)) { set_value_range_to_undefined (vr); return; } /* ABS (A % B) < ABS (B) and either 0 <= A % B <= A or A <= A % B <= 0. */ type = VR_RANGE; signop sgn = TYPE_SIGN (expr_type); unsigned int prec = TYPE_PRECISION (expr_type); wide_int wmin, wmax, tmp; if (vr1.type == VR_RANGE && !symbolic_range_p (&vr1)) { wmax = wi::to_wide (vr1.max) - 1; if (sgn == SIGNED) { tmp = -1 - wi::to_wide (vr1.min); wmax = wi::smax (wmax, tmp); } } else { wmax = wi::max_value (prec, sgn); /* X % INT_MIN may be INT_MAX. */ if (sgn == UNSIGNED) wmax = wmax - 1; } if (sgn == UNSIGNED) wmin = wi::zero (prec); else { wmin = -wmax; if (vr0.type == VR_RANGE && TREE_CODE (vr0.min) == INTEGER_CST) { tmp = wi::to_wide (vr0.min); if (wi::gts_p (tmp, 0)) tmp = wi::zero (prec); wmin = wi::smax (wmin, tmp); } } if (vr0.type == VR_RANGE && TREE_CODE (vr0.max) == INTEGER_CST) { tmp = wi::to_wide (vr0.max); if (sgn == SIGNED && wi::neg_p (tmp)) tmp = wi::zero (prec); wmax = wi::min (wmax, tmp, sgn); } min = wide_int_to_tree (expr_type, wmin); max = wide_int_to_tree (expr_type, wmax); } else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR) { bool int_cst_range0, int_cst_range1; wide_int may_be_nonzero0, may_be_nonzero1; wide_int must_be_nonzero0, must_be_nonzero1; int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0, &may_be_nonzero0, &must_be_nonzero0); int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1, &may_be_nonzero1, &must_be_nonzero1); if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR) { value_range *vr0p = NULL, *vr1p = NULL; if (range_int_cst_singleton_p (&vr1)) { vr0p = &vr0; vr1p = &vr1; } else if (range_int_cst_singleton_p (&vr0)) { vr0p = &vr1; vr1p = &vr0; } /* For op & or | attempt to optimize: [x, y] op z into [x op z, y op z] if z is a constant which (for op | its bitwise not) has n consecutive least significant bits cleared followed by m 1 consecutive bits set immediately above it and either m + n == precision, or (x >> (m + n)) == (y >> (m + n)). The least significant n bits of all the values in the range are cleared or set, the m bits above it are preserved and any bits above these are required to be the same for all values in the range. */ if (vr0p && range_int_cst_p (vr0p)) { wide_int w = wi::to_wide (vr1p->min); int m = 0, n = 0; if (code == BIT_IOR_EXPR) w = ~w; if (wi::eq_p (w, 0)) n = TYPE_PRECISION (expr_type); else { n = wi::ctz (w); w = ~(w | wi::mask (n, false, w.get_precision ())); if (wi::eq_p (w, 0)) m = TYPE_PRECISION (expr_type) - n; else m = wi::ctz (w) - n; } wide_int mask = wi::mask (m + n, true, w.get_precision ()); if ((mask & wi::to_wide (vr0p->min)) == (mask & wi::to_wide (vr0p->max))) { min = int_const_binop (code, vr0p->min, vr1p->min); max = int_const_binop (code, vr0p->max, vr1p->min); } } } type = VR_RANGE; if (min && max) /* Optimized above already. */; else if (code == BIT_AND_EXPR) { min = wide_int_to_tree (expr_type, must_be_nonzero0 & must_be_nonzero1); wide_int wmax = may_be_nonzero0 & may_be_nonzero1; /* If both input ranges contain only negative values we can truncate the result range maximum to the minimum of the input range maxima. */ if (int_cst_range0 && int_cst_range1 && tree_int_cst_sgn (vr0.max) < 0 && tree_int_cst_sgn (vr1.max) < 0) { wmax = wi::min (wmax, wi::to_wide (vr0.max), TYPE_SIGN (expr_type)); wmax = wi::min (wmax, wi::to_wide (vr1.max), TYPE_SIGN (expr_type)); } /* If either input range contains only non-negative values we can truncate the result range maximum to the respective maximum of the input range. */ if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0) wmax = wi::min (wmax, wi::to_wide (vr0.max), TYPE_SIGN (expr_type)); if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0) wmax = wi::min (wmax, wi::to_wide (vr1.max), TYPE_SIGN (expr_type)); max = wide_int_to_tree (expr_type, wmax); cmp = compare_values (min, max); /* PR68217: In case of signed & sign-bit-CST should result in [-INF, 0] instead of [-INF, INF]. */ if (cmp == -2 || cmp == 1) { wide_int sign_bit = wi::set_bit_in_zero (TYPE_PRECISION (expr_type) - 1, TYPE_PRECISION (expr_type)); if (!TYPE_UNSIGNED (expr_type) && ((int_cst_range0 && value_range_constant_singleton (&vr0) && !wi::cmps (wi::to_wide (vr0.min), sign_bit)) || (int_cst_range1 && value_range_constant_singleton (&vr1) && !wi::cmps (wi::to_wide (vr1.min), sign_bit)))) { min = TYPE_MIN_VALUE (expr_type); max = build_int_cst (expr_type, 0); } } } else if (code == BIT_IOR_EXPR) { max = wide_int_to_tree (expr_type, may_be_nonzero0 | may_be_nonzero1); wide_int wmin = must_be_nonzero0 | must_be_nonzero1; /* If the input ranges contain only positive values we can truncate the minimum of the result range to the maximum of the input range minima. */ if (int_cst_range0 && int_cst_range1 && tree_int_cst_sgn (vr0.min) >= 0 && tree_int_cst_sgn (vr1.min) >= 0) { wmin = wi::max (wmin, wi::to_wide (vr0.min), TYPE_SIGN (expr_type)); wmin = wi::max (wmin, wi::to_wide (vr1.min), TYPE_SIGN (expr_type)); } /* If either input range contains only negative values we can truncate the minimum of the result range to the respective minimum range. */ if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0) wmin = wi::max (wmin, wi::to_wide (vr0.min), TYPE_SIGN (expr_type)); if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0) wmin = wi::max (wmin, wi::to_wide (vr1.min), TYPE_SIGN (expr_type)); min = wide_int_to_tree (expr_type, wmin); } else if (code == BIT_XOR_EXPR) { wide_int result_zero_bits = ((must_be_nonzero0 & must_be_nonzero1) | ~(may_be_nonzero0 | may_be_nonzero1)); wide_int result_one_bits = (wi::bit_and_not (must_be_nonzero0, may_be_nonzero1) | wi::bit_and_not (must_be_nonzero1, may_be_nonzero0)); max = wide_int_to_tree (expr_type, ~result_zero_bits); min = wide_int_to_tree (expr_type, result_one_bits); /* If the range has all positive or all negative values the result is better than VARYING. */ if (tree_int_cst_sgn (min) < 0 || tree_int_cst_sgn (max) >= 0) ; else max = min = NULL_TREE; } } else gcc_unreachable (); /* If either MIN or MAX overflowed, then set the resulting range to VARYING. */ if (min == NULL_TREE || TREE_OVERFLOW_P (min) || max == NULL_TREE || TREE_OVERFLOW_P (max)) { set_value_range_to_varying (vr); return; } /* We punt for [-INF, +INF]. We learn nothing when we have INF on both sides. Note that we do accept [-INF, -INF] and [+INF, +INF]. */ if (vrp_val_is_min (min) && vrp_val_is_max (max)) { set_value_range_to_varying (vr); return; } cmp = compare_values (min, max); if (cmp == -2 || cmp == 1) { /* If the new range has its limits swapped around (MIN > MAX), then the operation caused one of them to wrap around, mark the new range VARYING. */ set_value_range_to_varying (vr); } else set_value_range (vr, type, min, max, NULL); } /* Extract range information from a unary operation CODE based on the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE. The resulting range is stored in *VR. */ void extract_range_from_unary_expr (value_range *vr, enum tree_code code, tree type, value_range *vr0_, tree op0_type) { value_range vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER; /* VRP only operates on integral and pointer types. */ if (!(INTEGRAL_TYPE_P (op0_type) || POINTER_TYPE_P (op0_type)) || !(INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))) { set_value_range_to_varying (vr); return; } /* If VR0 is UNDEFINED, so is the result. */ if (vr0.type == VR_UNDEFINED) { set_value_range_to_undefined (vr); return; } /* Handle operations that we express in terms of others. */ if (code == PAREN_EXPR || code == OBJ_TYPE_REF) { /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */ copy_value_range (vr, &vr0); return; } else if (code == NEGATE_EXPR) { /* -X is simply 0 - X, so re-use existing code that also handles anti-ranges fine. */ value_range zero = VR_INITIALIZER; set_value_range_to_value (&zero, build_int_cst (type, 0), NULL); extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0); return; } else if (code == BIT_NOT_EXPR) { /* ~X is simply -1 - X, so re-use existing code that also handles anti-ranges fine. */ value_range minusone = VR_INITIALIZER; set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL); extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &minusone, &vr0); return; } /* Now canonicalize anti-ranges to ranges when they are not symbolic and express op ~[] as (op []') U (op []''). */ if (vr0.type == VR_ANTI_RANGE && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1)) { extract_range_from_unary_expr (vr, code, type, &vrtem0, op0_type); if (vrtem1.type != VR_UNDEFINED) { value_range vrres = VR_INITIALIZER; extract_range_from_unary_expr (&vrres, code, type, &vrtem1, op0_type); vrp_meet (vr, &vrres); } return; } if (CONVERT_EXPR_CODE_P (code)) { tree inner_type = op0_type; tree outer_type = type; /* If the expression evaluates to a pointer, we are only interested in determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */ if (POINTER_TYPE_P (type)) { if (range_is_nonnull (&vr0)) set_value_range_to_nonnull (vr, type); else if (range_is_null (&vr0)) set_value_range_to_null (vr, type); else set_value_range_to_varying (vr); return; } /* If VR0 is varying and we increase the type precision, assume a full range for the following transformation. */ if (vr0.type == VR_VARYING && INTEGRAL_TYPE_P (inner_type) && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)) { vr0.type = VR_RANGE; vr0.min = TYPE_MIN_VALUE (inner_type); vr0.max = TYPE_MAX_VALUE (inner_type); } /* If VR0 is a constant range or anti-range and the conversion is not truncating we can convert the min and max values and canonicalize the resulting range. Otherwise we can do the conversion if the size of the range is less than what the precision of the target type can represent and the range is not an anti-range. */ if ((vr0.type == VR_RANGE || vr0.type == VR_ANTI_RANGE) && TREE_CODE (vr0.min) == INTEGER_CST && TREE_CODE (vr0.max) == INTEGER_CST && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type) || (vr0.type == VR_RANGE && integer_zerop (int_const_binop (RSHIFT_EXPR, int_const_binop (MINUS_EXPR, vr0.max, vr0.min), size_int (TYPE_PRECISION (outer_type))))))) { tree new_min, new_max; new_min = force_fit_type (outer_type, wi::to_widest (vr0.min), 0, false); new_max = force_fit_type (outer_type, wi::to_widest (vr0.max), 0, false); set_and_canonicalize_value_range (vr, vr0.type, new_min, new_max, NULL); return; } set_value_range_to_varying (vr); return; } else if (code == ABS_EXPR) { tree min, max; int cmp; /* Pass through vr0 in the easy cases. */ if (TYPE_UNSIGNED (type) || value_range_nonnegative_p (&vr0)) { copy_value_range (vr, &vr0); return; } /* For the remaining varying or symbolic ranges we can't do anything useful. */ if (vr0.type == VR_VARYING || symbolic_range_p (&vr0)) { set_value_range_to_varying (vr); return; } /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a useful range. */ if (!TYPE_OVERFLOW_UNDEFINED (type) && ((vr0.type == VR_RANGE && vrp_val_is_min (vr0.min)) || (vr0.type == VR_ANTI_RANGE && !vrp_val_is_min (vr0.min)))) { set_value_range_to_varying (vr); return; } /* ABS_EXPR may flip the range around, if the original range included negative values. */ if (!vrp_val_is_min (vr0.min)) min = fold_unary_to_constant (code, type, vr0.min); else min = TYPE_MAX_VALUE (type); if (!vrp_val_is_min (vr0.max)) max = fold_unary_to_constant (code, type, vr0.max); else max = TYPE_MAX_VALUE (type); cmp = compare_values (min, max); /* If a VR_ANTI_RANGEs contains zero, then we have ~[-INF, min(MIN, MAX)]. */ if (vr0.type == VR_ANTI_RANGE) { if (range_includes_zero_p (vr0.min, vr0.max) == 1) { /* Take the lower of the two values. */ if (cmp != 1) max = min; /* Create ~[-INF, min (abs(MIN), abs(MAX))] or ~[-INF + 1, min (abs(MIN), abs(MAX))] when flag_wrapv is set and the original anti-range doesn't include TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */ if (TYPE_OVERFLOW_WRAPS (type)) { tree type_min_value = TYPE_MIN_VALUE (type); min = (vr0.min != type_min_value ? int_const_binop (PLUS_EXPR, type_min_value, build_int_cst (TREE_TYPE (type_min_value), 1)) : type_min_value); } else min = TYPE_MIN_VALUE (type); } else { /* All else has failed, so create the range [0, INF], even for flag_wrapv since TYPE_MIN_VALUE is in the original anti-range. */ vr0.type = VR_RANGE; min = build_int_cst (type, 0); max = TYPE_MAX_VALUE (type); } } /* If the range contains zero then we know that the minimum value in the range will be zero. */ else if (range_includes_zero_p (vr0.min, vr0.max) == 1) { if (cmp == 1) max = min; min = build_int_cst (type, 0); } else { /* If the range was reversed, swap MIN and MAX. */ if (cmp == 1) std::swap (min, max); } cmp = compare_values (min, max); if (cmp == -2 || cmp == 1) { /* If the new range has its limits swapped around (MIN > MAX), then the operation caused one of them to wrap around, mark the new range VARYING. */ set_value_range_to_varying (vr); } else set_value_range (vr, vr0.type, min, max, NULL); return; } /* For unhandled operations fall back to varying. */ set_value_range_to_varying (vr); return; } /* Debugging dumps. */ void dump_value_range (FILE *, const value_range *); void debug_value_range (value_range *); void dump_all_value_ranges (FILE *); void dump_vr_equiv (FILE *, bitmap); void debug_vr_equiv (bitmap); /* Dump value range VR to FILE. */ void dump_value_range (FILE *file, const value_range *vr) { if (vr == NULL) fprintf (file, "[]"); else if (vr->type == VR_UNDEFINED) fprintf (file, "UNDEFINED"); else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE) { tree type = TREE_TYPE (vr->min); fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : ""); if (INTEGRAL_TYPE_P (type) && !TYPE_UNSIGNED (type) && vrp_val_is_min (vr->min)) fprintf (file, "-INF"); else print_generic_expr (file, vr->min); fprintf (file, ", "); if (INTEGRAL_TYPE_P (type) && vrp_val_is_max (vr->max)) fprintf (file, "+INF"); else print_generic_expr (file, vr->max); fprintf (file, "]"); if (vr->equiv) { bitmap_iterator bi; unsigned i, c = 0; fprintf (file, " EQUIVALENCES: { "); EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi) { print_generic_expr (file, ssa_name (i)); fprintf (file, " "); c++; } fprintf (file, "} (%u elements)", c); } } else if (vr->type == VR_VARYING) fprintf (file, "VARYING"); else fprintf (file, "INVALID RANGE"); } /* Dump value range VR to stderr. */ DEBUG_FUNCTION void debug_value_range (value_range *vr) { dump_value_range (stderr, vr); fprintf (stderr, "\n"); } /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V, create a new SSA name N and return the assertion assignment 'N = ASSERT_EXPR '. */ static gimple * build_assert_expr_for (tree cond, tree v) { tree a; gassign *assertion; gcc_assert (TREE_CODE (v) == SSA_NAME && COMPARISON_CLASS_P (cond)); a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond); assertion = gimple_build_assign (NULL_TREE, a); /* The new ASSERT_EXPR, creates a new SSA name that replaces the operand of the ASSERT_EXPR. Create it so the new name and the old one are registered in the replacement table so that we can fix the SSA web after adding all the ASSERT_EXPRs. */ tree new_def = create_new_def_for (v, assertion, NULL); /* Make sure we preserve abnormalness throughout an ASSERT_EXPR chain given we have to be able to fully propagate those out to re-create valid SSA when removing the asserts. */ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (v)) SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_def) = 1; return assertion; } /* Return false if EXPR is a predicate expression involving floating point values. */ static inline bool fp_predicate (gimple *stmt) { GIMPLE_CHECK (stmt, GIMPLE_COND); return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt))); } /* If the range of values taken by OP can be inferred after STMT executes, return the comparison code (COMP_CODE_P) and value (VAL_P) that describes the inferred range. Return true if a range could be inferred. */ bool infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p) { *val_p = NULL_TREE; *comp_code_p = ERROR_MARK; /* Do not attempt to infer anything in names that flow through abnormal edges. */ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op)) return false; /* If STMT is the last statement of a basic block with no normal successors, there is no point inferring anything about any of its operands. We would not be able to find a proper insertion point for the assertion, anyway. */ if (stmt_ends_bb_p (stmt)) { edge_iterator ei; edge e; FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs) if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH))) break; if (e == NULL) return false; } if (infer_nonnull_range (stmt, op)) { *val_p = build_int_cst (TREE_TYPE (op), 0); *comp_code_p = NE_EXPR; return true; } return false; } void dump_asserts_for (FILE *, tree); void debug_asserts_for (tree); void dump_all_asserts (FILE *); void debug_all_asserts (void); /* Dump all the registered assertions for NAME to FILE. */ void dump_asserts_for (FILE *file, tree name) { assert_locus *loc; fprintf (file, "Assertions to be inserted for "); print_generic_expr (file, name); fprintf (file, "\n"); loc = asserts_for[SSA_NAME_VERSION (name)]; while (loc) { fprintf (file, "\t"); print_gimple_stmt (file, gsi_stmt (loc->si), 0); fprintf (file, "\n\tBB #%d", loc->bb->index); if (loc->e) { fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index, loc->e->dest->index); dump_edge_info (file, loc->e, dump_flags, 0); } fprintf (file, "\n\tPREDICATE: "); print_generic_expr (file, loc->expr); fprintf (file, " %s ", get_tree_code_name (loc->comp_code)); print_generic_expr (file, loc->val); fprintf (file, "\n\n"); loc = loc->next; } fprintf (file, "\n"); } /* Dump all the registered assertions for NAME to stderr. */ DEBUG_FUNCTION void debug_asserts_for (tree name) { dump_asserts_for (stderr, name); } /* Dump all the registered assertions for all the names to FILE. */ void dump_all_asserts (FILE *file) { unsigned i; bitmap_iterator bi; fprintf (file, "\nASSERT_EXPRs to be inserted\n\n"); EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi) dump_asserts_for (file, ssa_name (i)); fprintf (file, "\n"); } /* Dump all the registered assertions for all the names to stderr. */ DEBUG_FUNCTION void debug_all_asserts (void) { dump_all_asserts (stderr); } /* Push the assert info for NAME, EXPR, COMP_CODE and VAL to ASSERTS. */ static void add_assert_info (vec &asserts, tree name, tree expr, enum tree_code comp_code, tree val) { assert_info info; info.comp_code = comp_code; info.name = name; if (TREE_OVERFLOW_P (val)) val = drop_tree_overflow (val); info.val = val; info.expr = expr; asserts.safe_push (info); } /* If NAME doesn't have an ASSERT_EXPR registered for asserting 'EXPR COMP_CODE VAL' at a location that dominates block BB or E->DEST, then register this location as a possible insertion point for ASSERT_EXPR . BB, E and SI provide the exact insertion point for the new ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E must not be NULL. */ static void register_new_assert_for (tree name, tree expr, enum tree_code comp_code, tree val, basic_block bb, edge e, gimple_stmt_iterator si) { assert_locus *n, *loc, *last_loc; basic_block dest_bb; gcc_checking_assert (bb == NULL || e == NULL); if (e == NULL) gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH); /* Never build an assert comparing against an integer constant with TREE_OVERFLOW set. This confuses our undefined overflow warning machinery. */ if (TREE_OVERFLOW_P (val)) val = drop_tree_overflow (val); /* The new assertion A will be inserted at BB or E. We need to determine if the new location is dominated by a previously registered location for A. If we are doing an edge insertion, assume that A will be inserted at E->DEST. Note that this is not necessarily true. If E is a critical edge, it will be split. But even if E is split, the new block will dominate the same set of blocks that E->DEST dominates. The reverse, however, is not true, blocks dominated by E->DEST will not be dominated by the new block created to split E. So, if the insertion location is on a critical edge, we will not use the new location to move another assertion previously registered at a block dominated by E->DEST. */ dest_bb = (bb) ? bb : e->dest; /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and VAL at a block dominating DEST_BB, then we don't need to insert a new one. Similarly, if the same assertion already exists at a block dominated by DEST_BB and the new location is not on a critical edge, then update the existing location for the assertion (i.e., move the assertion up in the dominance tree). Note, this is implemented as a simple linked list because there should not be more than a handful of assertions registered per name. If this becomes a performance problem, a table hashed by COMP_CODE and VAL could be implemented. */ loc = asserts_for[SSA_NAME_VERSION (name)]; last_loc = loc; while (loc) { if (loc->comp_code == comp_code && (loc->val == val || operand_equal_p (loc->val, val, 0)) && (loc->expr == expr || operand_equal_p (loc->expr, expr, 0))) { /* If E is not a critical edge and DEST_BB dominates the existing location for the assertion, move the assertion up in the dominance tree by updating its location information. */ if ((e == NULL || !EDGE_CRITICAL_P (e)) && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb)) { loc->bb = dest_bb; loc->e = e; loc->si = si; return; } } /* Update the last node of the list and move to the next one. */ last_loc = loc; loc = loc->next; } /* If we didn't find an assertion already registered for NAME COMP_CODE VAL, add a new one at the end of the list of assertions associated with NAME. */ n = XNEW (struct assert_locus); n->bb = dest_bb; n->e = e; n->si = si; n->comp_code = comp_code; n->val = val; n->expr = expr; n->next = NULL; if (last_loc) last_loc->next = n; else asserts_for[SSA_NAME_VERSION (name)] = n; bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name)); } /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME. Extract a suitable test code and value and store them into *CODE_P and *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P. If no extraction was possible, return FALSE, otherwise return TRUE. If INVERT is true, then we invert the result stored into *CODE_P. */ static bool extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code, tree cond_op0, tree cond_op1, bool invert, enum tree_code *code_p, tree *val_p) { enum tree_code comp_code; tree val; /* Otherwise, we have a comparison of the form NAME COMP VAL or VAL COMP NAME. */ if (name == cond_op1) { /* If the predicate is of the form VAL COMP NAME, flip COMP around because we need to register NAME as the first operand in the predicate. */ comp_code = swap_tree_comparison (cond_code); val = cond_op0; } else if (name == cond_op0) { /* The comparison is of the form NAME COMP VAL, so the comparison code remains unchanged. */ comp_code = cond_code; val = cond_op1; } else gcc_unreachable (); /* Invert the comparison code as necessary. */ if (invert) comp_code = invert_tree_comparison (comp_code, 0); /* VRP only handles integral and pointer types. */ if (! INTEGRAL_TYPE_P (TREE_TYPE (val)) && ! POINTER_TYPE_P (TREE_TYPE (val))) return false; /* Do not register always-false predicates. FIXME: this works around a limitation in fold() when dealing with enumerations. Given 'enum { N1, N2 } x;', fold will not fold 'if (x > N2)' to 'if (0)'. */ if ((comp_code == GT_EXPR || comp_code == LT_EXPR) && INTEGRAL_TYPE_P (TREE_TYPE (val))) { tree min = TYPE_MIN_VALUE (TREE_TYPE (val)); tree max = TYPE_MAX_VALUE (TREE_TYPE (val)); if (comp_code == GT_EXPR && (!max || compare_values (val, max) == 0)) return false; if (comp_code == LT_EXPR && (!min || compare_values (val, min) == 0)) return false; } *code_p = comp_code; *val_p = val; return true; } /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any (otherwise return VAL). VAL and MASK must be zero-extended for precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT (to transform signed values into unsigned) and at the end xor SGNBIT back. */ static wide_int masked_increment (const wide_int &val_in, const wide_int &mask, const wide_int &sgnbit, unsigned int prec) { wide_int bit = wi::one (prec), res; unsigned int i; wide_int val = val_in ^ sgnbit; for (i = 0; i < prec; i++, bit += bit) { res = mask; if ((res & bit) == 0) continue; res = bit - 1; res = wi::bit_and_not (val + bit, res); res &= mask; if (wi::gtu_p (res, val)) return res ^ sgnbit; } return val ^ sgnbit; } /* Helper for overflow_comparison_p OP0 CODE OP1 is a comparison. Examine the comparison and potentially OP1's defining statement to see if it ultimately has the form OP0 CODE (OP0 PLUS INTEGER_CST) If so, return TRUE indicating this is an overflow test and store into *NEW_CST an updated constant that can be used in a narrowed range test. REVERSED indicates if the comparison was originally: OP1 CODE' OP0. This affects how we build the updated constant. */ static bool overflow_comparison_p_1 (enum tree_code code, tree op0, tree op1, bool follow_assert_exprs, bool reversed, tree *new_cst) { /* See if this is a relational operation between two SSA_NAMES with unsigned, overflow wrapping values. If so, check it more deeply. */ if ((code == LT_EXPR || code == LE_EXPR || code == GE_EXPR || code == GT_EXPR) && TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME && INTEGRAL_TYPE_P (TREE_TYPE (op0)) && TYPE_UNSIGNED (TREE_TYPE (op0)) && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0))) { gimple *op1_def = SSA_NAME_DEF_STMT (op1); /* If requested, follow any ASSERT_EXPRs backwards for OP1. */ if (follow_assert_exprs) { while (gimple_assign_single_p (op1_def) && TREE_CODE (gimple_assign_rhs1 (op1_def)) == ASSERT_EXPR) { op1 = TREE_OPERAND (gimple_assign_rhs1 (op1_def), 0); if (TREE_CODE (op1) != SSA_NAME) break; op1_def = SSA_NAME_DEF_STMT (op1); } } /* Now look at the defining statement of OP1 to see if it adds or subtracts a nonzero constant from another operand. */ if (op1_def && is_gimple_assign (op1_def) && gimple_assign_rhs_code (op1_def) == PLUS_EXPR && TREE_CODE (gimple_assign_rhs2 (op1_def)) == INTEGER_CST && !integer_zerop (gimple_assign_rhs2 (op1_def))) { tree target = gimple_assign_rhs1 (op1_def); /* If requested, follow ASSERT_EXPRs backwards for op0 looking for one where TARGET appears on the RHS. */ if (follow_assert_exprs) { /* Now see if that "other operand" is op0, following the chain of ASSERT_EXPRs if necessary. */ gimple *op0_def = SSA_NAME_DEF_STMT (op0); while (op0 != target && gimple_assign_single_p (op0_def) && TREE_CODE (gimple_assign_rhs1 (op0_def)) == ASSERT_EXPR) { op0 = TREE_OPERAND (gimple_assign_rhs1 (op0_def), 0); if (TREE_CODE (op0) != SSA_NAME) break; op0_def = SSA_NAME_DEF_STMT (op0); } } /* If we did not find our target SSA_NAME, then this is not an overflow test. */ if (op0 != target) return false; tree type = TREE_TYPE (op0); wide_int max = wi::max_value (TYPE_PRECISION (type), UNSIGNED); tree inc = gimple_assign_rhs2 (op1_def); if (reversed) *new_cst = wide_int_to_tree (type, max + wi::to_wide (inc)); else *new_cst = wide_int_to_tree (type, max - wi::to_wide (inc)); return true; } } return false; } /* OP0 CODE OP1 is a comparison. Examine the comparison and potentially OP1's defining statement to see if it ultimately has the form OP0 CODE (OP0 PLUS INTEGER_CST) If so, return TRUE indicating this is an overflow test and store into *NEW_CST an updated constant that can be used in a narrowed range test. These statements are left as-is in the IL to facilitate discovery of {ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline. But the alternate range representation is often useful within VRP. */ bool overflow_comparison_p (tree_code code, tree name, tree val, bool use_equiv_p, tree *new_cst) { if (overflow_comparison_p_1 (code, name, val, use_equiv_p, false, new_cst)) return true; return overflow_comparison_p_1 (swap_tree_comparison (code), val, name, use_equiv_p, true, new_cst); } /* Try to register an edge assertion for SSA name NAME on edge E for the condition COND contributing to the conditional jump pointed to by BSI. Invert the condition COND if INVERT is true. */ static void register_edge_assert_for_2 (tree name, edge e, enum tree_code cond_code, tree cond_op0, tree cond_op1, bool invert, vec &asserts) { tree val; enum tree_code comp_code; if (!extract_code_and_val_from_cond_with_ops (name, cond_code, cond_op0, cond_op1, invert, &comp_code, &val)) return; /* Queue the assert. */ tree x; if (overflow_comparison_p (comp_code, name, val, false, &x)) { enum tree_code new_code = ((comp_code == GT_EXPR || comp_code == GE_EXPR) ? GT_EXPR : LE_EXPR); add_assert_info (asserts, name, name, new_code, x); } add_assert_info (asserts, name, name, comp_code, val); /* In the case of NAME <= CST and NAME being defined as NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2 and NAME2 <= CST - CST2. We can do the same for NAME > CST. This catches range and anti-range tests. */ if ((comp_code == LE_EXPR || comp_code == GT_EXPR) && TREE_CODE (val) == INTEGER_CST && TYPE_UNSIGNED (TREE_TYPE (val))) { gimple *def_stmt = SSA_NAME_DEF_STMT (name); tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE; /* Extract CST2 from the (optional) addition. */ if (is_gimple_assign (def_stmt) && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR) { name2 = gimple_assign_rhs1 (def_stmt); cst2 = gimple_assign_rhs2 (def_stmt); if (TREE_CODE (name2) == SSA_NAME && TREE_CODE (cst2) == INTEGER_CST) def_stmt = SSA_NAME_DEF_STMT (name2); } /* Extract NAME2 from the (optional) sign-changing cast. */ if (gimple_assign_cast_p (def_stmt)) { if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)) && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt))) && (TYPE_PRECISION (gimple_expr_type (def_stmt)) == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))) name3 = gimple_assign_rhs1 (def_stmt); } /* If name3 is used later, create an ASSERT_EXPR for it. */ if (name3 != NULL_TREE && TREE_CODE (name3) == SSA_NAME && (cst2 == NULL_TREE || TREE_CODE (cst2) == INTEGER_CST) && INTEGRAL_TYPE_P (TREE_TYPE (name3))) { tree tmp; /* Build an expression for the range test. */ tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3); if (cst2 != NULL_TREE) tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2); if (dump_file) { fprintf (dump_file, "Adding assert for "); print_generic_expr (dump_file, name3); fprintf (dump_file, " from "); print_generic_expr (dump_file, tmp); fprintf (dump_file, "\n"); } add_assert_info (asserts, name3, tmp, comp_code, val); } /* If name2 is used later, create an ASSERT_EXPR for it. */ if (name2 != NULL_TREE && TREE_CODE (name2) == SSA_NAME && TREE_CODE (cst2) == INTEGER_CST && INTEGRAL_TYPE_P (TREE_TYPE (name2))) { tree tmp; /* Build an expression for the range test. */ tmp = name2; if (TREE_TYPE (name) != TREE_TYPE (name2)) tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp); if (cst2 != NULL_TREE) tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2); if (dump_file) { fprintf (dump_file, "Adding assert for "); print_generic_expr (dump_file, name2); fprintf (dump_file, " from "); print_generic_expr (dump_file, tmp); fprintf (dump_file, "\n"); } add_assert_info (asserts, name2, tmp, comp_code, val); } } /* In the case of post-in/decrement tests like if (i++) ... and uses of the in/decremented value on the edge the extra name we want to assert for is not on the def chain of the name compared. Instead it is in the set of use stmts. Similar cases happen for conversions that were simplified through fold_{sign_changed,widened}_comparison. */ if ((comp_code == NE_EXPR || comp_code == EQ_EXPR) && TREE_CODE (val) == INTEGER_CST) { imm_use_iterator ui; gimple *use_stmt; FOR_EACH_IMM_USE_STMT (use_stmt, ui, name) { if (!is_gimple_assign (use_stmt)) continue; /* Cut off to use-stmts that are dominating the predecessor. */ if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt))) continue; tree name2 = gimple_assign_lhs (use_stmt); if (TREE_CODE (name2) != SSA_NAME) continue; enum tree_code code = gimple_assign_rhs_code (use_stmt); tree cst; if (code == PLUS_EXPR || code == MINUS_EXPR) { cst = gimple_assign_rhs2 (use_stmt); if (TREE_CODE (cst) != INTEGER_CST) continue; cst = int_const_binop (code, val, cst); } else if (CONVERT_EXPR_CODE_P (code)) { /* For truncating conversions we cannot record an inequality. */ if (comp_code == NE_EXPR && (TYPE_PRECISION (TREE_TYPE (name2)) < TYPE_PRECISION (TREE_TYPE (name)))) continue; cst = fold_convert (TREE_TYPE (name2), val); } else continue; if (TREE_OVERFLOW_P (cst)) cst = drop_tree_overflow (cst); add_assert_info (asserts, name2, name2, comp_code, cst); } } if (TREE_CODE_CLASS (comp_code) == tcc_comparison && TREE_CODE (val) == INTEGER_CST) { gimple *def_stmt = SSA_NAME_DEF_STMT (name); tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE; tree val2 = NULL_TREE; unsigned int prec = TYPE_PRECISION (TREE_TYPE (val)); wide_int mask = wi::zero (prec); unsigned int nprec = prec; enum tree_code rhs_code = ERROR_MARK; if (is_gimple_assign (def_stmt)) rhs_code = gimple_assign_rhs_code (def_stmt); /* In the case of NAME != CST1 where NAME = A +- CST2 we can assert that A != CST1 -+ CST2. */ if ((comp_code == EQ_EXPR || comp_code == NE_EXPR) && (rhs_code == PLUS_EXPR || rhs_code == MINUS_EXPR)) { tree op0 = gimple_assign_rhs1 (def_stmt); tree op1 = gimple_assign_rhs2 (def_stmt); if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == INTEGER_CST) { enum tree_code reverse_op = (rhs_code == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR); op1 = int_const_binop (reverse_op, val, op1); if (TREE_OVERFLOW (op1)) op1 = drop_tree_overflow (op1); add_assert_info (asserts, op0, op0, comp_code, op1); } } /* Add asserts for NAME cmp CST and NAME being defined as NAME = (int) NAME2. */ if (!TYPE_UNSIGNED (TREE_TYPE (val)) && (comp_code == LE_EXPR || comp_code == LT_EXPR || comp_code == GT_EXPR || comp_code == GE_EXPR) && gimple_assign_cast_p (def_stmt)) { name2 = gimple_assign_rhs1 (def_stmt); if (CONVERT_EXPR_CODE_P (rhs_code) && INTEGRAL_TYPE_P (TREE_TYPE (name2)) && TYPE_UNSIGNED (TREE_TYPE (name2)) && prec == TYPE_PRECISION (TREE_TYPE (name2)) && (comp_code == LE_EXPR || comp_code == GT_EXPR || !tree_int_cst_equal (val, TYPE_MIN_VALUE (TREE_TYPE (val))))) { tree tmp, cst; enum tree_code new_comp_code = comp_code; cst = fold_convert (TREE_TYPE (name2), TYPE_MIN_VALUE (TREE_TYPE (val))); /* Build an expression for the range test. */ tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst); cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst, fold_convert (TREE_TYPE (name2), val)); if (comp_code == LT_EXPR || comp_code == GE_EXPR) { new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR; cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst, build_int_cst (TREE_TYPE (name2), 1)); } if (dump_file) { fprintf (dump_file, "Adding assert for "); print_generic_expr (dump_file, name2); fprintf (dump_file, " from "); print_generic_expr (dump_file, tmp); fprintf (dump_file, "\n"); } add_assert_info (asserts, name2, tmp, new_comp_code, cst); } } /* Add asserts for NAME cmp CST and NAME being defined as NAME = NAME2 >> CST2. Extract CST2 from the right shift. */ if (rhs_code == RSHIFT_EXPR) { name2 = gimple_assign_rhs1 (def_stmt); cst2 = gimple_assign_rhs2 (def_stmt); if (TREE_CODE (name2) == SSA_NAME && tree_fits_uhwi_p (cst2) && INTEGRAL_TYPE_P (TREE_TYPE (name2)) && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1) && type_has_mode_precision_p (TREE_TYPE (val))) { mask = wi::mask (tree_to_uhwi (cst2), false, prec); val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2); } } if (val2 != NULL_TREE && TREE_CODE (val2) == INTEGER_CST && simple_cst_equal (fold_build2 (RSHIFT_EXPR, TREE_TYPE (val), val2, cst2), val)) { enum tree_code new_comp_code = comp_code; tree tmp, new_val; tmp = name2; if (comp_code == EQ_EXPR || comp_code == NE_EXPR) { if (!TYPE_UNSIGNED (TREE_TYPE (val))) { tree type = build_nonstandard_integer_type (prec, 1); tmp = build1 (NOP_EXPR, type, name2); val2 = fold_convert (type, val2); } tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2); new_val = wide_int_to_tree (TREE_TYPE (tmp), mask); new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR; } else if (comp_code == LT_EXPR || comp_code == GE_EXPR) { wide_int minval = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val))); new_val = val2; if (minval == wi::to_wide (new_val)) new_val = NULL_TREE; } else { wide_int maxval = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val))); mask |= wi::to_wide (val2); if (wi::eq_p (mask, maxval)) new_val = NULL_TREE; else new_val = wide_int_to_tree (TREE_TYPE (val2), mask); } if (new_val) { if (dump_file) { fprintf (dump_file, "Adding assert for "); print_generic_expr (dump_file, name2); fprintf (dump_file, " from "); print_generic_expr (dump_file, tmp); fprintf (dump_file, "\n"); } add_assert_info (asserts, name2, tmp, new_comp_code, new_val); } } /* Add asserts for NAME cmp CST and NAME being defined as NAME = NAME2 & CST2. Extract CST2 from the and. Also handle NAME = (unsigned) NAME2; casts where NAME's type is unsigned and has smaller precision than NAME2's type as if it was NAME = NAME2 & MASK. */ names[0] = NULL_TREE; names[1] = NULL_TREE; cst2 = NULL_TREE; if (rhs_code == BIT_AND_EXPR || (CONVERT_EXPR_CODE_P (rhs_code) && INTEGRAL_TYPE_P (TREE_TYPE (val)) && TYPE_UNSIGNED (TREE_TYPE (val)) && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt))) > prec)) { name2 = gimple_assign_rhs1 (def_stmt); if (rhs_code == BIT_AND_EXPR) cst2 = gimple_assign_rhs2 (def_stmt); else { cst2 = TYPE_MAX_VALUE (TREE_TYPE (val)); nprec = TYPE_PRECISION (TREE_TYPE (name2)); } if (TREE_CODE (name2) == SSA_NAME && INTEGRAL_TYPE_P (TREE_TYPE (name2)) && TREE_CODE (cst2) == INTEGER_CST && !integer_zerop (cst2) && (nprec > 1 || TYPE_UNSIGNED (TREE_TYPE (val)))) { gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2); if (gimple_assign_cast_p (def_stmt2)) { names[1] = gimple_assign_rhs1 (def_stmt2); if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2)) || !INTEGRAL_TYPE_P (TREE_TYPE (names[1])) || (TYPE_PRECISION (TREE_TYPE (name2)) != TYPE_PRECISION (TREE_TYPE (names[1])))) names[1] = NULL_TREE; } names[0] = name2; } } if (names[0] || names[1]) { wide_int minv, maxv, valv, cst2v; wide_int tem, sgnbit; bool valid_p = false, valn, cst2n; enum tree_code ccode = comp_code; valv = wide_int::from (wi::to_wide (val), nprec, UNSIGNED); cst2v = wide_int::from (wi::to_wide (cst2), nprec, UNSIGNED); valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val))); cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val))); /* If CST2 doesn't have most significant bit set, but VAL is negative, we have comparison like if ((x & 0x123) > -4) (always true). Just give up. */ if (!cst2n && valn) ccode = ERROR_MARK; if (cst2n) sgnbit = wi::set_bit_in_zero (nprec - 1, nprec); else sgnbit = wi::zero (nprec); minv = valv & cst2v; switch (ccode) { case EQ_EXPR: /* Minimum unsigned value for equality is VAL & CST2 (should be equal to VAL, otherwise we probably should have folded the comparison into false) and maximum unsigned value is VAL | ~CST2. */ maxv = valv | ~cst2v; valid_p = true; break; case NE_EXPR: tem = valv | ~cst2v; /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */ if (valv == 0) { cst2n = false; sgnbit = wi::zero (nprec); goto gt_expr; } /* If (VAL | ~CST2) is all ones, handle it as (X & CST2) < VAL. */ if (tem == -1) { cst2n = false; valn = false; sgnbit = wi::zero (nprec); goto lt_expr; } if (!cst2n && wi::neg_p (cst2v)) sgnbit = wi::set_bit_in_zero (nprec - 1, nprec); if (sgnbit != 0) { if (valv == sgnbit) { cst2n = true; valn = true; goto gt_expr; } if (tem == wi::mask (nprec - 1, false, nprec)) { cst2n = true; goto lt_expr; } if (!cst2n) sgnbit = wi::zero (nprec); } break; case GE_EXPR: /* Minimum unsigned value for >= if (VAL & CST2) == VAL is VAL and maximum unsigned value is ~0. For signed comparison, if CST2 doesn't have most significant bit set, handle it similarly. If CST2 has MSB set, the minimum is the same, and maximum is ~0U/2. */ if (minv != valv) { /* If (VAL & CST2) != VAL, X & CST2 can't be equal to VAL. */ minv = masked_increment (valv, cst2v, sgnbit, nprec); if (minv == valv) break; } maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec); valid_p = true; break; case GT_EXPR: gt_expr: /* Find out smallest MINV where MINV > VAL && (MINV & CST2) == MINV, if any. If VAL is signed and CST2 has MSB set, compute it biased by 1 << (nprec - 1). */ minv = masked_increment (valv, cst2v, sgnbit, nprec); if (minv == valv) break; maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec); valid_p = true; break; case LE_EXPR: /* Minimum unsigned value for <= is 0 and maximum unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL. Otherwise, find smallest VAL2 where VAL2 > VAL && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2 as maximum. For signed comparison, if CST2 doesn't have most significant bit set, handle it similarly. If CST2 has MSB set, the maximum is the same and minimum is INT_MIN. */ if (minv == valv) maxv = valv; else { maxv = masked_increment (valv, cst2v, sgnbit, nprec); if (maxv == valv) break; maxv -= 1; } maxv |= ~cst2v; minv = sgnbit; valid_p = true; break; case LT_EXPR: lt_expr: /* Minimum unsigned value for < is 0 and maximum unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL. Otherwise, find smallest VAL2 where VAL2 > VAL && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2 as maximum. For signed comparison, if CST2 doesn't have most significant bit set, handle it similarly. If CST2 has MSB set, the maximum is the same and minimum is INT_MIN. */ if (minv == valv) { if (valv == sgnbit) break; maxv = valv; } else { maxv = masked_increment (valv, cst2v, sgnbit, nprec); if (maxv == valv) break; } maxv -= 1; maxv |= ~cst2v; minv = sgnbit; valid_p = true; break; default: break; } if (valid_p && (maxv - minv) != -1) { tree tmp, new_val, type; int i; for (i = 0; i < 2; i++) if (names[i]) { wide_int maxv2 = maxv; tmp = names[i]; type = TREE_TYPE (names[i]); if (!TYPE_UNSIGNED (type)) { type = build_nonstandard_integer_type (nprec, 1); tmp = build1 (NOP_EXPR, type, names[i]); } if (minv != 0) { tmp = build2 (PLUS_EXPR, type, tmp, wide_int_to_tree (type, -minv)); maxv2 = maxv - minv; } new_val = wide_int_to_tree (type, maxv2); if (dump_file) { fprintf (dump_file, "Adding assert for "); print_generic_expr (dump_file, names[i]); fprintf (dump_file, " from "); print_generic_expr (dump_file, tmp); fprintf (dump_file, "\n"); } add_assert_info (asserts, names[i], tmp, LE_EXPR, new_val); } } } } } /* OP is an operand of a truth value expression which is known to have a particular value. Register any asserts for OP and for any operands in OP's defining statement. If CODE is EQ_EXPR, then we want to register OP is zero (false), if CODE is NE_EXPR, then we want to register OP is nonzero (true). */ static void register_edge_assert_for_1 (tree op, enum tree_code code, edge e, vec &asserts) { gimple *op_def; tree val; enum tree_code rhs_code; /* We only care about SSA_NAMEs. */ if (TREE_CODE (op) != SSA_NAME) return; /* We know that OP will have a zero or nonzero value. */ val = build_int_cst (TREE_TYPE (op), 0); add_assert_info (asserts, op, op, code, val); /* Now look at how OP is set. If it's set from a comparison, a truth operation or some bit operations, then we may be able to register information about the operands of that assignment. */ op_def = SSA_NAME_DEF_STMT (op); if (gimple_code (op_def) != GIMPLE_ASSIGN) return; rhs_code = gimple_assign_rhs_code (op_def); if (TREE_CODE_CLASS (rhs_code) == tcc_comparison) { bool invert = (code == EQ_EXPR ? true : false); tree op0 = gimple_assign_rhs1 (op_def); tree op1 = gimple_assign_rhs2 (op_def); if (TREE_CODE (op0) == SSA_NAME) register_edge_assert_for_2 (op0, e, rhs_code, op0, op1, invert, asserts); if (TREE_CODE (op1) == SSA_NAME) register_edge_assert_for_2 (op1, e, rhs_code, op0, op1, invert, asserts); } else if ((code == NE_EXPR && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR) || (code == EQ_EXPR && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)) { /* Recurse on each operand. */ tree op0 = gimple_assign_rhs1 (op_def); tree op1 = gimple_assign_rhs2 (op_def); if (TREE_CODE (op0) == SSA_NAME && has_single_use (op0)) register_edge_assert_for_1 (op0, code, e, asserts); if (TREE_CODE (op1) == SSA_NAME && has_single_use (op1)) register_edge_assert_for_1 (op1, code, e, asserts); } else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1) { /* Recurse, flipping CODE. */ code = invert_tree_comparison (code, false); register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts); } else if (gimple_assign_rhs_code (op_def) == SSA_NAME) { /* Recurse through the copy. */ register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts); } else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def))) { /* Recurse through the type conversion, unless it is a narrowing conversion or conversion from non-integral type. */ tree rhs = gimple_assign_rhs1 (op_def); if (INTEGRAL_TYPE_P (TREE_TYPE (rhs)) && (TYPE_PRECISION (TREE_TYPE (rhs)) <= TYPE_PRECISION (TREE_TYPE (op)))) register_edge_assert_for_1 (rhs, code, e, asserts); } } /* Check if comparison NAME COND_OP INTEGER_CST has a form of (X & 11...100..0) COND_OP XX...X00...0 Such comparison can yield assertions like X >= XX...X00...0 X <= XX...X11...1 in case of COND_OP being EQ_EXPR or X < XX...X00...0 X > XX...X11...1 in case of NE_EXPR. */ static bool is_masked_range_test (tree name, tree valt, enum tree_code cond_code, tree *new_name, tree *low, enum tree_code *low_code, tree *high, enum tree_code *high_code) { gimple *def_stmt = SSA_NAME_DEF_STMT (name); if (!is_gimple_assign (def_stmt) || gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR) return false; tree t = gimple_assign_rhs1 (def_stmt); tree maskt = gimple_assign_rhs2 (def_stmt); if (TREE_CODE (t) != SSA_NAME || TREE_CODE (maskt) != INTEGER_CST) return false; wi::tree_to_wide_ref mask = wi::to_wide (maskt); wide_int inv_mask = ~mask; /* Must have been removed by now so don't bother optimizing. */ if (mask == 0 || inv_mask == 0) return false; /* Assume VALT is INTEGER_CST. */ wi::tree_to_wide_ref val = wi::to_wide (valt); if ((inv_mask & (inv_mask + 1)) != 0 || (val & mask) != val) return false; bool is_range = cond_code == EQ_EXPR; tree type = TREE_TYPE (t); wide_int min = wi::min_value (type), max = wi::max_value (type); if (is_range) { *low_code = val == min ? ERROR_MARK : GE_EXPR; *high_code = val == max ? ERROR_MARK : LE_EXPR; } else { /* We can still generate assertion if one of alternatives is known to always be false. */ if (val == min) { *low_code = (enum tree_code) 0; *high_code = GT_EXPR; } else if ((val | inv_mask) == max) { *low_code = LT_EXPR; *high_code = (enum tree_code) 0; } else return false; } *new_name = t; *low = wide_int_to_tree (type, val); *high = wide_int_to_tree (type, val | inv_mask); return true; } /* Try to register an edge assertion for SSA name NAME on edge E for the condition COND contributing to the conditional jump pointed to by SI. */ void register_edge_assert_for (tree name, edge e, enum tree_code cond_code, tree cond_op0, tree cond_op1, vec &asserts) { tree val; enum tree_code comp_code; bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0; /* Do not attempt to infer anything in names that flow through abnormal edges. */ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name)) return; if (!extract_code_and_val_from_cond_with_ops (name, cond_code, cond_op0, cond_op1, is_else_edge, &comp_code, &val)) return; /* Register ASSERT_EXPRs for name. */ register_edge_assert_for_2 (name, e, cond_code, cond_op0, cond_op1, is_else_edge, asserts); /* If COND is effectively an equality test of an SSA_NAME against the value zero or one, then we may be able to assert values for SSA_NAMEs which flow into COND. */ /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining statement of NAME we can assert both operands of the BIT_AND_EXPR have nonzero value. */ if (((comp_code == EQ_EXPR && integer_onep (val)) || (comp_code == NE_EXPR && integer_zerop (val)))) { gimple *def_stmt = SSA_NAME_DEF_STMT (name); if (is_gimple_assign (def_stmt) && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR) { tree op0 = gimple_assign_rhs1 (def_stmt); tree op1 = gimple_assign_rhs2 (def_stmt); register_edge_assert_for_1 (op0, NE_EXPR, e, asserts); register_edge_assert_for_1 (op1, NE_EXPR, e, asserts); } } /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining statement of NAME we can assert both operands of the BIT_IOR_EXPR have zero value. */ if (((comp_code == EQ_EXPR && integer_zerop (val)) || (comp_code == NE_EXPR && integer_onep (val)))) { gimple *def_stmt = SSA_NAME_DEF_STMT (name); /* For BIT_IOR_EXPR only if NAME == 0 both operands have necessarily zero value, or if type-precision is one. */ if (is_gimple_assign (def_stmt) && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR && (TYPE_PRECISION (TREE_TYPE (name)) == 1 || comp_code == EQ_EXPR))) { tree op0 = gimple_assign_rhs1 (def_stmt); tree op1 = gimple_assign_rhs2 (def_stmt); register_edge_assert_for_1 (op0, EQ_EXPR, e, asserts); register_edge_assert_for_1 (op1, EQ_EXPR, e, asserts); } } /* Sometimes we can infer ranges from (NAME & MASK) == VALUE. */ if ((comp_code == EQ_EXPR || comp_code == NE_EXPR) && TREE_CODE (val) == INTEGER_CST) { enum tree_code low_code, high_code; tree low, high; if (is_masked_range_test (name, val, comp_code, &name, &low, &low_code, &high, &high_code)) { if (low_code != ERROR_MARK) register_edge_assert_for_2 (name, e, low_code, name, low, /*invert*/false, asserts); if (high_code != ERROR_MARK) register_edge_assert_for_2 (name, e, high_code, name, high, /*invert*/false, asserts); } } } /* Finish found ASSERTS for E and register them at GSI. */ static void finish_register_edge_assert_for (edge e, gimple_stmt_iterator gsi, vec &asserts) { for (unsigned i = 0; i < asserts.length (); ++i) /* Only register an ASSERT_EXPR if NAME was found in the sub-graph reachable from E. */ if (live_on_edge (e, asserts[i].name)) register_new_assert_for (asserts[i].name, asserts[i].expr, asserts[i].comp_code, asserts[i].val, NULL, e, gsi); } /* Determine whether the outgoing edges of BB should receive an ASSERT_EXPR for each of the operands of BB's LAST statement. The last statement of BB must be a COND_EXPR. If any of the sub-graphs rooted at BB have an interesting use of the predicate operands, an assert location node is added to the list of assertions for the corresponding operands. */ static void find_conditional_asserts (basic_block bb, gcond *last) { gimple_stmt_iterator bsi; tree op; edge_iterator ei; edge e; ssa_op_iter iter; bsi = gsi_for_stmt (last); /* Look for uses of the operands in each of the sub-graphs rooted at BB. We need to check each of the outgoing edges separately, so that we know what kind of ASSERT_EXPR to insert. */ FOR_EACH_EDGE (e, ei, bb->succs) { if (e->dest == bb) continue; /* Register the necessary assertions for each operand in the conditional predicate. */ auto_vec asserts; FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE) register_edge_assert_for (op, e, gimple_cond_code (last), gimple_cond_lhs (last), gimple_cond_rhs (last), asserts); finish_register_edge_assert_for (e, bsi, asserts); } } struct case_info { tree expr; basic_block bb; }; /* Compare two case labels sorting first by the destination bb index and then by the case value. */ static int compare_case_labels (const void *p1, const void *p2) { const struct case_info *ci1 = (const struct case_info *) p1; const struct case_info *ci2 = (const struct case_info *) p2; int idx1 = ci1->bb->index; int idx2 = ci2->bb->index; if (idx1 < idx2) return -1; else if (idx1 == idx2) { /* Make sure the default label is first in a group. */ if (!CASE_LOW (ci1->expr)) return -1; else if (!CASE_LOW (ci2->expr)) return 1; else return tree_int_cst_compare (CASE_LOW (ci1->expr), CASE_LOW (ci2->expr)); } else return 1; } /* Determine whether the outgoing edges of BB should receive an ASSERT_EXPR for each of the operands of BB's LAST statement. The last statement of BB must be a SWITCH_EXPR. If any of the sub-graphs rooted at BB have an interesting use of the predicate operands, an assert location node is added to the list of assertions for the corresponding operands. */ static void find_switch_asserts (basic_block bb, gswitch *last) { gimple_stmt_iterator bsi; tree op; edge e; struct case_info *ci; size_t n = gimple_switch_num_labels (last); #if GCC_VERSION >= 4000 unsigned int idx; #else /* Work around GCC 3.4 bug (PR 37086). */ volatile unsigned int idx; #endif bsi = gsi_for_stmt (last); op = gimple_switch_index (last); if (TREE_CODE (op) != SSA_NAME) return; /* Build a vector of case labels sorted by destination label. */ ci = XNEWVEC (struct case_info, n); for (idx = 0; idx < n; ++idx) { ci[idx].expr = gimple_switch_label (last, idx); ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr)); } edge default_edge = find_edge (bb, ci[0].bb); qsort (ci, n, sizeof (struct case_info), compare_case_labels); for (idx = 0; idx < n; ++idx) { tree min, max; tree cl = ci[idx].expr; basic_block cbb = ci[idx].bb; min = CASE_LOW (cl); max = CASE_HIGH (cl); /* If there are multiple case labels with the same destination we need to combine them to a single value range for the edge. */ if (idx + 1 < n && cbb == ci[idx + 1].bb) { /* Skip labels until the last of the group. */ do { ++idx; } while (idx < n && cbb == ci[idx].bb); --idx; /* Pick up the maximum of the case label range. */ if (CASE_HIGH (ci[idx].expr)) max = CASE_HIGH (ci[idx].expr); else max = CASE_LOW (ci[idx].expr); } /* Can't extract a useful assertion out of a range that includes the default label. */ if (min == NULL_TREE) continue; /* Find the edge to register the assert expr on. */ e = find_edge (bb, cbb); /* Register the necessary assertions for the operand in the SWITCH_EXPR. */ auto_vec asserts; register_edge_assert_for (op, e, max ? GE_EXPR : EQ_EXPR, op, fold_convert (TREE_TYPE (op), min), asserts); if (max) register_edge_assert_for (op, e, LE_EXPR, op, fold_convert (TREE_TYPE (op), max), asserts); finish_register_edge_assert_for (e, bsi, asserts); } XDELETEVEC (ci); if (!live_on_edge (default_edge, op)) return; /* Now register along the default label assertions that correspond to the anti-range of each label. */ int insertion_limit = PARAM_VALUE (PARAM_MAX_VRP_SWITCH_ASSERTIONS); if (insertion_limit == 0) return; /* We can't do this if the default case shares a label with another case. */ tree default_cl = gimple_switch_default_label (last); for (idx = 1; idx < n; idx++) { tree min, max; tree cl = gimple_switch_label (last, idx); if (CASE_LABEL (cl) == CASE_LABEL (default_cl)) continue; min = CASE_LOW (cl); max = CASE_HIGH (cl); /* Combine contiguous case ranges to reduce the number of assertions to insert. */ for (idx = idx + 1; idx < n; idx++) { tree next_min, next_max; tree next_cl = gimple_switch_label (last, idx); if (CASE_LABEL (next_cl) == CASE_LABEL (default_cl)) break; next_min = CASE_LOW (next_cl); next_max = CASE_HIGH (next_cl); wide_int difference = (wi::to_wide (next_min) - wi::to_wide (max ? max : min)); if (wi::eq_p (difference, 1)) max = next_max ? next_max : next_min; else break; } idx--; if (max == NULL_TREE) { /* Register the assertion OP != MIN. */ auto_vec asserts; min = fold_convert (TREE_TYPE (op), min); register_edge_assert_for (op, default_edge, NE_EXPR, op, min, asserts); finish_register_edge_assert_for (default_edge, bsi, asserts); } else { /* Register the assertion (unsigned)OP - MIN > (MAX - MIN), which will give OP the anti-range ~[MIN,MAX]. */ tree uop = fold_convert (unsigned_type_for (TREE_TYPE (op)), op); min = fold_convert (TREE_TYPE (uop), min); max = fold_convert (TREE_TYPE (uop), max); tree lhs = fold_build2 (MINUS_EXPR, TREE_TYPE (uop), uop, min); tree rhs = int_const_binop (MINUS_EXPR, max, min); register_new_assert_for (op, lhs, GT_EXPR, rhs, NULL, default_edge, bsi); } if (--insertion_limit == 0) break; } } /* Traverse all the statements in block BB looking for statements that may generate useful assertions for the SSA names in their operand. If a statement produces a useful assertion A for name N_i, then the list of assertions already generated for N_i is scanned to determine if A is actually needed. If N_i already had the assertion A at a location dominating the current location, then nothing needs to be done. Otherwise, the new location for A is recorded instead. 1- For every statement S in BB, all the variables used by S are added to bitmap FOUND_IN_SUBGRAPH. 2- If statement S uses an operand N in a way that exposes a known value range for N, then if N was not already generated by an ASSERT_EXPR, create a new assert location for N. For instance, if N is a pointer and the statement dereferences it, we can assume that N is not NULL. 3- COND_EXPRs are a special case of #2. We can derive range information from the predicate but need to insert different ASSERT_EXPRs for each of the sub-graphs rooted at the conditional block. If the last statement of BB is a conditional expression of the form 'X op Y', then a) Remove X and Y from the set FOUND_IN_SUBGRAPH. b) If the conditional is the only entry point to the sub-graph corresponding to the THEN_CLAUSE, recurse into it. On return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then an ASSERT_EXPR is added for the corresponding variable. c) Repeat step (b) on the ELSE_CLAUSE. d) Mark X and Y in FOUND_IN_SUBGRAPH. For instance, if (a == 9) b = a; else b = c + 1; In this case, an assertion on the THEN clause is useful to determine that 'a' is always 9 on that edge. However, an assertion on the ELSE clause would be unnecessary. 4- If BB does not end in a conditional expression, then we recurse into BB's dominator children. At the end of the recursive traversal, every SSA name will have a list of locations where ASSERT_EXPRs should be added. When a new location for name N is found, it is registered by calling register_new_assert_for. That function keeps track of all the registered assertions to prevent adding unnecessary assertions. For instance, if a pointer P_4 is dereferenced more than once in a dominator tree, only the location dominating all the dereference of P_4 will receive an ASSERT_EXPR. */ static void find_assert_locations_1 (basic_block bb, sbitmap live) { gimple *last; last = last_stmt (bb); /* If BB's last statement is a conditional statement involving integer operands, determine if we need to add ASSERT_EXPRs. */ if (last && gimple_code (last) == GIMPLE_COND && !fp_predicate (last) && !ZERO_SSA_OPERANDS (last, SSA_OP_USE)) find_conditional_asserts (bb, as_a (last)); /* If BB's last statement is a switch statement involving integer operands, determine if we need to add ASSERT_EXPRs. */ if (last && gimple_code (last) == GIMPLE_SWITCH && !ZERO_SSA_OPERANDS (last, SSA_OP_USE)) find_switch_asserts (bb, as_a (last)); /* Traverse all the statements in BB marking used names and looking for statements that may infer assertions for their used operands. */ for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si); gsi_prev (&si)) { gimple *stmt; tree op; ssa_op_iter i; stmt = gsi_stmt (si); if (is_gimple_debug (stmt)) continue; /* See if we can derive an assertion for any of STMT's operands. */ FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE) { tree value; enum tree_code comp_code; /* If op is not live beyond this stmt, do not bother to insert asserts for it. */ if (!bitmap_bit_p (live, SSA_NAME_VERSION (op))) continue; /* If OP is used in such a way that we can infer a value range for it, and we don't find a previous assertion for it, create a new assertion location node for OP. */ if (infer_value_range (stmt, op, &comp_code, &value)) { /* If we are able to infer a nonzero value range for OP, then walk backwards through the use-def chain to see if OP was set via a typecast. If so, then we can also infer a nonzero value range for the operand of the NOP_EXPR. */ if (comp_code == NE_EXPR && integer_zerop (value)) { tree t = op; gimple *def_stmt = SSA_NAME_DEF_STMT (t); while (is_gimple_assign (def_stmt) && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)) && TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))) { t = gimple_assign_rhs1 (def_stmt); def_stmt = SSA_NAME_DEF_STMT (t); /* Note we want to register the assert for the operand of the NOP_EXPR after SI, not after the conversion. */ if (bitmap_bit_p (live, SSA_NAME_VERSION (t))) register_new_assert_for (t, t, comp_code, value, bb, NULL, si); } } register_new_assert_for (op, op, comp_code, value, bb, NULL, si); } } /* Update live. */ FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE) bitmap_set_bit (live, SSA_NAME_VERSION (op)); FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF) bitmap_clear_bit (live, SSA_NAME_VERSION (op)); } /* Traverse all PHI nodes in BB, updating live. */ for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) { use_operand_p arg_p; ssa_op_iter i; gphi *phi = si.phi (); tree res = gimple_phi_result (phi); if (virtual_operand_p (res)) continue; FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE) { tree arg = USE_FROM_PTR (arg_p); if (TREE_CODE (arg) == SSA_NAME) bitmap_set_bit (live, SSA_NAME_VERSION (arg)); } bitmap_clear_bit (live, SSA_NAME_VERSION (res)); } } /* Do an RPO walk over the function computing SSA name liveness on-the-fly and deciding on assert expressions to insert. */ static void find_assert_locations (void) { int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun)); int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun)); int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun)); int rpo_cnt, i; live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun)); rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false); for (i = 0; i < rpo_cnt; ++i) bb_rpo[rpo[i]] = i; /* Pre-seed loop latch liveness from loop header PHI nodes. Due to the order we compute liveness and insert asserts we otherwise fail to insert asserts into the loop latch. */ loop_p loop; FOR_EACH_LOOP (loop, 0) { i = loop->latch->index; unsigned int j = single_succ_edge (loop->latch)->dest_idx; for (gphi_iterator gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi)) { gphi *phi = gsi.phi (); if (virtual_operand_p (gimple_phi_result (phi))) continue; tree arg = gimple_phi_arg_def (phi, j); if (TREE_CODE (arg) == SSA_NAME) { if (live[i] == NULL) { live[i] = sbitmap_alloc (num_ssa_names); bitmap_clear (live[i]); } bitmap_set_bit (live[i], SSA_NAME_VERSION (arg)); } } } for (i = rpo_cnt - 1; i >= 0; --i) { basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]); edge e; edge_iterator ei; if (!live[rpo[i]]) { live[rpo[i]] = sbitmap_alloc (num_ssa_names); bitmap_clear (live[rpo[i]]); } /* Process BB and update the live information with uses in this block. */ find_assert_locations_1 (bb, live[rpo[i]]); /* Merge liveness into the predecessor blocks and free it. */ if (!bitmap_empty_p (live[rpo[i]])) { int pred_rpo = i; FOR_EACH_EDGE (e, ei, bb->preds) { int pred = e->src->index; if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK) continue; if (!live[pred]) { live[pred] = sbitmap_alloc (num_ssa_names); bitmap_clear (live[pred]); } bitmap_ior (live[pred], live[pred], live[rpo[i]]); if (bb_rpo[pred] < pred_rpo) pred_rpo = bb_rpo[pred]; } /* Record the RPO number of the last visited block that needs live information from this block. */ last_rpo[rpo[i]] = pred_rpo; } else { sbitmap_free (live[rpo[i]]); live[rpo[i]] = NULL; } /* We can free all successors live bitmaps if all their predecessors have been visited already. */ FOR_EACH_EDGE (e, ei, bb->succs) if (last_rpo[e->dest->index] == i && live[e->dest->index]) { sbitmap_free (live[e->dest->index]); live[e->dest->index] = NULL; } } XDELETEVEC (rpo); XDELETEVEC (bb_rpo); XDELETEVEC (last_rpo); for (i = 0; i < last_basic_block_for_fn (cfun); ++i) if (live[i]) sbitmap_free (live[i]); XDELETEVEC (live); } /* Create an ASSERT_EXPR for NAME and insert it in the location indicated by LOC. Return true if we made any edge insertions. */ static bool process_assert_insertions_for (tree name, assert_locus *loc) { /* Build the comparison expression NAME_i COMP_CODE VAL. */ gimple *stmt; tree cond; gimple *assert_stmt; edge_iterator ei; edge e; /* If we have X <=> X do not insert an assert expr for that. */ if (loc->expr == loc->val) return false; cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val); assert_stmt = build_assert_expr_for (cond, name); if (loc->e) { /* We have been asked to insert the assertion on an edge. This is used only by COND_EXPR and SWITCH_EXPR assertions. */ gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND || (gimple_code (gsi_stmt (loc->si)) == GIMPLE_SWITCH)); gsi_insert_on_edge (loc->e, assert_stmt); return true; } /* If the stmt iterator points at the end then this is an insertion at the beginning of a block. */ if (gsi_end_p (loc->si)) { gimple_stmt_iterator si = gsi_after_labels (loc->bb); gsi_insert_before (&si, assert_stmt, GSI_SAME_STMT); return false; } /* Otherwise, we can insert right after LOC->SI iff the statement must not be the last statement in the block. */ stmt = gsi_stmt (loc->si); if (!stmt_ends_bb_p (stmt)) { gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT); return false; } /* If STMT must be the last statement in BB, we can only insert new assertions on the non-abnormal edge out of BB. Note that since STMT is not control flow, there may only be one non-abnormal/eh edge out of BB. */ FOR_EACH_EDGE (e, ei, loc->bb->succs) if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH))) { gsi_insert_on_edge (e, assert_stmt); return true; } gcc_unreachable (); } /* Qsort helper for sorting assert locations. If stable is true, don't use iterative_hash_expr because it can be unstable for -fcompare-debug, on the other side some pointers might be NULL. */ template static int compare_assert_loc (const void *pa, const void *pb) { assert_locus * const a = *(assert_locus * const *)pa; assert_locus * const b = *(assert_locus * const *)pb; /* If stable, some asserts might be optimized away already, sort them last. */ if (stable) { if (a == NULL) return b != NULL; else if (b == NULL) return -1; } if (a->e == NULL && b->e != NULL) return 1; else if (a->e != NULL && b->e == NULL) return -1; /* After the above checks, we know that (a->e == NULL) == (b->e == NULL), no need to test both a->e and b->e. */ /* Sort after destination index. */ if (a->e == NULL) ; else if (a->e->dest->index > b->e->dest->index) return 1; else if (a->e->dest->index < b->e->dest->index) return -1; /* Sort after comp_code. */ if (a->comp_code > b->comp_code) return 1; else if (a->comp_code < b->comp_code) return -1; hashval_t ha, hb; /* E.g. if a->val is ADDR_EXPR of a VAR_DECL, iterative_hash_expr uses DECL_UID of the VAR_DECL, so sorting might differ between -g and -g0. When doing the removal of redundant assert exprs and commonization to successors, this does not matter, but for the final sort needs to be stable. */ if (stable) { ha = 0; hb = 0; } else { ha = iterative_hash_expr (a->expr, iterative_hash_expr (a->val, 0)); hb = iterative_hash_expr (b->expr, iterative_hash_expr (b->val, 0)); } /* Break the tie using hashing and source/bb index. */ if (ha == hb) return (a->e != NULL ? a->e->src->index - b->e->src->index : a->bb->index - b->bb->index); return ha > hb ? 1 : -1; } /* Process all the insertions registered for every name N_i registered in NEED_ASSERT_FOR. The list of assertions to be inserted are found in ASSERTS_FOR[i]. */ static void process_assert_insertions (void) { unsigned i; bitmap_iterator bi; bool update_edges_p = false; int num_asserts = 0; if (dump_file && (dump_flags & TDF_DETAILS)) dump_all_asserts (dump_file); EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi) { assert_locus *loc = asserts_for[i]; gcc_assert (loc); auto_vec asserts; for (; loc; loc = loc->next) asserts.safe_push (loc); asserts.qsort (compare_assert_loc); /* Push down common asserts to successors and remove redundant ones. */ unsigned ecnt = 0; assert_locus *common = NULL; unsigned commonj = 0; for (unsigned j = 0; j < asserts.length (); ++j) { loc = asserts[j]; if (! loc->e) common = NULL; else if (! common || loc->e->dest != common->e->dest || loc->comp_code != common->comp_code || ! operand_equal_p (loc->val, common->val, 0) || ! operand_equal_p (loc->expr, common->expr, 0)) { commonj = j; common = loc; ecnt = 1; } else if (loc->e == asserts[j-1]->e) { /* Remove duplicate asserts. */ if (commonj == j - 1) { commonj = j; common = loc; } free (asserts[j-1]); asserts[j-1] = NULL; } else { ecnt++; if (EDGE_COUNT (common->e->dest->preds) == ecnt) { /* We have the same assertion on all incoming edges of a BB. Insert it at the beginning of that block. */ loc->bb = loc->e->dest; loc->e = NULL; loc->si = gsi_none (); common = NULL; /* Clear asserts commoned. */ for (; commonj != j; ++commonj) if (asserts[commonj]) { free (asserts[commonj]); asserts[commonj] = NULL; } } } } /* The asserts vector sorting above might be unstable for -fcompare-debug, sort again to ensure a stable sort. */ asserts.qsort (compare_assert_loc); for (unsigned j = 0; j < asserts.length (); ++j) { loc = asserts[j]; if (! loc) break; update_edges_p |= process_assert_insertions_for (ssa_name (i), loc); num_asserts++; free (loc); } } if (update_edges_p) gsi_commit_edge_inserts (); statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted", num_asserts); } /* Traverse the flowgraph looking for conditional jumps to insert range expressions. These range expressions are meant to provide information to optimizations that need to reason in terms of value ranges. They will not be expanded into RTL. For instance, given: x = ... y = ... if (x < y) y = x - 2; else x = y + 3; this pass will transform the code into: x = ... y = ... if (x < y) { x = ASSERT_EXPR y = x - 2 } else { y = ASSERT_EXPR = y> x = y + 3 } The idea is that once copy and constant propagation have run, other optimizations will be able to determine what ranges of values can 'x' take in different paths of the code, simply by checking the reaching definition of 'x'. */ static void insert_range_assertions (void) { need_assert_for = BITMAP_ALLOC (NULL); asserts_for = XCNEWVEC (assert_locus *, num_ssa_names); calculate_dominance_info (CDI_DOMINATORS); find_assert_locations (); if (!bitmap_empty_p (need_assert_for)) { process_assert_insertions (); update_ssa (TODO_update_ssa_no_phi); } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n"); dump_function_to_file (current_function_decl, dump_file, dump_flags); } free (asserts_for); BITMAP_FREE (need_assert_for); } class vrp_prop : public ssa_propagation_engine { public: enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE; enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE; void vrp_initialize (void); void vrp_finalize (bool); void check_all_array_refs (void); void check_array_ref (location_t, tree, bool); void search_for_addr_array (tree, location_t); class vr_values vr_values; /* Temporary delegator to minimize code churn. */ value_range *get_value_range (const_tree op) { return vr_values.get_value_range (op); } void set_defs_to_varying (gimple *stmt) { return vr_values.set_defs_to_varying (stmt); } void extract_range_from_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p, value_range *vr) { vr_values.extract_range_from_stmt (stmt, taken_edge_p, output_p, vr); } bool update_value_range (const_tree op, value_range *vr) { return vr_values.update_value_range (op, vr); } void extract_range_basic (value_range *vr, gimple *stmt) { vr_values.extract_range_basic (vr, stmt); } void extract_range_from_phi_node (gphi *phi, value_range *vr) { vr_values.extract_range_from_phi_node (phi, vr); } }; /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays and "struct" hacks. If VRP can determine that the array subscript is a constant, check if it is outside valid range. If the array subscript is a RANGE, warn if it is non-overlapping with valid range. IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */ void vrp_prop::check_array_ref (location_t location, tree ref, bool ignore_off_by_one) { value_range *vr = NULL; tree low_sub, up_sub; tree low_bound, up_bound, up_bound_p1; if (TREE_NO_WARNING (ref)) return; low_sub = up_sub = TREE_OPERAND (ref, 1); up_bound = array_ref_up_bound (ref); if (!up_bound || TREE_CODE (up_bound) != INTEGER_CST || (warn_array_bounds < 2 && array_at_struct_end_p (ref))) { /* Accesses to trailing arrays via pointers may access storage beyond the types array bounds. For such arrays, or for flexible array members, as well as for other arrays of an unknown size, replace the upper bound with a more permissive one that assumes the size of the largest object is PTRDIFF_MAX. */ tree eltsize = array_ref_element_size (ref); if (TREE_CODE (eltsize) != INTEGER_CST || integer_zerop (eltsize)) { up_bound = NULL_TREE; up_bound_p1 = NULL_TREE; } else { tree maxbound = TYPE_MAX_VALUE (ptrdiff_type_node); tree arg = TREE_OPERAND (ref, 0); poly_int64 off; if (get_addr_base_and_unit_offset (arg, &off) && known_gt (off, 0)) maxbound = wide_int_to_tree (sizetype, wi::sub (wi::to_wide (maxbound), off)); else maxbound = fold_convert (sizetype, maxbound); up_bound_p1 = int_const_binop (TRUNC_DIV_EXPR, maxbound, eltsize); up_bound = int_const_binop (MINUS_EXPR, up_bound_p1, build_int_cst (ptrdiff_type_node, 1)); } } else up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, build_int_cst (TREE_TYPE (up_bound), 1)); low_bound = array_ref_low_bound (ref); tree artype = TREE_TYPE (TREE_OPERAND (ref, 0)); /* Empty array. */ if (up_bound && tree_int_cst_equal (low_bound, up_bound_p1)) { warning_at (location, OPT_Warray_bounds, "array subscript %E is above array bounds of %qT", low_bound, artype); TREE_NO_WARNING (ref) = 1; } if (TREE_CODE (low_sub) == SSA_NAME) { vr = get_value_range (low_sub); if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE) { low_sub = vr->type == VR_RANGE ? vr->max : vr->min; up_sub = vr->type == VR_RANGE ? vr->min : vr->max; } } if (vr && vr->type == VR_ANTI_RANGE) { if (up_bound && TREE_CODE (up_sub) == INTEGER_CST && (ignore_off_by_one ? tree_int_cst_lt (up_bound, up_sub) : tree_int_cst_le (up_bound, up_sub)) && TREE_CODE (low_sub) == INTEGER_CST && tree_int_cst_le (low_sub, low_bound)) { warning_at (location, OPT_Warray_bounds, "array subscript [%E, %E] is outside array bounds of %qT", low_sub, up_sub, artype); TREE_NO_WARNING (ref) = 1; } } else if (up_bound && TREE_CODE (up_sub) == INTEGER_CST && (ignore_off_by_one ? !tree_int_cst_le (up_sub, up_bound_p1) : !tree_int_cst_le (up_sub, up_bound))) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Array bound warning for "); dump_generic_expr (MSG_NOTE, TDF_SLIM, ref); fprintf (dump_file, "\n"); } warning_at (location, OPT_Warray_bounds, "array subscript %E is above array bounds of %qT", up_sub, artype); TREE_NO_WARNING (ref) = 1; } else if (TREE_CODE (low_sub) == INTEGER_CST && tree_int_cst_lt (low_sub, low_bound)) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Array bound warning for "); dump_generic_expr (MSG_NOTE, TDF_SLIM, ref); fprintf (dump_file, "\n"); } warning_at (location, OPT_Warray_bounds, "array subscript %E is below array bounds of %qT", low_sub, artype); TREE_NO_WARNING (ref) = 1; } } /* Searches if the expr T, located at LOCATION computes address of an ARRAY_REF, and call check_array_ref on it. */ void vrp_prop::search_for_addr_array (tree t, location_t location) { /* Check each ARRAY_REFs in the reference chain. */ do { if (TREE_CODE (t) == ARRAY_REF) check_array_ref (location, t, true /*ignore_off_by_one*/); t = TREE_OPERAND (t, 0); } while (handled_component_p (t)); if (TREE_CODE (t) == MEM_REF && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR && !TREE_NO_WARNING (t)) { tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0); tree low_bound, up_bound, el_sz; offset_int idx; if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE || !TYPE_DOMAIN (TREE_TYPE (tem))) return; low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem))); up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem))); el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem))); if (!low_bound || TREE_CODE (low_bound) != INTEGER_CST || !up_bound || TREE_CODE (up_bound) != INTEGER_CST || !el_sz || TREE_CODE (el_sz) != INTEGER_CST) return; if (!mem_ref_offset (t).is_constant (&idx)) return; idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz)); if (idx < 0) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Array bound warning for "); dump_generic_expr (MSG_NOTE, TDF_SLIM, t); fprintf (dump_file, "\n"); } warning_at (location, OPT_Warray_bounds, "array subscript %wi is below array bounds of %qT", idx.to_shwi (), TREE_TYPE (tem)); TREE_NO_WARNING (t) = 1; } else if (idx > (wi::to_offset (up_bound) - wi::to_offset (low_bound) + 1)) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Array bound warning for "); dump_generic_expr (MSG_NOTE, TDF_SLIM, t); fprintf (dump_file, "\n"); } warning_at (location, OPT_Warray_bounds, "array subscript %wu is above array bounds of %qT", idx.to_uhwi (), TREE_TYPE (tem)); TREE_NO_WARNING (t) = 1; } } } /* walk_tree() callback that checks if *TP is an ARRAY_REF inside an ADDR_EXPR (in which an array subscript one outside the valid range is allowed). Call check_array_ref for each ARRAY_REF found. The location is passed in DATA. */ static tree check_array_bounds (tree *tp, int *walk_subtree, void *data) { tree t = *tp; struct walk_stmt_info *wi = (struct walk_stmt_info *) data; location_t location; if (EXPR_HAS_LOCATION (t)) location = EXPR_LOCATION (t); else location = gimple_location (wi->stmt); *walk_subtree = TRUE; vrp_prop *vrp_prop = (class vrp_prop *)wi->info; if (TREE_CODE (t) == ARRAY_REF) vrp_prop->check_array_ref (location, t, false /*ignore_off_by_one*/); else if (TREE_CODE (t) == ADDR_EXPR) { vrp_prop->search_for_addr_array (t, location); *walk_subtree = FALSE; } return NULL_TREE; } /* A dom_walker subclass for use by vrp_prop::check_all_array_refs, to walk over all statements of all reachable BBs and call check_array_bounds on them. */ class check_array_bounds_dom_walker : public dom_walker { public: check_array_bounds_dom_walker (vrp_prop *prop) : dom_walker (CDI_DOMINATORS, /* Discover non-executable edges, preserving EDGE_EXECUTABLE flags, so that we can merge in information on non-executable edges from vrp_folder . */ REACHABLE_BLOCKS_PRESERVING_FLAGS), m_prop (prop) {} ~check_array_bounds_dom_walker () {} edge before_dom_children (basic_block) FINAL OVERRIDE; private: vrp_prop *m_prop; }; /* Implementation of dom_walker::before_dom_children. Walk over all statements of BB and call check_array_bounds on them, and determine if there's a unique successor edge. */ edge check_array_bounds_dom_walker::before_dom_children (basic_block bb) { gimple_stmt_iterator si; for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) { gimple *stmt = gsi_stmt (si); struct walk_stmt_info wi; if (!gimple_has_location (stmt) || is_gimple_debug (stmt)) continue; memset (&wi, 0, sizeof (wi)); wi.info = m_prop; walk_gimple_op (stmt, check_array_bounds, &wi); } /* Determine if there's a unique successor edge, and if so, return that back to dom_walker, ensuring that we don't visit blocks that became unreachable during the VRP propagation (PR tree-optimization/83312). */ return find_taken_edge (bb, NULL_TREE); } /* Walk over all statements of all reachable BBs and call check_array_bounds on them. */ void vrp_prop::check_all_array_refs () { check_array_bounds_dom_walker w (this); w.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun)); } /* Return true if all imm uses of VAR are either in STMT, or feed (optionally through a chain of single imm uses) GIMPLE_COND in basic block COND_BB. */ static bool all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt, basic_block cond_bb) { use_operand_p use_p, use2_p; imm_use_iterator iter; FOR_EACH_IMM_USE_FAST (use_p, iter, var) if (USE_STMT (use_p) != stmt) { gimple *use_stmt = USE_STMT (use_p), *use_stmt2; if (is_gimple_debug (use_stmt)) continue; while (is_gimple_assign (use_stmt) && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME && single_imm_use (gimple_assign_lhs (use_stmt), &use2_p, &use_stmt2)) use_stmt = use_stmt2; if (gimple_code (use_stmt) != GIMPLE_COND || gimple_bb (use_stmt) != cond_bb) return false; } return true; } /* Handle _4 = x_3 & 31; if (_4 != 0) goto ; else goto ; : __builtin_unreachable (); : x_5 = ASSERT_EXPR ; If x_3 has no other immediate uses (checked by caller), var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits from the non-zero bitmask. */ void maybe_set_nonzero_bits (edge e, tree var) { basic_block cond_bb = e->src; gimple *stmt = last_stmt (cond_bb); tree cst; if (stmt == NULL || gimple_code (stmt) != GIMPLE_COND || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR) || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME || !integer_zerop (gimple_cond_rhs (stmt))) return; stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt)); if (!is_gimple_assign (stmt) || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST) return; if (gimple_assign_rhs1 (stmt) != var) { gimple *stmt2; if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME) return; stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)); if (!gimple_assign_cast_p (stmt2) || gimple_assign_rhs1 (stmt2) != var || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2)) || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt))) != TYPE_PRECISION (TREE_TYPE (var)))) return; } cst = gimple_assign_rhs2 (stmt); set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var), wi::to_wide (cst))); } /* Convert range assertion expressions into the implied copies and copy propagate away the copies. Doing the trivial copy propagation here avoids the need to run the full copy propagation pass after VRP. FIXME, this will eventually lead to copy propagation removing the names that had useful range information attached to them. For instance, if we had the assertion N_i = ASSERT_EXPR 3>, then N_i will have the range [3, +INF]. However, by converting the assertion into the implied copy operation N_i = N_j, we will then copy-propagate N_j into the uses of N_i and lose the range information. We may want to hold on to ASSERT_EXPRs a little while longer as the ranges could be used in things like jump threading. The problem with keeping ASSERT_EXPRs around is that passes after VRP need to handle them appropriately. Another approach would be to make the range information a first class property of the SSA_NAME so that it can be queried from any pass. This is made somewhat more complex by the need for multiple ranges to be associated with one SSA_NAME. */ static void remove_range_assertions (void) { basic_block bb; gimple_stmt_iterator si; /* 1 if looking at ASSERT_EXPRs immediately at the beginning of a basic block preceeded by GIMPLE_COND branching to it and __builtin_trap, -1 if not yet checked, 0 otherwise. */ int is_unreachable; /* Note that the BSI iterator bump happens at the bottom of the loop and no bump is necessary if we're removing the statement referenced by the current BSI. */ FOR_EACH_BB_FN (bb, cfun) for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);) { gimple *stmt = gsi_stmt (si); if (is_gimple_assign (stmt) && gimple_assign_rhs_code (stmt) == ASSERT_EXPR) { tree lhs = gimple_assign_lhs (stmt); tree rhs = gimple_assign_rhs1 (stmt); tree var; var = ASSERT_EXPR_VAR (rhs); if (TREE_CODE (var) == SSA_NAME && !POINTER_TYPE_P (TREE_TYPE (lhs)) && SSA_NAME_RANGE_INFO (lhs)) { if (is_unreachable == -1) { is_unreachable = 0; if (single_pred_p (bb) && assert_unreachable_fallthru_edge_p (single_pred_edge (bb))) is_unreachable = 1; } /* Handle if (x_7 >= 10 && x_7 < 20) __builtin_unreachable (); x_8 = ASSERT_EXPR ; if the only uses of x_7 are in the ASSERT_EXPR and in the condition. In that case, we can copy the range info from x_8 computed in this pass also for x_7. */ if (is_unreachable && all_imm_uses_in_stmt_or_feed_cond (var, stmt, single_pred (bb))) { set_range_info (var, SSA_NAME_RANGE_TYPE (lhs), SSA_NAME_RANGE_INFO (lhs)->get_min (), SSA_NAME_RANGE_INFO (lhs)->get_max ()); maybe_set_nonzero_bits (single_pred_edge (bb), var); } } /* Propagate the RHS into every use of the LHS. For SSA names also propagate abnormals as it merely restores the original IL in this case (an replace_uses_by would assert). */ if (TREE_CODE (var) == SSA_NAME) { imm_use_iterator iter; use_operand_p use_p; gimple *use_stmt; FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs) FOR_EACH_IMM_USE_ON_STMT (use_p, iter) SET_USE (use_p, var); } else replace_uses_by (lhs, var); /* And finally, remove the copy, it is not needed. */ gsi_remove (&si, true); release_defs (stmt); } else { if (!is_gimple_debug (gsi_stmt (si))) is_unreachable = 0; gsi_next (&si); } } } /* Return true if STMT is interesting for VRP. */ bool stmt_interesting_for_vrp (gimple *stmt) { if (gimple_code (stmt) == GIMPLE_PHI) { tree res = gimple_phi_result (stmt); return (!virtual_operand_p (res) && (INTEGRAL_TYPE_P (TREE_TYPE (res)) || POINTER_TYPE_P (TREE_TYPE (res)))); } else if (is_gimple_assign (stmt) || is_gimple_call (stmt)) { tree lhs = gimple_get_lhs (stmt); /* In general, assignments with virtual operands are not useful for deriving ranges, with the obvious exception of calls to builtin functions. */ if (lhs && TREE_CODE (lhs) == SSA_NAME && (INTEGRAL_TYPE_P (TREE_TYPE (lhs)) || POINTER_TYPE_P (TREE_TYPE (lhs))) && (is_gimple_call (stmt) || !gimple_vuse (stmt))) return true; else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt)) switch (gimple_call_internal_fn (stmt)) { case IFN_ADD_OVERFLOW: case IFN_SUB_OVERFLOW: case IFN_MUL_OVERFLOW: case IFN_ATOMIC_COMPARE_EXCHANGE: /* These internal calls return _Complex integer type, but are interesting to VRP nevertheless. */ if (lhs && TREE_CODE (lhs) == SSA_NAME) return true; break; default: break; } } else if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH) return true; return false; } /* Initialization required by ssa_propagate engine. */ void vrp_prop::vrp_initialize () { basic_block bb; FOR_EACH_BB_FN (bb, cfun) { for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) { gphi *phi = si.phi (); if (!stmt_interesting_for_vrp (phi)) { tree lhs = PHI_RESULT (phi); set_value_range_to_varying (get_value_range (lhs)); prop_set_simulate_again (phi, false); } else prop_set_simulate_again (phi, true); } for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) { gimple *stmt = gsi_stmt (si); /* If the statement is a control insn, then we do not want to avoid simulating the statement once. Failure to do so means that those edges will never get added. */ if (stmt_ends_bb_p (stmt)) prop_set_simulate_again (stmt, true); else if (!stmt_interesting_for_vrp (stmt)) { set_defs_to_varying (stmt); prop_set_simulate_again (stmt, false); } else prop_set_simulate_again (stmt, true); } } } /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL that includes the value VAL. The search is restricted to the range [START_IDX, n - 1] where n is the size of VEC. If there is a CASE_LABEL for VAL, its index is placed in IDX and true is returned. If there is no CASE_LABEL for VAL and there is one that is larger than VAL, it is placed in IDX and false is returned. If VAL is larger than any CASE_LABEL, n is placed on IDX and false is returned. */ bool find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx) { size_t n = gimple_switch_num_labels (stmt); size_t low, high; /* Find case label for minimum of the value range or the next one. At each iteration we are searching in [low, high - 1]. */ for (low = start_idx, high = n; high != low; ) { tree t; int cmp; /* Note that i != high, so we never ask for n. */ size_t i = (high + low) / 2; t = gimple_switch_label (stmt, i); /* Cache the result of comparing CASE_LOW and val. */ cmp = tree_int_cst_compare (CASE_LOW (t), val); if (cmp == 0) { /* Ranges cannot be empty. */ *idx = i; return true; } else if (cmp > 0) high = i; else { low = i + 1; if (CASE_HIGH (t) != NULL && tree_int_cst_compare (CASE_HIGH (t), val) >= 0) { *idx = i; return true; } } } *idx = high; return false; } /* Searches the case label vector VEC for the range of CASE_LABELs that is used for values between MIN and MAX. The first index is placed in MIN_IDX. The last index is placed in MAX_IDX. If the range of CASE_LABELs is empty then MAX_IDX < MIN_IDX. Returns true if the default label is not needed. */ bool find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx, size_t *max_idx) { size_t i, j; bool min_take_default = !find_case_label_index (stmt, 1, min, &i); bool max_take_default = !find_case_label_index (stmt, i, max, &j); if (i == j && min_take_default && max_take_default) { /* Only the default case label reached. Return an empty range. */ *min_idx = 1; *max_idx = 0; return false; } else { bool take_default = min_take_default || max_take_default; tree low, high; size_t k; if (max_take_default) j--; /* If the case label range is continuous, we do not need the default case label. Verify that. */ high = CASE_LOW (gimple_switch_label (stmt, i)); if (CASE_HIGH (gimple_switch_label (stmt, i))) high = CASE_HIGH (gimple_switch_label (stmt, i)); for (k = i + 1; k <= j; ++k) { low = CASE_LOW (gimple_switch_label (stmt, k)); if (!integer_onep (int_const_binop (MINUS_EXPR, low, high))) { take_default = true; break; } high = low; if (CASE_HIGH (gimple_switch_label (stmt, k))) high = CASE_HIGH (gimple_switch_label (stmt, k)); } *min_idx = i; *max_idx = j; return !take_default; } } /* Evaluate statement STMT. If the statement produces a useful range, return SSA_PROP_INTERESTING and record the SSA name with the interesting range into *OUTPUT_P. If STMT is a conditional branch and we can determine its truth value, the taken edge is recorded in *TAKEN_EDGE_P. If STMT produces a varying value, return SSA_PROP_VARYING. */ enum ssa_prop_result vrp_prop::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p) { value_range vr = VR_INITIALIZER; tree lhs = gimple_get_lhs (stmt); extract_range_from_stmt (stmt, taken_edge_p, output_p, &vr); if (*output_p) { if (update_value_range (*output_p, &vr)) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Found new range for "); print_generic_expr (dump_file, *output_p); fprintf (dump_file, ": "); dump_value_range (dump_file, &vr); fprintf (dump_file, "\n"); } if (vr.type == VR_VARYING) return SSA_PROP_VARYING; return SSA_PROP_INTERESTING; } return SSA_PROP_NOT_INTERESTING; } if (is_gimple_call (stmt) && gimple_call_internal_p (stmt)) switch (gimple_call_internal_fn (stmt)) { case IFN_ADD_OVERFLOW: case IFN_SUB_OVERFLOW: case IFN_MUL_OVERFLOW: case IFN_ATOMIC_COMPARE_EXCHANGE: /* These internal calls return _Complex integer type, which VRP does not track, but the immediate uses thereof might be interesting. */ if (lhs && TREE_CODE (lhs) == SSA_NAME) { imm_use_iterator iter; use_operand_p use_p; enum ssa_prop_result res = SSA_PROP_VARYING; set_value_range_to_varying (get_value_range (lhs)); FOR_EACH_IMM_USE_FAST (use_p, iter, lhs) { gimple *use_stmt = USE_STMT (use_p); if (!is_gimple_assign (use_stmt)) continue; enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt); if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR) continue; tree rhs1 = gimple_assign_rhs1 (use_stmt); tree use_lhs = gimple_assign_lhs (use_stmt); if (TREE_CODE (rhs1) != rhs_code || TREE_OPERAND (rhs1, 0) != lhs || TREE_CODE (use_lhs) != SSA_NAME || !stmt_interesting_for_vrp (use_stmt) || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs)) || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs)) || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs)))) continue; /* If there is a change in the value range for any of the REALPART_EXPR/IMAGPART_EXPR immediate uses, return SSA_PROP_INTERESTING. If there are any REALPART_EXPR or IMAGPART_EXPR immediate uses, but none of them have a change in their value ranges, return SSA_PROP_NOT_INTERESTING. If there are no {REAL,IMAG}PART_EXPR uses at all, return SSA_PROP_VARYING. */ value_range new_vr = VR_INITIALIZER; extract_range_basic (&new_vr, use_stmt); value_range *old_vr = get_value_range (use_lhs); if (old_vr->type != new_vr.type || !vrp_operand_equal_p (old_vr->min, new_vr.min) || !vrp_operand_equal_p (old_vr->max, new_vr.max) || !vrp_bitmap_equal_p (old_vr->equiv, new_vr.equiv)) res = SSA_PROP_INTERESTING; else res = SSA_PROP_NOT_INTERESTING; BITMAP_FREE (new_vr.equiv); if (res == SSA_PROP_INTERESTING) { *output_p = lhs; return res; } } return res; } break; default: break; } /* All other statements produce nothing of interest for VRP, so mark their outputs varying and prevent further simulation. */ set_defs_to_varying (stmt); return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING; } /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and { VR1TYPE, VR0MIN, VR0MAX } and store the result in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest possible such range. The resulting range is not canonicalized. */ static void union_ranges (enum value_range_type *vr0type, tree *vr0min, tree *vr0max, enum value_range_type vr1type, tree vr1min, tree vr1max) { bool mineq = vrp_operand_equal_p (*vr0min, vr1min); bool maxeq = vrp_operand_equal_p (*vr0max, vr1max); /* [] is vr0, () is vr1 in the following classification comments. */ if (mineq && maxeq) { /* [( )] */ if (*vr0type == vr1type) /* Nothing to do for equal ranges. */ ; else if ((*vr0type == VR_RANGE && vr1type == VR_ANTI_RANGE) || (*vr0type == VR_ANTI_RANGE && vr1type == VR_RANGE)) { /* For anti-range with range union the result is varying. */ goto give_up; } else gcc_unreachable (); } else if (operand_less_p (*vr0max, vr1min) == 1 || operand_less_p (vr1max, *vr0min) == 1) { /* [ ] ( ) or ( ) [ ] If the ranges have an empty intersection, result of the union operation is the anti-range or if both are anti-ranges it covers all. */ if (*vr0type == VR_ANTI_RANGE && vr1type == VR_ANTI_RANGE) goto give_up; else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_RANGE) ; else if (*vr0type == VR_RANGE && vr1type == VR_ANTI_RANGE) { *vr0type = vr1type; *vr0min = vr1min; *vr0max = vr1max; } else if (*vr0type == VR_RANGE && vr1type == VR_RANGE) { /* The result is the convex hull of both ranges. */ if (operand_less_p (*vr0max, vr1min) == 1) { /* If the result can be an anti-range, create one. */ if (TREE_CODE (*vr0max) == INTEGER_CST && TREE_CODE (vr1min) == INTEGER_CST && vrp_val_is_min (*vr0min) && vrp_val_is_max (vr1max)) { tree min = int_const_binop (PLUS_EXPR, *vr0max, build_int_cst (TREE_TYPE (*vr0max), 1)); tree max = int_const_binop (MINUS_EXPR, vr1min, build_int_cst (TREE_TYPE (vr1min), 1)); if (!operand_less_p (max, min)) { *vr0type = VR_ANTI_RANGE; *vr0min = min; *vr0max = max; } else *vr0max = vr1max; } else *vr0max = vr1max; } else { /* If the result can be an anti-range, create one. */ if (TREE_CODE (vr1max) == INTEGER_CST && TREE_CODE (*vr0min) == INTEGER_CST && vrp_val_is_min (vr1min) && vrp_val_is_max (*vr0max)) { tree min = int_const_binop (PLUS_EXPR, vr1max, build_int_cst (TREE_TYPE (vr1max), 1)); tree max = int_const_binop (MINUS_EXPR, *vr0min, build_int_cst (TREE_TYPE (*vr0min), 1)); if (!operand_less_p (max, min)) { *vr0type = VR_ANTI_RANGE; *vr0min = min; *vr0max = max; } else *vr0min = vr1min; } else *vr0min = vr1min; } } else gcc_unreachable (); } else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1) && (mineq || operand_less_p (*vr0min, vr1min) == 1)) { /* [ ( ) ] or [( ) ] or [ ( )] */ if (*vr0type == VR_RANGE && vr1type == VR_RANGE) ; else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_ANTI_RANGE) { *vr0type = vr1type; *vr0min = vr1min; *vr0max = vr1max; } else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_RANGE) { /* Arbitrarily choose the right or left gap. */ if (!mineq && TREE_CODE (vr1min) == INTEGER_CST) *vr0max = int_const_binop (MINUS_EXPR, vr1min, build_int_cst (TREE_TYPE (vr1min), 1)); else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST) *vr0min = int_const_binop (PLUS_EXPR, vr1max, build_int_cst (TREE_TYPE (vr1max), 1)); else goto give_up; } else if (*vr0type == VR_RANGE && vr1type == VR_ANTI_RANGE) /* The result covers everything. */ goto give_up; else gcc_unreachable (); } else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1) && (mineq || operand_less_p (vr1min, *vr0min) == 1)) { /* ( [ ] ) or ([ ] ) or ( [ ]) */ if (*vr0type == VR_RANGE && vr1type == VR_RANGE) { *vr0type = vr1type; *vr0min = vr1min; *vr0max = vr1max; } else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_ANTI_RANGE) ; else if (*vr0type == VR_RANGE && vr1type == VR_ANTI_RANGE) { *vr0type = VR_ANTI_RANGE; if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST) { *vr0max = int_const_binop (MINUS_EXPR, *vr0min, build_int_cst (TREE_TYPE (*vr0min), 1)); *vr0min = vr1min; } else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST) { *vr0min = int_const_binop (PLUS_EXPR, *vr0max, build_int_cst (TREE_TYPE (*vr0max), 1)); *vr0max = vr1max; } else goto give_up; } else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_RANGE) /* The result covers everything. */ goto give_up; else gcc_unreachable (); } else if ((operand_less_p (vr1min, *vr0max) == 1 || operand_equal_p (vr1min, *vr0max, 0)) && operand_less_p (*vr0min, vr1min) == 1 && operand_less_p (*vr0max, vr1max) == 1) { /* [ ( ] ) or [ ]( ) */ if (*vr0type == VR_RANGE && vr1type == VR_RANGE) *vr0max = vr1max; else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_ANTI_RANGE) *vr0min = vr1min; else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_RANGE) { if (TREE_CODE (vr1min) == INTEGER_CST) *vr0max = int_const_binop (MINUS_EXPR, vr1min, build_int_cst (TREE_TYPE (vr1min), 1)); else goto give_up; } else if (*vr0type == VR_RANGE && vr1type == VR_ANTI_RANGE) { if (TREE_CODE (*vr0max) == INTEGER_CST) { *vr0type = vr1type; *vr0min = int_const_binop (PLUS_EXPR, *vr0max, build_int_cst (TREE_TYPE (*vr0max), 1)); *vr0max = vr1max; } else goto give_up; } else gcc_unreachable (); } else if ((operand_less_p (*vr0min, vr1max) == 1 || operand_equal_p (*vr0min, vr1max, 0)) && operand_less_p (vr1min, *vr0min) == 1 && operand_less_p (vr1max, *vr0max) == 1) { /* ( [ ) ] or ( )[ ] */ if (*vr0type == VR_RANGE && vr1type == VR_RANGE) *vr0min = vr1min; else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_ANTI_RANGE) *vr0max = vr1max; else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_RANGE) { if (TREE_CODE (vr1max) == INTEGER_CST) *vr0min = int_const_binop (PLUS_EXPR, vr1max, build_int_cst (TREE_TYPE (vr1max), 1)); else goto give_up; } else if (*vr0type == VR_RANGE && vr1type == VR_ANTI_RANGE) { if (TREE_CODE (*vr0min) == INTEGER_CST) { *vr0type = vr1type; *vr0max = int_const_binop (MINUS_EXPR, *vr0min, build_int_cst (TREE_TYPE (*vr0min), 1)); *vr0min = vr1min; } else goto give_up; } else gcc_unreachable (); } else goto give_up; return; give_up: *vr0type = VR_VARYING; *vr0min = NULL_TREE; *vr0max = NULL_TREE; } /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and { VR1TYPE, VR0MIN, VR0MAX } and store the result in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest possible such range. The resulting range is not canonicalized. */ static void intersect_ranges (enum value_range_type *vr0type, tree *vr0min, tree *vr0max, enum value_range_type vr1type, tree vr1min, tree vr1max) { bool mineq = vrp_operand_equal_p (*vr0min, vr1min); bool maxeq = vrp_operand_equal_p (*vr0max, vr1max); /* [] is vr0, () is vr1 in the following classification comments. */ if (mineq && maxeq) { /* [( )] */ if (*vr0type == vr1type) /* Nothing to do for equal ranges. */ ; else if ((*vr0type == VR_RANGE && vr1type == VR_ANTI_RANGE) || (*vr0type == VR_ANTI_RANGE && vr1type == VR_RANGE)) { /* For anti-range with range intersection the result is empty. */ *vr0type = VR_UNDEFINED; *vr0min = NULL_TREE; *vr0max = NULL_TREE; } else gcc_unreachable (); } else if (operand_less_p (*vr0max, vr1min) == 1 || operand_less_p (vr1max, *vr0min) == 1) { /* [ ] ( ) or ( ) [ ] If the ranges have an empty intersection, the result of the intersect operation is the range for intersecting an anti-range with a range or empty when intersecting two ranges. */ if (*vr0type == VR_RANGE && vr1type == VR_ANTI_RANGE) ; else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_RANGE) { *vr0type = vr1type; *vr0min = vr1min; *vr0max = vr1max; } else if (*vr0type == VR_RANGE && vr1type == VR_RANGE) { *vr0type = VR_UNDEFINED; *vr0min = NULL_TREE; *vr0max = NULL_TREE; } else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_ANTI_RANGE) { /* If the anti-ranges are adjacent to each other merge them. */ if (TREE_CODE (*vr0max) == INTEGER_CST && TREE_CODE (vr1min) == INTEGER_CST && operand_less_p (*vr0max, vr1min) == 1 && integer_onep (int_const_binop (MINUS_EXPR, vr1min, *vr0max))) *vr0max = vr1max; else if (TREE_CODE (vr1max) == INTEGER_CST && TREE_CODE (*vr0min) == INTEGER_CST && operand_less_p (vr1max, *vr0min) == 1 && integer_onep (int_const_binop (MINUS_EXPR, *vr0min, vr1max))) *vr0min = vr1min; /* Else arbitrarily take VR0. */ } } else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1) && (mineq || operand_less_p (*vr0min, vr1min) == 1)) { /* [ ( ) ] or [( ) ] or [ ( )] */ if (*vr0type == VR_RANGE && vr1type == VR_RANGE) { /* If both are ranges the result is the inner one. */ *vr0type = vr1type; *vr0min = vr1min; *vr0max = vr1max; } else if (*vr0type == VR_RANGE && vr1type == VR_ANTI_RANGE) { /* Choose the right gap if the left one is empty. */ if (mineq) { if (TREE_CODE (vr1max) != INTEGER_CST) *vr0min = vr1max; else if (TYPE_PRECISION (TREE_TYPE (vr1max)) == 1 && !TYPE_UNSIGNED (TREE_TYPE (vr1max))) *vr0min = int_const_binop (MINUS_EXPR, vr1max, build_int_cst (TREE_TYPE (vr1max), -1)); else *vr0min = int_const_binop (PLUS_EXPR, vr1max, build_int_cst (TREE_TYPE (vr1max), 1)); } /* Choose the left gap if the right one is empty. */ else if (maxeq) { if (TREE_CODE (vr1min) != INTEGER_CST) *vr0max = vr1min; else if (TYPE_PRECISION (TREE_TYPE (vr1min)) == 1 && !TYPE_UNSIGNED (TREE_TYPE (vr1min))) *vr0max = int_const_binop (PLUS_EXPR, vr1min, build_int_cst (TREE_TYPE (vr1min), -1)); else *vr0max = int_const_binop (MINUS_EXPR, vr1min, build_int_cst (TREE_TYPE (vr1min), 1)); } /* Choose the anti-range if the range is effectively varying. */ else if (vrp_val_is_min (*vr0min) && vrp_val_is_max (*vr0max)) { *vr0type = vr1type; *vr0min = vr1min; *vr0max = vr1max; } /* Else choose the range. */ } else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_ANTI_RANGE) /* If both are anti-ranges the result is the outer one. */ ; else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_RANGE) { /* The intersection is empty. */ *vr0type = VR_UNDEFINED; *vr0min = NULL_TREE; *vr0max = NULL_TREE; } else gcc_unreachable (); } else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1) && (mineq || operand_less_p (vr1min, *vr0min) == 1)) { /* ( [ ] ) or ([ ] ) or ( [ ]) */ if (*vr0type == VR_RANGE && vr1type == VR_RANGE) /* Choose the inner range. */ ; else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_RANGE) { /* Choose the right gap if the left is empty. */ if (mineq) { *vr0type = VR_RANGE; if (TREE_CODE (*vr0max) != INTEGER_CST) *vr0min = *vr0max; else if (TYPE_PRECISION (TREE_TYPE (*vr0max)) == 1 && !TYPE_UNSIGNED (TREE_TYPE (*vr0max))) *vr0min = int_const_binop (MINUS_EXPR, *vr0max, build_int_cst (TREE_TYPE (*vr0max), -1)); else *vr0min = int_const_binop (PLUS_EXPR, *vr0max, build_int_cst (TREE_TYPE (*vr0max), 1)); *vr0max = vr1max; } /* Choose the left gap if the right is empty. */ else if (maxeq) { *vr0type = VR_RANGE; if (TREE_CODE (*vr0min) != INTEGER_CST) *vr0max = *vr0min; else if (TYPE_PRECISION (TREE_TYPE (*vr0min)) == 1 && !TYPE_UNSIGNED (TREE_TYPE (*vr0min))) *vr0max = int_const_binop (PLUS_EXPR, *vr0min, build_int_cst (TREE_TYPE (*vr0min), -1)); else *vr0max = int_const_binop (MINUS_EXPR, *vr0min, build_int_cst (TREE_TYPE (*vr0min), 1)); *vr0min = vr1min; } /* Choose the anti-range if the range is effectively varying. */ else if (vrp_val_is_min (vr1min) && vrp_val_is_max (vr1max)) ; /* Choose the anti-range if it is ~[0,0], that range is special enough to special case when vr1's range is relatively wide. At least for types bigger than int - this covers pointers and arguments to functions like ctz. */ else if (*vr0min == *vr0max && integer_zerop (*vr0min) && ((TYPE_PRECISION (TREE_TYPE (*vr0min)) >= TYPE_PRECISION (integer_type_node)) || POINTER_TYPE_P (TREE_TYPE (*vr0min))) && TREE_CODE (vr1max) == INTEGER_CST && TREE_CODE (vr1min) == INTEGER_CST && (wi::clz (wi::to_wide (vr1max) - wi::to_wide (vr1min)) < TYPE_PRECISION (TREE_TYPE (*vr0min)) / 2)) ; /* Else choose the range. */ else { *vr0type = vr1type; *vr0min = vr1min; *vr0max = vr1max; } } else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_ANTI_RANGE) { /* If both are anti-ranges the result is the outer one. */ *vr0type = vr1type; *vr0min = vr1min; *vr0max = vr1max; } else if (vr1type == VR_ANTI_RANGE && *vr0type == VR_RANGE) { /* The intersection is empty. */ *vr0type = VR_UNDEFINED; *vr0min = NULL_TREE; *vr0max = NULL_TREE; } else gcc_unreachable (); } else if ((operand_less_p (vr1min, *vr0max) == 1 || operand_equal_p (vr1min, *vr0max, 0)) && operand_less_p (*vr0min, vr1min) == 1) { /* [ ( ] ) or [ ]( ) */ if (*vr0type == VR_ANTI_RANGE && vr1type == VR_ANTI_RANGE) *vr0max = vr1max; else if (*vr0type == VR_RANGE && vr1type == VR_RANGE) *vr0min = vr1min; else if (*vr0type == VR_RANGE && vr1type == VR_ANTI_RANGE) { if (TREE_CODE (vr1min) == INTEGER_CST) *vr0max = int_const_binop (MINUS_EXPR, vr1min, build_int_cst (TREE_TYPE (vr1min), 1)); else *vr0max = vr1min; } else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_RANGE) { *vr0type = VR_RANGE; if (TREE_CODE (*vr0max) == INTEGER_CST) *vr0min = int_const_binop (PLUS_EXPR, *vr0max, build_int_cst (TREE_TYPE (*vr0max), 1)); else *vr0min = *vr0max; *vr0max = vr1max; } else gcc_unreachable (); } else if ((operand_less_p (*vr0min, vr1max) == 1 || operand_equal_p (*vr0min, vr1max, 0)) && operand_less_p (vr1min, *vr0min) == 1) { /* ( [ ) ] or ( )[ ] */ if (*vr0type == VR_ANTI_RANGE && vr1type == VR_ANTI_RANGE) *vr0min = vr1min; else if (*vr0type == VR_RANGE && vr1type == VR_RANGE) *vr0max = vr1max; else if (*vr0type == VR_RANGE && vr1type == VR_ANTI_RANGE) { if (TREE_CODE (vr1max) == INTEGER_CST) *vr0min = int_const_binop (PLUS_EXPR, vr1max, build_int_cst (TREE_TYPE (vr1max), 1)); else *vr0min = vr1max; } else if (*vr0type == VR_ANTI_RANGE && vr1type == VR_RANGE) { *vr0type = VR_RANGE; if (TREE_CODE (*vr0min) == INTEGER_CST) *vr0max = int_const_binop (MINUS_EXPR, *vr0min, build_int_cst (TREE_TYPE (*vr0min), 1)); else *vr0max = *vr0min; *vr0min = vr1min; } else gcc_unreachable (); } /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as result for the intersection. That's always a conservative correct estimate unless VR1 is a constant singleton range in which case we choose that. */ if (vr1type == VR_RANGE && is_gimple_min_invariant (vr1min) && vrp_operand_equal_p (vr1min, vr1max)) { *vr0type = vr1type; *vr0min = vr1min; *vr0max = vr1max; } return; } /* Intersect the two value-ranges *VR0 and *VR1 and store the result in *VR0. This may not be the smallest possible such range. */ static void vrp_intersect_ranges_1 (value_range *vr0, value_range *vr1) { value_range saved; /* If either range is VR_VARYING the other one wins. */ if (vr1->type == VR_VARYING) return; if (vr0->type == VR_VARYING) { copy_value_range (vr0, vr1); return; } /* When either range is VR_UNDEFINED the resulting range is VR_UNDEFINED, too. */ if (vr0->type == VR_UNDEFINED) return; if (vr1->type == VR_UNDEFINED) { set_value_range_to_undefined (vr0); return; } /* Save the original vr0 so we can return it as conservative intersection result when our worker turns things to varying. */ saved = *vr0; intersect_ranges (&vr0->type, &vr0->min, &vr0->max, vr1->type, vr1->min, vr1->max); /* Make sure to canonicalize the result though as the inversion of a VR_RANGE can still be a VR_RANGE. */ set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max, vr0->equiv); /* If that failed, use the saved original VR0. */ if (vr0->type == VR_VARYING) { *vr0 = saved; return; } /* If the result is VR_UNDEFINED there is no need to mess with the equivalencies. */ if (vr0->type == VR_UNDEFINED) return; /* The resulting set of equivalences for range intersection is the union of the two sets. */ if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv) bitmap_ior_into (vr0->equiv, vr1->equiv); else if (vr1->equiv && !vr0->equiv) { /* All equivalence bitmaps are allocated from the same obstack. So we can use the obstack associated with VR to allocate vr0->equiv. */ vr0->equiv = BITMAP_ALLOC (vr1->equiv->obstack); bitmap_copy (vr0->equiv, vr1->equiv); } } void vrp_intersect_ranges (value_range *vr0, value_range *vr1) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Intersecting\n "); dump_value_range (dump_file, vr0); fprintf (dump_file, "\nand\n "); dump_value_range (dump_file, vr1); fprintf (dump_file, "\n"); } vrp_intersect_ranges_1 (vr0, vr1); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "to\n "); dump_value_range (dump_file, vr0); fprintf (dump_file, "\n"); } } /* Meet operation for value ranges. Given two value ranges VR0 and VR1, store in VR0 a range that contains both VR0 and VR1. This may not be the smallest possible such range. */ static void vrp_meet_1 (value_range *vr0, const value_range *vr1) { value_range saved; if (vr0->type == VR_UNDEFINED) { set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv); return; } if (vr1->type == VR_UNDEFINED) { /* VR0 already has the resulting range. */ return; } if (vr0->type == VR_VARYING) { /* Nothing to do. VR0 already has the resulting range. */ return; } if (vr1->type == VR_VARYING) { set_value_range_to_varying (vr0); return; } saved = *vr0; union_ranges (&vr0->type, &vr0->min, &vr0->max, vr1->type, vr1->min, vr1->max); if (vr0->type == VR_VARYING) { /* Failed to find an efficient meet. Before giving up and setting the result to VARYING, see if we can at least derive a useful anti-range. FIXME, all this nonsense about distinguishing anti-ranges from ranges is necessary because of the odd semantics of range_includes_zero_p and friends. */ if (((saved.type == VR_RANGE && range_includes_zero_p (saved.min, saved.max) == 0) || (saved.type == VR_ANTI_RANGE && range_includes_zero_p (saved.min, saved.max) == 1)) && ((vr1->type == VR_RANGE && range_includes_zero_p (vr1->min, vr1->max) == 0) || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1->min, vr1->max) == 1))) { set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min)); /* Since this meet operation did not result from the meeting of two equivalent names, VR0 cannot have any equivalences. */ if (vr0->equiv) bitmap_clear (vr0->equiv); return; } set_value_range_to_varying (vr0); return; } set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max, vr0->equiv); if (vr0->type == VR_VARYING) return; /* The resulting set of equivalences is always the intersection of the two sets. */ if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv) bitmap_and_into (vr0->equiv, vr1->equiv); else if (vr0->equiv && !vr1->equiv) bitmap_clear (vr0->equiv); } void vrp_meet (value_range *vr0, const value_range *vr1) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Meeting\n "); dump_value_range (dump_file, vr0); fprintf (dump_file, "\nand\n "); dump_value_range (dump_file, vr1); fprintf (dump_file, "\n"); } vrp_meet_1 (vr0, vr1); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "to\n "); dump_value_range (dump_file, vr0); fprintf (dump_file, "\n"); } } /* Visit all arguments for PHI node PHI that flow through executable edges. If a valid value range can be derived from all the incoming value ranges, set a new range for the LHS of PHI. */ enum ssa_prop_result vrp_prop::visit_phi (gphi *phi) { tree lhs = PHI_RESULT (phi); value_range vr_result = VR_INITIALIZER; extract_range_from_phi_node (phi, &vr_result); if (update_value_range (lhs, &vr_result)) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Found new range for "); print_generic_expr (dump_file, lhs); fprintf (dump_file, ": "); dump_value_range (dump_file, &vr_result); fprintf (dump_file, "\n"); } if (vr_result.type == VR_VARYING) return SSA_PROP_VARYING; return SSA_PROP_INTERESTING; } /* Nothing changed, don't add outgoing edges. */ return SSA_PROP_NOT_INTERESTING; } class vrp_folder : public substitute_and_fold_engine { public: tree get_value (tree) FINAL OVERRIDE; bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE; bool fold_predicate_in (gimple_stmt_iterator *); class vr_values *vr_values; /* Delegators. */ tree vrp_evaluate_conditional (tree_code code, tree op0, tree op1, gimple *stmt) { return vr_values->vrp_evaluate_conditional (code, op0, op1, stmt); } bool simplify_stmt_using_ranges (gimple_stmt_iterator *gsi) { return vr_values->simplify_stmt_using_ranges (gsi); } tree op_with_constant_singleton_value_range (tree op) { return vr_values->op_with_constant_singleton_value_range (op); } }; /* If the statement pointed by SI has a predicate whose value can be computed using the value range information computed by VRP, compute its value and return true. Otherwise, return false. */ bool vrp_folder::fold_predicate_in (gimple_stmt_iterator *si) { bool assignment_p = false; tree val; gimple *stmt = gsi_stmt (*si); if (is_gimple_assign (stmt) && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison) { assignment_p = true; val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt), gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), stmt); } else if (gcond *cond_stmt = dyn_cast (stmt)) val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt), gimple_cond_lhs (cond_stmt), gimple_cond_rhs (cond_stmt), stmt); else return false; if (val) { if (assignment_p) val = fold_convert (gimple_expr_type (stmt), val); if (dump_file) { fprintf (dump_file, "Folding predicate "); print_gimple_expr (dump_file, stmt, 0); fprintf (dump_file, " to "); print_generic_expr (dump_file, val); fprintf (dump_file, "\n"); } if (is_gimple_assign (stmt)) gimple_assign_set_rhs_from_tree (si, val); else { gcc_assert (gimple_code (stmt) == GIMPLE_COND); gcond *cond_stmt = as_a (stmt); if (integer_zerop (val)) gimple_cond_make_false (cond_stmt); else if (integer_onep (val)) gimple_cond_make_true (cond_stmt); else gcc_unreachable (); } return true; } return false; } /* Callback for substitute_and_fold folding the stmt at *SI. */ bool vrp_folder::fold_stmt (gimple_stmt_iterator *si) { if (fold_predicate_in (si)) return true; return simplify_stmt_using_ranges (si); } /* If OP has a value range with a single constant value return that, otherwise return NULL_TREE. This returns OP itself if OP is a constant. Implemented as a pure wrapper right now, but this will change. */ tree vrp_folder::get_value (tree op) { return op_with_constant_singleton_value_range (op); } /* Return the LHS of any ASSERT_EXPR where OP appears as the first argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates BB. If no such ASSERT_EXPR is found, return OP. */ static tree lhs_of_dominating_assert (tree op, basic_block bb, gimple *stmt) { imm_use_iterator imm_iter; gimple *use_stmt; use_operand_p use_p; if (TREE_CODE (op) == SSA_NAME) { FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op) { use_stmt = USE_STMT (use_p); if (use_stmt != stmt && gimple_assign_single_p (use_stmt) && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt))) return gimple_assign_lhs (use_stmt); } } return op; } /* A hack. */ static class vr_values *x_vr_values; /* A trivial wrapper so that we can present the generic jump threading code with a simple API for simplifying statements. STMT is the statement we want to simplify, WITHIN_STMT provides the location for any overflow warnings. */ static tree simplify_stmt_for_jump_threading (gimple *stmt, gimple *within_stmt, class avail_exprs_stack *avail_exprs_stack ATTRIBUTE_UNUSED, basic_block bb) { /* First see if the conditional is in the hash table. */ tree cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, false, true); if (cached_lhs && is_gimple_min_invariant (cached_lhs)) return cached_lhs; vr_values *vr_values = x_vr_values; if (gcond *cond_stmt = dyn_cast (stmt)) { tree op0 = gimple_cond_lhs (cond_stmt); op0 = lhs_of_dominating_assert (op0, bb, stmt); tree op1 = gimple_cond_rhs (cond_stmt); op1 = lhs_of_dominating_assert (op1, bb, stmt); return vr_values->vrp_evaluate_conditional (gimple_cond_code (cond_stmt), op0, op1, within_stmt); } /* We simplify a switch statement by trying to determine which case label will be taken. If we are successful then we return the corresponding CASE_LABEL_EXPR. */ if (gswitch *switch_stmt = dyn_cast (stmt)) { tree op = gimple_switch_index (switch_stmt); if (TREE_CODE (op) != SSA_NAME) return NULL_TREE; op = lhs_of_dominating_assert (op, bb, stmt); value_range *vr = vr_values->get_value_range (op); if ((vr->type != VR_RANGE && vr->type != VR_ANTI_RANGE) || symbolic_range_p (vr)) return NULL_TREE; if (vr->type == VR_RANGE) { size_t i, j; /* Get the range of labels that contain a part of the operand's value range. */ find_case_label_range (switch_stmt, vr->min, vr->max, &i, &j); /* Is there only one such label? */ if (i == j) { tree label = gimple_switch_label (switch_stmt, i); /* The i'th label will be taken only if the value range of the operand is entirely within the bounds of this label. */ if (CASE_HIGH (label) != NULL_TREE ? (tree_int_cst_compare (CASE_LOW (label), vr->min) <= 0 && tree_int_cst_compare (CASE_HIGH (label), vr->max) >= 0) : (tree_int_cst_equal (CASE_LOW (label), vr->min) && tree_int_cst_equal (vr->min, vr->max))) return label; } /* If there are no such labels then the default label will be taken. */ if (i > j) return gimple_switch_label (switch_stmt, 0); } if (vr->type == VR_ANTI_RANGE) { unsigned n = gimple_switch_num_labels (switch_stmt); tree min_label = gimple_switch_label (switch_stmt, 1); tree max_label = gimple_switch_label (switch_stmt, n - 1); /* The default label will be taken only if the anti-range of the operand is entirely outside the bounds of all the (non-default) case labels. */ if (tree_int_cst_compare (vr->min, CASE_LOW (min_label)) <= 0 && (CASE_HIGH (max_label) != NULL_TREE ? tree_int_cst_compare (vr->max, CASE_HIGH (max_label)) >= 0 : tree_int_cst_compare (vr->max, CASE_LOW (max_label)) >= 0)) return gimple_switch_label (switch_stmt, 0); } return NULL_TREE; } if (gassign *assign_stmt = dyn_cast (stmt)) { tree lhs = gimple_assign_lhs (assign_stmt); if (TREE_CODE (lhs) == SSA_NAME && (INTEGRAL_TYPE_P (TREE_TYPE (lhs)) || POINTER_TYPE_P (TREE_TYPE (lhs))) && stmt_interesting_for_vrp (stmt)) { edge dummy_e; tree dummy_tree; value_range new_vr = VR_INITIALIZER; vr_values->extract_range_from_stmt (stmt, &dummy_e, &dummy_tree, &new_vr); if (range_int_cst_singleton_p (&new_vr)) return new_vr.min; } } return NULL_TREE; } class vrp_dom_walker : public dom_walker { public: vrp_dom_walker (cdi_direction direction, class const_and_copies *const_and_copies, class avail_exprs_stack *avail_exprs_stack) : dom_walker (direction, REACHABLE_BLOCKS), m_const_and_copies (const_and_copies), m_avail_exprs_stack (avail_exprs_stack), m_dummy_cond (NULL) {} virtual edge before_dom_children (basic_block); virtual void after_dom_children (basic_block); class vr_values *vr_values; private: class const_and_copies *m_const_and_copies; class avail_exprs_stack *m_avail_exprs_stack; gcond *m_dummy_cond; }; /* Called before processing dominator children of BB. We want to look at ASSERT_EXPRs and record information from them in the appropriate tables. We could look at other statements here. It's not seen as likely to significantly increase the jump threads we discover. */ edge vrp_dom_walker::before_dom_children (basic_block bb) { gimple_stmt_iterator gsi; m_avail_exprs_stack->push_marker (); m_const_and_copies->push_marker (); for (gsi = gsi_start_nondebug_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); if (gimple_assign_single_p (stmt) && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR) { tree rhs1 = gimple_assign_rhs1 (stmt); tree cond = TREE_OPERAND (rhs1, 1); tree inverted = invert_truthvalue (cond); vec p; p.create (3); record_conditions (&p, cond, inverted); for (unsigned int i = 0; i < p.length (); i++) m_avail_exprs_stack->record_cond (&p[i]); tree lhs = gimple_assign_lhs (stmt); m_const_and_copies->record_const_or_copy (lhs, TREE_OPERAND (rhs1, 0)); p.release (); continue; } break; } return NULL; } /* Called after processing dominator children of BB. This is where we actually call into the threader. */ void vrp_dom_walker::after_dom_children (basic_block bb) { if (!m_dummy_cond) m_dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node, integer_zero_node, NULL, NULL); x_vr_values = vr_values; thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies, m_avail_exprs_stack, NULL, simplify_stmt_for_jump_threading); x_vr_values = NULL; m_avail_exprs_stack->pop_to_marker (); m_const_and_copies->pop_to_marker (); } /* Blocks which have more than one predecessor and more than one successor present jump threading opportunities, i.e., when the block is reached from a specific predecessor, we may be able to determine which of the outgoing edges will be traversed. When this optimization applies, we are able to avoid conditionals at runtime and we may expose secondary optimization opportunities. This routine is effectively a driver for the generic jump threading code. It basically just presents the generic code with edges that may be suitable for jump threading. Unlike DOM, we do not iterate VRP if jump threading was successful. While iterating may expose new opportunities for VRP, it is expected those opportunities would be very limited and the compile time cost to expose those opportunities would be significant. As jump threading opportunities are discovered, they are registered for later realization. */ static void identify_jump_threads (class vr_values *vr_values) { int i; edge e; /* Ugh. When substituting values earlier in this pass we can wipe the dominance information. So rebuild the dominator information as we need it within the jump threading code. */ calculate_dominance_info (CDI_DOMINATORS); /* We do not allow VRP information to be used for jump threading across a back edge in the CFG. Otherwise it becomes too difficult to avoid eliminating loop exit tests. Of course EDGE_DFS_BACK is not accurate at this time so we have to recompute it. */ mark_dfs_back_edges (); /* Do not thread across edges we are about to remove. Just marking them as EDGE_IGNORE will do. */ FOR_EACH_VEC_ELT (to_remove_edges, i, e) e->flags |= EDGE_IGNORE; /* Allocate our unwinder stack to unwind any temporary equivalences that might be recorded. */ const_and_copies *equiv_stack = new const_and_copies (); hash_table *avail_exprs = new hash_table (1024); avail_exprs_stack *avail_exprs_stack = new class avail_exprs_stack (avail_exprs); vrp_dom_walker walker (CDI_DOMINATORS, equiv_stack, avail_exprs_stack); walker.vr_values = vr_values; walker.walk (cfun->cfg->x_entry_block_ptr); /* Clear EDGE_IGNORE. */ FOR_EACH_VEC_ELT (to_remove_edges, i, e) e->flags &= ~EDGE_IGNORE; /* We do not actually update the CFG or SSA graphs at this point as ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet handle ASSERT_EXPRs gracefully. */ delete equiv_stack; delete avail_exprs; delete avail_exprs_stack; } /* Traverse all the blocks folding conditionals with known ranges. */ void vrp_prop::vrp_finalize (bool warn_array_bounds_p) { size_t i; /* We have completed propagating through the lattice. */ vr_values.set_lattice_propagation_complete (); if (dump_file) { fprintf (dump_file, "\nValue ranges after VRP:\n\n"); vr_values.dump_all_value_ranges (dump_file); fprintf (dump_file, "\n"); } /* Set value range to non pointer SSA_NAMEs. */ for (i = 0; i < num_ssa_names; i++) { tree name = ssa_name (i); if (!name) continue; value_range *vr = get_value_range (name); if (!name || (vr->type == VR_VARYING) || (vr->type == VR_UNDEFINED) || (TREE_CODE (vr->min) != INTEGER_CST) || (TREE_CODE (vr->max) != INTEGER_CST)) continue; if (POINTER_TYPE_P (TREE_TYPE (name)) && ((vr->type == VR_RANGE && range_includes_zero_p (vr->min, vr->max) == 0) || (vr->type == VR_ANTI_RANGE && range_includes_zero_p (vr->min, vr->max) == 1))) set_ptr_nonnull (name); else if (!POINTER_TYPE_P (TREE_TYPE (name))) set_range_info (name, vr->type, wi::to_wide (vr->min), wi::to_wide (vr->max)); } /* If we're checking array refs, we want to merge information on the executability of each edge between vrp_folder and the check_array_bounds_dom_walker: each can clear the EDGE_EXECUTABLE flag on edges, in different ways. Hence, if we're going to call check_all_array_refs, set the flag on every edge now, rather than in check_array_bounds_dom_walker's ctor; vrp_folder may clear it from some edges. */ if (warn_array_bounds && warn_array_bounds_p) set_all_edges_as_executable (cfun); class vrp_folder vrp_folder; vrp_folder.vr_values = &vr_values; vrp_folder.substitute_and_fold (); if (warn_array_bounds && warn_array_bounds_p) check_all_array_refs (); } /* Main entry point to VRP (Value Range Propagation). This pass is loosely based on J. R. C. Patterson, ``Accurate Static Branch Prediction by Value Range Propagation,'' in SIGPLAN Conference on Programming Language Design and Implementation, pp. 67-78, 1995. Also available at http://citeseer.ist.psu.edu/patterson95accurate.html This is essentially an SSA-CCP pass modified to deal with ranges instead of constants. While propagating ranges, we may find that two or more SSA name have equivalent, though distinct ranges. For instance, 1 x_9 = p_3->a; 2 p_4 = ASSERT_EXPR 3 if (p_4 == q_2) 4 p_5 = ASSERT_EXPR ; 5 endif 6 if (q_2) In the code above, pointer p_5 has range [q_2, q_2], but from the code we can also determine that p_5 cannot be NULL and, if q_2 had a non-varying range, p_5's range should also be compatible with it. These equivalences are created by two expressions: ASSERT_EXPR and copy operations. Since p_5 is an assertion on p_4, and p_4 was the result of another assertion, then we can use the fact that p_5 and p_4 are equivalent when evaluating p_5's range. Together with value ranges, we also propagate these equivalences between names so that we can take advantage of information from multiple ranges when doing final replacement. Note that this equivalency relation is transitive but not symmetric. In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we cannot assert that q_2 is equivalent to p_5 because q_2 may be used in contexts where that assertion does not hold (e.g., in line 6). TODO, the main difference between this pass and Patterson's is that we do not propagate edge probabilities. We only compute whether edges can be taken or not. That is, instead of having a spectrum of jump probabilities between 0 and 1, we only deal with 0, 1 and DON'T KNOW. In the future, it may be worthwhile to propagate probabilities to aid branch prediction. */ static unsigned int execute_vrp (bool warn_array_bounds_p) { int i; edge e; switch_update *su; loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS); rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa); scev_initialize (); /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation. Inserting assertions may split edges which will invalidate EDGE_DFS_BACK. */ insert_range_assertions (); to_remove_edges.create (10); to_update_switch_stmts.create (5); threadedge_initialize_values (); /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */ mark_dfs_back_edges (); class vrp_prop vrp_prop; vrp_prop.vrp_initialize (); vrp_prop.ssa_propagate (); vrp_prop.vrp_finalize (warn_array_bounds_p); /* We must identify jump threading opportunities before we release the datastructures built by VRP. */ identify_jump_threads (&vrp_prop.vr_values); /* A comparison of an SSA_NAME against a constant where the SSA_NAME was set by a type conversion can often be rewritten to use the RHS of the type conversion. However, doing so inhibits jump threading through the comparison. So that transformation is not performed until after jump threading is complete. */ basic_block bb; FOR_EACH_BB_FN (bb, cfun) { gimple *last = last_stmt (bb); if (last && gimple_code (last) == GIMPLE_COND) vrp_prop.vr_values.simplify_cond_using_ranges_2 (as_a (last)); } free_numbers_of_iterations_estimates (cfun); /* ASSERT_EXPRs must be removed before finalizing jump threads as finalizing jump threads calls the CFG cleanup code which does not properly handle ASSERT_EXPRs. */ remove_range_assertions (); /* If we exposed any new variables, go ahead and put them into SSA form now, before we handle jump threading. This simplifies interactions between rewriting of _DECL nodes into SSA form and rewriting SSA_NAME nodes into SSA form after block duplication and CFG manipulation. */ update_ssa (TODO_update_ssa); /* We identified all the jump threading opportunities earlier, but could not transform the CFG at that time. This routine transforms the CFG and arranges for the dominator tree to be rebuilt if necessary. Note the SSA graph update will occur during the normal TODO processing by the pass manager. */ thread_through_all_blocks (false); /* Remove dead edges from SWITCH_EXPR optimization. This leaves the CFG in a broken state and requires a cfg_cleanup run. */ FOR_EACH_VEC_ELT (to_remove_edges, i, e) remove_edge (e); /* Update SWITCH_EXPR case label vector. */ FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su) { size_t j; size_t n = TREE_VEC_LENGTH (su->vec); tree label; gimple_switch_set_num_labels (su->stmt, n); for (j = 0; j < n; j++) gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j)); /* As we may have replaced the default label with a regular one make sure to make it a real default label again. This ensures optimal expansion. */ label = gimple_switch_label (su->stmt, 0); CASE_LOW (label) = NULL_TREE; CASE_HIGH (label) = NULL_TREE; } if (to_remove_edges.length () > 0) { free_dominance_info (CDI_DOMINATORS); loops_state_set (LOOPS_NEED_FIXUP); } to_remove_edges.release (); to_update_switch_stmts.release (); threadedge_finalize_values (); scev_finalize (); loop_optimizer_finalize (); return 0; } namespace { const pass_data pass_data_vrp = { GIMPLE_PASS, /* type */ "vrp", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_TREE_VRP, /* tv_id */ PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */ }; class pass_vrp : public gimple_opt_pass { public: pass_vrp (gcc::context *ctxt) : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false) {} /* opt_pass methods: */ opt_pass * clone () { return new pass_vrp (m_ctxt); } void set_pass_param (unsigned int n, bool param) { gcc_assert (n == 0); warn_array_bounds_p = param; } virtual bool gate (function *) { return flag_tree_vrp != 0; } virtual unsigned int execute (function *) { return execute_vrp (warn_array_bounds_p); } private: bool warn_array_bounds_p; }; // class pass_vrp } // anon namespace gimple_opt_pass * make_pass_vrp (gcc::context *ctxt) { return new pass_vrp (ctxt); }