/* Statement Analysis and Transformation for Vectorization Copyright (C) 2003-2021 Free Software Foundation, Inc. Contributed by Dorit Naishlos and Ira Rosen This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "ssa.h" #include "optabs-tree.h" #include "insn-config.h" #include "recog.h" /* FIXME: for insn_data */ #include "cgraph.h" #include "dumpfile.h" #include "alias.h" #include "fold-const.h" #include "stor-layout.h" #include "tree-eh.h" #include "gimplify.h" #include "gimple-iterator.h" #include "gimplify-me.h" #include "tree-cfg.h" #include "tree-ssa-loop-manip.h" #include "cfgloop.h" #include "explow.h" #include "tree-ssa-loop.h" #include "tree-scalar-evolution.h" #include "tree-vectorizer.h" #include "builtins.h" #include "internal-fn.h" #include "tree-vector-builder.h" #include "vec-perm-indices.h" #include "tree-ssa-loop-niter.h" #include "gimple-fold.h" #include "regs.h" #include "attribs.h" /* For lang_hooks.types.type_for_mode. */ #include "langhooks.h" /* Return the vectorized type for the given statement. */ tree stmt_vectype (class _stmt_vec_info *stmt_info) { return STMT_VINFO_VECTYPE (stmt_info); } /* Return TRUE iff the given statement is in an inner loop relative to the loop being vectorized. */ bool stmt_in_inner_loop_p (vec_info *vinfo, class _stmt_vec_info *stmt_info) { gimple *stmt = STMT_VINFO_STMT (stmt_info); basic_block bb = gimple_bb (stmt); loop_vec_info loop_vinfo = dyn_cast (vinfo); class loop* loop; if (!loop_vinfo) return false; loop = LOOP_VINFO_LOOP (loop_vinfo); return (bb->loop_father == loop->inner); } /* Record the cost of a statement, either by directly informing the target model or by saving it in a vector for later processing. Return a preliminary estimate of the statement's cost. */ unsigned record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count, enum vect_cost_for_stmt kind, stmt_vec_info stmt_info, tree vectype, int misalign, enum vect_cost_model_location where) { if ((kind == vector_load || kind == unaligned_load) && (stmt_info && STMT_VINFO_GATHER_SCATTER_P (stmt_info))) kind = vector_gather_load; if ((kind == vector_store || kind == unaligned_store) && (stmt_info && STMT_VINFO_GATHER_SCATTER_P (stmt_info))) kind = vector_scatter_store; stmt_info_for_cost si = { count, kind, where, stmt_info, vectype, misalign }; body_cost_vec->safe_push (si); return (unsigned) (builtin_vectorization_cost (kind, vectype, misalign) * count); } /* Return a variable of type ELEM_TYPE[NELEMS]. */ static tree create_vector_array (tree elem_type, unsigned HOST_WIDE_INT nelems) { return create_tmp_var (build_array_type_nelts (elem_type, nelems), "vect_array"); } /* ARRAY is an array of vectors created by create_vector_array. Return an SSA_NAME for the vector in index N. The reference is part of the vectorization of STMT_INFO and the vector is associated with scalar destination SCALAR_DEST. */ static tree read_vector_array (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, tree scalar_dest, tree array, unsigned HOST_WIDE_INT n) { tree vect_type, vect, vect_name, array_ref; gimple *new_stmt; gcc_assert (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE); vect_type = TREE_TYPE (TREE_TYPE (array)); vect = vect_create_destination_var (scalar_dest, vect_type); array_ref = build4 (ARRAY_REF, vect_type, array, build_int_cst (size_type_node, n), NULL_TREE, NULL_TREE); new_stmt = gimple_build_assign (vect, array_ref); vect_name = make_ssa_name (vect, new_stmt); gimple_assign_set_lhs (new_stmt, vect_name); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); return vect_name; } /* ARRAY is an array of vectors created by create_vector_array. Emit code to store SSA_NAME VECT in index N of the array. The store is part of the vectorization of STMT_INFO. */ static void write_vector_array (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, tree vect, tree array, unsigned HOST_WIDE_INT n) { tree array_ref; gimple *new_stmt; array_ref = build4 (ARRAY_REF, TREE_TYPE (vect), array, build_int_cst (size_type_node, n), NULL_TREE, NULL_TREE); new_stmt = gimple_build_assign (array_ref, vect); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } /* PTR is a pointer to an array of type TYPE. Return a representation of *PTR. The memory reference replaces those in FIRST_DR (and its group). */ static tree create_array_ref (tree type, tree ptr, tree alias_ptr_type) { tree mem_ref; mem_ref = build2 (MEM_REF, type, ptr, build_int_cst (alias_ptr_type, 0)); /* Arrays have the same alignment as their type. */ set_ptr_info_alignment (get_ptr_info (ptr), TYPE_ALIGN_UNIT (type), 0); return mem_ref; } /* Add a clobber of variable VAR to the vectorization of STMT_INFO. Emit the clobber before *GSI. */ static void vect_clobber_variable (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, tree var) { tree clobber = build_clobber (TREE_TYPE (var)); gimple *new_stmt = gimple_build_assign (var, clobber); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } /* Utility functions used by vect_mark_stmts_to_be_vectorized. */ /* Function vect_mark_relevant. Mark STMT_INFO as "relevant for vectorization" and add it to WORKLIST. */ static void vect_mark_relevant (vec *worklist, stmt_vec_info stmt_info, enum vect_relevant relevant, bool live_p) { enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info); bool save_live_p = STMT_VINFO_LIVE_P (stmt_info); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "mark relevant %d, live %d: %G", relevant, live_p, stmt_info->stmt); /* If this stmt is an original stmt in a pattern, we might need to mark its related pattern stmt instead of the original stmt. However, such stmts may have their own uses that are not in any pattern, in such cases the stmt itself should be marked. */ if (STMT_VINFO_IN_PATTERN_P (stmt_info)) { /* This is the last stmt in a sequence that was detected as a pattern that can potentially be vectorized. Don't mark the stmt as relevant/live because it's not going to be vectorized. Instead mark the pattern-stmt that replaces it. */ if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "last stmt in pattern. don't mark" " relevant/live.\n"); stmt_vec_info old_stmt_info = stmt_info; stmt_info = STMT_VINFO_RELATED_STMT (stmt_info); gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == old_stmt_info); save_relevant = STMT_VINFO_RELEVANT (stmt_info); save_live_p = STMT_VINFO_LIVE_P (stmt_info); } STMT_VINFO_LIVE_P (stmt_info) |= live_p; if (relevant > STMT_VINFO_RELEVANT (stmt_info)) STMT_VINFO_RELEVANT (stmt_info) = relevant; if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant && STMT_VINFO_LIVE_P (stmt_info) == save_live_p) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "already marked relevant/live.\n"); return; } worklist->safe_push (stmt_info); } /* Function is_simple_and_all_uses_invariant Return true if STMT_INFO is simple and all uses of it are invariant. */ bool is_simple_and_all_uses_invariant (stmt_vec_info stmt_info, loop_vec_info loop_vinfo) { tree op; ssa_op_iter iter; gassign *stmt = dyn_cast (stmt_info->stmt); if (!stmt) return false; FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE) { enum vect_def_type dt = vect_uninitialized_def; if (!vect_is_simple_use (op, loop_vinfo, &dt)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "use not simple.\n"); return false; } if (dt != vect_external_def && dt != vect_constant_def) return false; } return true; } /* Function vect_stmt_relevant_p. Return true if STMT_INFO, in the loop that is represented by LOOP_VINFO, is "relevant for vectorization". A stmt is considered "relevant for vectorization" if: - it has uses outside the loop. - it has vdefs (it alters memory). - control stmts in the loop (except for the exit condition). CHECKME: what other side effects would the vectorizer allow? */ static bool vect_stmt_relevant_p (stmt_vec_info stmt_info, loop_vec_info loop_vinfo, enum vect_relevant *relevant, bool *live_p) { class loop *loop = LOOP_VINFO_LOOP (loop_vinfo); ssa_op_iter op_iter; imm_use_iterator imm_iter; use_operand_p use_p; def_operand_p def_p; *relevant = vect_unused_in_scope; *live_p = false; /* cond stmt other than loop exit cond. */ if (is_ctrl_stmt (stmt_info->stmt) && STMT_VINFO_TYPE (stmt_info) != loop_exit_ctrl_vec_info_type) *relevant = vect_used_in_scope; /* changing memory. */ if (gimple_code (stmt_info->stmt) != GIMPLE_PHI) if (gimple_vdef (stmt_info->stmt) && !gimple_clobber_p (stmt_info->stmt)) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vec_stmt_relevant_p: stmt has vdefs.\n"); *relevant = vect_used_in_scope; } /* uses outside the loop. */ FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt_info->stmt, op_iter, SSA_OP_DEF) { FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p)) { basic_block bb = gimple_bb (USE_STMT (use_p)); if (!flow_bb_inside_loop_p (loop, bb)) { if (is_gimple_debug (USE_STMT (use_p))) continue; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vec_stmt_relevant_p: used out of loop.\n"); /* We expect all such uses to be in the loop exit phis (because of loop closed form) */ gcc_assert (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI); gcc_assert (bb == single_exit (loop)->dest); *live_p = true; } } } if (*live_p && *relevant == vect_unused_in_scope && !is_simple_and_all_uses_invariant (stmt_info, loop_vinfo)) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vec_stmt_relevant_p: stmt live but not relevant.\n"); *relevant = vect_used_only_live; } return (*live_p || *relevant); } /* Function exist_non_indexing_operands_for_use_p USE is one of the uses attached to STMT_INFO. Check if USE is used in STMT_INFO for anything other than indexing an array. */ static bool exist_non_indexing_operands_for_use_p (tree use, stmt_vec_info stmt_info) { tree operand; /* USE corresponds to some operand in STMT. If there is no data reference in STMT, then any operand that corresponds to USE is not indexing an array. */ if (!STMT_VINFO_DATA_REF (stmt_info)) return true; /* STMT has a data_ref. FORNOW this means that its of one of the following forms: -1- ARRAY_REF = var -2- var = ARRAY_REF (This should have been verified in analyze_data_refs). 'var' in the second case corresponds to a def, not a use, so USE cannot correspond to any operands that are not used for array indexing. Therefore, all we need to check is if STMT falls into the first case, and whether var corresponds to USE. */ gassign *assign = dyn_cast (stmt_info->stmt); if (!assign || !gimple_assign_copy_p (assign)) { gcall *call = dyn_cast (stmt_info->stmt); if (call && gimple_call_internal_p (call)) { internal_fn ifn = gimple_call_internal_fn (call); int mask_index = internal_fn_mask_index (ifn); if (mask_index >= 0 && use == gimple_call_arg (call, mask_index)) return true; int stored_value_index = internal_fn_stored_value_index (ifn); if (stored_value_index >= 0 && use == gimple_call_arg (call, stored_value_index)) return true; if (internal_gather_scatter_fn_p (ifn) && use == gimple_call_arg (call, 1)) return true; } return false; } if (TREE_CODE (gimple_assign_lhs (assign)) == SSA_NAME) return false; operand = gimple_assign_rhs1 (assign); if (TREE_CODE (operand) != SSA_NAME) return false; if (operand == use) return true; return false; } /* Function process_use. Inputs: - a USE in STMT_VINFO in a loop represented by LOOP_VINFO - RELEVANT - enum value to be set in the STMT_VINFO of the stmt that defined USE. This is done by calling mark_relevant and passing it the WORKLIST (to add DEF_STMT to the WORKLIST in case it is relevant). - FORCE is true if exist_non_indexing_operands_for_use_p check shouldn't be performed. Outputs: Generally, LIVE_P and RELEVANT are used to define the liveness and relevance info of the DEF_STMT of this USE: STMT_VINFO_LIVE_P (DEF_stmt_vinfo) <-- live_p STMT_VINFO_RELEVANT (DEF_stmt_vinfo) <-- relevant Exceptions: - case 1: If USE is used only for address computations (e.g. array indexing), which does not need to be directly vectorized, then the liveness/relevance of the respective DEF_STMT is left unchanged. - case 2: If STMT_VINFO is a reduction phi and DEF_STMT is a reduction stmt, we skip DEF_STMT cause it had already been processed. - case 3: If DEF_STMT and STMT_VINFO are in different nests, then "relevant" will be modified accordingly. Return true if everything is as expected. Return false otherwise. */ static opt_result process_use (stmt_vec_info stmt_vinfo, tree use, loop_vec_info loop_vinfo, enum vect_relevant relevant, vec *worklist, bool force) { stmt_vec_info dstmt_vinfo; enum vect_def_type dt; /* case 1: we are only interested in uses that need to be vectorized. Uses that are used for address computation are not considered relevant. */ if (!force && !exist_non_indexing_operands_for_use_p (use, stmt_vinfo)) return opt_result::success (); if (!vect_is_simple_use (use, loop_vinfo, &dt, &dstmt_vinfo)) return opt_result::failure_at (stmt_vinfo->stmt, "not vectorized:" " unsupported use in stmt.\n"); if (!dstmt_vinfo) return opt_result::success (); basic_block def_bb = gimple_bb (dstmt_vinfo->stmt); basic_block bb = gimple_bb (stmt_vinfo->stmt); /* case 2: A reduction phi (STMT) defined by a reduction stmt (DSTMT_VINFO). We have to force the stmt live since the epilogue loop needs it to continue computing the reduction. */ if (gimple_code (stmt_vinfo->stmt) == GIMPLE_PHI && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def && gimple_code (dstmt_vinfo->stmt) != GIMPLE_PHI && STMT_VINFO_DEF_TYPE (dstmt_vinfo) == vect_reduction_def && bb->loop_father == def_bb->loop_father) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "reduc-stmt defining reduc-phi in the same nest.\n"); vect_mark_relevant (worklist, dstmt_vinfo, relevant, true); return opt_result::success (); } /* case 3a: outer-loop stmt defining an inner-loop stmt: outer-loop-header-bb: d = dstmt_vinfo inner-loop: stmt # use (d) outer-loop-tail-bb: ... */ if (flow_loop_nested_p (def_bb->loop_father, bb->loop_father)) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "outer-loop def-stmt defining inner-loop stmt.\n"); switch (relevant) { case vect_unused_in_scope: relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_nested_cycle) ? vect_used_in_scope : vect_unused_in_scope; break; case vect_used_in_outer_by_reduction: gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def); relevant = vect_used_by_reduction; break; case vect_used_in_outer: gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def); relevant = vect_used_in_scope; break; case vect_used_in_scope: break; default: gcc_unreachable (); } } /* case 3b: inner-loop stmt defining an outer-loop stmt: outer-loop-header-bb: ... inner-loop: d = dstmt_vinfo outer-loop-tail-bb (or outer-loop-exit-bb in double reduction): stmt # use (d) */ else if (flow_loop_nested_p (bb->loop_father, def_bb->loop_father)) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "inner-loop def-stmt defining outer-loop stmt.\n"); switch (relevant) { case vect_unused_in_scope: relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def || STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_double_reduction_def) ? vect_used_in_outer_by_reduction : vect_unused_in_scope; break; case vect_used_by_reduction: case vect_used_only_live: relevant = vect_used_in_outer_by_reduction; break; case vect_used_in_scope: relevant = vect_used_in_outer; break; default: gcc_unreachable (); } } /* We are also not interested in uses on loop PHI backedges that are inductions. Otherwise we'll needlessly vectorize the IV increment and cause hybrid SLP for SLP inductions. Unless the PHI is live of course. */ else if (gimple_code (stmt_vinfo->stmt) == GIMPLE_PHI && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_induction_def && ! STMT_VINFO_LIVE_P (stmt_vinfo) && (PHI_ARG_DEF_FROM_EDGE (stmt_vinfo->stmt, loop_latch_edge (bb->loop_father)) == use)) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "induction value on backedge.\n"); return opt_result::success (); } vect_mark_relevant (worklist, dstmt_vinfo, relevant, false); return opt_result::success (); } /* Function vect_mark_stmts_to_be_vectorized. Not all stmts in the loop need to be vectorized. For example: for i... for j... 1. T0 = i + j 2. T1 = a[T0] 3. j = j + 1 Stmt 1 and 3 do not need to be vectorized, because loop control and addressing of vectorized data-refs are handled differently. This pass detects such stmts. */ opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo, bool *fatal) { class loop *loop = LOOP_VINFO_LOOP (loop_vinfo); basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo); unsigned int nbbs = loop->num_nodes; gimple_stmt_iterator si; unsigned int i; basic_block bb; bool live_p; enum vect_relevant relevant; DUMP_VECT_SCOPE ("vect_mark_stmts_to_be_vectorized"); auto_vec worklist; /* 1. Init worklist. */ for (i = 0; i < nbbs; i++) { bb = bbs[i]; for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) { stmt_vec_info phi_info = loop_vinfo->lookup_stmt (gsi_stmt (si)); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "init: phi relevant? %G", phi_info->stmt); if (vect_stmt_relevant_p (phi_info, loop_vinfo, &relevant, &live_p)) vect_mark_relevant (&worklist, phi_info, relevant, live_p); } for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) { if (is_gimple_debug (gsi_stmt (si))) continue; stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si)); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "init: stmt relevant? %G", stmt_info->stmt); if (vect_stmt_relevant_p (stmt_info, loop_vinfo, &relevant, &live_p)) vect_mark_relevant (&worklist, stmt_info, relevant, live_p); } } /* 2. Process_worklist */ while (worklist.length () > 0) { use_operand_p use_p; ssa_op_iter iter; stmt_vec_info stmt_vinfo = worklist.pop (); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "worklist: examine stmt: %G", stmt_vinfo->stmt); /* Examine the USEs of STMT. For each USE, mark the stmt that defines it (DEF_STMT) as relevant/irrelevant according to the relevance property of STMT. */ relevant = STMT_VINFO_RELEVANT (stmt_vinfo); /* Generally, the relevance property of STMT (in STMT_VINFO_RELEVANT) is propagated as is to the DEF_STMTs of its USEs. One exception is when STMT has been identified as defining a reduction variable; in this case we set the relevance to vect_used_by_reduction. This is because we distinguish between two kinds of relevant stmts - those that are used by a reduction computation, and those that are (also) used by a regular computation. This allows us later on to identify stmts that are used solely by a reduction, and therefore the order of the results that they produce does not have to be kept. */ switch (STMT_VINFO_DEF_TYPE (stmt_vinfo)) { case vect_reduction_def: gcc_assert (relevant != vect_unused_in_scope); if (relevant != vect_unused_in_scope && relevant != vect_used_in_scope && relevant != vect_used_by_reduction && relevant != vect_used_only_live) return opt_result::failure_at (stmt_vinfo->stmt, "unsupported use of reduction.\n"); break; case vect_nested_cycle: if (relevant != vect_unused_in_scope && relevant != vect_used_in_outer_by_reduction && relevant != vect_used_in_outer) return opt_result::failure_at (stmt_vinfo->stmt, "unsupported use of nested cycle.\n"); break; case vect_double_reduction_def: if (relevant != vect_unused_in_scope && relevant != vect_used_by_reduction && relevant != vect_used_only_live) return opt_result::failure_at (stmt_vinfo->stmt, "unsupported use of double reduction.\n"); break; default: break; } if (is_pattern_stmt_p (stmt_vinfo)) { /* Pattern statements are not inserted into the code, so FOR_EACH_PHI_OR_STMT_USE optimizes their operands out, and we have to scan the RHS or function arguments instead. */ if (gassign *assign = dyn_cast (stmt_vinfo->stmt)) { enum tree_code rhs_code = gimple_assign_rhs_code (assign); tree op = gimple_assign_rhs1 (assign); i = 1; if (rhs_code == COND_EXPR && COMPARISON_CLASS_P (op)) { opt_result res = process_use (stmt_vinfo, TREE_OPERAND (op, 0), loop_vinfo, relevant, &worklist, false); if (!res) return res; res = process_use (stmt_vinfo, TREE_OPERAND (op, 1), loop_vinfo, relevant, &worklist, false); if (!res) return res; i = 2; } for (; i < gimple_num_ops (assign); i++) { op = gimple_op (assign, i); if (TREE_CODE (op) == SSA_NAME) { opt_result res = process_use (stmt_vinfo, op, loop_vinfo, relevant, &worklist, false); if (!res) return res; } } } else if (gcall *call = dyn_cast (stmt_vinfo->stmt)) { for (i = 0; i < gimple_call_num_args (call); i++) { tree arg = gimple_call_arg (call, i); opt_result res = process_use (stmt_vinfo, arg, loop_vinfo, relevant, &worklist, false); if (!res) return res; } } } else FOR_EACH_PHI_OR_STMT_USE (use_p, stmt_vinfo->stmt, iter, SSA_OP_USE) { tree op = USE_FROM_PTR (use_p); opt_result res = process_use (stmt_vinfo, op, loop_vinfo, relevant, &worklist, false); if (!res) return res; } if (STMT_VINFO_GATHER_SCATTER_P (stmt_vinfo)) { gather_scatter_info gs_info; if (!vect_check_gather_scatter (stmt_vinfo, loop_vinfo, &gs_info)) gcc_unreachable (); opt_result res = process_use (stmt_vinfo, gs_info.offset, loop_vinfo, relevant, &worklist, true); if (!res) { if (fatal) *fatal = false; return res; } } } /* while worklist */ return opt_result::success (); } /* Function vect_model_simple_cost. Models cost for simple operations, i.e. those that only emit ncopies of a single op. Right now, this does not account for multiple insns that could be generated for the single vector op. We will handle that shortly. */ static void vect_model_simple_cost (vec_info *, stmt_vec_info stmt_info, int ncopies, enum vect_def_type *dt, int ndts, slp_tree node, stmt_vector_for_cost *cost_vec, vect_cost_for_stmt kind = vector_stmt) { int inside_cost = 0, prologue_cost = 0; gcc_assert (cost_vec != NULL); /* ??? Somehow we need to fix this at the callers. */ if (node) ncopies = SLP_TREE_NUMBER_OF_VEC_STMTS (node); if (!node) /* Cost the "broadcast" of a scalar operand in to a vector operand. Use scalar_to_vec to cost the broadcast, as elsewhere in the vector cost model. */ for (int i = 0; i < ndts; i++) if (dt[i] == vect_constant_def || dt[i] == vect_external_def) prologue_cost += record_stmt_cost (cost_vec, 1, scalar_to_vec, stmt_info, 0, vect_prologue); /* Pass the inside-of-loop statements to the target-specific cost model. */ inside_cost += record_stmt_cost (cost_vec, ncopies, kind, stmt_info, 0, vect_body); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_model_simple_cost: inside_cost = %d, " "prologue_cost = %d .\n", inside_cost, prologue_cost); } /* Model cost for type demotion and promotion operations. PWR is normally zero for single-step promotions and demotions. It will be one if two-step promotion/demotion is required, and so on. NCOPIES is the number of vector results (and thus number of instructions) for the narrowest end of the operation chain. Each additional step doubles the number of instructions required. If WIDEN_ARITH is true the stmt is doing widening arithmetic. */ static void vect_model_promotion_demotion_cost (stmt_vec_info stmt_info, enum vect_def_type *dt, unsigned int ncopies, int pwr, stmt_vector_for_cost *cost_vec, bool widen_arith) { int i; int inside_cost = 0, prologue_cost = 0; for (i = 0; i < pwr + 1; i++) { inside_cost += record_stmt_cost (cost_vec, ncopies, widen_arith ? vector_stmt : vec_promote_demote, stmt_info, 0, vect_body); ncopies *= 2; } /* FORNOW: Assuming maximum 2 args per stmts. */ for (i = 0; i < 2; i++) if (dt[i] == vect_constant_def || dt[i] == vect_external_def) prologue_cost += record_stmt_cost (cost_vec, 1, vector_stmt, stmt_info, 0, vect_prologue); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_model_promotion_demotion_cost: inside_cost = %d, " "prologue_cost = %d .\n", inside_cost, prologue_cost); } /* Returns true if the current function returns DECL. */ static bool cfun_returns (tree decl) { edge_iterator ei; edge e; FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) { greturn *ret = safe_dyn_cast (last_stmt (e->src)); if (!ret) continue; if (gimple_return_retval (ret) == decl) return true; /* We often end up with an aggregate copy to the result decl, handle that case as well. First skip intermediate clobbers though. */ gimple *def = ret; do { def = SSA_NAME_DEF_STMT (gimple_vuse (def)); } while (gimple_clobber_p (def)); if (is_a (def) && gimple_assign_lhs (def) == gimple_return_retval (ret) && gimple_assign_rhs1 (def) == decl) return true; } return false; } /* Function vect_model_store_cost Models cost for stores. In the case of grouped accesses, one access has the overhead of the grouped access attributed to it. */ static void vect_model_store_cost (vec_info *vinfo, stmt_vec_info stmt_info, int ncopies, vect_memory_access_type memory_access_type, vec_load_store_type vls_type, slp_tree slp_node, stmt_vector_for_cost *cost_vec) { unsigned int inside_cost = 0, prologue_cost = 0; stmt_vec_info first_stmt_info = stmt_info; bool grouped_access_p = STMT_VINFO_GROUPED_ACCESS (stmt_info); /* ??? Somehow we need to fix this at the callers. */ if (slp_node) ncopies = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node); if (vls_type == VLS_STORE_INVARIANT) { if (!slp_node) prologue_cost += record_stmt_cost (cost_vec, 1, scalar_to_vec, stmt_info, 0, vect_prologue); } /* Grouped stores update all elements in the group at once, so we want the DR for the first statement. */ if (!slp_node && grouped_access_p) first_stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info); /* True if we should include any once-per-group costs as well as the cost of the statement itself. For SLP we only get called once per group anyhow. */ bool first_stmt_p = (first_stmt_info == stmt_info); /* We assume that the cost of a single store-lanes instruction is equivalent to the cost of DR_GROUP_SIZE separate stores. If a grouped access is instead being provided by a permute-and-store operation, include the cost of the permutes. */ if (first_stmt_p && memory_access_type == VMAT_CONTIGUOUS_PERMUTE) { /* Uses a high and low interleave or shuffle operations for each needed permute. */ int group_size = DR_GROUP_SIZE (first_stmt_info); int nstmts = ncopies * ceil_log2 (group_size) * group_size; inside_cost = record_stmt_cost (cost_vec, nstmts, vec_perm, stmt_info, 0, vect_body); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_model_store_cost: strided group_size = %d .\n", group_size); } tree vectype = STMT_VINFO_VECTYPE (stmt_info); /* Costs of the stores. */ if (memory_access_type == VMAT_ELEMENTWISE || memory_access_type == VMAT_GATHER_SCATTER) { /* N scalar stores plus extracting the elements. */ unsigned int assumed_nunits = vect_nunits_for_cost (vectype); inside_cost += record_stmt_cost (cost_vec, ncopies * assumed_nunits, scalar_store, stmt_info, 0, vect_body); } else vect_get_store_cost (vinfo, stmt_info, ncopies, &inside_cost, cost_vec); if (memory_access_type == VMAT_ELEMENTWISE || memory_access_type == VMAT_STRIDED_SLP) { /* N scalar stores plus extracting the elements. */ unsigned int assumed_nunits = vect_nunits_for_cost (vectype); inside_cost += record_stmt_cost (cost_vec, ncopies * assumed_nunits, vec_to_scalar, stmt_info, 0, vect_body); } /* When vectorizing a store into the function result assign a penalty if the function returns in a multi-register location. In this case we assume we'll end up with having to spill the vector result and do piecewise loads as a conservative estimate. */ tree base = get_base_address (STMT_VINFO_DATA_REF (stmt_info)->ref); if (base && (TREE_CODE (base) == RESULT_DECL || (DECL_P (base) && cfun_returns (base))) && !aggregate_value_p (base, cfun->decl)) { rtx reg = hard_function_value (TREE_TYPE (base), cfun->decl, 0, 1); /* ??? Handle PARALLEL in some way. */ if (REG_P (reg)) { int nregs = hard_regno_nregs (REGNO (reg), GET_MODE (reg)); /* Assume that a single reg-reg move is possible and cheap, do not account for vector to gp register move cost. */ if (nregs > 1) { /* Spill. */ prologue_cost += record_stmt_cost (cost_vec, ncopies, vector_store, stmt_info, 0, vect_epilogue); /* Loads. */ prologue_cost += record_stmt_cost (cost_vec, ncopies * nregs, scalar_load, stmt_info, 0, vect_epilogue); } } } if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_model_store_cost: inside_cost = %d, " "prologue_cost = %d .\n", inside_cost, prologue_cost); } /* Calculate cost of DR's memory access. */ void vect_get_store_cost (vec_info *vinfo, stmt_vec_info stmt_info, int ncopies, unsigned int *inside_cost, stmt_vector_for_cost *body_cost_vec) { dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info); int alignment_support_scheme = vect_supportable_dr_alignment (vinfo, dr_info, false); switch (alignment_support_scheme) { case dr_aligned: { *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_store, stmt_info, 0, vect_body); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_model_store_cost: aligned.\n"); break; } case dr_unaligned_supported: { /* Here, we assign an additional cost for the unaligned store. */ *inside_cost += record_stmt_cost (body_cost_vec, ncopies, unaligned_store, stmt_info, DR_MISALIGNMENT (dr_info), vect_body); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_model_store_cost: unaligned supported by " "hardware.\n"); break; } case dr_unaligned_unsupported: { *inside_cost = VECT_MAX_COST; if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "vect_model_store_cost: unsupported access.\n"); break; } default: gcc_unreachable (); } } /* Function vect_model_load_cost Models cost for loads. In the case of grouped accesses, one access has the overhead of the grouped access attributed to it. Since unaligned accesses are supported for loads, we also account for the costs of the access scheme chosen. */ static void vect_model_load_cost (vec_info *vinfo, stmt_vec_info stmt_info, unsigned ncopies, poly_uint64 vf, vect_memory_access_type memory_access_type, gather_scatter_info *gs_info, slp_tree slp_node, stmt_vector_for_cost *cost_vec) { unsigned int inside_cost = 0, prologue_cost = 0; bool grouped_access_p = STMT_VINFO_GROUPED_ACCESS (stmt_info); gcc_assert (cost_vec); /* ??? Somehow we need to fix this at the callers. */ if (slp_node) ncopies = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node); if (slp_node && SLP_TREE_LOAD_PERMUTATION (slp_node).exists ()) { /* If the load is permuted then the alignment is determined by the first group element not by the first scalar stmt DR. */ stmt_vec_info first_stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info); /* Record the cost for the permutation. */ unsigned n_perms, n_loads; vect_transform_slp_perm_load (vinfo, slp_node, vNULL, NULL, vf, true, &n_perms, &n_loads); inside_cost += record_stmt_cost (cost_vec, n_perms, vec_perm, first_stmt_info, 0, vect_body); /* And adjust the number of loads performed. This handles redundancies as well as loads that are later dead. */ ncopies = n_loads; } /* Grouped loads read all elements in the group at once, so we want the DR for the first statement. */ stmt_vec_info first_stmt_info = stmt_info; if (!slp_node && grouped_access_p) first_stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info); /* True if we should include any once-per-group costs as well as the cost of the statement itself. For SLP we only get called once per group anyhow. */ bool first_stmt_p = (first_stmt_info == stmt_info); /* An IFN_LOAD_LANES will load all its vector results, regardless of which ones we actually need. Account for the cost of unused results. */ if (first_stmt_p && !slp_node && memory_access_type == VMAT_LOAD_STORE_LANES) { unsigned int gaps = DR_GROUP_SIZE (first_stmt_info); stmt_vec_info next_stmt_info = first_stmt_info; do { gaps -= 1; next_stmt_info = DR_GROUP_NEXT_ELEMENT (next_stmt_info); } while (next_stmt_info); if (gaps) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_model_load_cost: %d unused vectors.\n", gaps); vect_get_load_cost (vinfo, stmt_info, ncopies * gaps, false, &inside_cost, &prologue_cost, cost_vec, cost_vec, true); } } /* We assume that the cost of a single load-lanes instruction is equivalent to the cost of DR_GROUP_SIZE separate loads. If a grouped access is instead being provided by a load-and-permute operation, include the cost of the permutes. */ if (first_stmt_p && memory_access_type == VMAT_CONTIGUOUS_PERMUTE) { /* Uses an even and odd extract operations or shuffle operations for each needed permute. */ int group_size = DR_GROUP_SIZE (first_stmt_info); int nstmts = ncopies * ceil_log2 (group_size) * group_size; inside_cost += record_stmt_cost (cost_vec, nstmts, vec_perm, stmt_info, 0, vect_body); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_model_load_cost: strided group_size = %d .\n", group_size); } /* The loads themselves. */ if (memory_access_type == VMAT_ELEMENTWISE || memory_access_type == VMAT_GATHER_SCATTER) { tree vectype = STMT_VINFO_VECTYPE (stmt_info); unsigned int assumed_nunits = vect_nunits_for_cost (vectype); if (memory_access_type == VMAT_GATHER_SCATTER && gs_info->ifn == IFN_LAST && !gs_info->decl) /* For emulated gathers N offset vector element extracts (we assume the scalar scaling and ptr + offset add is consumed by the load). */ inside_cost += record_stmt_cost (cost_vec, ncopies * assumed_nunits, vec_to_scalar, stmt_info, 0, vect_body); /* N scalar loads plus gathering them into a vector. */ inside_cost += record_stmt_cost (cost_vec, ncopies * assumed_nunits, scalar_load, stmt_info, 0, vect_body); } else vect_get_load_cost (vinfo, stmt_info, ncopies, first_stmt_p, &inside_cost, &prologue_cost, cost_vec, cost_vec, true); if (memory_access_type == VMAT_ELEMENTWISE || memory_access_type == VMAT_STRIDED_SLP || (memory_access_type == VMAT_GATHER_SCATTER && gs_info->ifn == IFN_LAST && !gs_info->decl)) inside_cost += record_stmt_cost (cost_vec, ncopies, vec_construct, stmt_info, 0, vect_body); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_model_load_cost: inside_cost = %d, " "prologue_cost = %d .\n", inside_cost, prologue_cost); } /* Calculate cost of DR's memory access. */ void vect_get_load_cost (vec_info *vinfo, stmt_vec_info stmt_info, int ncopies, bool add_realign_cost, unsigned int *inside_cost, unsigned int *prologue_cost, stmt_vector_for_cost *prologue_cost_vec, stmt_vector_for_cost *body_cost_vec, bool record_prologue_costs) { dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info); int alignment_support_scheme = vect_supportable_dr_alignment (vinfo, dr_info, false); switch (alignment_support_scheme) { case dr_aligned: { *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load, stmt_info, 0, vect_body); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_model_load_cost: aligned.\n"); break; } case dr_unaligned_supported: { /* Here, we assign an additional cost for the unaligned load. */ *inside_cost += record_stmt_cost (body_cost_vec, ncopies, unaligned_load, stmt_info, DR_MISALIGNMENT (dr_info), vect_body); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_model_load_cost: unaligned supported by " "hardware.\n"); break; } case dr_explicit_realign: { *inside_cost += record_stmt_cost (body_cost_vec, ncopies * 2, vector_load, stmt_info, 0, vect_body); *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_perm, stmt_info, 0, vect_body); /* FIXME: If the misalignment remains fixed across the iterations of the containing loop, the following cost should be added to the prologue costs. */ if (targetm.vectorize.builtin_mask_for_load) *inside_cost += record_stmt_cost (body_cost_vec, 1, vector_stmt, stmt_info, 0, vect_body); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_model_load_cost: explicit realign\n"); break; } case dr_explicit_realign_optimized: { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_model_load_cost: unaligned software " "pipelined.\n"); /* Unaligned software pipeline has a load of an address, an initial load, and possibly a mask operation to "prime" the loop. However, if this is an access in a group of loads, which provide grouped access, then the above cost should only be considered for one access in the group. Inside the loop, there is a load op and a realignment op. */ if (add_realign_cost && record_prologue_costs) { *prologue_cost += record_stmt_cost (prologue_cost_vec, 2, vector_stmt, stmt_info, 0, vect_prologue); if (targetm.vectorize.builtin_mask_for_load) *prologue_cost += record_stmt_cost (prologue_cost_vec, 1, vector_stmt, stmt_info, 0, vect_prologue); } *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load, stmt_info, 0, vect_body); *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_perm, stmt_info, 0, vect_body); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_model_load_cost: explicit realign optimized" "\n"); break; } case dr_unaligned_unsupported: { *inside_cost = VECT_MAX_COST; if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "vect_model_load_cost: unsupported access.\n"); break; } default: gcc_unreachable (); } } /* Insert the new stmt NEW_STMT at *GSI or at the appropriate place in the loop preheader for the vectorized stmt STMT_VINFO. */ static void vect_init_vector_1 (vec_info *vinfo, stmt_vec_info stmt_vinfo, gimple *new_stmt, gimple_stmt_iterator *gsi) { if (gsi) vect_finish_stmt_generation (vinfo, stmt_vinfo, new_stmt, gsi); else vinfo->insert_on_entry (stmt_vinfo, new_stmt); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "created new init_stmt: %G", new_stmt); } /* Function vect_init_vector. Insert a new stmt (INIT_STMT) that initializes a new variable of type TYPE with the value VAL. If TYPE is a vector type and VAL does not have vector type a vector with all elements equal to VAL is created first. Place the initialization at GSI if it is not NULL. Otherwise, place the initialization at the loop preheader. Return the DEF of INIT_STMT. It will be used in the vectorization of STMT_INFO. */ tree vect_init_vector (vec_info *vinfo, stmt_vec_info stmt_info, tree val, tree type, gimple_stmt_iterator *gsi) { gimple *init_stmt; tree new_temp; /* We abuse this function to push sth to a SSA name with initial 'val'. */ if (! useless_type_conversion_p (type, TREE_TYPE (val))) { gcc_assert (TREE_CODE (type) == VECTOR_TYPE); if (! types_compatible_p (TREE_TYPE (type), TREE_TYPE (val))) { /* Scalar boolean value should be transformed into all zeros or all ones value before building a vector. */ if (VECTOR_BOOLEAN_TYPE_P (type)) { tree true_val = build_all_ones_cst (TREE_TYPE (type)); tree false_val = build_zero_cst (TREE_TYPE (type)); if (CONSTANT_CLASS_P (val)) val = integer_zerop (val) ? false_val : true_val; else { new_temp = make_ssa_name (TREE_TYPE (type)); init_stmt = gimple_build_assign (new_temp, COND_EXPR, val, true_val, false_val); vect_init_vector_1 (vinfo, stmt_info, init_stmt, gsi); val = new_temp; } } else { gimple_seq stmts = NULL; if (! INTEGRAL_TYPE_P (TREE_TYPE (val))) val = gimple_build (&stmts, VIEW_CONVERT_EXPR, TREE_TYPE (type), val); else /* ??? Condition vectorization expects us to do promotion of invariant/external defs. */ val = gimple_convert (&stmts, TREE_TYPE (type), val); for (gimple_stmt_iterator gsi2 = gsi_start (stmts); !gsi_end_p (gsi2); ) { init_stmt = gsi_stmt (gsi2); gsi_remove (&gsi2, false); vect_init_vector_1 (vinfo, stmt_info, init_stmt, gsi); } } } val = build_vector_from_val (type, val); } new_temp = vect_get_new_ssa_name (type, vect_simple_var, "cst_"); init_stmt = gimple_build_assign (new_temp, val); vect_init_vector_1 (vinfo, stmt_info, init_stmt, gsi); return new_temp; } /* Function vect_get_vec_defs_for_operand. OP is an operand in STMT_VINFO. This function returns a vector of NCOPIES defs that will be used in the vectorized stmts for STMT_VINFO. In the case that OP is an SSA_NAME which is defined in the loop, then STMT_VINFO_VEC_STMTS of the defining stmt holds the relevant defs. In case OP is an invariant or constant, a new stmt that creates a vector def needs to be introduced. VECTYPE may be used to specify a required type for vector invariant. */ void vect_get_vec_defs_for_operand (vec_info *vinfo, stmt_vec_info stmt_vinfo, unsigned ncopies, tree op, vec *vec_oprnds, tree vectype) { gimple *def_stmt; enum vect_def_type dt; bool is_simple_use; loop_vec_info loop_vinfo = dyn_cast (vinfo); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_get_vec_defs_for_operand: %T\n", op); stmt_vec_info def_stmt_info; is_simple_use = vect_is_simple_use (op, loop_vinfo, &dt, &def_stmt_info, &def_stmt); gcc_assert (is_simple_use); if (def_stmt && dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, " def_stmt = %G", def_stmt); vec_oprnds->create (ncopies); if (dt == vect_constant_def || dt == vect_external_def) { tree stmt_vectype = STMT_VINFO_VECTYPE (stmt_vinfo); tree vector_type; if (vectype) vector_type = vectype; else if (VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (op)) && VECTOR_BOOLEAN_TYPE_P (stmt_vectype)) vector_type = truth_type_for (stmt_vectype); else vector_type = get_vectype_for_scalar_type (loop_vinfo, TREE_TYPE (op)); gcc_assert (vector_type); tree vop = vect_init_vector (vinfo, stmt_vinfo, op, vector_type, NULL); while (ncopies--) vec_oprnds->quick_push (vop); } else { def_stmt_info = vect_stmt_to_vectorize (def_stmt_info); gcc_assert (STMT_VINFO_VEC_STMTS (def_stmt_info).length () == ncopies); for (unsigned i = 0; i < ncopies; ++i) vec_oprnds->quick_push (gimple_get_lhs (STMT_VINFO_VEC_STMTS (def_stmt_info)[i])); } } /* Get vectorized definitions for OP0 and OP1. */ void vect_get_vec_defs (vec_info *vinfo, stmt_vec_info stmt_info, slp_tree slp_node, unsigned ncopies, tree op0, vec *vec_oprnds0, tree vectype0, tree op1, vec *vec_oprnds1, tree vectype1, tree op2, vec *vec_oprnds2, tree vectype2, tree op3, vec *vec_oprnds3, tree vectype3) { if (slp_node) { if (op0) vect_get_slp_defs (SLP_TREE_CHILDREN (slp_node)[0], vec_oprnds0); if (op1) vect_get_slp_defs (SLP_TREE_CHILDREN (slp_node)[1], vec_oprnds1); if (op2) vect_get_slp_defs (SLP_TREE_CHILDREN (slp_node)[2], vec_oprnds2); if (op3) vect_get_slp_defs (SLP_TREE_CHILDREN (slp_node)[3], vec_oprnds3); } else { if (op0) vect_get_vec_defs_for_operand (vinfo, stmt_info, ncopies, op0, vec_oprnds0, vectype0); if (op1) vect_get_vec_defs_for_operand (vinfo, stmt_info, ncopies, op1, vec_oprnds1, vectype1); if (op2) vect_get_vec_defs_for_operand (vinfo, stmt_info, ncopies, op2, vec_oprnds2, vectype2); if (op3) vect_get_vec_defs_for_operand (vinfo, stmt_info, ncopies, op3, vec_oprnds3, vectype3); } } void vect_get_vec_defs (vec_info *vinfo, stmt_vec_info stmt_info, slp_tree slp_node, unsigned ncopies, tree op0, vec *vec_oprnds0, tree op1, vec *vec_oprnds1, tree op2, vec *vec_oprnds2, tree op3, vec *vec_oprnds3) { vect_get_vec_defs (vinfo, stmt_info, slp_node, ncopies, op0, vec_oprnds0, NULL_TREE, op1, vec_oprnds1, NULL_TREE, op2, vec_oprnds2, NULL_TREE, op3, vec_oprnds3, NULL_TREE); } /* Helper function called by vect_finish_replace_stmt and vect_finish_stmt_generation. Set the location of the new statement and create and return a stmt_vec_info for it. */ static void vect_finish_stmt_generation_1 (vec_info *, stmt_vec_info stmt_info, gimple *vec_stmt) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "add new stmt: %G", vec_stmt); if (stmt_info) { gimple_set_location (vec_stmt, gimple_location (stmt_info->stmt)); /* While EH edges will generally prevent vectorization, stmt might e.g. be in a must-not-throw region. Ensure newly created stmts that could throw are part of the same region. */ int lp_nr = lookup_stmt_eh_lp (stmt_info->stmt); if (lp_nr != 0 && stmt_could_throw_p (cfun, vec_stmt)) add_stmt_to_eh_lp (vec_stmt, lp_nr); } else gcc_assert (!stmt_could_throw_p (cfun, vec_stmt)); } /* Replace the scalar statement STMT_INFO with a new vector statement VEC_STMT, which sets the same scalar result as STMT_INFO did. Create and return a stmt_vec_info for VEC_STMT. */ void vect_finish_replace_stmt (vec_info *vinfo, stmt_vec_info stmt_info, gimple *vec_stmt) { gimple *scalar_stmt = vect_orig_stmt (stmt_info)->stmt; gcc_assert (gimple_get_lhs (scalar_stmt) == gimple_get_lhs (vec_stmt)); gimple_stmt_iterator gsi = gsi_for_stmt (scalar_stmt); gsi_replace (&gsi, vec_stmt, true); vect_finish_stmt_generation_1 (vinfo, stmt_info, vec_stmt); } /* Add VEC_STMT to the vectorized implementation of STMT_INFO and insert it before *GSI. Create and return a stmt_vec_info for VEC_STMT. */ void vect_finish_stmt_generation (vec_info *vinfo, stmt_vec_info stmt_info, gimple *vec_stmt, gimple_stmt_iterator *gsi) { gcc_assert (!stmt_info || gimple_code (stmt_info->stmt) != GIMPLE_LABEL); if (!gsi_end_p (*gsi) && gimple_has_mem_ops (vec_stmt)) { gimple *at_stmt = gsi_stmt (*gsi); tree vuse = gimple_vuse (at_stmt); if (vuse && TREE_CODE (vuse) == SSA_NAME) { tree vdef = gimple_vdef (at_stmt); gimple_set_vuse (vec_stmt, gimple_vuse (at_stmt)); gimple_set_modified (vec_stmt, true); /* If we have an SSA vuse and insert a store, update virtual SSA form to avoid triggering the renamer. Do so only if we can easily see all uses - which is what almost always happens with the way vectorized stmts are inserted. */ if ((vdef && TREE_CODE (vdef) == SSA_NAME) && ((is_gimple_assign (vec_stmt) && !is_gimple_reg (gimple_assign_lhs (vec_stmt))) || (is_gimple_call (vec_stmt) && !(gimple_call_flags (vec_stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))))) { tree new_vdef = copy_ssa_name (vuse, vec_stmt); gimple_set_vdef (vec_stmt, new_vdef); SET_USE (gimple_vuse_op (at_stmt), new_vdef); } } } gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT); vect_finish_stmt_generation_1 (vinfo, stmt_info, vec_stmt); } /* We want to vectorize a call to combined function CFN with function decl FNDECL, using VECTYPE_OUT as the type of the output and VECTYPE_IN as the types of all inputs. Check whether this is possible using an internal function, returning its code if so or IFN_LAST if not. */ static internal_fn vectorizable_internal_function (combined_fn cfn, tree fndecl, tree vectype_out, tree vectype_in) { internal_fn ifn; if (internal_fn_p (cfn)) ifn = as_internal_fn (cfn); else ifn = associated_internal_fn (fndecl); if (ifn != IFN_LAST && direct_internal_fn_p (ifn)) { const direct_internal_fn_info &info = direct_internal_fn (ifn); if (info.vectorizable) { tree type0 = (info.type0 < 0 ? vectype_out : vectype_in); tree type1 = (info.type1 < 0 ? vectype_out : vectype_in); if (direct_internal_fn_supported_p (ifn, tree_pair (type0, type1), OPTIMIZE_FOR_SPEED)) return ifn; } } return IFN_LAST; } static tree permute_vec_elements (vec_info *, tree, tree, tree, stmt_vec_info, gimple_stmt_iterator *); /* Check whether a load or store statement in the loop described by LOOP_VINFO is possible in a loop using partial vectors. This is testing whether the vectorizer pass has the appropriate support, as well as whether the target does. VLS_TYPE says whether the statement is a load or store and VECTYPE is the type of the vector being loaded or stored. MEMORY_ACCESS_TYPE says how the load or store is going to be implemented and GROUP_SIZE is the number of load or store statements in the containing group. If the access is a gather load or scatter store, GS_INFO describes its arguments. If the load or store is conditional, SCALAR_MASK is the condition under which it occurs. Clear LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P if a loop using partial vectors is not supported, otherwise record the required rgroup control types. */ static void check_load_store_for_partial_vectors (loop_vec_info loop_vinfo, tree vectype, vec_load_store_type vls_type, int group_size, vect_memory_access_type memory_access_type, gather_scatter_info *gs_info, tree scalar_mask) { /* Invariant loads need no special support. */ if (memory_access_type == VMAT_INVARIANT) return; vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo); machine_mode vecmode = TYPE_MODE (vectype); bool is_load = (vls_type == VLS_LOAD); if (memory_access_type == VMAT_LOAD_STORE_LANES) { if (is_load ? !vect_load_lanes_supported (vectype, group_size, true) : !vect_store_lanes_supported (vectype, group_size, true)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "can't operate on partial vectors because" " the target doesn't have an appropriate" " load/store-lanes instruction.\n"); LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false; return; } unsigned int ncopies = vect_get_num_copies (loop_vinfo, vectype); vect_record_loop_mask (loop_vinfo, masks, ncopies, vectype, scalar_mask); return; } if (memory_access_type == VMAT_GATHER_SCATTER) { internal_fn ifn = (is_load ? IFN_MASK_GATHER_LOAD : IFN_MASK_SCATTER_STORE); if (!internal_gather_scatter_fn_supported_p (ifn, vectype, gs_info->memory_type, gs_info->offset_vectype, gs_info->scale)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "can't operate on partial vectors because" " the target doesn't have an appropriate" " gather load or scatter store instruction.\n"); LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false; return; } unsigned int ncopies = vect_get_num_copies (loop_vinfo, vectype); vect_record_loop_mask (loop_vinfo, masks, ncopies, vectype, scalar_mask); return; } if (memory_access_type != VMAT_CONTIGUOUS && memory_access_type != VMAT_CONTIGUOUS_PERMUTE) { /* Element X of the data must come from iteration i * VF + X of the scalar loop. We need more work to support other mappings. */ if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "can't operate on partial vectors because an" " access isn't contiguous.\n"); LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false; return; } if (!VECTOR_MODE_P (vecmode)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "can't operate on partial vectors when emulating" " vector operations.\n"); LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false; return; } /* We might load more scalars than we need for permuting SLP loads. We checked in get_group_load_store_type that the extra elements don't leak into a new vector. */ auto get_valid_nvectors = [] (poly_uint64 size, poly_uint64 nunits) { unsigned int nvectors; if (can_div_away_from_zero_p (size, nunits, &nvectors)) return nvectors; gcc_unreachable (); }; poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype); poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo); machine_mode mask_mode; bool using_partial_vectors_p = false; if (targetm.vectorize.get_mask_mode (vecmode).exists (&mask_mode) && can_vec_mask_load_store_p (vecmode, mask_mode, is_load)) { unsigned int nvectors = get_valid_nvectors (group_size * vf, nunits); vect_record_loop_mask (loop_vinfo, masks, nvectors, vectype, scalar_mask); using_partial_vectors_p = true; } machine_mode vmode; if (get_len_load_store_mode (vecmode, is_load).exists (&vmode)) { unsigned int nvectors = get_valid_nvectors (group_size * vf, nunits); vec_loop_lens *lens = &LOOP_VINFO_LENS (loop_vinfo); unsigned factor = (vecmode == vmode) ? 1 : GET_MODE_UNIT_SIZE (vecmode); vect_record_loop_len (loop_vinfo, lens, nvectors, vectype, factor); using_partial_vectors_p = true; } if (!using_partial_vectors_p) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "can't operate on partial vectors because the" " target doesn't have the appropriate partial" " vectorization load or store.\n"); LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false; } } /* Return the mask input to a masked load or store. VEC_MASK is the vectorized form of the scalar mask condition and LOOP_MASK, if nonnull, is the mask that needs to be applied to all loads and stores in a vectorized loop. Return VEC_MASK if LOOP_MASK is null, otherwise return VEC_MASK & LOOP_MASK. MASK_TYPE is the type of both masks. If new statements are needed, insert them before GSI. */ static tree prepare_load_store_mask (tree mask_type, tree loop_mask, tree vec_mask, gimple_stmt_iterator *gsi) { gcc_assert (useless_type_conversion_p (mask_type, TREE_TYPE (vec_mask))); if (!loop_mask) return vec_mask; gcc_assert (TREE_TYPE (loop_mask) == mask_type); tree and_res = make_temp_ssa_name (mask_type, NULL, "vec_mask_and"); gimple *and_stmt = gimple_build_assign (and_res, BIT_AND_EXPR, vec_mask, loop_mask); gsi_insert_before (gsi, and_stmt, GSI_SAME_STMT); return and_res; } /* Determine whether we can use a gather load or scatter store to vectorize strided load or store STMT_INFO by truncating the current offset to a smaller width. We need to be able to construct an offset vector: { 0, X, X*2, X*3, ... } without loss of precision, where X is STMT_INFO's DR_STEP. Return true if this is possible, describing the gather load or scatter store in GS_INFO. MASKED_P is true if the load or store is conditional. */ static bool vect_truncate_gather_scatter_offset (stmt_vec_info stmt_info, loop_vec_info loop_vinfo, bool masked_p, gather_scatter_info *gs_info) { dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info); data_reference *dr = dr_info->dr; tree step = DR_STEP (dr); if (TREE_CODE (step) != INTEGER_CST) { /* ??? Perhaps we could use range information here? */ if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "cannot truncate variable step.\n"); return false; } /* Get the number of bits in an element. */ tree vectype = STMT_VINFO_VECTYPE (stmt_info); scalar_mode element_mode = SCALAR_TYPE_MODE (TREE_TYPE (vectype)); unsigned int element_bits = GET_MODE_BITSIZE (element_mode); /* Set COUNT to the upper limit on the number of elements - 1. Start with the maximum vectorization factor. */ unsigned HOST_WIDE_INT count = vect_max_vf (loop_vinfo) - 1; /* Try lowering COUNT to the number of scalar latch iterations. */ class loop *loop = LOOP_VINFO_LOOP (loop_vinfo); widest_int max_iters; if (max_loop_iterations (loop, &max_iters) && max_iters < count) count = max_iters.to_shwi (); /* Try scales of 1 and the element size. */ int scales[] = { 1, vect_get_scalar_dr_size (dr_info) }; wi::overflow_type overflow = wi::OVF_NONE; for (int i = 0; i < 2; ++i) { int scale = scales[i]; widest_int factor; if (!wi::multiple_of_p (wi::to_widest (step), scale, SIGNED, &factor)) continue; /* Determine the minimum precision of (COUNT - 1) * STEP / SCALE. */ widest_int range = wi::mul (count, factor, SIGNED, &overflow); if (overflow) continue; signop sign = range >= 0 ? UNSIGNED : SIGNED; unsigned int min_offset_bits = wi::min_precision (range, sign); /* Find the narrowest viable offset type. */ unsigned int offset_bits = 1U << ceil_log2 (min_offset_bits); tree offset_type = build_nonstandard_integer_type (offset_bits, sign == UNSIGNED); /* See whether the target supports the operation with an offset no narrower than OFFSET_TYPE. */ tree memory_type = TREE_TYPE (DR_REF (dr)); if (!vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr), masked_p, vectype, memory_type, offset_type, scale, &gs_info->ifn, &gs_info->offset_vectype) || gs_info->ifn == IFN_LAST) continue; gs_info->decl = NULL_TREE; /* Logically the sum of DR_BASE_ADDRESS, DR_INIT and DR_OFFSET, but we don't need to store that here. */ gs_info->base = NULL_TREE; gs_info->element_type = TREE_TYPE (vectype); gs_info->offset = fold_convert (offset_type, step); gs_info->offset_dt = vect_constant_def; gs_info->scale = scale; gs_info->memory_type = memory_type; return true; } if (overflow && dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "truncating gather/scatter offset to %d bits" " might change its value.\n", element_bits); return false; } /* Return true if we can use gather/scatter internal functions to vectorize STMT_INFO, which is a grouped or strided load or store. MASKED_P is true if load or store is conditional. When returning true, fill in GS_INFO with the information required to perform the operation. */ static bool vect_use_strided_gather_scatters_p (stmt_vec_info stmt_info, loop_vec_info loop_vinfo, bool masked_p, gather_scatter_info *gs_info) { if (!vect_check_gather_scatter (stmt_info, loop_vinfo, gs_info) || gs_info->ifn == IFN_LAST) return vect_truncate_gather_scatter_offset (stmt_info, loop_vinfo, masked_p, gs_info); tree old_offset_type = TREE_TYPE (gs_info->offset); tree new_offset_type = TREE_TYPE (gs_info->offset_vectype); gcc_assert (TYPE_PRECISION (new_offset_type) >= TYPE_PRECISION (old_offset_type)); gs_info->offset = fold_convert (new_offset_type, gs_info->offset); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "using gather/scatter for strided/grouped access," " scale = %d\n", gs_info->scale); return true; } /* STMT_INFO is a non-strided load or store, meaning that it accesses elements with a known constant step. Return -1 if that step is negative, 0 if it is zero, and 1 if it is greater than zero. */ static int compare_step_with_zero (vec_info *vinfo, stmt_vec_info stmt_info) { dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info); return tree_int_cst_compare (vect_dr_behavior (vinfo, dr_info)->step, size_zero_node); } /* If the target supports a permute mask that reverses the elements in a vector of type VECTYPE, return that mask, otherwise return null. */ static tree perm_mask_for_reverse (tree vectype) { poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype); /* The encoding has a single stepped pattern. */ vec_perm_builder sel (nunits, 1, 3); for (int i = 0; i < 3; ++i) sel.quick_push (nunits - 1 - i); vec_perm_indices indices (sel, 1, nunits); if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) return NULL_TREE; return vect_gen_perm_mask_checked (vectype, indices); } /* A subroutine of get_load_store_type, with a subset of the same arguments. Handle the case where STMT_INFO is a load or store that accesses consecutive elements with a negative step. */ static vect_memory_access_type get_negative_load_store_type (vec_info *vinfo, stmt_vec_info stmt_info, tree vectype, vec_load_store_type vls_type, unsigned int ncopies) { dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info); dr_alignment_support alignment_support_scheme; if (ncopies > 1) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "multiple types with negative step.\n"); return VMAT_ELEMENTWISE; } alignment_support_scheme = vect_supportable_dr_alignment (vinfo, dr_info, false); if (alignment_support_scheme != dr_aligned && alignment_support_scheme != dr_unaligned_supported) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "negative step but alignment required.\n"); return VMAT_ELEMENTWISE; } if (vls_type == VLS_STORE_INVARIANT) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "negative step with invariant source;" " no permute needed.\n"); return VMAT_CONTIGUOUS_DOWN; } if (!perm_mask_for_reverse (vectype)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "negative step and reversing not supported.\n"); return VMAT_ELEMENTWISE; } return VMAT_CONTIGUOUS_REVERSE; } /* STMT_INFO is either a masked or unconditional store. Return the value being stored. */ tree vect_get_store_rhs (stmt_vec_info stmt_info) { if (gassign *assign = dyn_cast (stmt_info->stmt)) { gcc_assert (gimple_assign_single_p (assign)); return gimple_assign_rhs1 (assign); } if (gcall *call = dyn_cast (stmt_info->stmt)) { internal_fn ifn = gimple_call_internal_fn (call); int index = internal_fn_stored_value_index (ifn); gcc_assert (index >= 0); return gimple_call_arg (call, index); } gcc_unreachable (); } /* Function VECTOR_VECTOR_COMPOSITION_TYPE This function returns a vector type which can be composed with NETLS pieces, whose type is recorded in PTYPE. VTYPE should be a vector type, and has the same vector size as the return vector. It checks target whether supports pieces-size vector mode for construction firstly, if target fails to, check pieces-size scalar mode for construction further. It returns NULL_TREE if fails to find the available composition. For example, for (vtype=V16QI, nelts=4), we can probably get: - V16QI with PTYPE V4QI. - V4SI with PTYPE SI. - NULL_TREE. */ static tree vector_vector_composition_type (tree vtype, poly_uint64 nelts, tree *ptype) { gcc_assert (VECTOR_TYPE_P (vtype)); gcc_assert (known_gt (nelts, 0U)); machine_mode vmode = TYPE_MODE (vtype); if (!VECTOR_MODE_P (vmode)) return NULL_TREE; poly_uint64 vbsize = GET_MODE_BITSIZE (vmode); unsigned int pbsize; if (constant_multiple_p (vbsize, nelts, &pbsize)) { /* First check if vec_init optab supports construction from vector pieces directly. */ scalar_mode elmode = SCALAR_TYPE_MODE (TREE_TYPE (vtype)); poly_uint64 inelts = pbsize / GET_MODE_BITSIZE (elmode); machine_mode rmode; if (related_vector_mode (vmode, elmode, inelts).exists (&rmode) && (convert_optab_handler (vec_init_optab, vmode, rmode) != CODE_FOR_nothing)) { *ptype = build_vector_type (TREE_TYPE (vtype), inelts); return vtype; } /* Otherwise check if exists an integer type of the same piece size and if vec_init optab supports construction from it directly. */ if (int_mode_for_size (pbsize, 0).exists (&elmode) && related_vector_mode (vmode, elmode, nelts).exists (&rmode) && (convert_optab_handler (vec_init_optab, rmode, elmode) != CODE_FOR_nothing)) { *ptype = build_nonstandard_integer_type (pbsize, 1); return build_vector_type (*ptype, nelts); } } return NULL_TREE; } /* A subroutine of get_load_store_type, with a subset of the same arguments. Handle the case where STMT_INFO is part of a grouped load or store. For stores, the statements in the group are all consecutive and there is no gap at the end. For loads, the statements in the group might not be consecutive; there can be gaps between statements as well as at the end. */ static bool get_group_load_store_type (vec_info *vinfo, stmt_vec_info stmt_info, tree vectype, slp_tree slp_node, bool masked_p, vec_load_store_type vls_type, vect_memory_access_type *memory_access_type, dr_alignment_support *alignment_support_scheme, gather_scatter_info *gs_info) { loop_vec_info loop_vinfo = dyn_cast (vinfo); class loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL; stmt_vec_info first_stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info); dr_vec_info *first_dr_info = STMT_VINFO_DR_INFO (first_stmt_info); unsigned int group_size = DR_GROUP_SIZE (first_stmt_info); bool single_element_p = (stmt_info == first_stmt_info && !DR_GROUP_NEXT_ELEMENT (stmt_info)); unsigned HOST_WIDE_INT gap = DR_GROUP_GAP (first_stmt_info); poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype); /* True if the vectorized statements would access beyond the last statement in the group. */ bool overrun_p = false; /* True if we can cope with such overrun by peeling for gaps, so that there is at least one final scalar iteration after the vector loop. */ bool can_overrun_p = (!masked_p && vls_type == VLS_LOAD && loop_vinfo && !loop->inner); /* There can only be a gap at the end of the group if the stride is known at compile time. */ gcc_assert (!STMT_VINFO_STRIDED_P (first_stmt_info) || gap == 0); /* Stores can't yet have gaps. */ gcc_assert (slp_node || vls_type == VLS_LOAD || gap == 0); if (slp_node) { /* For SLP vectorization we directly vectorize a subchain without permutation. */ if (! SLP_TREE_LOAD_PERMUTATION (slp_node).exists ()) first_dr_info = STMT_VINFO_DR_INFO (SLP_TREE_SCALAR_STMTS (slp_node)[0]); if (STMT_VINFO_STRIDED_P (first_stmt_info)) { /* Try to use consecutive accesses of DR_GROUP_SIZE elements, separated by the stride, until we have a complete vector. Fall back to scalar accesses if that isn't possible. */ if (multiple_p (nunits, group_size)) *memory_access_type = VMAT_STRIDED_SLP; else *memory_access_type = VMAT_ELEMENTWISE; } else { overrun_p = loop_vinfo && gap != 0; if (overrun_p && vls_type != VLS_LOAD) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Grouped store with gaps requires" " non-consecutive accesses\n"); return false; } /* An overrun is fine if the trailing elements are smaller than the alignment boundary B. Every vector access will be a multiple of B and so we are guaranteed to access a non-gap element in the same B-sized block. */ if (overrun_p && gap < (vect_known_alignment_in_bytes (first_dr_info) / vect_get_scalar_dr_size (first_dr_info))) overrun_p = false; /* If the gap splits the vector in half and the target can do half-vector operations avoid the epilogue peeling by simply loading half of the vector only. Usually the construction with an upper zero half will be elided. */ dr_alignment_support alignment_support_scheme; tree half_vtype; if (overrun_p && !masked_p && (((alignment_support_scheme = vect_supportable_dr_alignment (vinfo, first_dr_info, false))) == dr_aligned || alignment_support_scheme == dr_unaligned_supported) && known_eq (nunits, (group_size - gap) * 2) && known_eq (nunits, group_size) && (vector_vector_composition_type (vectype, 2, &half_vtype) != NULL_TREE)) overrun_p = false; if (overrun_p && !can_overrun_p) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Peeling for outer loop is not supported\n"); return false; } int cmp = compare_step_with_zero (vinfo, stmt_info); if (cmp < 0) { if (single_element_p) /* ??? The VMAT_CONTIGUOUS_REVERSE code generation is only correct for single element "interleaving" SLP. */ *memory_access_type = get_negative_load_store_type (vinfo, stmt_info, vectype, vls_type, 1); else { /* Try to use consecutive accesses of DR_GROUP_SIZE elements, separated by the stride, until we have a complete vector. Fall back to scalar accesses if that isn't possible. */ if (multiple_p (nunits, group_size)) *memory_access_type = VMAT_STRIDED_SLP; else *memory_access_type = VMAT_ELEMENTWISE; } } else { gcc_assert (!loop_vinfo || cmp > 0); *memory_access_type = VMAT_CONTIGUOUS; } } } else { /* We can always handle this case using elementwise accesses, but see if something more efficient is available. */ *memory_access_type = VMAT_ELEMENTWISE; /* If there is a gap at the end of the group then these optimizations would access excess elements in the last iteration. */ bool would_overrun_p = (gap != 0); /* An overrun is fine if the trailing elements are smaller than the alignment boundary B. Every vector access will be a multiple of B and so we are guaranteed to access a non-gap element in the same B-sized block. */ if (would_overrun_p && !masked_p && gap < (vect_known_alignment_in_bytes (first_dr_info) / vect_get_scalar_dr_size (first_dr_info))) would_overrun_p = false; if (!STMT_VINFO_STRIDED_P (first_stmt_info) && (can_overrun_p || !would_overrun_p) && compare_step_with_zero (vinfo, stmt_info) > 0) { /* First cope with the degenerate case of a single-element vector. */ if (known_eq (TYPE_VECTOR_SUBPARTS (vectype), 1U)) ; /* Otherwise try using LOAD/STORE_LANES. */ else if (vls_type == VLS_LOAD ? vect_load_lanes_supported (vectype, group_size, masked_p) : vect_store_lanes_supported (vectype, group_size, masked_p)) { *memory_access_type = VMAT_LOAD_STORE_LANES; overrun_p = would_overrun_p; } /* If that fails, try using permuting loads. */ else if (vls_type == VLS_LOAD ? vect_grouped_load_supported (vectype, single_element_p, group_size) : vect_grouped_store_supported (vectype, group_size)) { *memory_access_type = VMAT_CONTIGUOUS_PERMUTE; overrun_p = would_overrun_p; } } /* As a last resort, trying using a gather load or scatter store. ??? Although the code can handle all group sizes correctly, it probably isn't a win to use separate strided accesses based on nearby locations. Or, even if it's a win over scalar code, it might not be a win over vectorizing at a lower VF, if that allows us to use contiguous accesses. */ if (*memory_access_type == VMAT_ELEMENTWISE && single_element_p && loop_vinfo && vect_use_strided_gather_scatters_p (stmt_info, loop_vinfo, masked_p, gs_info)) *memory_access_type = VMAT_GATHER_SCATTER; } if (*memory_access_type == VMAT_GATHER_SCATTER || *memory_access_type == VMAT_ELEMENTWISE) *alignment_support_scheme = dr_unaligned_supported; else *alignment_support_scheme = vect_supportable_dr_alignment (vinfo, first_dr_info, false); if (vls_type != VLS_LOAD && first_stmt_info == stmt_info) { /* STMT is the leader of the group. Check the operands of all the stmts of the group. */ stmt_vec_info next_stmt_info = DR_GROUP_NEXT_ELEMENT (stmt_info); while (next_stmt_info) { tree op = vect_get_store_rhs (next_stmt_info); enum vect_def_type dt; if (!vect_is_simple_use (op, vinfo, &dt)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "use not simple.\n"); return false; } next_stmt_info = DR_GROUP_NEXT_ELEMENT (next_stmt_info); } } if (overrun_p) { gcc_assert (can_overrun_p); if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Data access with gaps requires scalar " "epilogue loop\n"); LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true; } return true; } /* Analyze load or store statement STMT_INFO of type VLS_TYPE. Return true if there is a memory access type that the vectorized form can use, storing it in *MEMORY_ACCESS_TYPE if so. If we decide to use gathers or scatters, fill in GS_INFO accordingly. In addition *ALIGNMENT_SUPPORT_SCHEME is filled out and false is returned if the target does not support the alignment scheme. SLP says whether we're performing SLP rather than loop vectorization. MASKED_P is true if the statement is conditional on a vectorized mask. VECTYPE is the vector type that the vectorized statements will use. NCOPIES is the number of vector statements that will be needed. */ static bool get_load_store_type (vec_info *vinfo, stmt_vec_info stmt_info, tree vectype, slp_tree slp_node, bool masked_p, vec_load_store_type vls_type, unsigned int ncopies, vect_memory_access_type *memory_access_type, dr_alignment_support *alignment_support_scheme, gather_scatter_info *gs_info) { loop_vec_info loop_vinfo = dyn_cast (vinfo); poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype); if (STMT_VINFO_GATHER_SCATTER_P (stmt_info)) { *memory_access_type = VMAT_GATHER_SCATTER; if (!vect_check_gather_scatter (stmt_info, loop_vinfo, gs_info)) gcc_unreachable (); else if (!vect_is_simple_use (gs_info->offset, vinfo, &gs_info->offset_dt, &gs_info->offset_vectype)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "%s index use not simple.\n", vls_type == VLS_LOAD ? "gather" : "scatter"); return false; } else if (gs_info->ifn == IFN_LAST && !gs_info->decl) { if (vls_type != VLS_LOAD) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "unsupported emulated scatter.\n"); return false; } else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant () || !TYPE_VECTOR_SUBPARTS (gs_info->offset_vectype).is_constant () || !constant_multiple_p (TYPE_VECTOR_SUBPARTS (gs_info->offset_vectype), TYPE_VECTOR_SUBPARTS (vectype))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "unsupported vector types for emulated " "gather.\n"); return false; } } /* Gather-scatter accesses perform only component accesses, alignment is irrelevant for them. */ *alignment_support_scheme = dr_unaligned_supported; } else if (STMT_VINFO_GROUPED_ACCESS (stmt_info)) { if (!get_group_load_store_type (vinfo, stmt_info, vectype, slp_node, masked_p, vls_type, memory_access_type, alignment_support_scheme, gs_info)) return false; } else if (STMT_VINFO_STRIDED_P (stmt_info)) { gcc_assert (!slp_node); if (loop_vinfo && vect_use_strided_gather_scatters_p (stmt_info, loop_vinfo, masked_p, gs_info)) *memory_access_type = VMAT_GATHER_SCATTER; else *memory_access_type = VMAT_ELEMENTWISE; /* Alignment is irrelevant here. */ *alignment_support_scheme = dr_unaligned_supported; } else { int cmp = compare_step_with_zero (vinfo, stmt_info); if (cmp == 0) { gcc_assert (vls_type == VLS_LOAD); *memory_access_type = VMAT_INVARIANT; /* Invariant accesses perform only component accesses, alignment is irrelevant for them. */ *alignment_support_scheme = dr_unaligned_supported; } else { if (cmp < 0) *memory_access_type = get_negative_load_store_type (vinfo, stmt_info, vectype, vls_type, ncopies); else *memory_access_type = VMAT_CONTIGUOUS; *alignment_support_scheme = vect_supportable_dr_alignment (vinfo, STMT_VINFO_DR_INFO (stmt_info), false); } } if ((*memory_access_type == VMAT_ELEMENTWISE || *memory_access_type == VMAT_STRIDED_SLP) && !nunits.is_constant ()) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Not using elementwise accesses due to variable " "vectorization factor.\n"); return false; } if (*alignment_support_scheme == dr_unaligned_unsupported) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "unsupported unaligned access\n"); return false; } /* FIXME: At the moment the cost model seems to underestimate the cost of using elementwise accesses. This check preserves the traditional behavior until that can be fixed. */ stmt_vec_info first_stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info); if (!first_stmt_info) first_stmt_info = stmt_info; if (*memory_access_type == VMAT_ELEMENTWISE && !STMT_VINFO_STRIDED_P (first_stmt_info) && !(stmt_info == DR_GROUP_FIRST_ELEMENT (stmt_info) && !DR_GROUP_NEXT_ELEMENT (stmt_info) && !pow2p_hwi (DR_GROUP_SIZE (stmt_info)))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not falling back to elementwise accesses\n"); return false; } return true; } /* Return true if boolean argument at MASK_INDEX is suitable for vectorizing conditional operation STMT_INFO. When returning true, store the mask in *MASK, the type of its definition in *MASK_DT_OUT, the type of the vectorized mask in *MASK_VECTYPE_OUT and the SLP node corresponding to the mask in *MASK_NODE if MASK_NODE is not NULL. */ static bool vect_check_scalar_mask (vec_info *vinfo, stmt_vec_info stmt_info, slp_tree slp_node, unsigned mask_index, tree *mask, slp_tree *mask_node, vect_def_type *mask_dt_out, tree *mask_vectype_out) { enum vect_def_type mask_dt; tree mask_vectype; slp_tree mask_node_1; if (!vect_is_simple_use (vinfo, stmt_info, slp_node, mask_index, mask, &mask_node_1, &mask_dt, &mask_vectype)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "mask use not simple.\n"); return false; } if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (*mask))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "mask argument is not a boolean.\n"); return false; } /* If the caller is not prepared for adjusting an external/constant SLP mask vector type fail. */ if (slp_node && !mask_node && SLP_TREE_DEF_TYPE (mask_node_1) != vect_internal_def) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "SLP mask argument is not vectorized.\n"); return false; } tree vectype = STMT_VINFO_VECTYPE (stmt_info); if (!mask_vectype) mask_vectype = get_mask_type_for_scalar_type (vinfo, TREE_TYPE (vectype)); if (!mask_vectype || !VECTOR_BOOLEAN_TYPE_P (mask_vectype)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "could not find an appropriate vector mask type.\n"); return false; } if (maybe_ne (TYPE_VECTOR_SUBPARTS (mask_vectype), TYPE_VECTOR_SUBPARTS (vectype))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "vector mask type %T" " does not match vector data type %T.\n", mask_vectype, vectype); return false; } *mask_dt_out = mask_dt; *mask_vectype_out = mask_vectype; if (mask_node) *mask_node = mask_node_1; return true; } /* Return true if stored value RHS is suitable for vectorizing store statement STMT_INFO. When returning true, store the type of the definition in *RHS_DT_OUT, the type of the vectorized store value in *RHS_VECTYPE_OUT and the type of the store in *VLS_TYPE_OUT. */ static bool vect_check_store_rhs (vec_info *vinfo, stmt_vec_info stmt_info, slp_tree slp_node, tree rhs, vect_def_type *rhs_dt_out, tree *rhs_vectype_out, vec_load_store_type *vls_type_out) { /* In the case this is a store from a constant make sure native_encode_expr can handle it. */ if (CONSTANT_CLASS_P (rhs) && native_encode_expr (rhs, NULL, 64) == 0) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "cannot encode constant as a byte sequence.\n"); return false; } unsigned op_no = 0; if (gcall *call = dyn_cast (stmt_info->stmt)) { if (gimple_call_internal_p (call) && internal_store_fn_p (gimple_call_internal_fn (call))) op_no = internal_fn_stored_value_index (gimple_call_internal_fn (call)); } enum vect_def_type rhs_dt; tree rhs_vectype; slp_tree slp_op; if (!vect_is_simple_use (vinfo, stmt_info, slp_node, op_no, &rhs, &slp_op, &rhs_dt, &rhs_vectype)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "use not simple.\n"); return false; } tree vectype = STMT_VINFO_VECTYPE (stmt_info); if (rhs_vectype && !useless_type_conversion_p (vectype, rhs_vectype)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "incompatible vector types.\n"); return false; } *rhs_dt_out = rhs_dt; *rhs_vectype_out = rhs_vectype; if (rhs_dt == vect_constant_def || rhs_dt == vect_external_def) *vls_type_out = VLS_STORE_INVARIANT; else *vls_type_out = VLS_STORE; return true; } /* Build an all-ones vector mask of type MASKTYPE while vectorizing STMT_INFO. Note that we support masks with floating-point type, in which case the floats are interpreted as a bitmask. */ static tree vect_build_all_ones_mask (vec_info *vinfo, stmt_vec_info stmt_info, tree masktype) { if (TREE_CODE (masktype) == INTEGER_TYPE) return build_int_cst (masktype, -1); else if (TREE_CODE (TREE_TYPE (masktype)) == INTEGER_TYPE) { tree mask = build_int_cst (TREE_TYPE (masktype), -1); mask = build_vector_from_val (masktype, mask); return vect_init_vector (vinfo, stmt_info, mask, masktype, NULL); } else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (masktype))) { REAL_VALUE_TYPE r; long tmp[6]; for (int j = 0; j < 6; ++j) tmp[j] = -1; real_from_target (&r, tmp, TYPE_MODE (TREE_TYPE (masktype))); tree mask = build_real (TREE_TYPE (masktype), r); mask = build_vector_from_val (masktype, mask); return vect_init_vector (vinfo, stmt_info, mask, masktype, NULL); } gcc_unreachable (); } /* Build an all-zero merge value of type VECTYPE while vectorizing STMT_INFO as a gather load. */ static tree vect_build_zero_merge_argument (vec_info *vinfo, stmt_vec_info stmt_info, tree vectype) { tree merge; if (TREE_CODE (TREE_TYPE (vectype)) == INTEGER_TYPE) merge = build_int_cst (TREE_TYPE (vectype), 0); else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (vectype))) { REAL_VALUE_TYPE r; long tmp[6]; for (int j = 0; j < 6; ++j) tmp[j] = 0; real_from_target (&r, tmp, TYPE_MODE (TREE_TYPE (vectype))); merge = build_real (TREE_TYPE (vectype), r); } else gcc_unreachable (); merge = build_vector_from_val (vectype, merge); return vect_init_vector (vinfo, stmt_info, merge, vectype, NULL); } /* Build a gather load call while vectorizing STMT_INFO. Insert new instructions before GSI and add them to VEC_STMT. GS_INFO describes the gather load operation. If the load is conditional, MASK is the unvectorized condition and MASK_DT is its definition type, otherwise MASK is null. */ static void vect_build_gather_load_calls (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, gimple **vec_stmt, gather_scatter_info *gs_info, tree mask) { loop_vec_info loop_vinfo = dyn_cast (vinfo); class loop *loop = LOOP_VINFO_LOOP (loop_vinfo); tree vectype = STMT_VINFO_VECTYPE (stmt_info); poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype); int ncopies = vect_get_num_copies (loop_vinfo, vectype); edge pe = loop_preheader_edge (loop); enum { NARROW, NONE, WIDEN } modifier; poly_uint64 gather_off_nunits = TYPE_VECTOR_SUBPARTS (gs_info->offset_vectype); tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gs_info->decl)); tree rettype = TREE_TYPE (TREE_TYPE (gs_info->decl)); tree srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist); tree ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist); tree idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist); tree masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist); tree scaletype = TREE_VALUE (arglist); tree real_masktype = masktype; gcc_checking_assert (types_compatible_p (srctype, rettype) && (!mask || TREE_CODE (masktype) == INTEGER_TYPE || types_compatible_p (srctype, masktype))); if (mask && TREE_CODE (masktype) == INTEGER_TYPE) masktype = truth_type_for (srctype); tree mask_halftype = masktype; tree perm_mask = NULL_TREE; tree mask_perm_mask = NULL_TREE; if (known_eq (nunits, gather_off_nunits)) modifier = NONE; else if (known_eq (nunits * 2, gather_off_nunits)) { modifier = WIDEN; /* Currently widening gathers and scatters are only supported for fixed-length vectors. */ int count = gather_off_nunits.to_constant (); vec_perm_builder sel (count, count, 1); for (int i = 0; i < count; ++i) sel.quick_push (i | (count / 2)); vec_perm_indices indices (sel, 1, count); perm_mask = vect_gen_perm_mask_checked (gs_info->offset_vectype, indices); } else if (known_eq (nunits, gather_off_nunits * 2)) { modifier = NARROW; /* Currently narrowing gathers and scatters are only supported for fixed-length vectors. */ int count = nunits.to_constant (); vec_perm_builder sel (count, count, 1); sel.quick_grow (count); for (int i = 0; i < count; ++i) sel[i] = i < count / 2 ? i : i + count / 2; vec_perm_indices indices (sel, 2, count); perm_mask = vect_gen_perm_mask_checked (vectype, indices); ncopies *= 2; if (mask && masktype == real_masktype) { for (int i = 0; i < count; ++i) sel[i] = i | (count / 2); indices.new_vector (sel, 2, count); mask_perm_mask = vect_gen_perm_mask_checked (masktype, indices); } else if (mask) mask_halftype = truth_type_for (gs_info->offset_vectype); } else gcc_unreachable (); tree scalar_dest = gimple_get_lhs (stmt_info->stmt); tree vec_dest = vect_create_destination_var (scalar_dest, vectype); tree ptr = fold_convert (ptrtype, gs_info->base); if (!is_gimple_min_invariant (ptr)) { gimple_seq seq; ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE); basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq); gcc_assert (!new_bb); } tree scale = build_int_cst (scaletype, gs_info->scale); tree vec_oprnd0 = NULL_TREE; tree vec_mask = NULL_TREE; tree src_op = NULL_TREE; tree mask_op = NULL_TREE; tree prev_res = NULL_TREE; if (!mask) { src_op = vect_build_zero_merge_argument (vinfo, stmt_info, rettype); mask_op = vect_build_all_ones_mask (vinfo, stmt_info, masktype); } auto_vec vec_oprnds0; auto_vec vec_masks; vect_get_vec_defs_for_operand (vinfo, stmt_info, modifier == WIDEN ? ncopies / 2 : ncopies, gs_info->offset, &vec_oprnds0); if (mask) vect_get_vec_defs_for_operand (vinfo, stmt_info, modifier == NARROW ? ncopies / 2 : ncopies, mask, &vec_masks); for (int j = 0; j < ncopies; ++j) { tree op, var; if (modifier == WIDEN && (j & 1)) op = permute_vec_elements (vinfo, vec_oprnd0, vec_oprnd0, perm_mask, stmt_info, gsi); else op = vec_oprnd0 = vec_oprnds0[modifier == WIDEN ? j / 2 : j]; if (!useless_type_conversion_p (idxtype, TREE_TYPE (op))) { gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op)), TYPE_VECTOR_SUBPARTS (idxtype))); var = vect_get_new_ssa_name (idxtype, vect_simple_var); op = build1 (VIEW_CONVERT_EXPR, idxtype, op); gassign *new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, op); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); op = var; } if (mask) { if (mask_perm_mask && (j & 1)) mask_op = permute_vec_elements (vinfo, mask_op, mask_op, mask_perm_mask, stmt_info, gsi); else { if (modifier == NARROW) { if ((j & 1) == 0) vec_mask = vec_masks[j / 2]; } else vec_mask = vec_masks[j]; mask_op = vec_mask; if (!useless_type_conversion_p (masktype, TREE_TYPE (vec_mask))) { poly_uint64 sub1 = TYPE_VECTOR_SUBPARTS (TREE_TYPE (mask_op)); poly_uint64 sub2 = TYPE_VECTOR_SUBPARTS (masktype); gcc_assert (known_eq (sub1, sub2)); var = vect_get_new_ssa_name (masktype, vect_simple_var); mask_op = build1 (VIEW_CONVERT_EXPR, masktype, mask_op); gassign *new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, mask_op); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); mask_op = var; } } if (modifier == NARROW && masktype != real_masktype) { var = vect_get_new_ssa_name (mask_halftype, vect_simple_var); gassign *new_stmt = gimple_build_assign (var, (j & 1) ? VEC_UNPACK_HI_EXPR : VEC_UNPACK_LO_EXPR, mask_op); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); mask_op = var; } src_op = mask_op; } tree mask_arg = mask_op; if (masktype != real_masktype) { tree utype, optype = TREE_TYPE (mask_op); if (TYPE_MODE (real_masktype) == TYPE_MODE (optype)) utype = real_masktype; else utype = lang_hooks.types.type_for_mode (TYPE_MODE (optype), 1); var = vect_get_new_ssa_name (utype, vect_scalar_var); mask_arg = build1 (VIEW_CONVERT_EXPR, utype, mask_op); gassign *new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, mask_arg); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); mask_arg = var; if (!useless_type_conversion_p (real_masktype, utype)) { gcc_assert (TYPE_PRECISION (utype) <= TYPE_PRECISION (real_masktype)); var = vect_get_new_ssa_name (real_masktype, vect_scalar_var); new_stmt = gimple_build_assign (var, NOP_EXPR, mask_arg); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); mask_arg = var; } src_op = build_zero_cst (srctype); } gimple *new_stmt = gimple_build_call (gs_info->decl, 5, src_op, ptr, op, mask_arg, scale); if (!useless_type_conversion_p (vectype, rettype)) { gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (vectype), TYPE_VECTOR_SUBPARTS (rettype))); op = vect_get_new_ssa_name (rettype, vect_simple_var); gimple_call_set_lhs (new_stmt, op); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); var = make_ssa_name (vec_dest); op = build1 (VIEW_CONVERT_EXPR, vectype, op); new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, op); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } else { var = make_ssa_name (vec_dest, new_stmt); gimple_call_set_lhs (new_stmt, var); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } if (modifier == NARROW) { if ((j & 1) == 0) { prev_res = var; continue; } var = permute_vec_elements (vinfo, prev_res, var, perm_mask, stmt_info, gsi); new_stmt = SSA_NAME_DEF_STMT (var); } STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0]; } /* Prepare the base and offset in GS_INFO for vectorization. Set *DATAREF_PTR to the loop-invariant base address and *VEC_OFFSET to the vectorized offset argument for the first copy of STMT_INFO. STMT_INFO is the statement described by GS_INFO and LOOP is the containing loop. */ static void vect_get_gather_scatter_ops (loop_vec_info loop_vinfo, class loop *loop, stmt_vec_info stmt_info, gather_scatter_info *gs_info, tree *dataref_ptr, vec *vec_offset) { gimple_seq stmts = NULL; *dataref_ptr = force_gimple_operand (gs_info->base, &stmts, true, NULL_TREE); if (stmts != NULL) { basic_block new_bb; edge pe = loop_preheader_edge (loop); new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts); gcc_assert (!new_bb); } unsigned ncopies = vect_get_num_copies (loop_vinfo, gs_info->offset_vectype); vect_get_vec_defs_for_operand (loop_vinfo, stmt_info, ncopies, gs_info->offset, vec_offset, gs_info->offset_vectype); } /* Prepare to implement a grouped or strided load or store using the gather load or scatter store operation described by GS_INFO. STMT_INFO is the load or store statement. Set *DATAREF_BUMP to the amount that should be added to the base address after each copy of the vectorized statement. Set *VEC_OFFSET to an invariant offset vector in which element I has the value I * DR_STEP / SCALE. */ static void vect_get_strided_load_store_ops (stmt_vec_info stmt_info, loop_vec_info loop_vinfo, gather_scatter_info *gs_info, tree *dataref_bump, tree *vec_offset) { struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info); tree vectype = STMT_VINFO_VECTYPE (stmt_info); tree bump = size_binop (MULT_EXPR, fold_convert (sizetype, unshare_expr (DR_STEP (dr))), size_int (TYPE_VECTOR_SUBPARTS (vectype))); *dataref_bump = cse_and_gimplify_to_preheader (loop_vinfo, bump); /* The offset given in GS_INFO can have pointer type, so use the element type of the vector instead. */ tree offset_type = TREE_TYPE (gs_info->offset_vectype); /* Calculate X = DR_STEP / SCALE and convert it to the appropriate type. */ tree step = size_binop (EXACT_DIV_EXPR, unshare_expr (DR_STEP (dr)), ssize_int (gs_info->scale)); step = fold_convert (offset_type, step); /* Create {0, X, X*2, X*3, ...}. */ tree offset = fold_build2 (VEC_SERIES_EXPR, gs_info->offset_vectype, build_zero_cst (offset_type), step); *vec_offset = cse_and_gimplify_to_preheader (loop_vinfo, offset); } /* Return the amount that should be added to a vector pointer to move to the next or previous copy of AGGR_TYPE. DR_INFO is the data reference being vectorized and MEMORY_ACCESS_TYPE describes the type of vectorization. */ static tree vect_get_data_ptr_increment (vec_info *vinfo, dr_vec_info *dr_info, tree aggr_type, vect_memory_access_type memory_access_type) { if (memory_access_type == VMAT_INVARIANT) return size_zero_node; tree iv_step = TYPE_SIZE_UNIT (aggr_type); tree step = vect_dr_behavior (vinfo, dr_info)->step; if (tree_int_cst_sgn (step) == -1) iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step); return iv_step; } /* Check and perform vectorization of BUILT_IN_BSWAP{16,32,64,128}. */ static bool vectorizable_bswap (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, gimple **vec_stmt, slp_tree slp_node, slp_tree *slp_op, tree vectype_in, stmt_vector_for_cost *cost_vec) { tree op, vectype; gcall *stmt = as_a (stmt_info->stmt); loop_vec_info loop_vinfo = dyn_cast (vinfo); unsigned ncopies; op = gimple_call_arg (stmt, 0); vectype = STMT_VINFO_VECTYPE (stmt_info); poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype); /* Multiple types in SLP are handled by creating the appropriate number of vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in case of SLP. */ if (slp_node) ncopies = 1; else ncopies = vect_get_num_copies (loop_vinfo, vectype); gcc_assert (ncopies >= 1); tree char_vectype = get_same_sized_vectype (char_type_node, vectype_in); if (! char_vectype) return false; poly_uint64 num_bytes = TYPE_VECTOR_SUBPARTS (char_vectype); unsigned word_bytes; if (!constant_multiple_p (num_bytes, nunits, &word_bytes)) return false; /* The encoding uses one stepped pattern for each byte in the word. */ vec_perm_builder elts (num_bytes, word_bytes, 3); for (unsigned i = 0; i < 3; ++i) for (unsigned j = 0; j < word_bytes; ++j) elts.quick_push ((i + 1) * word_bytes - j - 1); vec_perm_indices indices (elts, 1, num_bytes); if (!can_vec_perm_const_p (TYPE_MODE (char_vectype), indices)) return false; if (! vec_stmt) { if (slp_node && !vect_maybe_update_slp_op_vectype (slp_op[0], vectype_in)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "incompatible vector types for invariants\n"); return false; } STMT_VINFO_TYPE (stmt_info) = call_vec_info_type; DUMP_VECT_SCOPE ("vectorizable_bswap"); record_stmt_cost (cost_vec, 1, vector_stmt, stmt_info, 0, vect_prologue); record_stmt_cost (cost_vec, slp_node ? SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node) : ncopies, vec_perm, stmt_info, 0, vect_body); return true; } tree bswap_vconst = vec_perm_indices_to_tree (char_vectype, indices); /* Transform. */ vec vec_oprnds = vNULL; vect_get_vec_defs (vinfo, stmt_info, slp_node, ncopies, op, &vec_oprnds); /* Arguments are ready. create the new vector stmt. */ unsigned i; tree vop; FOR_EACH_VEC_ELT (vec_oprnds, i, vop) { gimple *new_stmt; tree tem = make_ssa_name (char_vectype); new_stmt = gimple_build_assign (tem, build1 (VIEW_CONVERT_EXPR, char_vectype, vop)); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); tree tem2 = make_ssa_name (char_vectype); new_stmt = gimple_build_assign (tem2, VEC_PERM_EXPR, tem, tem, bswap_vconst); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); tem = make_ssa_name (vectype); new_stmt = gimple_build_assign (tem, build1 (VIEW_CONVERT_EXPR, vectype, tem2)); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); if (slp_node) SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); else STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } if (!slp_node) *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0]; vec_oprnds.release (); return true; } /* Return true if vector types VECTYPE_IN and VECTYPE_OUT have integer elements and if we can narrow VECTYPE_IN to VECTYPE_OUT in a single step. On success, store the binary pack code in *CONVERT_CODE. */ static bool simple_integer_narrowing (tree vectype_out, tree vectype_in, tree_code *convert_code) { if (!INTEGRAL_TYPE_P (TREE_TYPE (vectype_out)) || !INTEGRAL_TYPE_P (TREE_TYPE (vectype_in))) return false; tree_code code; int multi_step_cvt = 0; auto_vec interm_types; if (!supportable_narrowing_operation (NOP_EXPR, vectype_out, vectype_in, &code, &multi_step_cvt, &interm_types) || multi_step_cvt) return false; *convert_code = code; return true; } /* Function vectorizable_call. Check if STMT_INFO performs a function call that can be vectorized. If VEC_STMT is also passed, vectorize STMT_INFO: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at GSI. Return true if STMT_INFO is vectorizable in this way. */ static bool vectorizable_call (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, gimple **vec_stmt, slp_tree slp_node, stmt_vector_for_cost *cost_vec) { gcall *stmt; tree vec_dest; tree scalar_dest; tree op; tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE; tree vectype_out, vectype_in; poly_uint64 nunits_in; poly_uint64 nunits_out; loop_vec_info loop_vinfo = dyn_cast (vinfo); bb_vec_info bb_vinfo = dyn_cast (vinfo); tree fndecl, new_temp, rhs_type; enum vect_def_type dt[4] = { vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type }; tree vectypes[ARRAY_SIZE (dt)] = {}; slp_tree slp_op[ARRAY_SIZE (dt)] = {}; int ndts = ARRAY_SIZE (dt); int ncopies, j; auto_vec vargs; auto_vec orig_vargs; enum { NARROW, NONE, WIDEN } modifier; size_t i, nargs; tree lhs; if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def && ! vec_stmt) return false; /* Is STMT_INFO a vectorizable call? */ stmt = dyn_cast (stmt_info->stmt); if (!stmt) return false; if (gimple_call_internal_p (stmt) && (internal_load_fn_p (gimple_call_internal_fn (stmt)) || internal_store_fn_p (gimple_call_internal_fn (stmt)))) /* Handled by vectorizable_load and vectorizable_store. */ return false; if (gimple_call_lhs (stmt) == NULL_TREE || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME) return false; gcc_checking_assert (!stmt_can_throw_internal (cfun, stmt)); vectype_out = STMT_VINFO_VECTYPE (stmt_info); /* Process function arguments. */ rhs_type = NULL_TREE; vectype_in = NULL_TREE; nargs = gimple_call_num_args (stmt); /* Bail out if the function has more than four arguments, we do not have interesting builtin functions to vectorize with more than two arguments except for fma. No arguments is also not good. */ if (nargs == 0 || nargs > 4) return false; /* Ignore the arguments of IFN_GOMP_SIMD_LANE, they are magic. */ combined_fn cfn = gimple_call_combined_fn (stmt); if (cfn == CFN_GOMP_SIMD_LANE) { nargs = 0; rhs_type = unsigned_type_node; } int mask_opno = -1; if (internal_fn_p (cfn)) mask_opno = internal_fn_mask_index (as_internal_fn (cfn)); for (i = 0; i < nargs; i++) { if ((int) i == mask_opno) { if (!vect_check_scalar_mask (vinfo, stmt_info, slp_node, mask_opno, &op, &slp_op[i], &dt[i], &vectypes[i])) return false; continue; } if (!vect_is_simple_use (vinfo, stmt_info, slp_node, i, &op, &slp_op[i], &dt[i], &vectypes[i])) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "use not simple.\n"); return false; } /* We can only handle calls with arguments of the same type. */ if (rhs_type && !types_compatible_p (rhs_type, TREE_TYPE (op))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "argument types differ.\n"); return false; } if (!rhs_type) rhs_type = TREE_TYPE (op); if (!vectype_in) vectype_in = vectypes[i]; else if (vectypes[i] && !types_compatible_p (vectypes[i], vectype_in)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "argument vector types differ.\n"); return false; } } /* If all arguments are external or constant defs, infer the vector type from the scalar type. */ if (!vectype_in) vectype_in = get_vectype_for_scalar_type (vinfo, rhs_type, slp_node); if (vec_stmt) gcc_assert (vectype_in); if (!vectype_in) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "no vectype for scalar type %T\n", rhs_type); return false; } /* FORNOW: we don't yet support mixtures of vector sizes for calls, just mixtures of nunits. E.g. DI->SI versions of __builtin_ctz* are traditionally vectorized as two VnDI->VnDI IFN_CTZs followed by a pack of the two vectors into an SI vector. We would need separate code to handle direct VnDI->VnSI IFN_CTZs. */ if (TYPE_SIZE (vectype_in) != TYPE_SIZE (vectype_out)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "mismatched vector sizes %T and %T\n", vectype_in, vectype_out); return false; } if (VECTOR_BOOLEAN_TYPE_P (vectype_out) != VECTOR_BOOLEAN_TYPE_P (vectype_in)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "mixed mask and nonmask vector types\n"); return false; } /* FORNOW */ nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in); nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out); if (known_eq (nunits_in * 2, nunits_out)) modifier = NARROW; else if (known_eq (nunits_out, nunits_in)) modifier = NONE; else if (known_eq (nunits_out * 2, nunits_in)) modifier = WIDEN; else return false; /* We only handle functions that do not read or clobber memory. */ if (gimple_vuse (stmt)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "function reads from or writes to memory.\n"); return false; } /* For now, we only vectorize functions if a target specific builtin is available. TODO -- in some cases, it might be profitable to insert the calls for pieces of the vector, in order to be able to vectorize other operations in the loop. */ fndecl = NULL_TREE; internal_fn ifn = IFN_LAST; tree callee = gimple_call_fndecl (stmt); /* First try using an internal function. */ tree_code convert_code = ERROR_MARK; if (cfn != CFN_LAST && (modifier == NONE || (modifier == NARROW && simple_integer_narrowing (vectype_out, vectype_in, &convert_code)))) ifn = vectorizable_internal_function (cfn, callee, vectype_out, vectype_in); /* If that fails, try asking for a target-specific built-in function. */ if (ifn == IFN_LAST) { if (cfn != CFN_LAST) fndecl = targetm.vectorize.builtin_vectorized_function (cfn, vectype_out, vectype_in); else if (callee && fndecl_built_in_p (callee, BUILT_IN_MD)) fndecl = targetm.vectorize.builtin_md_vectorized_function (callee, vectype_out, vectype_in); } if (ifn == IFN_LAST && !fndecl) { if (cfn == CFN_GOMP_SIMD_LANE && !slp_node && loop_vinfo && LOOP_VINFO_LOOP (loop_vinfo)->simduid && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME && LOOP_VINFO_LOOP (loop_vinfo)->simduid == SSA_NAME_VAR (gimple_call_arg (stmt, 0))) { /* We can handle IFN_GOMP_SIMD_LANE by returning a { 0, 1, 2, ... vf - 1 } vector. */ gcc_assert (nargs == 0); } else if (modifier == NONE && (gimple_call_builtin_p (stmt, BUILT_IN_BSWAP16) || gimple_call_builtin_p (stmt, BUILT_IN_BSWAP32) || gimple_call_builtin_p (stmt, BUILT_IN_BSWAP64) || gimple_call_builtin_p (stmt, BUILT_IN_BSWAP128))) return vectorizable_bswap (vinfo, stmt_info, gsi, vec_stmt, slp_node, slp_op, vectype_in, cost_vec); else { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "function is not vectorizable.\n"); return false; } } if (slp_node) ncopies = 1; else if (modifier == NARROW && ifn == IFN_LAST) ncopies = vect_get_num_copies (loop_vinfo, vectype_out); else ncopies = vect_get_num_copies (loop_vinfo, vectype_in); /* Sanity check: make sure that at least one copy of the vectorized stmt needs to be generated. */ gcc_assert (ncopies >= 1); vec_loop_masks *masks = (loop_vinfo ? &LOOP_VINFO_MASKS (loop_vinfo) : NULL); if (!vec_stmt) /* transformation not required. */ { if (slp_node) for (i = 0; i < nargs; ++i) if (!vect_maybe_update_slp_op_vectype (slp_op[i], vectype_in)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "incompatible vector types for invariants\n"); return false; } STMT_VINFO_TYPE (stmt_info) = call_vec_info_type; DUMP_VECT_SCOPE ("vectorizable_call"); vect_model_simple_cost (vinfo, stmt_info, ncopies, dt, ndts, slp_node, cost_vec); if (ifn != IFN_LAST && modifier == NARROW && !slp_node) record_stmt_cost (cost_vec, ncopies / 2, vec_promote_demote, stmt_info, 0, vect_body); if (loop_vinfo && mask_opno >= 0) { unsigned int nvectors = (slp_node ? SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node) : ncopies); tree scalar_mask = gimple_call_arg (stmt_info->stmt, mask_opno); vect_record_loop_mask (loop_vinfo, masks, nvectors, vectype_out, scalar_mask); } return true; } /* Transform. */ if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "transform call.\n"); /* Handle def. */ scalar_dest = gimple_call_lhs (stmt); vec_dest = vect_create_destination_var (scalar_dest, vectype_out); bool masked_loop_p = loop_vinfo && LOOP_VINFO_FULLY_MASKED_P (loop_vinfo); if (modifier == NONE || ifn != IFN_LAST) { tree prev_res = NULL_TREE; vargs.safe_grow (nargs, true); orig_vargs.safe_grow (nargs, true); auto_vec > vec_defs (nargs); for (j = 0; j < ncopies; ++j) { /* Build argument list for the vectorized call. */ if (slp_node) { vec vec_oprnds0; vect_get_slp_defs (vinfo, slp_node, &vec_defs); vec_oprnds0 = vec_defs[0]; /* Arguments are ready. Create the new vector stmt. */ FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_oprnd0) { size_t k; for (k = 0; k < nargs; k++) { vec vec_oprndsk = vec_defs[k]; vargs[k] = vec_oprndsk[i]; } gimple *new_stmt; if (modifier == NARROW) { /* We don't define any narrowing conditional functions at present. */ gcc_assert (mask_opno < 0); tree half_res = make_ssa_name (vectype_in); gcall *call = gimple_build_call_internal_vec (ifn, vargs); gimple_call_set_lhs (call, half_res); gimple_call_set_nothrow (call, true); vect_finish_stmt_generation (vinfo, stmt_info, call, gsi); if ((i & 1) == 0) { prev_res = half_res; continue; } new_temp = make_ssa_name (vec_dest); new_stmt = gimple_build_assign (new_temp, convert_code, prev_res, half_res); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } else { if (mask_opno >= 0 && masked_loop_p) { unsigned int vec_num = vec_oprnds0.length (); /* Always true for SLP. */ gcc_assert (ncopies == 1); tree mask = vect_get_loop_mask (gsi, masks, vec_num, vectype_out, i); vargs[mask_opno] = prepare_load_store_mask (TREE_TYPE (mask), mask, vargs[mask_opno], gsi); } gcall *call; if (ifn != IFN_LAST) call = gimple_build_call_internal_vec (ifn, vargs); else call = gimple_build_call_vec (fndecl, vargs); new_temp = make_ssa_name (vec_dest, call); gimple_call_set_lhs (call, new_temp); gimple_call_set_nothrow (call, true); vect_finish_stmt_generation (vinfo, stmt_info, call, gsi); new_stmt = call; } SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); } continue; } for (i = 0; i < nargs; i++) { op = gimple_call_arg (stmt, i); if (j == 0) { vec_defs.quick_push (vNULL); vect_get_vec_defs_for_operand (vinfo, stmt_info, ncopies, op, &vec_defs[i], vectypes[i]); } orig_vargs[i] = vargs[i] = vec_defs[i][j]; } if (mask_opno >= 0 && masked_loop_p) { tree mask = vect_get_loop_mask (gsi, masks, ncopies, vectype_out, j); vargs[mask_opno] = prepare_load_store_mask (TREE_TYPE (mask), mask, vargs[mask_opno], gsi); } gimple *new_stmt; if (cfn == CFN_GOMP_SIMD_LANE) { tree cst = build_index_vector (vectype_out, j * nunits_out, 1); tree new_var = vect_get_new_ssa_name (vectype_out, vect_simple_var, "cst_"); gimple *init_stmt = gimple_build_assign (new_var, cst); vect_init_vector_1 (vinfo, stmt_info, init_stmt, NULL); new_temp = make_ssa_name (vec_dest); new_stmt = gimple_build_assign (new_temp, new_var); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } else if (modifier == NARROW) { /* We don't define any narrowing conditional functions at present. */ gcc_assert (mask_opno < 0); tree half_res = make_ssa_name (vectype_in); gcall *call = gimple_build_call_internal_vec (ifn, vargs); gimple_call_set_lhs (call, half_res); gimple_call_set_nothrow (call, true); vect_finish_stmt_generation (vinfo, stmt_info, call, gsi); if ((j & 1) == 0) { prev_res = half_res; continue; } new_temp = make_ssa_name (vec_dest); new_stmt = gimple_build_assign (new_temp, convert_code, prev_res, half_res); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } else { gcall *call; if (ifn != IFN_LAST) call = gimple_build_call_internal_vec (ifn, vargs); else call = gimple_build_call_vec (fndecl, vargs); new_temp = make_ssa_name (vec_dest, call); gimple_call_set_lhs (call, new_temp); gimple_call_set_nothrow (call, true); vect_finish_stmt_generation (vinfo, stmt_info, call, gsi); new_stmt = call; } if (j == (modifier == NARROW ? 1 : 0)) *vec_stmt = new_stmt; STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } for (i = 0; i < nargs; i++) { vec vec_oprndsi = vec_defs[i]; vec_oprndsi.release (); } } else if (modifier == NARROW) { auto_vec > vec_defs (nargs); /* We don't define any narrowing conditional functions at present. */ gcc_assert (mask_opno < 0); for (j = 0; j < ncopies; ++j) { /* Build argument list for the vectorized call. */ if (j == 0) vargs.create (nargs * 2); else vargs.truncate (0); if (slp_node) { vec vec_oprnds0; vect_get_slp_defs (vinfo, slp_node, &vec_defs); vec_oprnds0 = vec_defs[0]; /* Arguments are ready. Create the new vector stmt. */ for (i = 0; vec_oprnds0.iterate (i, &vec_oprnd0); i += 2) { size_t k; vargs.truncate (0); for (k = 0; k < nargs; k++) { vec vec_oprndsk = vec_defs[k]; vargs.quick_push (vec_oprndsk[i]); vargs.quick_push (vec_oprndsk[i + 1]); } gcall *call; if (ifn != IFN_LAST) call = gimple_build_call_internal_vec (ifn, vargs); else call = gimple_build_call_vec (fndecl, vargs); new_temp = make_ssa_name (vec_dest, call); gimple_call_set_lhs (call, new_temp); gimple_call_set_nothrow (call, true); vect_finish_stmt_generation (vinfo, stmt_info, call, gsi); SLP_TREE_VEC_STMTS (slp_node).quick_push (call); } continue; } for (i = 0; i < nargs; i++) { op = gimple_call_arg (stmt, i); if (j == 0) { vec_defs.quick_push (vNULL); vect_get_vec_defs_for_operand (vinfo, stmt_info, 2 * ncopies, op, &vec_defs[i], vectypes[i]); } vec_oprnd0 = vec_defs[i][2*j]; vec_oprnd1 = vec_defs[i][2*j+1]; vargs.quick_push (vec_oprnd0); vargs.quick_push (vec_oprnd1); } gcall *new_stmt = gimple_build_call_vec (fndecl, vargs); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_call_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } if (!slp_node) *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0]; for (i = 0; i < nargs; i++) { vec vec_oprndsi = vec_defs[i]; vec_oprndsi.release (); } } else /* No current target implements this case. */ return false; vargs.release (); /* The call in STMT might prevent it from being removed in dce. We however cannot remove it here, due to the way the ssa name it defines is mapped to the new definition. So just replace rhs of the statement with something harmless. */ if (slp_node) return true; stmt_info = vect_orig_stmt (stmt_info); lhs = gimple_get_lhs (stmt_info->stmt); gassign *new_stmt = gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs))); vinfo->replace_stmt (gsi, stmt_info, new_stmt); return true; } struct simd_call_arg_info { tree vectype; tree op; HOST_WIDE_INT linear_step; enum vect_def_type dt; unsigned int align; bool simd_lane_linear; }; /* Helper function of vectorizable_simd_clone_call. If OP, an SSA_NAME, is linear within simd lane (but not within whole loop), note it in *ARGINFO. */ static void vect_simd_lane_linear (tree op, class loop *loop, struct simd_call_arg_info *arginfo) { gimple *def_stmt = SSA_NAME_DEF_STMT (op); if (!is_gimple_assign (def_stmt) || gimple_assign_rhs_code (def_stmt) != POINTER_PLUS_EXPR || !is_gimple_min_invariant (gimple_assign_rhs1 (def_stmt))) return; tree base = gimple_assign_rhs1 (def_stmt); HOST_WIDE_INT linear_step = 0; tree v = gimple_assign_rhs2 (def_stmt); while (TREE_CODE (v) == SSA_NAME) { tree t; def_stmt = SSA_NAME_DEF_STMT (v); if (is_gimple_assign (def_stmt)) switch (gimple_assign_rhs_code (def_stmt)) { case PLUS_EXPR: t = gimple_assign_rhs2 (def_stmt); if (linear_step || TREE_CODE (t) != INTEGER_CST) return; base = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (base), base, t); v = gimple_assign_rhs1 (def_stmt); continue; case MULT_EXPR: t = gimple_assign_rhs2 (def_stmt); if (linear_step || !tree_fits_shwi_p (t) || integer_zerop (t)) return; linear_step = tree_to_shwi (t); v = gimple_assign_rhs1 (def_stmt); continue; CASE_CONVERT: t = gimple_assign_rhs1 (def_stmt); if (TREE_CODE (TREE_TYPE (t)) != INTEGER_TYPE || (TYPE_PRECISION (TREE_TYPE (v)) < TYPE_PRECISION (TREE_TYPE (t)))) return; if (!linear_step) linear_step = 1; v = t; continue; default: return; } else if (gimple_call_internal_p (def_stmt, IFN_GOMP_SIMD_LANE) && loop->simduid && TREE_CODE (gimple_call_arg (def_stmt, 0)) == SSA_NAME && (SSA_NAME_VAR (gimple_call_arg (def_stmt, 0)) == loop->simduid)) { if (!linear_step) linear_step = 1; arginfo->linear_step = linear_step; arginfo->op = base; arginfo->simd_lane_linear = true; return; } } } /* Return the number of elements in vector type VECTYPE, which is associated with a SIMD clone. At present these vectors always have a constant length. */ static unsigned HOST_WIDE_INT simd_clone_subparts (tree vectype) { return TYPE_VECTOR_SUBPARTS (vectype).to_constant (); } /* Function vectorizable_simd_clone_call. Check if STMT_INFO performs a function call that can be vectorized by calling a simd clone of the function. If VEC_STMT is also passed, vectorize STMT_INFO: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at GSI. Return true if STMT_INFO is vectorizable in this way. */ static bool vectorizable_simd_clone_call (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, gimple **vec_stmt, slp_tree slp_node, stmt_vector_for_cost *) { tree vec_dest; tree scalar_dest; tree op, type; tree vec_oprnd0 = NULL_TREE; tree vectype; poly_uint64 nunits; loop_vec_info loop_vinfo = dyn_cast (vinfo); bb_vec_info bb_vinfo = dyn_cast (vinfo); class loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL; tree fndecl, new_temp; int ncopies, j; auto_vec arginfo; vec vargs = vNULL; size_t i, nargs; tree lhs, rtype, ratype; vec *ret_ctor_elts = NULL; /* Is STMT a vectorizable call? */ gcall *stmt = dyn_cast (stmt_info->stmt); if (!stmt) return false; fndecl = gimple_call_fndecl (stmt); if (fndecl == NULL_TREE) return false; struct cgraph_node *node = cgraph_node::get (fndecl); if (node == NULL || node->simd_clones == NULL) return false; if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def && ! vec_stmt) return false; if (gimple_call_lhs (stmt) && TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME) return false; gcc_checking_assert (!stmt_can_throw_internal (cfun, stmt)); vectype = STMT_VINFO_VECTYPE (stmt_info); if (loop_vinfo && nested_in_vect_loop_p (loop, stmt_info)) return false; /* FORNOW */ if (slp_node) return false; /* Process function arguments. */ nargs = gimple_call_num_args (stmt); /* Bail out if the function has zero arguments. */ if (nargs == 0) return false; arginfo.reserve (nargs, true); for (i = 0; i < nargs; i++) { simd_call_arg_info thisarginfo; affine_iv iv; thisarginfo.linear_step = 0; thisarginfo.align = 0; thisarginfo.op = NULL_TREE; thisarginfo.simd_lane_linear = false; op = gimple_call_arg (stmt, i); if (!vect_is_simple_use (op, vinfo, &thisarginfo.dt, &thisarginfo.vectype) || thisarginfo.dt == vect_uninitialized_def) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "use not simple.\n"); return false; } if (thisarginfo.dt == vect_constant_def || thisarginfo.dt == vect_external_def) gcc_assert (thisarginfo.vectype == NULL_TREE); else { gcc_assert (thisarginfo.vectype != NULL_TREE); if (VECTOR_BOOLEAN_TYPE_P (thisarginfo.vectype)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "vector mask arguments are not supported\n"); return false; } } /* For linear arguments, the analyze phase should have saved the base and step in STMT_VINFO_SIMD_CLONE_INFO. */ if (i * 3 + 4 <= STMT_VINFO_SIMD_CLONE_INFO (stmt_info).length () && STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 2]) { gcc_assert (vec_stmt); thisarginfo.linear_step = tree_to_shwi (STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 2]); thisarginfo.op = STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 1]; thisarginfo.simd_lane_linear = (STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 3] == boolean_true_node); /* If loop has been peeled for alignment, we need to adjust it. */ tree n1 = LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo); tree n2 = LOOP_VINFO_NITERS (loop_vinfo); if (n1 != n2 && !thisarginfo.simd_lane_linear) { tree bias = fold_build2 (MINUS_EXPR, TREE_TYPE (n1), n1, n2); tree step = STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 2]; tree opt = TREE_TYPE (thisarginfo.op); bias = fold_convert (TREE_TYPE (step), bias); bias = fold_build2 (MULT_EXPR, TREE_TYPE (step), bias, step); thisarginfo.op = fold_build2 (POINTER_TYPE_P (opt) ? POINTER_PLUS_EXPR : PLUS_EXPR, opt, thisarginfo.op, bias); } } else if (!vec_stmt && thisarginfo.dt != vect_constant_def && thisarginfo.dt != vect_external_def && loop_vinfo && TREE_CODE (op) == SSA_NAME && simple_iv (loop, loop_containing_stmt (stmt), op, &iv, false) && tree_fits_shwi_p (iv.step)) { thisarginfo.linear_step = tree_to_shwi (iv.step); thisarginfo.op = iv.base; } else if ((thisarginfo.dt == vect_constant_def || thisarginfo.dt == vect_external_def) && POINTER_TYPE_P (TREE_TYPE (op))) thisarginfo.align = get_pointer_alignment (op) / BITS_PER_UNIT; /* Addresses of array elements indexed by GOMP_SIMD_LANE are linear too. */ if (POINTER_TYPE_P (TREE_TYPE (op)) && !thisarginfo.linear_step && !vec_stmt && thisarginfo.dt != vect_constant_def && thisarginfo.dt != vect_external_def && loop_vinfo && !slp_node && TREE_CODE (op) == SSA_NAME) vect_simd_lane_linear (op, loop, &thisarginfo); arginfo.quick_push (thisarginfo); } poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo); if (!vf.is_constant ()) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not considering SIMD clones; not yet supported" " for variable-width vectors.\n"); return false; } unsigned int badness = 0; struct cgraph_node *bestn = NULL; if (STMT_VINFO_SIMD_CLONE_INFO (stmt_info).exists ()) bestn = cgraph_node::get (STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[0]); else for (struct cgraph_node *n = node->simd_clones; n != NULL; n = n->simdclone->next_clone) { unsigned int this_badness = 0; unsigned int num_calls; if (!constant_multiple_p (vf, n->simdclone->simdlen, &num_calls) || n->simdclone->nargs != nargs) continue; if (num_calls != 1) this_badness += exact_log2 (num_calls) * 4096; if (n->simdclone->inbranch) this_badness += 8192; int target_badness = targetm.simd_clone.usable (n); if (target_badness < 0) continue; this_badness += target_badness * 512; /* FORNOW: Have to add code to add the mask argument. */ if (n->simdclone->inbranch) continue; for (i = 0; i < nargs; i++) { switch (n->simdclone->args[i].arg_type) { case SIMD_CLONE_ARG_TYPE_VECTOR: if (!useless_type_conversion_p (n->simdclone->args[i].orig_type, TREE_TYPE (gimple_call_arg (stmt, i)))) i = -1; else if (arginfo[i].dt == vect_constant_def || arginfo[i].dt == vect_external_def || arginfo[i].linear_step) this_badness += 64; break; case SIMD_CLONE_ARG_TYPE_UNIFORM: if (arginfo[i].dt != vect_constant_def && arginfo[i].dt != vect_external_def) i = -1; break; case SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP: if (arginfo[i].dt == vect_constant_def || arginfo[i].dt == vect_external_def || (arginfo[i].linear_step != n->simdclone->args[i].linear_step)) i = -1; break; case SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_CONSTANT_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_CONSTANT_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_REF_VARIABLE_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_VARIABLE_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_VARIABLE_STEP: /* FORNOW */ i = -1; break; case SIMD_CLONE_ARG_TYPE_MASK: gcc_unreachable (); } if (i == (size_t) -1) break; if (n->simdclone->args[i].alignment > arginfo[i].align) { i = -1; break; } if (arginfo[i].align) this_badness += (exact_log2 (arginfo[i].align) - exact_log2 (n->simdclone->args[i].alignment)); } if (i == (size_t) -1) continue; if (bestn == NULL || this_badness < badness) { bestn = n; badness = this_badness; } } if (bestn == NULL) return false; for (i = 0; i < nargs; i++) if ((arginfo[i].dt == vect_constant_def || arginfo[i].dt == vect_external_def) && bestn->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_VECTOR) { tree arg_type = TREE_TYPE (gimple_call_arg (stmt, i)); arginfo[i].vectype = get_vectype_for_scalar_type (vinfo, arg_type, slp_node); if (arginfo[i].vectype == NULL || !constant_multiple_p (bestn->simdclone->simdlen, simd_clone_subparts (arginfo[i].vectype))) return false; } fndecl = bestn->decl; nunits = bestn->simdclone->simdlen; ncopies = vector_unroll_factor (vf, nunits); /* If the function isn't const, only allow it in simd loops where user has asserted that at least nunits consecutive iterations can be performed using SIMD instructions. */ if ((loop == NULL || maybe_lt ((unsigned) loop->safelen, nunits)) && gimple_vuse (stmt)) return false; /* Sanity check: make sure that at least one copy of the vectorized stmt needs to be generated. */ gcc_assert (ncopies >= 1); if (!vec_stmt) /* transformation not required. */ { STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (bestn->decl); for (i = 0; i < nargs; i++) if ((bestn->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP) || (bestn->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP)) { STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_grow_cleared (i * 3 + 1, true); STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (arginfo[i].op); tree lst = POINTER_TYPE_P (TREE_TYPE (arginfo[i].op)) ? size_type_node : TREE_TYPE (arginfo[i].op); tree ls = build_int_cst (lst, arginfo[i].linear_step); STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (ls); tree sll = arginfo[i].simd_lane_linear ? boolean_true_node : boolean_false_node; STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (sll); } STMT_VINFO_TYPE (stmt_info) = call_simd_clone_vec_info_type; DUMP_VECT_SCOPE ("vectorizable_simd_clone_call"); /* vect_model_simple_cost (vinfo, stmt_info, ncopies, dt, slp_node, cost_vec); */ return true; } /* Transform. */ if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "transform call.\n"); /* Handle def. */ scalar_dest = gimple_call_lhs (stmt); vec_dest = NULL_TREE; rtype = NULL_TREE; ratype = NULL_TREE; if (scalar_dest) { vec_dest = vect_create_destination_var (scalar_dest, vectype); rtype = TREE_TYPE (TREE_TYPE (fndecl)); if (TREE_CODE (rtype) == ARRAY_TYPE) { ratype = rtype; rtype = TREE_TYPE (ratype); } } auto_vec > vec_oprnds; auto_vec vec_oprnds_i; vec_oprnds.safe_grow_cleared (nargs, true); vec_oprnds_i.safe_grow_cleared (nargs, true); for (j = 0; j < ncopies; ++j) { /* Build argument list for the vectorized call. */ if (j == 0) vargs.create (nargs); else vargs.truncate (0); for (i = 0; i < nargs; i++) { unsigned int k, l, m, o; tree atype; op = gimple_call_arg (stmt, i); switch (bestn->simdclone->args[i].arg_type) { case SIMD_CLONE_ARG_TYPE_VECTOR: atype = bestn->simdclone->args[i].vector_type; o = vector_unroll_factor (nunits, simd_clone_subparts (atype)); for (m = j * o; m < (j + 1) * o; m++) { if (simd_clone_subparts (atype) < simd_clone_subparts (arginfo[i].vectype)) { poly_uint64 prec = GET_MODE_BITSIZE (TYPE_MODE (atype)); k = (simd_clone_subparts (arginfo[i].vectype) / simd_clone_subparts (atype)); gcc_assert ((k & (k - 1)) == 0); if (m == 0) { vect_get_vec_defs_for_operand (vinfo, stmt_info, ncopies * o / k, op, &vec_oprnds[i]); vec_oprnds_i[i] = 0; vec_oprnd0 = vec_oprnds[i][vec_oprnds_i[i]++]; } else { vec_oprnd0 = arginfo[i].op; if ((m & (k - 1)) == 0) vec_oprnd0 = vec_oprnds[i][vec_oprnds_i[i]++]; } arginfo[i].op = vec_oprnd0; vec_oprnd0 = build3 (BIT_FIELD_REF, atype, vec_oprnd0, bitsize_int (prec), bitsize_int ((m & (k - 1)) * prec)); gassign *new_stmt = gimple_build_assign (make_ssa_name (atype), vec_oprnd0); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); vargs.safe_push (gimple_assign_lhs (new_stmt)); } else { k = (simd_clone_subparts (atype) / simd_clone_subparts (arginfo[i].vectype)); gcc_assert ((k & (k - 1)) == 0); vec *ctor_elts; if (k != 1) vec_alloc (ctor_elts, k); else ctor_elts = NULL; for (l = 0; l < k; l++) { if (m == 0 && l == 0) { vect_get_vec_defs_for_operand (vinfo, stmt_info, k * o * ncopies, op, &vec_oprnds[i]); vec_oprnds_i[i] = 0; vec_oprnd0 = vec_oprnds[i][vec_oprnds_i[i]++]; } else vec_oprnd0 = vec_oprnds[i][vec_oprnds_i[i]++]; arginfo[i].op = vec_oprnd0; if (k == 1) break; CONSTRUCTOR_APPEND_ELT (ctor_elts, NULL_TREE, vec_oprnd0); } if (k == 1) if (!useless_type_conversion_p (TREE_TYPE (vec_oprnd0), atype)) { vec_oprnd0 = build1 (VIEW_CONVERT_EXPR, atype, vec_oprnd0); gassign *new_stmt = gimple_build_assign (make_ssa_name (atype), vec_oprnd0); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); vargs.safe_push (gimple_assign_lhs (new_stmt)); } else vargs.safe_push (vec_oprnd0); else { vec_oprnd0 = build_constructor (atype, ctor_elts); gassign *new_stmt = gimple_build_assign (make_ssa_name (atype), vec_oprnd0); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); vargs.safe_push (gimple_assign_lhs (new_stmt)); } } } break; case SIMD_CLONE_ARG_TYPE_UNIFORM: vargs.safe_push (op); break; case SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP: if (j == 0) { gimple_seq stmts; arginfo[i].op = force_gimple_operand (unshare_expr (arginfo[i].op), &stmts, true, NULL_TREE); if (stmts != NULL) { basic_block new_bb; edge pe = loop_preheader_edge (loop); new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts); gcc_assert (!new_bb); } if (arginfo[i].simd_lane_linear) { vargs.safe_push (arginfo[i].op); break; } tree phi_res = copy_ssa_name (op); gphi *new_phi = create_phi_node (phi_res, loop->header); add_phi_arg (new_phi, arginfo[i].op, loop_preheader_edge (loop), UNKNOWN_LOCATION); enum tree_code code = POINTER_TYPE_P (TREE_TYPE (op)) ? POINTER_PLUS_EXPR : PLUS_EXPR; tree type = POINTER_TYPE_P (TREE_TYPE (op)) ? sizetype : TREE_TYPE (op); poly_widest_int cst = wi::mul (bestn->simdclone->args[i].linear_step, ncopies * nunits); tree tcst = wide_int_to_tree (type, cst); tree phi_arg = copy_ssa_name (op); gassign *new_stmt = gimple_build_assign (phi_arg, code, phi_res, tcst); gimple_stmt_iterator si = gsi_after_labels (loop->header); gsi_insert_after (&si, new_stmt, GSI_NEW_STMT); add_phi_arg (new_phi, phi_arg, loop_latch_edge (loop), UNKNOWN_LOCATION); arginfo[i].op = phi_res; vargs.safe_push (phi_res); } else { enum tree_code code = POINTER_TYPE_P (TREE_TYPE (op)) ? POINTER_PLUS_EXPR : PLUS_EXPR; tree type = POINTER_TYPE_P (TREE_TYPE (op)) ? sizetype : TREE_TYPE (op); poly_widest_int cst = wi::mul (bestn->simdclone->args[i].linear_step, j * nunits); tree tcst = wide_int_to_tree (type, cst); new_temp = make_ssa_name (TREE_TYPE (op)); gassign *new_stmt = gimple_build_assign (new_temp, code, arginfo[i].op, tcst); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); vargs.safe_push (new_temp); } break; case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_CONSTANT_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_CONSTANT_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_REF_VARIABLE_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_VARIABLE_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_VARIABLE_STEP: default: gcc_unreachable (); } } gcall *new_call = gimple_build_call_vec (fndecl, vargs); if (vec_dest) { gcc_assert (ratype || known_eq (simd_clone_subparts (rtype), nunits)); if (ratype) new_temp = create_tmp_var (ratype); else if (useless_type_conversion_p (vectype, rtype)) new_temp = make_ssa_name (vec_dest, new_call); else new_temp = make_ssa_name (rtype, new_call); gimple_call_set_lhs (new_call, new_temp); } vect_finish_stmt_generation (vinfo, stmt_info, new_call, gsi); gimple *new_stmt = new_call; if (vec_dest) { if (!multiple_p (simd_clone_subparts (vectype), nunits)) { unsigned int k, l; poly_uint64 prec = GET_MODE_BITSIZE (TYPE_MODE (vectype)); poly_uint64 bytes = GET_MODE_SIZE (TYPE_MODE (vectype)); k = vector_unroll_factor (nunits, simd_clone_subparts (vectype)); gcc_assert ((k & (k - 1)) == 0); for (l = 0; l < k; l++) { tree t; if (ratype) { t = build_fold_addr_expr (new_temp); t = build2 (MEM_REF, vectype, t, build_int_cst (TREE_TYPE (t), l * bytes)); } else t = build3 (BIT_FIELD_REF, vectype, new_temp, bitsize_int (prec), bitsize_int (l * prec)); new_stmt = gimple_build_assign (make_ssa_name (vectype), t); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); if (j == 0 && l == 0) *vec_stmt = new_stmt; STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } if (ratype) vect_clobber_variable (vinfo, stmt_info, gsi, new_temp); continue; } else if (!multiple_p (nunits, simd_clone_subparts (vectype))) { unsigned int k = (simd_clone_subparts (vectype) / simd_clone_subparts (rtype)); gcc_assert ((k & (k - 1)) == 0); if ((j & (k - 1)) == 0) vec_alloc (ret_ctor_elts, k); if (ratype) { unsigned int m, o; o = vector_unroll_factor (nunits, simd_clone_subparts (rtype)); for (m = 0; m < o; m++) { tree tem = build4 (ARRAY_REF, rtype, new_temp, size_int (m), NULL_TREE, NULL_TREE); new_stmt = gimple_build_assign (make_ssa_name (rtype), tem); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); CONSTRUCTOR_APPEND_ELT (ret_ctor_elts, NULL_TREE, gimple_assign_lhs (new_stmt)); } vect_clobber_variable (vinfo, stmt_info, gsi, new_temp); } else CONSTRUCTOR_APPEND_ELT (ret_ctor_elts, NULL_TREE, new_temp); if ((j & (k - 1)) != k - 1) continue; vec_oprnd0 = build_constructor (vectype, ret_ctor_elts); new_stmt = gimple_build_assign (make_ssa_name (vec_dest), vec_oprnd0); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); if ((unsigned) j == k - 1) *vec_stmt = new_stmt; STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); continue; } else if (ratype) { tree t = build_fold_addr_expr (new_temp); t = build2 (MEM_REF, vectype, t, build_int_cst (TREE_TYPE (t), 0)); new_stmt = gimple_build_assign (make_ssa_name (vec_dest), t); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); vect_clobber_variable (vinfo, stmt_info, gsi, new_temp); } else if (!useless_type_conversion_p (vectype, rtype)) { vec_oprnd0 = build1 (VIEW_CONVERT_EXPR, vectype, new_temp); new_stmt = gimple_build_assign (make_ssa_name (vec_dest), vec_oprnd0); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } } if (j == 0) *vec_stmt = new_stmt; STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } for (i = 0; i < nargs; ++i) { vec oprndsi = vec_oprnds[i]; oprndsi.release (); } vargs.release (); /* The call in STMT might prevent it from being removed in dce. We however cannot remove it here, due to the way the ssa name it defines is mapped to the new definition. So just replace rhs of the statement with something harmless. */ if (slp_node) return true; gimple *new_stmt; if (scalar_dest) { type = TREE_TYPE (scalar_dest); lhs = gimple_call_lhs (vect_orig_stmt (stmt_info)->stmt); new_stmt = gimple_build_assign (lhs, build_zero_cst (type)); } else new_stmt = gimple_build_nop (); vinfo->replace_stmt (gsi, vect_orig_stmt (stmt_info), new_stmt); unlink_stmt_vdef (stmt); return true; } /* Function vect_gen_widened_results_half Create a vector stmt whose code, type, number of arguments, and result variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at GSI. In the case that CODE is a CALL_EXPR, this means that a call to DECL needs to be created (DECL is a function-decl of a target-builtin). STMT_INFO is the original scalar stmt that we are vectorizing. */ static gimple * vect_gen_widened_results_half (vec_info *vinfo, enum tree_code code, tree vec_oprnd0, tree vec_oprnd1, int op_type, tree vec_dest, gimple_stmt_iterator *gsi, stmt_vec_info stmt_info) { gimple *new_stmt; tree new_temp; /* Generate half of the widened result: */ gcc_assert (op_type == TREE_CODE_LENGTH (code)); if (op_type != binary_op) vec_oprnd1 = NULL; new_stmt = gimple_build_assign (vec_dest, code, vec_oprnd0, vec_oprnd1); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); return new_stmt; } /* Create vectorized demotion statements for vector operands from VEC_OPRNDS. For multi-step conversions store the resulting vectors and call the function recursively. */ static void vect_create_vectorized_demotion_stmts (vec_info *vinfo, vec *vec_oprnds, int multi_step_cvt, stmt_vec_info stmt_info, vec &vec_dsts, gimple_stmt_iterator *gsi, slp_tree slp_node, enum tree_code code) { unsigned int i; tree vop0, vop1, new_tmp, vec_dest; vec_dest = vec_dsts.pop (); for (i = 0; i < vec_oprnds->length (); i += 2) { /* Create demotion operation. */ vop0 = (*vec_oprnds)[i]; vop1 = (*vec_oprnds)[i + 1]; gassign *new_stmt = gimple_build_assign (vec_dest, code, vop0, vop1); new_tmp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_tmp); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); if (multi_step_cvt) /* Store the resulting vector for next recursive call. */ (*vec_oprnds)[i/2] = new_tmp; else { /* This is the last step of the conversion sequence. Store the vectors in SLP_NODE or in vector info of the scalar statement (or in STMT_VINFO_RELATED_STMT chain). */ if (slp_node) SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); else STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } } /* For multi-step demotion operations we first generate demotion operations from the source type to the intermediate types, and then combine the results (stored in VEC_OPRNDS) in demotion operation to the destination type. */ if (multi_step_cvt) { /* At each level of recursion we have half of the operands we had at the previous level. */ vec_oprnds->truncate ((i+1)/2); vect_create_vectorized_demotion_stmts (vinfo, vec_oprnds, multi_step_cvt - 1, stmt_info, vec_dsts, gsi, slp_node, VEC_PACK_TRUNC_EXPR); } vec_dsts.quick_push (vec_dest); } /* Create vectorized promotion statements for vector operands from VEC_OPRNDS0 and VEC_OPRNDS1, for a binary operation associated with scalar statement STMT_INFO. For multi-step conversions store the resulting vectors and call the function recursively. */ static void vect_create_vectorized_promotion_stmts (vec_info *vinfo, vec *vec_oprnds0, vec *vec_oprnds1, stmt_vec_info stmt_info, tree vec_dest, gimple_stmt_iterator *gsi, enum tree_code code1, enum tree_code code2, int op_type) { int i; tree vop0, vop1, new_tmp1, new_tmp2; gimple *new_stmt1, *new_stmt2; vec vec_tmp = vNULL; vec_tmp.create (vec_oprnds0->length () * 2); FOR_EACH_VEC_ELT (*vec_oprnds0, i, vop0) { if (op_type == binary_op) vop1 = (*vec_oprnds1)[i]; else vop1 = NULL_TREE; /* Generate the two halves of promotion operation. */ new_stmt1 = vect_gen_widened_results_half (vinfo, code1, vop0, vop1, op_type, vec_dest, gsi, stmt_info); new_stmt2 = vect_gen_widened_results_half (vinfo, code2, vop0, vop1, op_type, vec_dest, gsi, stmt_info); if (is_gimple_call (new_stmt1)) { new_tmp1 = gimple_call_lhs (new_stmt1); new_tmp2 = gimple_call_lhs (new_stmt2); } else { new_tmp1 = gimple_assign_lhs (new_stmt1); new_tmp2 = gimple_assign_lhs (new_stmt2); } /* Store the results for the next step. */ vec_tmp.quick_push (new_tmp1); vec_tmp.quick_push (new_tmp2); } vec_oprnds0->release (); *vec_oprnds0 = vec_tmp; } /* Create vectorized promotion stmts for widening stmts using only half the potential vector size for input. */ static void vect_create_half_widening_stmts (vec_info *vinfo, vec *vec_oprnds0, vec *vec_oprnds1, stmt_vec_info stmt_info, tree vec_dest, gimple_stmt_iterator *gsi, enum tree_code code1, int op_type) { int i; tree vop0, vop1; gimple *new_stmt1; gimple *new_stmt2; gimple *new_stmt3; vec vec_tmp = vNULL; vec_tmp.create (vec_oprnds0->length ()); FOR_EACH_VEC_ELT (*vec_oprnds0, i, vop0) { tree new_tmp1, new_tmp2, new_tmp3, out_type; gcc_assert (op_type == binary_op); vop1 = (*vec_oprnds1)[i]; /* Widen the first vector input. */ out_type = TREE_TYPE (vec_dest); new_tmp1 = make_ssa_name (out_type); new_stmt1 = gimple_build_assign (new_tmp1, NOP_EXPR, vop0); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt1, gsi); if (VECTOR_TYPE_P (TREE_TYPE (vop1))) { /* Widen the second vector input. */ new_tmp2 = make_ssa_name (out_type); new_stmt2 = gimple_build_assign (new_tmp2, NOP_EXPR, vop1); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt2, gsi); /* Perform the operation. With both vector inputs widened. */ new_stmt3 = gimple_build_assign (vec_dest, code1, new_tmp1, new_tmp2); } else { /* Perform the operation. With the single vector input widened. */ new_stmt3 = gimple_build_assign (vec_dest, code1, new_tmp1, vop1); } new_tmp3 = make_ssa_name (vec_dest, new_stmt3); gimple_assign_set_lhs (new_stmt3, new_tmp3); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt3, gsi); /* Store the results for the next step. */ vec_tmp.quick_push (new_tmp3); } vec_oprnds0->release (); *vec_oprnds0 = vec_tmp; } /* Check if STMT_INFO performs a conversion operation that can be vectorized. If VEC_STMT is also passed, vectorize STMT_INFO: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at GSI. Return true if STMT_INFO is vectorizable in this way. */ static bool vectorizable_conversion (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, gimple **vec_stmt, slp_tree slp_node, stmt_vector_for_cost *cost_vec) { tree vec_dest; tree scalar_dest; tree op0, op1 = NULL_TREE; loop_vec_info loop_vinfo = dyn_cast (vinfo); enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK; enum tree_code codecvt1 = ERROR_MARK, codecvt2 = ERROR_MARK; tree new_temp; enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type}; int ndts = 2; poly_uint64 nunits_in; poly_uint64 nunits_out; tree vectype_out, vectype_in; int ncopies, i; tree lhs_type, rhs_type; enum { NARROW, NONE, WIDEN } modifier; vec vec_oprnds0 = vNULL; vec vec_oprnds1 = vNULL; tree vop0; bb_vec_info bb_vinfo = dyn_cast (vinfo); int multi_step_cvt = 0; vec interm_types = vNULL; tree intermediate_type, cvt_type = NULL_TREE; int op_type; unsigned short fltsz; /* Is STMT a vectorizable conversion? */ if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def && ! vec_stmt) return false; gassign *stmt = dyn_cast (stmt_info->stmt); if (!stmt) return false; if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME) return false; code = gimple_assign_rhs_code (stmt); if (!CONVERT_EXPR_CODE_P (code) && code != FIX_TRUNC_EXPR && code != FLOAT_EXPR && code != WIDEN_PLUS_EXPR && code != WIDEN_MINUS_EXPR && code != WIDEN_MULT_EXPR && code != WIDEN_LSHIFT_EXPR) return false; bool widen_arith = (code == WIDEN_PLUS_EXPR || code == WIDEN_MINUS_EXPR || code == WIDEN_MULT_EXPR || code == WIDEN_LSHIFT_EXPR); op_type = TREE_CODE_LENGTH (code); /* Check types of lhs and rhs. */ scalar_dest = gimple_assign_lhs (stmt); lhs_type = TREE_TYPE (scalar_dest); vectype_out = STMT_VINFO_VECTYPE (stmt_info); /* Check the operands of the operation. */ slp_tree slp_op0, slp_op1 = NULL; if (!vect_is_simple_use (vinfo, stmt_info, slp_node, 0, &op0, &slp_op0, &dt[0], &vectype_in)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "use not simple.\n"); return false; } rhs_type = TREE_TYPE (op0); if ((code != FIX_TRUNC_EXPR && code != FLOAT_EXPR) && !((INTEGRAL_TYPE_P (lhs_type) && INTEGRAL_TYPE_P (rhs_type)) || (SCALAR_FLOAT_TYPE_P (lhs_type) && SCALAR_FLOAT_TYPE_P (rhs_type)))) return false; if (!VECTOR_BOOLEAN_TYPE_P (vectype_out) && ((INTEGRAL_TYPE_P (lhs_type) && !type_has_mode_precision_p (lhs_type)) || (INTEGRAL_TYPE_P (rhs_type) && !type_has_mode_precision_p (rhs_type)))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "type conversion to/from bit-precision unsupported." "\n"); return false; } if (op_type == binary_op) { gcc_assert (code == WIDEN_MULT_EXPR || code == WIDEN_LSHIFT_EXPR || code == WIDEN_PLUS_EXPR || code == WIDEN_MINUS_EXPR); op1 = gimple_assign_rhs2 (stmt); tree vectype1_in; if (!vect_is_simple_use (vinfo, stmt_info, slp_node, 1, &op1, &slp_op1, &dt[1], &vectype1_in)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "use not simple.\n"); return false; } /* For WIDEN_MULT_EXPR, if OP0 is a constant, use the type of OP1. */ if (!vectype_in) vectype_in = vectype1_in; } /* If op0 is an external or constant def, infer the vector type from the scalar type. */ if (!vectype_in) vectype_in = get_vectype_for_scalar_type (vinfo, rhs_type, slp_node); if (vec_stmt) gcc_assert (vectype_in); if (!vectype_in) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "no vectype for scalar type %T\n", rhs_type); return false; } if (VECTOR_BOOLEAN_TYPE_P (vectype_out) && !VECTOR_BOOLEAN_TYPE_P (vectype_in)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "can't convert between boolean and non " "boolean vectors %T\n", rhs_type); return false; } nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in); nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out); if (known_eq (nunits_out, nunits_in)) if (widen_arith) modifier = WIDEN; else modifier = NONE; else if (multiple_p (nunits_out, nunits_in)) modifier = NARROW; else { gcc_checking_assert (multiple_p (nunits_in, nunits_out)); modifier = WIDEN; } /* Multiple types in SLP are handled by creating the appropriate number of vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in case of SLP. */ if (slp_node) ncopies = 1; else if (modifier == NARROW) ncopies = vect_get_num_copies (loop_vinfo, vectype_out); else ncopies = vect_get_num_copies (loop_vinfo, vectype_in); /* Sanity check: make sure that at least one copy of the vectorized stmt needs to be generated. */ gcc_assert (ncopies >= 1); bool found_mode = false; scalar_mode lhs_mode = SCALAR_TYPE_MODE (lhs_type); scalar_mode rhs_mode = SCALAR_TYPE_MODE (rhs_type); opt_scalar_mode rhs_mode_iter; /* Supportable by target? */ switch (modifier) { case NONE: if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR && !CONVERT_EXPR_CODE_P (code)) return false; if (supportable_convert_operation (code, vectype_out, vectype_in, &code1)) break; /* FALLTHRU */ unsupported: if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "conversion not supported by target.\n"); return false; case WIDEN: if (known_eq (nunits_in, nunits_out)) { if (!supportable_half_widening_operation (code, vectype_out, vectype_in, &code1)) goto unsupported; gcc_assert (!(multi_step_cvt && op_type == binary_op)); break; } if (supportable_widening_operation (vinfo, code, stmt_info, vectype_out, vectype_in, &code1, &code2, &multi_step_cvt, &interm_types)) { /* Binary widening operation can only be supported directly by the architecture. */ gcc_assert (!(multi_step_cvt && op_type == binary_op)); break; } if (code != FLOAT_EXPR || GET_MODE_SIZE (lhs_mode) <= GET_MODE_SIZE (rhs_mode)) goto unsupported; fltsz = GET_MODE_SIZE (lhs_mode); FOR_EACH_2XWIDER_MODE (rhs_mode_iter, rhs_mode) { rhs_mode = rhs_mode_iter.require (); if (GET_MODE_SIZE (rhs_mode) > fltsz) break; cvt_type = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0); cvt_type = get_same_sized_vectype (cvt_type, vectype_in); if (cvt_type == NULL_TREE) goto unsupported; if (GET_MODE_SIZE (rhs_mode) == fltsz) { if (!supportable_convert_operation (code, vectype_out, cvt_type, &codecvt1)) goto unsupported; } else if (!supportable_widening_operation (vinfo, code, stmt_info, vectype_out, cvt_type, &codecvt1, &codecvt2, &multi_step_cvt, &interm_types)) continue; else gcc_assert (multi_step_cvt == 0); if (supportable_widening_operation (vinfo, NOP_EXPR, stmt_info, cvt_type, vectype_in, &code1, &code2, &multi_step_cvt, &interm_types)) { found_mode = true; break; } } if (!found_mode) goto unsupported; if (GET_MODE_SIZE (rhs_mode) == fltsz) codecvt2 = ERROR_MARK; else { multi_step_cvt++; interm_types.safe_push (cvt_type); cvt_type = NULL_TREE; } break; case NARROW: gcc_assert (op_type == unary_op); if (supportable_narrowing_operation (code, vectype_out, vectype_in, &code1, &multi_step_cvt, &interm_types)) break; if (code != FIX_TRUNC_EXPR || GET_MODE_SIZE (lhs_mode) >= GET_MODE_SIZE (rhs_mode)) goto unsupported; cvt_type = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0); cvt_type = get_same_sized_vectype (cvt_type, vectype_in); if (cvt_type == NULL_TREE) goto unsupported; if (!supportable_convert_operation (code, cvt_type, vectype_in, &codecvt1)) goto unsupported; if (supportable_narrowing_operation (NOP_EXPR, vectype_out, cvt_type, &code1, &multi_step_cvt, &interm_types)) break; goto unsupported; default: gcc_unreachable (); } if (!vec_stmt) /* transformation not required. */ { if (slp_node && (!vect_maybe_update_slp_op_vectype (slp_op0, vectype_in) || !vect_maybe_update_slp_op_vectype (slp_op1, vectype_in))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "incompatible vector types for invariants\n"); return false; } DUMP_VECT_SCOPE ("vectorizable_conversion"); if (modifier == NONE) { STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type; vect_model_simple_cost (vinfo, stmt_info, ncopies, dt, ndts, slp_node, cost_vec); } else if (modifier == NARROW) { STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type; /* The final packing step produces one vector result per copy. */ unsigned int nvectors = (slp_node ? SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node) : ncopies); vect_model_promotion_demotion_cost (stmt_info, dt, nvectors, multi_step_cvt, cost_vec, widen_arith); } else { STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type; /* The initial unpacking step produces two vector results per copy. MULTI_STEP_CVT is 0 for a single conversion, so >> MULTI_STEP_CVT divides by 2^(number of steps - 1). */ unsigned int nvectors = (slp_node ? SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node) >> multi_step_cvt : ncopies * 2); vect_model_promotion_demotion_cost (stmt_info, dt, nvectors, multi_step_cvt, cost_vec, widen_arith); } interm_types.release (); return true; } /* Transform. */ if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "transform conversion. ncopies = %d.\n", ncopies); if (op_type == binary_op) { if (CONSTANT_CLASS_P (op0)) op0 = fold_convert (TREE_TYPE (op1), op0); else if (CONSTANT_CLASS_P (op1)) op1 = fold_convert (TREE_TYPE (op0), op1); } /* In case of multi-step conversion, we first generate conversion operations to the intermediate types, and then from that types to the final one. We create vector destinations for the intermediate type (TYPES) received from supportable_*_operation, and store them in the correct order for future use in vect_create_vectorized_*_stmts (). */ auto_vec vec_dsts (multi_step_cvt + 1); vec_dest = vect_create_destination_var (scalar_dest, (cvt_type && modifier == WIDEN) ? cvt_type : vectype_out); vec_dsts.quick_push (vec_dest); if (multi_step_cvt) { for (i = interm_types.length () - 1; interm_types.iterate (i, &intermediate_type); i--) { vec_dest = vect_create_destination_var (scalar_dest, intermediate_type); vec_dsts.quick_push (vec_dest); } } if (cvt_type) vec_dest = vect_create_destination_var (scalar_dest, modifier == WIDEN ? vectype_out : cvt_type); int ninputs = 1; if (!slp_node) { if (modifier == WIDEN) ; else if (modifier == NARROW) { if (multi_step_cvt) ninputs = vect_pow2 (multi_step_cvt); ninputs *= 2; } } switch (modifier) { case NONE: vect_get_vec_defs (vinfo, stmt_info, slp_node, ncopies, op0, &vec_oprnds0); FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0) { /* Arguments are ready, create the new vector stmt. */ gcc_assert (TREE_CODE_LENGTH (code1) == unary_op); gassign *new_stmt = gimple_build_assign (vec_dest, code1, vop0); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); if (slp_node) SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); else STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } break; case WIDEN: /* In case the vectorization factor (VF) is bigger than the number of elements that we can fit in a vectype (nunits), we have to generate more than one vector stmt - i.e - we need to "unroll" the vector stmt by a factor VF/nunits. */ vect_get_vec_defs (vinfo, stmt_info, slp_node, ncopies * ninputs, op0, &vec_oprnds0, code == WIDEN_LSHIFT_EXPR ? NULL_TREE : op1, &vec_oprnds1); if (code == WIDEN_LSHIFT_EXPR) { int oprnds_size = vec_oprnds0.length (); vec_oprnds1.create (oprnds_size); for (i = 0; i < oprnds_size; ++i) vec_oprnds1.quick_push (op1); } /* Arguments are ready. Create the new vector stmts. */ for (i = multi_step_cvt; i >= 0; i--) { tree this_dest = vec_dsts[i]; enum tree_code c1 = code1, c2 = code2; if (i == 0 && codecvt2 != ERROR_MARK) { c1 = codecvt1; c2 = codecvt2; } if (known_eq (nunits_out, nunits_in)) vect_create_half_widening_stmts (vinfo, &vec_oprnds0, &vec_oprnds1, stmt_info, this_dest, gsi, c1, op_type); else vect_create_vectorized_promotion_stmts (vinfo, &vec_oprnds0, &vec_oprnds1, stmt_info, this_dest, gsi, c1, c2, op_type); } FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0) { gimple *new_stmt; if (cvt_type) { gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op); new_temp = make_ssa_name (vec_dest); new_stmt = gimple_build_assign (new_temp, codecvt1, vop0); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } else new_stmt = SSA_NAME_DEF_STMT (vop0); if (slp_node) SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); else STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } break; case NARROW: /* In case the vectorization factor (VF) is bigger than the number of elements that we can fit in a vectype (nunits), we have to generate more than one vector stmt - i.e - we need to "unroll" the vector stmt by a factor VF/nunits. */ vect_get_vec_defs (vinfo, stmt_info, slp_node, ncopies * ninputs, op0, &vec_oprnds0); /* Arguments are ready. Create the new vector stmts. */ if (cvt_type) FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0) { gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op); new_temp = make_ssa_name (vec_dest); gassign *new_stmt = gimple_build_assign (new_temp, codecvt1, vop0); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); vec_oprnds0[i] = new_temp; } vect_create_vectorized_demotion_stmts (vinfo, &vec_oprnds0, multi_step_cvt, stmt_info, vec_dsts, gsi, slp_node, code1); break; } if (!slp_node) *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0]; vec_oprnds0.release (); vec_oprnds1.release (); interm_types.release (); return true; } /* Return true if we can assume from the scalar form of STMT_INFO that neither the scalar nor the vector forms will generate code. STMT_INFO is known not to involve a data reference. */ bool vect_nop_conversion_p (stmt_vec_info stmt_info) { gassign *stmt = dyn_cast (stmt_info->stmt); if (!stmt) return false; tree lhs = gimple_assign_lhs (stmt); tree_code code = gimple_assign_rhs_code (stmt); tree rhs = gimple_assign_rhs1 (stmt); if (code == SSA_NAME || code == VIEW_CONVERT_EXPR) return true; if (CONVERT_EXPR_CODE_P (code)) return tree_nop_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)); return false; } /* Function vectorizable_assignment. Check if STMT_INFO performs an assignment (copy) that can be vectorized. If VEC_STMT is also passed, vectorize the STMT_INFO: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at GSI. Return true if STMT_INFO is vectorizable in this way. */ static bool vectorizable_assignment (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, gimple **vec_stmt, slp_tree slp_node, stmt_vector_for_cost *cost_vec) { tree vec_dest; tree scalar_dest; tree op; loop_vec_info loop_vinfo = dyn_cast (vinfo); tree new_temp; enum vect_def_type dt[1] = {vect_unknown_def_type}; int ndts = 1; int ncopies; int i; vec vec_oprnds = vNULL; tree vop; bb_vec_info bb_vinfo = dyn_cast (vinfo); enum tree_code code; tree vectype_in; if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def && ! vec_stmt) return false; /* Is vectorizable assignment? */ gassign *stmt = dyn_cast (stmt_info->stmt); if (!stmt) return false; scalar_dest = gimple_assign_lhs (stmt); if (TREE_CODE (scalar_dest) != SSA_NAME) return false; if (STMT_VINFO_DATA_REF (stmt_info)) return false; code = gimple_assign_rhs_code (stmt); if (!(gimple_assign_single_p (stmt) || code == PAREN_EXPR || CONVERT_EXPR_CODE_P (code))) return false; tree vectype = STMT_VINFO_VECTYPE (stmt_info); poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype); /* Multiple types in SLP are handled by creating the appropriate number of vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in case of SLP. */ if (slp_node) ncopies = 1; else ncopies = vect_get_num_copies (loop_vinfo, vectype); gcc_assert (ncopies >= 1); slp_tree slp_op; if (!vect_is_simple_use (vinfo, stmt_info, slp_node, 0, &op, &slp_op, &dt[0], &vectype_in)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "use not simple.\n"); return false; } if (!vectype_in) vectype_in = get_vectype_for_scalar_type (vinfo, TREE_TYPE (op), slp_node); /* We can handle NOP_EXPR conversions that do not change the number of elements or the vector size. */ if ((CONVERT_EXPR_CODE_P (code) || code == VIEW_CONVERT_EXPR) && (!vectype_in || maybe_ne (TYPE_VECTOR_SUBPARTS (vectype_in), nunits) || maybe_ne (GET_MODE_SIZE (TYPE_MODE (vectype)), GET_MODE_SIZE (TYPE_MODE (vectype_in))))) return false; if (VECTOR_BOOLEAN_TYPE_P (vectype) && !VECTOR_BOOLEAN_TYPE_P (vectype_in)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "can't convert between boolean and non " "boolean vectors %T\n", TREE_TYPE (op)); return false; } /* We do not handle bit-precision changes. */ if ((CONVERT_EXPR_CODE_P (code) || code == VIEW_CONVERT_EXPR) && INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest)) && (!type_has_mode_precision_p (TREE_TYPE (scalar_dest)) || !type_has_mode_precision_p (TREE_TYPE (op))) /* But a conversion that does not change the bit-pattern is ok. */ && !((TYPE_PRECISION (TREE_TYPE (scalar_dest)) > TYPE_PRECISION (TREE_TYPE (op))) && TYPE_UNSIGNED (TREE_TYPE (op)))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "type conversion to/from bit-precision " "unsupported.\n"); return false; } if (!vec_stmt) /* transformation not required. */ { if (slp_node && !vect_maybe_update_slp_op_vectype (slp_op, vectype_in)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "incompatible vector types for invariants\n"); return false; } STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type; DUMP_VECT_SCOPE ("vectorizable_assignment"); if (!vect_nop_conversion_p (stmt_info)) vect_model_simple_cost (vinfo, stmt_info, ncopies, dt, ndts, slp_node, cost_vec); return true; } /* Transform. */ if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "transform assignment.\n"); /* Handle def. */ vec_dest = vect_create_destination_var (scalar_dest, vectype); /* Handle use. */ vect_get_vec_defs (vinfo, stmt_info, slp_node, ncopies, op, &vec_oprnds); /* Arguments are ready. create the new vector stmt. */ FOR_EACH_VEC_ELT (vec_oprnds, i, vop) { if (CONVERT_EXPR_CODE_P (code) || code == VIEW_CONVERT_EXPR) vop = build1 (VIEW_CONVERT_EXPR, vectype, vop); gassign *new_stmt = gimple_build_assign (vec_dest, vop); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); if (slp_node) SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); else STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } if (!slp_node) *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0]; vec_oprnds.release (); return true; } /* Return TRUE if CODE (a shift operation) is supported for SCALAR_TYPE either as shift by a scalar or by a vector. */ bool vect_supportable_shift (vec_info *vinfo, enum tree_code code, tree scalar_type) { machine_mode vec_mode; optab optab; int icode; tree vectype; vectype = get_vectype_for_scalar_type (vinfo, scalar_type); if (!vectype) return false; optab = optab_for_tree_code (code, vectype, optab_scalar); if (!optab || optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing) { optab = optab_for_tree_code (code, vectype, optab_vector); if (!optab || (optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing)) return false; } vec_mode = TYPE_MODE (vectype); icode = (int) optab_handler (optab, vec_mode); if (icode == CODE_FOR_nothing) return false; return true; } /* Function vectorizable_shift. Check if STMT_INFO performs a shift operation that can be vectorized. If VEC_STMT is also passed, vectorize the STMT_INFO: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at GSI. Return true if STMT_INFO is vectorizable in this way. */ static bool vectorizable_shift (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, gimple **vec_stmt, slp_tree slp_node, stmt_vector_for_cost *cost_vec) { tree vec_dest; tree scalar_dest; tree op0, op1 = NULL; tree vec_oprnd1 = NULL_TREE; tree vectype; loop_vec_info loop_vinfo = dyn_cast (vinfo); enum tree_code code; machine_mode vec_mode; tree new_temp; optab optab; int icode; machine_mode optab_op2_mode; enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type}; int ndts = 2; poly_uint64 nunits_in; poly_uint64 nunits_out; tree vectype_out; tree op1_vectype; int ncopies; int i; vec vec_oprnds0 = vNULL; vec vec_oprnds1 = vNULL; tree vop0, vop1; unsigned int k; bool scalar_shift_arg = true; bb_vec_info bb_vinfo = dyn_cast (vinfo); bool incompatible_op1_vectype_p = false; if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle && ! vec_stmt) return false; /* Is STMT a vectorizable binary/unary operation? */ gassign *stmt = dyn_cast (stmt_info->stmt); if (!stmt) return false; if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME) return false; code = gimple_assign_rhs_code (stmt); if (!(code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR || code == RROTATE_EXPR)) return false; scalar_dest = gimple_assign_lhs (stmt); vectype_out = STMT_VINFO_VECTYPE (stmt_info); if (!type_has_mode_precision_p (TREE_TYPE (scalar_dest))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "bit-precision shifts not supported.\n"); return false; } slp_tree slp_op0; if (!vect_is_simple_use (vinfo, stmt_info, slp_node, 0, &op0, &slp_op0, &dt[0], &vectype)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "use not simple.\n"); return false; } /* If op0 is an external or constant def, infer the vector type from the scalar type. */ if (!vectype) vectype = get_vectype_for_scalar_type (vinfo, TREE_TYPE (op0), slp_node); if (vec_stmt) gcc_assert (vectype); if (!vectype) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "no vectype for scalar type\n"); return false; } nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out); nunits_in = TYPE_VECTOR_SUBPARTS (vectype); if (maybe_ne (nunits_out, nunits_in)) return false; stmt_vec_info op1_def_stmt_info; slp_tree slp_op1; if (!vect_is_simple_use (vinfo, stmt_info, slp_node, 1, &op1, &slp_op1, &dt[1], &op1_vectype, &op1_def_stmt_info)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "use not simple.\n"); return false; } /* Multiple types in SLP are handled by creating the appropriate number of vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in case of SLP. */ if (slp_node) ncopies = 1; else ncopies = vect_get_num_copies (loop_vinfo, vectype); gcc_assert (ncopies >= 1); /* Determine whether the shift amount is a vector, or scalar. If the shift/rotate amount is a vector, use the vector/vector shift optabs. */ if ((dt[1] == vect_internal_def || dt[1] == vect_induction_def || dt[1] == vect_nested_cycle) && !slp_node) scalar_shift_arg = false; else if (dt[1] == vect_constant_def || dt[1] == vect_external_def || dt[1] == vect_internal_def) { /* In SLP, need to check whether the shift count is the same, in loops if it is a constant or invariant, it is always a scalar shift. */ if (slp_node) { vec stmts = SLP_TREE_SCALAR_STMTS (slp_node); stmt_vec_info slpstmt_info; FOR_EACH_VEC_ELT (stmts, k, slpstmt_info) { gassign *slpstmt = as_a (slpstmt_info->stmt); if (!operand_equal_p (gimple_assign_rhs2 (slpstmt), op1, 0)) scalar_shift_arg = false; } /* For internal SLP defs we have to make sure we see scalar stmts for all vector elements. ??? For different vectors we could resort to a different scalar shift operand but code-generation below simply always takes the first. */ if (dt[1] == vect_internal_def && maybe_ne (nunits_out * SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node), stmts.length ())) scalar_shift_arg = false; } /* If the shift amount is computed by a pattern stmt we cannot use the scalar amount directly thus give up and use a vector shift. */ if (op1_def_stmt_info && is_pattern_stmt_p (op1_def_stmt_info)) scalar_shift_arg = false; } else { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "operand mode requires invariant argument.\n"); return false; } /* Vector shifted by vector. */ bool was_scalar_shift_arg = scalar_shift_arg; if (!scalar_shift_arg) { optab = optab_for_tree_code (code, vectype, optab_vector); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vector/vector shift/rotate found.\n"); if (!op1_vectype) op1_vectype = get_vectype_for_scalar_type (vinfo, TREE_TYPE (op1), slp_op1); incompatible_op1_vectype_p = (op1_vectype == NULL_TREE || maybe_ne (TYPE_VECTOR_SUBPARTS (op1_vectype), TYPE_VECTOR_SUBPARTS (vectype)) || TYPE_MODE (op1_vectype) != TYPE_MODE (vectype)); if (incompatible_op1_vectype_p && (!slp_node || SLP_TREE_DEF_TYPE (slp_op1) != vect_constant_def || slp_op1->refcnt != 1)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "unusable type for last operand in" " vector/vector shift/rotate.\n"); return false; } } /* See if the machine has a vector shifted by scalar insn and if not then see if it has a vector shifted by vector insn. */ else { optab = optab_for_tree_code (code, vectype, optab_scalar); if (optab && optab_handler (optab, TYPE_MODE (vectype)) != CODE_FOR_nothing) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vector/scalar shift/rotate found.\n"); } else { optab = optab_for_tree_code (code, vectype, optab_vector); if (optab && (optab_handler (optab, TYPE_MODE (vectype)) != CODE_FOR_nothing)) { scalar_shift_arg = false; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vector/vector shift/rotate found.\n"); if (!op1_vectype) op1_vectype = get_vectype_for_scalar_type (vinfo, TREE_TYPE (op1), slp_op1); /* Unlike the other binary operators, shifts/rotates have the rhs being int, instead of the same type as the lhs, so make sure the scalar is the right type if we are dealing with vectors of long long/long/short/char. */ incompatible_op1_vectype_p = (!op1_vectype || !tree_nop_conversion_p (TREE_TYPE (vectype), TREE_TYPE (op1))); if (incompatible_op1_vectype_p && dt[1] == vect_internal_def) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "unusable type for last operand in" " vector/vector shift/rotate.\n"); return false; } } } } /* Supportable by target? */ if (!optab) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "no optab.\n"); return false; } vec_mode = TYPE_MODE (vectype); icode = (int) optab_handler (optab, vec_mode); if (icode == CODE_FOR_nothing) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "op not supported by target.\n"); return false; } /* vector lowering cannot optimize vector shifts using word arithmetic. */ if (vect_emulated_vector_p (vectype)) return false; if (!vec_stmt) /* transformation not required. */ { if (slp_node && (!vect_maybe_update_slp_op_vectype (slp_op0, vectype) || ((!scalar_shift_arg || dt[1] == vect_internal_def) && (!incompatible_op1_vectype_p || dt[1] == vect_constant_def) && !vect_maybe_update_slp_op_vectype (slp_op1, incompatible_op1_vectype_p ? vectype : op1_vectype)))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "incompatible vector types for invariants\n"); return false; } /* Now adjust the constant shift amount in place. */ if (slp_node && incompatible_op1_vectype_p && dt[1] == vect_constant_def) { for (unsigned i = 0; i < SLP_TREE_SCALAR_OPS (slp_op1).length (); ++i) { SLP_TREE_SCALAR_OPS (slp_op1)[i] = fold_convert (TREE_TYPE (vectype), SLP_TREE_SCALAR_OPS (slp_op1)[i]); gcc_assert ((TREE_CODE (SLP_TREE_SCALAR_OPS (slp_op1)[i]) == INTEGER_CST)); } } STMT_VINFO_TYPE (stmt_info) = shift_vec_info_type; DUMP_VECT_SCOPE ("vectorizable_shift"); vect_model_simple_cost (vinfo, stmt_info, ncopies, dt, scalar_shift_arg ? 1 : ndts, slp_node, cost_vec); return true; } /* Transform. */ if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "transform binary/unary operation.\n"); if (incompatible_op1_vectype_p && !slp_node) { gcc_assert (!scalar_shift_arg && was_scalar_shift_arg); op1 = fold_convert (TREE_TYPE (vectype), op1); if (dt[1] != vect_constant_def) op1 = vect_init_vector (vinfo, stmt_info, op1, TREE_TYPE (vectype), NULL); } /* Handle def. */ vec_dest = vect_create_destination_var (scalar_dest, vectype); if (scalar_shift_arg && dt[1] != vect_internal_def) { /* Vector shl and shr insn patterns can be defined with scalar operand 2 (shift operand). In this case, use constant or loop invariant op1 directly, without extending it to vector mode first. */ optab_op2_mode = insn_data[icode].operand[2].mode; if (!VECTOR_MODE_P (optab_op2_mode)) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "operand 1 using scalar mode.\n"); vec_oprnd1 = op1; vec_oprnds1.create (slp_node ? slp_node->vec_stmts_size : ncopies); vec_oprnds1.quick_push (vec_oprnd1); /* Store vec_oprnd1 for every vector stmt to be created. We check during the analysis that all the shift arguments are the same. TODO: Allow different constants for different vector stmts generated for an SLP instance. */ for (k = 0; k < (slp_node ? slp_node->vec_stmts_size - 1 : ncopies - 1); k++) vec_oprnds1.quick_push (vec_oprnd1); } } else if (!scalar_shift_arg && slp_node && incompatible_op1_vectype_p) { if (was_scalar_shift_arg) { /* If the argument was the same in all lanes create the correctly typed vector shift amount directly. */ op1 = fold_convert (TREE_TYPE (vectype), op1); op1 = vect_init_vector (vinfo, stmt_info, op1, TREE_TYPE (vectype), !loop_vinfo ? gsi : NULL); vec_oprnd1 = vect_init_vector (vinfo, stmt_info, op1, vectype, !loop_vinfo ? gsi : NULL); vec_oprnds1.create (slp_node->vec_stmts_size); for (k = 0; k < slp_node->vec_stmts_size; k++) vec_oprnds1.quick_push (vec_oprnd1); } else if (dt[1] == vect_constant_def) /* The constant shift amount has been adjusted in place. */ ; else gcc_assert (TYPE_MODE (op1_vectype) == TYPE_MODE (vectype)); } /* vec_oprnd1 is available if operand 1 should be of a scalar-type (a special case for certain kind of vector shifts); otherwise, operand 1 should be of a vector type (the usual case). */ vect_get_vec_defs (vinfo, stmt_info, slp_node, ncopies, op0, &vec_oprnds0, vec_oprnd1 ? NULL_TREE : op1, &vec_oprnds1); /* Arguments are ready. Create the new vector stmt. */ FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0) { /* For internal defs where we need to use a scalar shift arg extract the first lane. */ if (scalar_shift_arg && dt[1] == vect_internal_def) { vop1 = vec_oprnds1[0]; new_temp = make_ssa_name (TREE_TYPE (TREE_TYPE (vop1))); gassign *new_stmt = gimple_build_assign (new_temp, build3 (BIT_FIELD_REF, TREE_TYPE (new_temp), vop1, TYPE_SIZE (TREE_TYPE (new_temp)), bitsize_zero_node)); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); vop1 = new_temp; } else vop1 = vec_oprnds1[i]; gassign *new_stmt = gimple_build_assign (vec_dest, code, vop0, vop1); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); if (slp_node) SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); else STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } if (!slp_node) *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0]; vec_oprnds0.release (); vec_oprnds1.release (); return true; } /* Function vectorizable_operation. Check if STMT_INFO performs a binary, unary or ternary operation that can be vectorized. If VEC_STMT is also passed, vectorize STMT_INFO: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at GSI. Return true if STMT_INFO is vectorizable in this way. */ static bool vectorizable_operation (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, gimple **vec_stmt, slp_tree slp_node, stmt_vector_for_cost *cost_vec) { tree vec_dest; tree scalar_dest; tree op0, op1 = NULL_TREE, op2 = NULL_TREE; tree vectype; loop_vec_info loop_vinfo = dyn_cast (vinfo); enum tree_code code, orig_code; machine_mode vec_mode; tree new_temp; int op_type; optab optab; bool target_support_p; enum vect_def_type dt[3] = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type}; int ndts = 3; poly_uint64 nunits_in; poly_uint64 nunits_out; tree vectype_out; int ncopies, vec_num; int i; vec vec_oprnds0 = vNULL; vec vec_oprnds1 = vNULL; vec vec_oprnds2 = vNULL; tree vop0, vop1, vop2; bb_vec_info bb_vinfo = dyn_cast (vinfo); if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def && ! vec_stmt) return false; /* Is STMT a vectorizable binary/unary operation? */ gassign *stmt = dyn_cast (stmt_info->stmt); if (!stmt) return false; /* Loads and stores are handled in vectorizable_{load,store}. */ if (STMT_VINFO_DATA_REF (stmt_info)) return false; orig_code = code = gimple_assign_rhs_code (stmt); /* Shifts are handled in vectorizable_shift. */ if (code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR || code == RROTATE_EXPR) return false; /* Comparisons are handled in vectorizable_comparison. */ if (TREE_CODE_CLASS (code) == tcc_comparison) return false; /* Conditions are handled in vectorizable_condition. */ if (code == COND_EXPR) return false; /* For pointer addition and subtraction, we should use the normal plus and minus for the vector operation. */ if (code == POINTER_PLUS_EXPR) code = PLUS_EXPR; if (code == POINTER_DIFF_EXPR) code = MINUS_EXPR; /* Support only unary or binary operations. */ op_type = TREE_CODE_LENGTH (code); if (op_type != unary_op && op_type != binary_op && op_type != ternary_op) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "num. args = %d (not unary/binary/ternary op).\n", op_type); return false; } scalar_dest = gimple_assign_lhs (stmt); vectype_out = STMT_VINFO_VECTYPE (stmt_info); /* Most operations cannot handle bit-precision types without extra truncations. */ bool mask_op_p = VECTOR_BOOLEAN_TYPE_P (vectype_out); if (!mask_op_p && !type_has_mode_precision_p (TREE_TYPE (scalar_dest)) /* Exception are bitwise binary operations. */ && code != BIT_IOR_EXPR && code != BIT_XOR_EXPR && code != BIT_AND_EXPR) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "bit-precision arithmetic not supported.\n"); return false; } slp_tree slp_op0; if (!vect_is_simple_use (vinfo, stmt_info, slp_node, 0, &op0, &slp_op0, &dt[0], &vectype)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "use not simple.\n"); return false; } /* If op0 is an external or constant def, infer the vector type from the scalar type. */ if (!vectype) { /* For boolean type we cannot determine vectype by invariant value (don't know whether it is a vector of booleans or vector of integers). We use output vectype because operations on boolean don't change type. */ if (VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (op0))) { if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (scalar_dest))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not supported operation on bool value.\n"); return false; } vectype = vectype_out; } else vectype = get_vectype_for_scalar_type (vinfo, TREE_TYPE (op0), slp_node); } if (vec_stmt) gcc_assert (vectype); if (!vectype) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "no vectype for scalar type %T\n", TREE_TYPE (op0)); return false; } nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out); nunits_in = TYPE_VECTOR_SUBPARTS (vectype); if (maybe_ne (nunits_out, nunits_in)) return false; tree vectype2 = NULL_TREE, vectype3 = NULL_TREE; slp_tree slp_op1 = NULL, slp_op2 = NULL; if (op_type == binary_op || op_type == ternary_op) { if (!vect_is_simple_use (vinfo, stmt_info, slp_node, 1, &op1, &slp_op1, &dt[1], &vectype2)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "use not simple.\n"); return false; } } if (op_type == ternary_op) { if (!vect_is_simple_use (vinfo, stmt_info, slp_node, 2, &op2, &slp_op2, &dt[2], &vectype3)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "use not simple.\n"); return false; } } /* Multiple types in SLP are handled by creating the appropriate number of vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in case of SLP. */ if (slp_node) { ncopies = 1; vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node); } else { ncopies = vect_get_num_copies (loop_vinfo, vectype); vec_num = 1; } gcc_assert (ncopies >= 1); /* Reject attempts to combine mask types with nonmask types, e.g. if we have an AND between a (nonmask) boolean loaded from memory and a (mask) boolean result of a comparison. TODO: We could easily fix these cases up using pattern statements. */ if (VECTOR_BOOLEAN_TYPE_P (vectype) != mask_op_p || (vectype2 && VECTOR_BOOLEAN_TYPE_P (vectype2) != mask_op_p) || (vectype3 && VECTOR_BOOLEAN_TYPE_P (vectype3) != mask_op_p)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "mixed mask and nonmask vector types\n"); return false; } /* Supportable by target? */ vec_mode = TYPE_MODE (vectype); if (code == MULT_HIGHPART_EXPR) target_support_p = can_mult_highpart_p (vec_mode, TYPE_UNSIGNED (vectype)); else { optab = optab_for_tree_code (code, vectype, optab_default); if (!optab) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "no optab.\n"); return false; } target_support_p = (optab_handler (optab, vec_mode) != CODE_FOR_nothing); } bool using_emulated_vectors_p = vect_emulated_vector_p (vectype); if (!target_support_p) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "op not supported by target.\n"); /* Check only during analysis. */ if (maybe_ne (GET_MODE_SIZE (vec_mode), UNITS_PER_WORD) || (!vec_stmt && !vect_can_vectorize_without_simd_p (code))) return false; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "proceeding using word mode.\n"); using_emulated_vectors_p = true; } if (using_emulated_vectors_p && !vect_can_vectorize_without_simd_p (code)) { if (dump_enabled_p ()) dump_printf (MSG_NOTE, "using word mode not possible.\n"); return false; } int reduc_idx = STMT_VINFO_REDUC_IDX (stmt_info); vec_loop_masks *masks = (loop_vinfo ? &LOOP_VINFO_MASKS (loop_vinfo) : NULL); internal_fn cond_fn = get_conditional_internal_fn (code); if (!vec_stmt) /* transformation not required. */ { /* If this operation is part of a reduction, a fully-masked loop should only change the active lanes of the reduction chain, keeping the inactive lanes as-is. */ if (loop_vinfo && LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) && reduc_idx >= 0) { if (cond_fn == IFN_LAST || !direct_internal_fn_supported_p (cond_fn, vectype, OPTIMIZE_FOR_SPEED)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "can't use a fully-masked loop because no" " conditional operation is available.\n"); LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false; } else vect_record_loop_mask (loop_vinfo, masks, ncopies * vec_num, vectype, NULL); } /* Put types on constant and invariant SLP children. */ if (slp_node && (!vect_maybe_update_slp_op_vectype (slp_op0, vectype) || !vect_maybe_update_slp_op_vectype (slp_op1, vectype) || !vect_maybe_update_slp_op_vectype (slp_op2, vectype))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "incompatible vector types for invariants\n"); return false; } STMT_VINFO_TYPE (stmt_info) = op_vec_info_type; DUMP_VECT_SCOPE ("vectorizable_operation"); vect_model_simple_cost (vinfo, stmt_info, ncopies, dt, ndts, slp_node, cost_vec); if (using_emulated_vectors_p) { /* The above vect_model_simple_cost call handles constants in the prologue and (mis-)costs one of the stmts as vector stmt. See tree-vect-generic.c:do_plus_minus/do_negate for the actual lowering that will be applied. */ unsigned n = slp_node ? SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node) : ncopies; switch (code) { case PLUS_EXPR: n *= 5; break; case MINUS_EXPR: n *= 6; break; case NEGATE_EXPR: n *= 4; break; default:; } record_stmt_cost (cost_vec, n, scalar_stmt, stmt_info, 0, vect_body); } return true; } /* Transform. */ if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "transform binary/unary operation.\n"); bool masked_loop_p = loop_vinfo && LOOP_VINFO_FULLY_MASKED_P (loop_vinfo); /* POINTER_DIFF_EXPR has pointer arguments which are vectorized as vectors with unsigned elements, but the result is signed. So, we need to compute the MINUS_EXPR into vectype temporary and VIEW_CONVERT_EXPR it into the final vectype_out result. */ tree vec_cvt_dest = NULL_TREE; if (orig_code == POINTER_DIFF_EXPR) { vec_dest = vect_create_destination_var (scalar_dest, vectype); vec_cvt_dest = vect_create_destination_var (scalar_dest, vectype_out); } /* Handle def. */ else vec_dest = vect_create_destination_var (scalar_dest, vectype_out); /* In case the vectorization factor (VF) is bigger than the number of elements that we can fit in a vectype (nunits), we have to generate more than one vector stmt - i.e - we need to "unroll" the vector stmt by a factor VF/nunits. In doing so, we record a pointer from one copy of the vector stmt to the next, in the field STMT_VINFO_RELATED_STMT. This is necessary in order to allow following stages to find the correct vector defs to be used when vectorizing stmts that use the defs of the current stmt. The example below illustrates the vectorization process when VF=16 and nunits=4 (i.e., we need to create 4 vectorized stmts): before vectorization: RELATED_STMT VEC_STMT S1: x = memref - - S2: z = x + 1 - - step 1: vectorize stmt S1 (done in vectorizable_load. See more details there): RELATED_STMT VEC_STMT VS1_0: vx0 = memref0 VS1_1 - VS1_1: vx1 = memref1 VS1_2 - VS1_2: vx2 = memref2 VS1_3 - VS1_3: vx3 = memref3 - - S1: x = load - VS1_0 S2: z = x + 1 - - step2: vectorize stmt S2 (done here): To vectorize stmt S2 we first need to find the relevant vector def for the first operand 'x'. This is, as usual, obtained from the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt that defines 'x' (S1). This way we find the stmt VS1_0, and the relevant vector def 'vx0'. Having found 'vx0' we can generate the vector stmt VS2_0, and as usual, record it in the STMT_VINFO_VEC_STMT of stmt S2. When creating the second copy (VS2_1), we obtain the relevant vector def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of stmt VS1_0. This way we find the stmt VS1_1 and the relevant vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0. Similarly when creating stmts VS2_2 and VS2_3. This is the resulting chain of stmts and pointers: RELATED_STMT VEC_STMT VS1_0: vx0 = memref0 VS1_1 - VS1_1: vx1 = memref1 VS1_2 - VS1_2: vx2 = memref2 VS1_3 - VS1_3: vx3 = memref3 - - S1: x = load - VS1_0 VS2_0: vz0 = vx0 + v1 VS2_1 - VS2_1: vz1 = vx1 + v1 VS2_2 - VS2_2: vz2 = vx2 + v1 VS2_3 - VS2_3: vz3 = vx3 + v1 - - S2: z = x + 1 - VS2_0 */ vect_get_vec_defs (vinfo, stmt_info, slp_node, ncopies, op0, &vec_oprnds0, op1, &vec_oprnds1, op2, &vec_oprnds2); /* Arguments are ready. Create the new vector stmt. */ FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0) { gimple *new_stmt = NULL; vop1 = ((op_type == binary_op || op_type == ternary_op) ? vec_oprnds1[i] : NULL_TREE); vop2 = ((op_type == ternary_op) ? vec_oprnds2[i] : NULL_TREE); if (masked_loop_p && reduc_idx >= 0) { /* Perform the operation on active elements only and take inactive elements from the reduction chain input. */ gcc_assert (!vop2); vop2 = reduc_idx == 1 ? vop1 : vop0; tree mask = vect_get_loop_mask (gsi, masks, vec_num * ncopies, vectype, i); gcall *call = gimple_build_call_internal (cond_fn, 4, mask, vop0, vop1, vop2); new_temp = make_ssa_name (vec_dest, call); gimple_call_set_lhs (call, new_temp); gimple_call_set_nothrow (call, true); vect_finish_stmt_generation (vinfo, stmt_info, call, gsi); new_stmt = call; } else { new_stmt = gimple_build_assign (vec_dest, code, vop0, vop1, vop2); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); if (vec_cvt_dest) { new_temp = build1 (VIEW_CONVERT_EXPR, vectype_out, new_temp); new_stmt = gimple_build_assign (vec_cvt_dest, VIEW_CONVERT_EXPR, new_temp); new_temp = make_ssa_name (vec_cvt_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } } if (slp_node) SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); else STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } if (!slp_node) *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0]; vec_oprnds0.release (); vec_oprnds1.release (); vec_oprnds2.release (); return true; } /* A helper function to ensure data reference DR_INFO's base alignment. */ static void ensure_base_align (dr_vec_info *dr_info) { if (dr_info->misalignment == DR_MISALIGNMENT_UNINITIALIZED) return; if (dr_info->base_misaligned) { tree base_decl = dr_info->base_decl; // We should only be able to increase the alignment of a base object if // we know what its new alignment should be at compile time. unsigned HOST_WIDE_INT align_base_to = DR_TARGET_ALIGNMENT (dr_info).to_constant () * BITS_PER_UNIT; if (decl_in_symtab_p (base_decl)) symtab_node::get (base_decl)->increase_alignment (align_base_to); else if (DECL_ALIGN (base_decl) < align_base_to) { SET_DECL_ALIGN (base_decl, align_base_to); DECL_USER_ALIGN (base_decl) = 1; } dr_info->base_misaligned = false; } } /* Function get_group_alias_ptr_type. Return the alias type for the group starting at FIRST_STMT_INFO. */ static tree get_group_alias_ptr_type (stmt_vec_info first_stmt_info) { struct data_reference *first_dr, *next_dr; first_dr = STMT_VINFO_DATA_REF (first_stmt_info); stmt_vec_info next_stmt_info = DR_GROUP_NEXT_ELEMENT (first_stmt_info); while (next_stmt_info) { next_dr = STMT_VINFO_DATA_REF (next_stmt_info); if (get_alias_set (DR_REF (first_dr)) != get_alias_set (DR_REF (next_dr))) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "conflicting alias set types.\n"); return ptr_type_node; } next_stmt_info = DR_GROUP_NEXT_ELEMENT (next_stmt_info); } return reference_alias_ptr_type (DR_REF (first_dr)); } /* Function scan_operand_equal_p. Helper function for check_scan_store. Compare two references with .GOMP_SIMD_LANE bases. */ static bool scan_operand_equal_p (tree ref1, tree ref2) { tree ref[2] = { ref1, ref2 }; poly_int64 bitsize[2], bitpos[2]; tree offset[2], base[2]; for (int i = 0; i < 2; ++i) { machine_mode mode; int unsignedp, reversep, volatilep = 0; base[i] = get_inner_reference (ref[i], &bitsize[i], &bitpos[i], &offset[i], &mode, &unsignedp, &reversep, &volatilep); if (reversep || volatilep || maybe_ne (bitpos[i], 0)) return false; if (TREE_CODE (base[i]) == MEM_REF && offset[i] == NULL_TREE && TREE_CODE (TREE_OPERAND (base[i], 0)) == SSA_NAME) { gimple *def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base[i], 0)); if (is_gimple_assign (def_stmt) && gimple_assign_rhs_code (def_stmt) == POINTER_PLUS_EXPR && TREE_CODE (gimple_assign_rhs1 (def_stmt)) == ADDR_EXPR && TREE_CODE (gimple_assign_rhs2 (def_stmt)) == SSA_NAME) { if (maybe_ne (mem_ref_offset (base[i]), 0)) return false; base[i] = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0); offset[i] = gimple_assign_rhs2 (def_stmt); } } } if (!operand_equal_p (base[0], base[1], 0)) return false; if (maybe_ne (bitsize[0], bitsize[1])) return false; if (offset[0] != offset[1]) { if (!offset[0] || !offset[1]) return false; if (!operand_equal_p (offset[0], offset[1], 0)) { tree step[2]; for (int i = 0; i < 2; ++i) { step[i] = integer_one_node; if (TREE_CODE (offset[i]) == SSA_NAME) { gimple *def_stmt = SSA_NAME_DEF_STMT (offset[i]); if (is_gimple_assign (def_stmt) && gimple_assign_rhs_code (def_stmt) == MULT_EXPR && (TREE_CODE (gimple_assign_rhs2 (def_stmt)) == INTEGER_CST)) { step[i] = gimple_assign_rhs2 (def_stmt); offset[i] = gimple_assign_rhs1 (def_stmt); } } else if (TREE_CODE (offset[i]) == MULT_EXPR) { step[i] = TREE_OPERAND (offset[i], 1); offset[i] = TREE_OPERAND (offset[i], 0); } tree rhs1 = NULL_TREE; if (TREE_CODE (offset[i]) == SSA_NAME) { gimple *def_stmt = SSA_NAME_DEF_STMT (offset[i]); if (gimple_assign_cast_p (def_stmt)) rhs1 = gimple_assign_rhs1 (def_stmt); } else if (CONVERT_EXPR_P (offset[i])) rhs1 = TREE_OPERAND (offset[i], 0); if (rhs1 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) && INTEGRAL_TYPE_P (TREE_TYPE (offset[i])) && (TYPE_PRECISION (TREE_TYPE (offset[i])) >= TYPE_PRECISION (TREE_TYPE (rhs1)))) offset[i] = rhs1; } if (!operand_equal_p (offset[0], offset[1], 0) || !operand_equal_p (step[0], step[1], 0)) return false; } } return true; } enum scan_store_kind { /* Normal permutation. */ scan_store_kind_perm, /* Whole vector left shift permutation with zero init. */ scan_store_kind_lshift_zero, /* Whole vector left shift permutation and VEC_COND_EXPR. */ scan_store_kind_lshift_cond }; /* Function check_scan_store. Verify if we can perform the needed permutations or whole vector shifts. Return -1 on failure, otherwise exact log2 of vectype's nunits. USE_WHOLE_VECTOR is a vector of enum scan_store_kind which operation to do at each step. */ static int scan_store_can_perm_p (tree vectype, tree init, vec *use_whole_vector = NULL) { enum machine_mode vec_mode = TYPE_MODE (vectype); unsigned HOST_WIDE_INT nunits; if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits)) return -1; int units_log2 = exact_log2 (nunits); if (units_log2 <= 0) return -1; int i; enum scan_store_kind whole_vector_shift_kind = scan_store_kind_perm; for (i = 0; i <= units_log2; ++i) { unsigned HOST_WIDE_INT j, k; enum scan_store_kind kind = scan_store_kind_perm; vec_perm_builder sel (nunits, nunits, 1); sel.quick_grow (nunits); if (i == units_log2) { for (j = 0; j < nunits; ++j) sel[j] = nunits - 1; } else { for (j = 0; j < (HOST_WIDE_INT_1U << i); ++j) sel[j] = j; for (k = 0; j < nunits; ++j, ++k) sel[j] = nunits + k; } vec_perm_indices indices (sel, i == units_log2 ? 1 : 2, nunits); if (!can_vec_perm_const_p (vec_mode, indices)) { if (i == units_log2) return -1; if (whole_vector_shift_kind == scan_store_kind_perm) { if (optab_handler (vec_shl_optab, vec_mode) == CODE_FOR_nothing) return -1; whole_vector_shift_kind = scan_store_kind_lshift_zero; /* Whole vector shifts shift in zeros, so if init is all zero constant, there is no need to do anything further. */ if ((TREE_CODE (init) != INTEGER_CST && TREE_CODE (init) != REAL_CST) || !initializer_zerop (init)) { tree masktype = truth_type_for (vectype); if (!expand_vec_cond_expr_p (vectype, masktype, VECTOR_CST)) return -1; whole_vector_shift_kind = scan_store_kind_lshift_cond; } } kind = whole_vector_shift_kind; } if (use_whole_vector) { if (kind != scan_store_kind_perm && use_whole_vector->is_empty ()) use_whole_vector->safe_grow_cleared (i, true); if (kind != scan_store_kind_perm || !use_whole_vector->is_empty ()) use_whole_vector->safe_push (kind); } } return units_log2; } /* Function check_scan_store. Check magic stores for #pragma omp scan {in,ex}clusive reductions. */ static bool check_scan_store (vec_info *vinfo, stmt_vec_info stmt_info, tree vectype, enum vect_def_type rhs_dt, bool slp, tree mask, vect_memory_access_type memory_access_type) { loop_vec_info loop_vinfo = dyn_cast (vinfo); dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info); tree ref_type; gcc_assert (STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) > 1); if (slp || mask || memory_access_type != VMAT_CONTIGUOUS || TREE_CODE (DR_BASE_ADDRESS (dr_info->dr)) != ADDR_EXPR || !VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (dr_info->dr), 0)) || loop_vinfo == NULL || LOOP_VINFO_FULLY_MASKED_P (loop_vinfo) || STMT_VINFO_GROUPED_ACCESS (stmt_info) || !integer_zerop (get_dr_vinfo_offset (vinfo, dr_info)) || !integer_zerop (DR_INIT (dr_info->dr)) || !(ref_type = reference_alias_ptr_type (DR_REF (dr_info->dr))) || !alias_sets_conflict_p (get_alias_set (vectype), get_alias_set (TREE_TYPE (ref_type)))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "unsupported OpenMP scan store.\n"); return false; } /* We need to pattern match code built by OpenMP lowering and simplified by following optimizations into something we can handle. #pragma omp simd reduction(inscan,+:r) for (...) { r += something (); #pragma omp scan inclusive (r) use (r); } shall have body with: // Initialization for input phase, store the reduction initializer: _20 = .GOMP_SIMD_LANE (simduid.3_14(D), 0); _21 = .GOMP_SIMD_LANE (simduid.3_14(D), 1); D.2042[_21] = 0; // Actual input phase: ... r.0_5 = D.2042[_20]; _6 = _4 + r.0_5; D.2042[_20] = _6; // Initialization for scan phase: _25 = .GOMP_SIMD_LANE (simduid.3_14(D), 2); _26 = D.2043[_25]; _27 = D.2042[_25]; _28 = _26 + _27; D.2043[_25] = _28; D.2042[_25] = _28; // Actual scan phase: ... r.1_8 = D.2042[_20]; ... The "omp simd array" variable D.2042 holds the privatized copy used inside of the loop and D.2043 is another one that holds copies of the current original list item. The separate GOMP_SIMD_LANE ifn kinds are there in order to allow optimizing the initializer store and combiner sequence, e.g. if it is originally some C++ish user defined reduction, but allow the vectorizer to pattern recognize it and turn into the appropriate vectorized scan. For exclusive scan, this is slightly different: #pragma omp simd reduction(inscan,+:r) for (...) { use (r); #pragma omp scan exclusive (r) r += something (); } shall have body with: // Initialization for input phase, store the reduction initializer: _20 = .GOMP_SIMD_LANE (simduid.3_14(D), 0); _21 = .GOMP_SIMD_LANE (simduid.3_14(D), 1); D.2042[_21] = 0; // Actual input phase: ... r.0_5 = D.2042[_20]; _6 = _4 + r.0_5; D.2042[_20] = _6; // Initialization for scan phase: _25 = .GOMP_SIMD_LANE (simduid.3_14(D), 3); _26 = D.2043[_25]; D.2044[_25] = _26; _27 = D.2042[_25]; _28 = _26 + _27; D.2043[_25] = _28; // Actual scan phase: ... r.1_8 = D.2044[_20]; ... */ if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) == 2) { /* Match the D.2042[_21] = 0; store above. Just require that it is a constant or external definition store. */ if (rhs_dt != vect_constant_def && rhs_dt != vect_external_def) { fail_init: if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "unsupported OpenMP scan initializer store.\n"); return false; } if (! loop_vinfo->scan_map) loop_vinfo->scan_map = new hash_map; tree var = TREE_OPERAND (DR_BASE_ADDRESS (dr_info->dr), 0); tree &cached = loop_vinfo->scan_map->get_or_insert (var); if (cached) goto fail_init; cached = gimple_assign_rhs1 (STMT_VINFO_STMT (stmt_info)); /* These stores can be vectorized normally. */ return true; } if (rhs_dt != vect_internal_def) { fail: if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "unsupported OpenMP scan combiner pattern.\n"); return false; } gimple *stmt = STMT_VINFO_STMT (stmt_info); tree rhs = gimple_assign_rhs1 (stmt); if (TREE_CODE (rhs) != SSA_NAME) goto fail; gimple *other_store_stmt = NULL; tree var = TREE_OPERAND (DR_BASE_ADDRESS (dr_info->dr), 0); bool inscan_var_store = lookup_attribute ("omp simd inscan", DECL_ATTRIBUTES (var)) != NULL; if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) == 4) { if (!inscan_var_store) { use_operand_p use_p; imm_use_iterator iter; FOR_EACH_IMM_USE_FAST (use_p, iter, rhs) { gimple *use_stmt = USE_STMT (use_p); if (use_stmt == stmt || is_gimple_debug (use_stmt)) continue; if (gimple_bb (use_stmt) != gimple_bb (stmt) || !is_gimple_assign (use_stmt) || gimple_assign_rhs_class (use_stmt) != GIMPLE_BINARY_RHS || other_store_stmt || TREE_CODE (gimple_assign_lhs (use_stmt)) != SSA_NAME) goto fail; other_store_stmt = use_stmt; } if (other_store_stmt == NULL) goto fail; rhs = gimple_assign_lhs (other_store_stmt); if (!single_imm_use (rhs, &use_p, &other_store_stmt)) goto fail; } } else if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) == 3) { use_operand_p use_p; imm_use_iterator iter; FOR_EACH_IMM_USE_FAST (use_p, iter, rhs) { gimple *use_stmt = USE_STMT (use_p); if (use_stmt == stmt || is_gimple_debug (use_stmt)) continue; if (other_store_stmt) goto fail; other_store_stmt = use_stmt; } } else goto fail; gimple *def_stmt = SSA_NAME_DEF_STMT (rhs); if (gimple_bb (def_stmt) != gimple_bb (stmt) || !is_gimple_assign (def_stmt) || gimple_assign_rhs_class (def_stmt) != GIMPLE_BINARY_RHS) goto fail; enum tree_code code = gimple_assign_rhs_code (def_stmt); /* For pointer addition, we should use the normal plus for the vector operation. */ switch (code) { case POINTER_PLUS_EXPR: code = PLUS_EXPR; break; case MULT_HIGHPART_EXPR: goto fail; default: break; } if (TREE_CODE_LENGTH (code) != binary_op || !commutative_tree_code (code)) goto fail; tree rhs1 = gimple_assign_rhs1 (def_stmt); tree rhs2 = gimple_assign_rhs2 (def_stmt); if (TREE_CODE (rhs1) != SSA_NAME || TREE_CODE (rhs2) != SSA_NAME) goto fail; gimple *load1_stmt = SSA_NAME_DEF_STMT (rhs1); gimple *load2_stmt = SSA_NAME_DEF_STMT (rhs2); if (gimple_bb (load1_stmt) != gimple_bb (stmt) || !gimple_assign_load_p (load1_stmt) || gimple_bb (load2_stmt) != gimple_bb (stmt) || !gimple_assign_load_p (load2_stmt)) goto fail; stmt_vec_info load1_stmt_info = loop_vinfo->lookup_stmt (load1_stmt); stmt_vec_info load2_stmt_info = loop_vinfo->lookup_stmt (load2_stmt); if (load1_stmt_info == NULL || load2_stmt_info == NULL || (STMT_VINFO_SIMD_LANE_ACCESS_P (load1_stmt_info) != STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info)) || (STMT_VINFO_SIMD_LANE_ACCESS_P (load2_stmt_info) != STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info))) goto fail; if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) == 4 && inscan_var_store) { dr_vec_info *load1_dr_info = STMT_VINFO_DR_INFO (load1_stmt_info); if (TREE_CODE (DR_BASE_ADDRESS (load1_dr_info->dr)) != ADDR_EXPR || !VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (load1_dr_info->dr), 0))) goto fail; tree var1 = TREE_OPERAND (DR_BASE_ADDRESS (load1_dr_info->dr), 0); tree lrhs; if (lookup_attribute ("omp simd inscan", DECL_ATTRIBUTES (var1))) lrhs = rhs1; else lrhs = rhs2; use_operand_p use_p; imm_use_iterator iter; FOR_EACH_IMM_USE_FAST (use_p, iter, lrhs) { gimple *use_stmt = USE_STMT (use_p); if (use_stmt == def_stmt || is_gimple_debug (use_stmt)) continue; if (other_store_stmt) goto fail; other_store_stmt = use_stmt; } } if (other_store_stmt == NULL) goto fail; if (gimple_bb (other_store_stmt) != gimple_bb (stmt) || !gimple_store_p (other_store_stmt)) goto fail; stmt_vec_info other_store_stmt_info = loop_vinfo->lookup_stmt (other_store_stmt); if (other_store_stmt_info == NULL || (STMT_VINFO_SIMD_LANE_ACCESS_P (other_store_stmt_info) != STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info))) goto fail; gimple *stmt1 = stmt; gimple *stmt2 = other_store_stmt; if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) == 4 && !inscan_var_store) std::swap (stmt1, stmt2); if (scan_operand_equal_p (gimple_assign_lhs (stmt1), gimple_assign_rhs1 (load2_stmt))) { std::swap (rhs1, rhs2); std::swap (load1_stmt, load2_stmt); std::swap (load1_stmt_info, load2_stmt_info); } if (!scan_operand_equal_p (gimple_assign_lhs (stmt1), gimple_assign_rhs1 (load1_stmt))) goto fail; tree var3 = NULL_TREE; if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) == 3 && !scan_operand_equal_p (gimple_assign_lhs (stmt2), gimple_assign_rhs1 (load2_stmt))) goto fail; else if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) == 4) { dr_vec_info *load2_dr_info = STMT_VINFO_DR_INFO (load2_stmt_info); if (TREE_CODE (DR_BASE_ADDRESS (load2_dr_info->dr)) != ADDR_EXPR || !VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (load2_dr_info->dr), 0))) goto fail; var3 = TREE_OPERAND (DR_BASE_ADDRESS (load2_dr_info->dr), 0); if (!lookup_attribute ("omp simd array", DECL_ATTRIBUTES (var3)) || lookup_attribute ("omp simd inscan", DECL_ATTRIBUTES (var3)) || lookup_attribute ("omp simd inscan exclusive", DECL_ATTRIBUTES (var3))) goto fail; } dr_vec_info *other_dr_info = STMT_VINFO_DR_INFO (other_store_stmt_info); if (TREE_CODE (DR_BASE_ADDRESS (other_dr_info->dr)) != ADDR_EXPR || !VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (other_dr_info->dr), 0))) goto fail; tree var1 = TREE_OPERAND (DR_BASE_ADDRESS (dr_info->dr), 0); tree var2 = TREE_OPERAND (DR_BASE_ADDRESS (other_dr_info->dr), 0); if (!lookup_attribute ("omp simd array", DECL_ATTRIBUTES (var1)) || !lookup_attribute ("omp simd array", DECL_ATTRIBUTES (var2)) || (!lookup_attribute ("omp simd inscan", DECL_ATTRIBUTES (var1))) == (!lookup_attribute ("omp simd inscan", DECL_ATTRIBUTES (var2)))) goto fail; if (lookup_attribute ("omp simd inscan", DECL_ATTRIBUTES (var1))) std::swap (var1, var2); if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) == 4) { if (!lookup_attribute ("omp simd inscan exclusive", DECL_ATTRIBUTES (var1))) goto fail; var1 = var3; } if (loop_vinfo->scan_map == NULL) goto fail; tree *init = loop_vinfo->scan_map->get (var1); if (init == NULL) goto fail; /* The IL is as expected, now check if we can actually vectorize it. Inclusive scan: _26 = D.2043[_25]; _27 = D.2042[_25]; _28 = _26 + _27; D.2043[_25] = _28; D.2042[_25] = _28; should be vectorized as (where _40 is the vectorized rhs from the D.2042[_21] = 0; store): _30 = MEM [(int *)&D.2043]; _31 = MEM [(int *)&D.2042]; _32 = VEC_PERM_EXPR <_40, _31, { 0, 8, 9, 10, 11, 12, 13, 14 }>; _33 = _31 + _32; // _33 = { _31[0], _31[0]+_31[1], _31[1]+_31[2], ..., _31[6]+_31[7] }; _34 = VEC_PERM_EXPR <_40, _33, { 0, 1, 8, 9, 10, 11, 12, 13 }>; _35 = _33 + _34; // _35 = { _31[0], _31[0]+_31[1], _31[0]+.._31[2], _31[0]+.._31[3], // _31[1]+.._31[4], ... _31[4]+.._31[7] }; _36 = VEC_PERM_EXPR <_40, _35, { 0, 1, 2, 3, 8, 9, 10, 11 }>; _37 = _35 + _36; // _37 = { _31[0], _31[0]+_31[1], _31[0]+.._31[2], _31[0]+.._31[3], // _31[0]+.._31[4], ... _31[0]+.._31[7] }; _38 = _30 + _37; _39 = VEC_PERM_EXPR <_38, _38, { 7, 7, 7, 7, 7, 7, 7, 7 }>; MEM [(int *)&D.2043] = _39; MEM [(int *)&D.2042] = _38; Exclusive scan: _26 = D.2043[_25]; D.2044[_25] = _26; _27 = D.2042[_25]; _28 = _26 + _27; D.2043[_25] = _28; should be vectorized as (where _40 is the vectorized rhs from the D.2042[_21] = 0; store): _30 = MEM [(int *)&D.2043]; _31 = MEM [(int *)&D.2042]; _32 = VEC_PERM_EXPR <_40, _31, { 0, 8, 9, 10, 11, 12, 13, 14 }>; _33 = VEC_PERM_EXPR <_40, _32, { 0, 8, 9, 10, 11, 12, 13, 14 }>; _34 = _32 + _33; // _34 = { 0, _31[0], _31[0]+_31[1], _31[1]+_31[2], _31[2]+_31[3], // _31[3]+_31[4], ... _31[5]+.._31[6] }; _35 = VEC_PERM_EXPR <_40, _34, { 0, 1, 8, 9, 10, 11, 12, 13 }>; _36 = _34 + _35; // _36 = { 0, _31[0], _31[0]+_31[1], _31[0]+.._31[2], _31[0]+.._31[3], // _31[1]+.._31[4], ... _31[3]+.._31[6] }; _37 = VEC_PERM_EXPR <_40, _36, { 0, 1, 2, 3, 8, 9, 10, 11 }>; _38 = _36 + _37; // _38 = { 0, _31[0], _31[0]+_31[1], _31[0]+.._31[2], _31[0]+.._31[3], // _31[0]+.._31[4], ... _31[0]+.._31[6] }; _39 = _30 + _38; _50 = _31 + _39; _51 = VEC_PERM_EXPR <_50, _50, { 7, 7, 7, 7, 7, 7, 7, 7 }>; MEM [(int *)&D.2044] = _39; MEM [(int *)&D.2042] = _51; */ enum machine_mode vec_mode = TYPE_MODE (vectype); optab optab = optab_for_tree_code (code, vectype, optab_default); if (!optab || optab_handler (optab, vec_mode) == CODE_FOR_nothing) goto fail; int units_log2 = scan_store_can_perm_p (vectype, *init); if (units_log2 == -1) goto fail; return true; } /* Function vectorizable_scan_store. Helper of vectorizable_score, arguments like on vectorizable_store. Handle only the transformation, checking is done in check_scan_store. */ static bool vectorizable_scan_store (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, gimple **vec_stmt, int ncopies) { loop_vec_info loop_vinfo = dyn_cast (vinfo); dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info); tree ref_type = reference_alias_ptr_type (DR_REF (dr_info->dr)); tree vectype = STMT_VINFO_VECTYPE (stmt_info); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "transform scan store. ncopies = %d\n", ncopies); gimple *stmt = STMT_VINFO_STMT (stmt_info); tree rhs = gimple_assign_rhs1 (stmt); gcc_assert (TREE_CODE (rhs) == SSA_NAME); tree var = TREE_OPERAND (DR_BASE_ADDRESS (dr_info->dr), 0); bool inscan_var_store = lookup_attribute ("omp simd inscan", DECL_ATTRIBUTES (var)) != NULL; if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) == 4 && !inscan_var_store) { use_operand_p use_p; imm_use_iterator iter; FOR_EACH_IMM_USE_FAST (use_p, iter, rhs) { gimple *use_stmt = USE_STMT (use_p); if (use_stmt == stmt || is_gimple_debug (use_stmt)) continue; rhs = gimple_assign_lhs (use_stmt); break; } } gimple *def_stmt = SSA_NAME_DEF_STMT (rhs); enum tree_code code = gimple_assign_rhs_code (def_stmt); if (code == POINTER_PLUS_EXPR) code = PLUS_EXPR; gcc_assert (TREE_CODE_LENGTH (code) == binary_op && commutative_tree_code (code)); tree rhs1 = gimple_assign_rhs1 (def_stmt); tree rhs2 = gimple_assign_rhs2 (def_stmt); gcc_assert (TREE_CODE (rhs1) == SSA_NAME && TREE_CODE (rhs2) == SSA_NAME); gimple *load1_stmt = SSA_NAME_DEF_STMT (rhs1); gimple *load2_stmt = SSA_NAME_DEF_STMT (rhs2); stmt_vec_info load1_stmt_info = loop_vinfo->lookup_stmt (load1_stmt); stmt_vec_info load2_stmt_info = loop_vinfo->lookup_stmt (load2_stmt); dr_vec_info *load1_dr_info = STMT_VINFO_DR_INFO (load1_stmt_info); dr_vec_info *load2_dr_info = STMT_VINFO_DR_INFO (load2_stmt_info); tree var1 = TREE_OPERAND (DR_BASE_ADDRESS (load1_dr_info->dr), 0); tree var2 = TREE_OPERAND (DR_BASE_ADDRESS (load2_dr_info->dr), 0); if (lookup_attribute ("omp simd inscan", DECL_ATTRIBUTES (var1))) { std::swap (rhs1, rhs2); std::swap (var1, var2); std::swap (load1_dr_info, load2_dr_info); } tree *init = loop_vinfo->scan_map->get (var1); gcc_assert (init); unsigned HOST_WIDE_INT nunits; if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits)) gcc_unreachable (); auto_vec use_whole_vector; int units_log2 = scan_store_can_perm_p (vectype, *init, &use_whole_vector); gcc_assert (units_log2 > 0); auto_vec perms; perms.quick_grow (units_log2 + 1); tree zero_vec = NULL_TREE, masktype = NULL_TREE; for (int i = 0; i <= units_log2; ++i) { unsigned HOST_WIDE_INT j, k; vec_perm_builder sel (nunits, nunits, 1); sel.quick_grow (nunits); if (i == units_log2) for (j = 0; j < nunits; ++j) sel[j] = nunits - 1; else { for (j = 0; j < (HOST_WIDE_INT_1U << i); ++j) sel[j] = j; for (k = 0; j < nunits; ++j, ++k) sel[j] = nunits + k; } vec_perm_indices indices (sel, i == units_log2 ? 1 : 2, nunits); if (!use_whole_vector.is_empty () && use_whole_vector[i] != scan_store_kind_perm) { if (zero_vec == NULL_TREE) zero_vec = build_zero_cst (vectype); if (masktype == NULL_TREE && use_whole_vector[i] == scan_store_kind_lshift_cond) masktype = truth_type_for (vectype); perms[i] = vect_gen_perm_mask_any (vectype, indices); } else perms[i] = vect_gen_perm_mask_checked (vectype, indices); } tree vec_oprnd1 = NULL_TREE; tree vec_oprnd2 = NULL_TREE; tree vec_oprnd3 = NULL_TREE; tree dataref_ptr = DR_BASE_ADDRESS (dr_info->dr); tree dataref_offset = build_int_cst (ref_type, 0); tree bump = vect_get_data_ptr_increment (vinfo, dr_info, vectype, VMAT_CONTIGUOUS); tree ldataref_ptr = NULL_TREE; tree orig = NULL_TREE; if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) == 4 && !inscan_var_store) ldataref_ptr = DR_BASE_ADDRESS (load1_dr_info->dr); auto_vec vec_oprnds1; auto_vec vec_oprnds2; auto_vec vec_oprnds3; vect_get_vec_defs (vinfo, stmt_info, NULL, ncopies, *init, &vec_oprnds1, ldataref_ptr == NULL ? rhs1 : NULL, &vec_oprnds2, rhs2, &vec_oprnds3); for (int j = 0; j < ncopies; j++) { vec_oprnd1 = vec_oprnds1[j]; if (ldataref_ptr == NULL) vec_oprnd2 = vec_oprnds2[j]; vec_oprnd3 = vec_oprnds3[j]; if (j == 0) orig = vec_oprnd3; else if (!inscan_var_store) dataref_offset = int_const_binop (PLUS_EXPR, dataref_offset, bump); if (ldataref_ptr) { vec_oprnd2 = make_ssa_name (vectype); tree data_ref = fold_build2 (MEM_REF, vectype, unshare_expr (ldataref_ptr), dataref_offset); vect_copy_ref_info (data_ref, DR_REF (load1_dr_info->dr)); gimple *g = gimple_build_assign (vec_oprnd2, data_ref); vect_finish_stmt_generation (vinfo, stmt_info, g, gsi); STMT_VINFO_VEC_STMTS (stmt_info).safe_push (g); *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0]; } tree v = vec_oprnd2; for (int i = 0; i < units_log2; ++i) { tree new_temp = make_ssa_name (vectype); gimple *g = gimple_build_assign (new_temp, VEC_PERM_EXPR, (zero_vec && (use_whole_vector[i] != scan_store_kind_perm)) ? zero_vec : vec_oprnd1, v, perms[i]); vect_finish_stmt_generation (vinfo, stmt_info, g, gsi); STMT_VINFO_VEC_STMTS (stmt_info).safe_push (g); *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0]; if (zero_vec && use_whole_vector[i] == scan_store_kind_lshift_cond) { /* Whole vector shift shifted in zero bits, but if *init is not initializer_zerop, we need to replace those elements with elements from vec_oprnd1. */ tree_vector_builder vb (masktype, nunits, 1); for (unsigned HOST_WIDE_INT k = 0; k < nunits; ++k) vb.quick_push (k < (HOST_WIDE_INT_1U << i) ? boolean_false_node : boolean_true_node); tree new_temp2 = make_ssa_name (vectype); g = gimple_build_assign (new_temp2, VEC_COND_EXPR, vb.build (), new_temp, vec_oprnd1); vect_finish_stmt_generation (vinfo, stmt_info, g, gsi); STMT_VINFO_VEC_STMTS (stmt_info).safe_push (g); new_temp = new_temp2; } /* For exclusive scan, perform the perms[i] permutation once more. */ if (i == 0 && STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) == 4 && v == vec_oprnd2) { v = new_temp; --i; continue; } tree new_temp2 = make_ssa_name (vectype); g = gimple_build_assign (new_temp2, code, v, new_temp); vect_finish_stmt_generation (vinfo, stmt_info, g, gsi); STMT_VINFO_VEC_STMTS (stmt_info).safe_push (g); v = new_temp2; } tree new_temp = make_ssa_name (vectype); gimple *g = gimple_build_assign (new_temp, code, orig, v); vect_finish_stmt_generation (vinfo, stmt_info, g, gsi); STMT_VINFO_VEC_STMTS (stmt_info).safe_push (g); tree last_perm_arg = new_temp; /* For exclusive scan, new_temp computed above is the exclusive scan prefix sum. Turn it into inclusive prefix sum for the broadcast of the last element into orig. */ if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) == 4) { last_perm_arg = make_ssa_name (vectype); g = gimple_build_assign (last_perm_arg, code, new_temp, vec_oprnd2); vect_finish_stmt_generation (vinfo, stmt_info, g, gsi); STMT_VINFO_VEC_STMTS (stmt_info).safe_push (g); } orig = make_ssa_name (vectype); g = gimple_build_assign (orig, VEC_PERM_EXPR, last_perm_arg, last_perm_arg, perms[units_log2]); vect_finish_stmt_generation (vinfo, stmt_info, g, gsi); STMT_VINFO_VEC_STMTS (stmt_info).safe_push (g); if (!inscan_var_store) { tree data_ref = fold_build2 (MEM_REF, vectype, unshare_expr (dataref_ptr), dataref_offset); vect_copy_ref_info (data_ref, DR_REF (dr_info->dr)); g = gimple_build_assign (data_ref, new_temp); vect_finish_stmt_generation (vinfo, stmt_info, g, gsi); STMT_VINFO_VEC_STMTS (stmt_info).safe_push (g); } } if (inscan_var_store) for (int j = 0; j < ncopies; j++) { if (j != 0) dataref_offset = int_const_binop (PLUS_EXPR, dataref_offset, bump); tree data_ref = fold_build2 (MEM_REF, vectype, unshare_expr (dataref_ptr), dataref_offset); vect_copy_ref_info (data_ref, DR_REF (dr_info->dr)); gimple *g = gimple_build_assign (data_ref, orig); vect_finish_stmt_generation (vinfo, stmt_info, g, gsi); STMT_VINFO_VEC_STMTS (stmt_info).safe_push (g); } return true; } /* Function vectorizable_store. Check if STMT_INFO defines a non scalar data-ref (array/pointer/structure) that can be vectorized. If VEC_STMT is also passed, vectorize STMT_INFO: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at GSI. Return true if STMT_INFO is vectorizable in this way. */ static bool vectorizable_store (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, gimple **vec_stmt, slp_tree slp_node, stmt_vector_for_cost *cost_vec) { tree data_ref; tree op; tree vec_oprnd = NULL_TREE; tree elem_type; loop_vec_info loop_vinfo = dyn_cast (vinfo); class loop *loop = NULL; machine_mode vec_mode; tree dummy; enum vect_def_type rhs_dt = vect_unknown_def_type; enum vect_def_type mask_dt = vect_unknown_def_type; tree dataref_ptr = NULL_TREE; tree dataref_offset = NULL_TREE; gimple *ptr_incr = NULL; int ncopies; int j; stmt_vec_info first_stmt_info; bool grouped_store; unsigned int group_size, i; vec oprnds = vNULL; vec result_chain = vNULL; tree offset = NULL_TREE; vec vec_oprnds = vNULL; bool slp = (slp_node != NULL); unsigned int vec_num; bb_vec_info bb_vinfo = dyn_cast (vinfo); tree aggr_type; gather_scatter_info gs_info; poly_uint64 vf; vec_load_store_type vls_type; tree ref_type; if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def && ! vec_stmt) return false; /* Is vectorizable store? */ tree mask = NULL_TREE, mask_vectype = NULL_TREE; if (gassign *assign = dyn_cast (stmt_info->stmt)) { tree scalar_dest = gimple_assign_lhs (assign); if (TREE_CODE (scalar_dest) == VIEW_CONVERT_EXPR && is_pattern_stmt_p (stmt_info)) scalar_dest = TREE_OPERAND (scalar_dest, 0); if (TREE_CODE (scalar_dest) != ARRAY_REF && TREE_CODE (scalar_dest) != BIT_FIELD_REF && TREE_CODE (scalar_dest) != INDIRECT_REF && TREE_CODE (scalar_dest) != COMPONENT_REF && TREE_CODE (scalar_dest) != IMAGPART_EXPR && TREE_CODE (scalar_dest) != REALPART_EXPR && TREE_CODE (scalar_dest) != MEM_REF) return false; } else { gcall *call = dyn_cast (stmt_info->stmt); if (!call || !gimple_call_internal_p (call)) return false; internal_fn ifn = gimple_call_internal_fn (call); if (!internal_store_fn_p (ifn)) return false; if (slp_node != NULL) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "SLP of masked stores not supported.\n"); return false; } int mask_index = internal_fn_mask_index (ifn); if (mask_index >= 0 && !vect_check_scalar_mask (vinfo, stmt_info, slp_node, mask_index, &mask, NULL, &mask_dt, &mask_vectype)) return false; } op = vect_get_store_rhs (stmt_info); /* Cannot have hybrid store SLP -- that would mean storing to the same location twice. */ gcc_assert (slp == PURE_SLP_STMT (stmt_info)); tree vectype = STMT_VINFO_VECTYPE (stmt_info), rhs_vectype = NULL_TREE; poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype); if (loop_vinfo) { loop = LOOP_VINFO_LOOP (loop_vinfo); vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo); } else vf = 1; /* Multiple types in SLP are handled by creating the appropriate number of vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in case of SLP. */ if (slp) ncopies = 1; else ncopies = vect_get_num_copies (loop_vinfo, vectype); gcc_assert (ncopies >= 1); /* FORNOW. This restriction should be relaxed. */ if (loop && nested_in_vect_loop_p (loop, stmt_info) && ncopies > 1) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "multiple types in nested loop.\n"); return false; } if (!vect_check_store_rhs (vinfo, stmt_info, slp_node, op, &rhs_dt, &rhs_vectype, &vls_type)) return false; elem_type = TREE_TYPE (vectype); vec_mode = TYPE_MODE (vectype); if (!STMT_VINFO_DATA_REF (stmt_info)) return false; vect_memory_access_type memory_access_type; enum dr_alignment_support alignment_support_scheme; if (!get_load_store_type (vinfo, stmt_info, vectype, slp_node, mask, vls_type, ncopies, &memory_access_type, &alignment_support_scheme, &gs_info)) return false; if (mask) { if (memory_access_type == VMAT_CONTIGUOUS) { if (!VECTOR_MODE_P (vec_mode) || !can_vec_mask_load_store_p (vec_mode, TYPE_MODE (mask_vectype), false)) return false; } else if (memory_access_type != VMAT_LOAD_STORE_LANES && (memory_access_type != VMAT_GATHER_SCATTER || (gs_info.decl && !VECTOR_BOOLEAN_TYPE_P (mask_vectype)))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "unsupported access type for masked store.\n"); return false; } } else { /* FORNOW. In some cases can vectorize even if data-type not supported (e.g. - array initialization with 0). */ if (optab_handler (mov_optab, vec_mode) == CODE_FOR_nothing) return false; } dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info), *first_dr_info = NULL; grouped_store = (STMT_VINFO_GROUPED_ACCESS (stmt_info) && memory_access_type != VMAT_GATHER_SCATTER && (slp || memory_access_type != VMAT_CONTIGUOUS)); if (grouped_store) { first_stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info); first_dr_info = STMT_VINFO_DR_INFO (first_stmt_info); group_size = DR_GROUP_SIZE (first_stmt_info); } else { first_stmt_info = stmt_info; first_dr_info = dr_info; group_size = vec_num = 1; } if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) > 1 && !vec_stmt) { if (!check_scan_store (vinfo, stmt_info, vectype, rhs_dt, slp, mask, memory_access_type)) return false; } if (!vec_stmt) /* transformation not required. */ { STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info) = memory_access_type; if (loop_vinfo && LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)) check_load_store_for_partial_vectors (loop_vinfo, vectype, vls_type, group_size, memory_access_type, &gs_info, mask); if (slp_node && !vect_maybe_update_slp_op_vectype (SLP_TREE_CHILDREN (slp_node)[0], vectype)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "incompatible vector types for invariants\n"); return false; } if (dump_enabled_p () && memory_access_type != VMAT_ELEMENTWISE && memory_access_type != VMAT_GATHER_SCATTER && alignment_support_scheme != dr_aligned) dump_printf_loc (MSG_NOTE, vect_location, "Vectorizing an unaligned access.\n"); STMT_VINFO_TYPE (stmt_info) = store_vec_info_type; vect_model_store_cost (vinfo, stmt_info, ncopies, memory_access_type, vls_type, slp_node, cost_vec); return true; } gcc_assert (memory_access_type == STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info)); /* Transform. */ ensure_base_align (dr_info); if (memory_access_type == VMAT_GATHER_SCATTER && gs_info.decl) { tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE, src; tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gs_info.decl)); tree rettype, srctype, ptrtype, idxtype, masktype, scaletype; tree ptr, var, scale, vec_mask; tree mask_arg = NULL_TREE, mask_op = NULL_TREE, perm_mask = NULL_TREE; tree mask_halfvectype = mask_vectype; edge pe = loop_preheader_edge (loop); gimple_seq seq; basic_block new_bb; enum { NARROW, NONE, WIDEN } modifier; poly_uint64 scatter_off_nunits = TYPE_VECTOR_SUBPARTS (gs_info.offset_vectype); if (known_eq (nunits, scatter_off_nunits)) modifier = NONE; else if (known_eq (nunits * 2, scatter_off_nunits)) { modifier = WIDEN; /* Currently gathers and scatters are only supported for fixed-length vectors. */ unsigned int count = scatter_off_nunits.to_constant (); vec_perm_builder sel (count, count, 1); for (i = 0; i < (unsigned int) count; ++i) sel.quick_push (i | (count / 2)); vec_perm_indices indices (sel, 1, count); perm_mask = vect_gen_perm_mask_checked (gs_info.offset_vectype, indices); gcc_assert (perm_mask != NULL_TREE); } else if (known_eq (nunits, scatter_off_nunits * 2)) { modifier = NARROW; /* Currently gathers and scatters are only supported for fixed-length vectors. */ unsigned int count = nunits.to_constant (); vec_perm_builder sel (count, count, 1); for (i = 0; i < (unsigned int) count; ++i) sel.quick_push (i | (count / 2)); vec_perm_indices indices (sel, 2, count); perm_mask = vect_gen_perm_mask_checked (vectype, indices); gcc_assert (perm_mask != NULL_TREE); ncopies *= 2; if (mask) mask_halfvectype = truth_type_for (gs_info.offset_vectype); } else gcc_unreachable (); rettype = TREE_TYPE (TREE_TYPE (gs_info.decl)); ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist); masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist); idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist); srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist); scaletype = TREE_VALUE (arglist); gcc_checking_assert (TREE_CODE (masktype) == INTEGER_TYPE && TREE_CODE (rettype) == VOID_TYPE); ptr = fold_convert (ptrtype, gs_info.base); if (!is_gimple_min_invariant (ptr)) { ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE); new_bb = gsi_insert_seq_on_edge_immediate (pe, seq); gcc_assert (!new_bb); } if (mask == NULL_TREE) { mask_arg = build_int_cst (masktype, -1); mask_arg = vect_init_vector (vinfo, stmt_info, mask_arg, masktype, NULL); } scale = build_int_cst (scaletype, gs_info.scale); auto_vec vec_oprnds0; auto_vec vec_oprnds1; auto_vec vec_masks; if (mask) { tree mask_vectype = truth_type_for (vectype); vect_get_vec_defs_for_operand (vinfo, stmt_info, modifier == NARROW ? ncopies / 2 : ncopies, mask, &vec_masks, mask_vectype); } vect_get_vec_defs_for_operand (vinfo, stmt_info, modifier == WIDEN ? ncopies / 2 : ncopies, gs_info.offset, &vec_oprnds0); vect_get_vec_defs_for_operand (vinfo, stmt_info, modifier == NARROW ? ncopies / 2 : ncopies, op, &vec_oprnds1); for (j = 0; j < ncopies; ++j) { if (modifier == WIDEN) { if (j & 1) op = permute_vec_elements (vinfo, vec_oprnd0, vec_oprnd0, perm_mask, stmt_info, gsi); else op = vec_oprnd0 = vec_oprnds0[j / 2]; src = vec_oprnd1 = vec_oprnds1[j]; if (mask) mask_op = vec_mask = vec_masks[j]; } else if (modifier == NARROW) { if (j & 1) src = permute_vec_elements (vinfo, vec_oprnd1, vec_oprnd1, perm_mask, stmt_info, gsi); else src = vec_oprnd1 = vec_oprnds1[j / 2]; op = vec_oprnd0 = vec_oprnds0[j]; if (mask) mask_op = vec_mask = vec_masks[j / 2]; } else { op = vec_oprnd0 = vec_oprnds0[j]; src = vec_oprnd1 = vec_oprnds1[j]; if (mask) mask_op = vec_mask = vec_masks[j]; } if (!useless_type_conversion_p (srctype, TREE_TYPE (src))) { gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (src)), TYPE_VECTOR_SUBPARTS (srctype))); var = vect_get_new_ssa_name (srctype, vect_simple_var); src = build1 (VIEW_CONVERT_EXPR, srctype, src); gassign *new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, src); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); src = var; } if (!useless_type_conversion_p (idxtype, TREE_TYPE (op))) { gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op)), TYPE_VECTOR_SUBPARTS (idxtype))); var = vect_get_new_ssa_name (idxtype, vect_simple_var); op = build1 (VIEW_CONVERT_EXPR, idxtype, op); gassign *new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, op); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); op = var; } if (mask) { tree utype; mask_arg = mask_op; if (modifier == NARROW) { var = vect_get_new_ssa_name (mask_halfvectype, vect_simple_var); gassign *new_stmt = gimple_build_assign (var, (j & 1) ? VEC_UNPACK_HI_EXPR : VEC_UNPACK_LO_EXPR, mask_op); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); mask_arg = var; } tree optype = TREE_TYPE (mask_arg); if (TYPE_MODE (masktype) == TYPE_MODE (optype)) utype = masktype; else utype = lang_hooks.types.type_for_mode (TYPE_MODE (optype), 1); var = vect_get_new_ssa_name (utype, vect_scalar_var); mask_arg = build1 (VIEW_CONVERT_EXPR, utype, mask_arg); gassign *new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, mask_arg); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); mask_arg = var; if (!useless_type_conversion_p (masktype, utype)) { gcc_assert (TYPE_PRECISION (utype) <= TYPE_PRECISION (masktype)); var = vect_get_new_ssa_name (masktype, vect_scalar_var); new_stmt = gimple_build_assign (var, NOP_EXPR, mask_arg); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); mask_arg = var; } } gcall *new_stmt = gimple_build_call (gs_info.decl, 5, ptr, mask_arg, op, src, scale); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0]; return true; } else if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) >= 3) return vectorizable_scan_store (vinfo, stmt_info, gsi, vec_stmt, ncopies); if (STMT_VINFO_GROUPED_ACCESS (stmt_info)) DR_GROUP_STORE_COUNT (DR_GROUP_FIRST_ELEMENT (stmt_info))++; if (grouped_store) { /* FORNOW */ gcc_assert (!loop || !nested_in_vect_loop_p (loop, stmt_info)); /* We vectorize all the stmts of the interleaving group when we reach the last stmt in the group. */ if (DR_GROUP_STORE_COUNT (first_stmt_info) < DR_GROUP_SIZE (first_stmt_info) && !slp) { *vec_stmt = NULL; return true; } if (slp) { grouped_store = false; /* VEC_NUM is the number of vect stmts to be created for this group. */ vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node); first_stmt_info = SLP_TREE_SCALAR_STMTS (slp_node)[0]; gcc_assert (DR_GROUP_FIRST_ELEMENT (first_stmt_info) == first_stmt_info); first_dr_info = STMT_VINFO_DR_INFO (first_stmt_info); op = vect_get_store_rhs (first_stmt_info); } else /* VEC_NUM is the number of vect stmts to be created for this group. */ vec_num = group_size; ref_type = get_group_alias_ptr_type (first_stmt_info); } else ref_type = reference_alias_ptr_type (DR_REF (first_dr_info->dr)); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "transform store. ncopies = %d\n", ncopies); if (memory_access_type == VMAT_ELEMENTWISE || memory_access_type == VMAT_STRIDED_SLP) { gimple_stmt_iterator incr_gsi; bool insert_after; gimple *incr; tree offvar; tree ivstep; tree running_off; tree stride_base, stride_step, alias_off; tree vec_oprnd; tree dr_offset; unsigned int g; /* Checked by get_load_store_type. */ unsigned int const_nunits = nunits.to_constant (); gcc_assert (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)); gcc_assert (!nested_in_vect_loop_p (loop, stmt_info)); dr_offset = get_dr_vinfo_offset (vinfo, first_dr_info); stride_base = fold_build_pointer_plus (DR_BASE_ADDRESS (first_dr_info->dr), size_binop (PLUS_EXPR, convert_to_ptrofftype (dr_offset), convert_to_ptrofftype (DR_INIT (first_dr_info->dr)))); stride_step = fold_convert (sizetype, DR_STEP (first_dr_info->dr)); /* For a store with loop-invariant (but other than power-of-2) stride (i.e. not a grouped access) like so: for (i = 0; i < n; i += stride) array[i] = ...; we generate a new induction variable and new stores from the components of the (vectorized) rhs: for (j = 0; ; j += VF*stride) vectemp = ...; tmp1 = vectemp[0]; array[j] = tmp1; tmp2 = vectemp[1]; array[j + stride] = tmp2; ... */ unsigned nstores = const_nunits; unsigned lnel = 1; tree ltype = elem_type; tree lvectype = vectype; if (slp) { if (group_size < const_nunits && const_nunits % group_size == 0) { nstores = const_nunits / group_size; lnel = group_size; ltype = build_vector_type (elem_type, group_size); lvectype = vectype; /* First check if vec_extract optab doesn't support extraction of vector elts directly. */ scalar_mode elmode = SCALAR_TYPE_MODE (elem_type); machine_mode vmode; if (!VECTOR_MODE_P (TYPE_MODE (vectype)) || !related_vector_mode (TYPE_MODE (vectype), elmode, group_size).exists (&vmode) || (convert_optab_handler (vec_extract_optab, TYPE_MODE (vectype), vmode) == CODE_FOR_nothing)) { /* Try to avoid emitting an extract of vector elements by performing the extracts using an integer type of the same size, extracting from a vector of those and then re-interpreting it as the original vector type if supported. */ unsigned lsize = group_size * GET_MODE_BITSIZE (elmode); unsigned int lnunits = const_nunits / group_size; /* If we can't construct such a vector fall back to element extracts from the original vector type and element size stores. */ if (int_mode_for_size (lsize, 0).exists (&elmode) && VECTOR_MODE_P (TYPE_MODE (vectype)) && related_vector_mode (TYPE_MODE (vectype), elmode, lnunits).exists (&vmode) && (convert_optab_handler (vec_extract_optab, vmode, elmode) != CODE_FOR_nothing)) { nstores = lnunits; lnel = group_size; ltype = build_nonstandard_integer_type (lsize, 1); lvectype = build_vector_type (ltype, nstores); } /* Else fall back to vector extraction anyway. Fewer stores are more important than avoiding spilling of the vector we extract from. Compared to the construction case in vectorizable_load no store-forwarding issue exists here for reasonable archs. */ } } else if (group_size >= const_nunits && group_size % const_nunits == 0) { nstores = 1; lnel = const_nunits; ltype = vectype; lvectype = vectype; } ltype = build_aligned_type (ltype, TYPE_ALIGN (elem_type)); ncopies = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node); } ivstep = stride_step; ivstep = fold_build2 (MULT_EXPR, TREE_TYPE (ivstep), ivstep, build_int_cst (TREE_TYPE (ivstep), vf)); standard_iv_increment_position (loop, &incr_gsi, &insert_after); stride_base = cse_and_gimplify_to_preheader (loop_vinfo, stride_base); ivstep = cse_and_gimplify_to_preheader (loop_vinfo, ivstep); create_iv (stride_base, ivstep, NULL, loop, &incr_gsi, insert_after, &offvar, NULL); incr = gsi_stmt (incr_gsi); stride_step = cse_and_gimplify_to_preheader (loop_vinfo, stride_step); alias_off = build_int_cst (ref_type, 0); stmt_vec_info next_stmt_info = first_stmt_info; for (g = 0; g < group_size; g++) { running_off = offvar; if (g) { tree size = TYPE_SIZE_UNIT (ltype); tree pos = fold_build2 (MULT_EXPR, sizetype, size_int (g), size); tree newoff = copy_ssa_name (running_off, NULL); incr = gimple_build_assign (newoff, POINTER_PLUS_EXPR, running_off, pos); vect_finish_stmt_generation (vinfo, stmt_info, incr, gsi); running_off = newoff; } if (!slp) op = vect_get_store_rhs (next_stmt_info); vect_get_vec_defs (vinfo, next_stmt_info, slp_node, ncopies, op, &vec_oprnds); unsigned int group_el = 0; unsigned HOST_WIDE_INT elsz = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (vectype))); for (j = 0; j < ncopies; j++) { vec_oprnd = vec_oprnds[j]; /* Pun the vector to extract from if necessary. */ if (lvectype != vectype) { tree tem = make_ssa_name (lvectype); gimple *pun = gimple_build_assign (tem, build1 (VIEW_CONVERT_EXPR, lvectype, vec_oprnd)); vect_finish_stmt_generation (vinfo, stmt_info, pun, gsi); vec_oprnd = tem; } for (i = 0; i < nstores; i++) { tree newref, newoff; gimple *incr, *assign; tree size = TYPE_SIZE (ltype); /* Extract the i'th component. */ tree pos = fold_build2 (MULT_EXPR, bitsizetype, bitsize_int (i), size); tree elem = fold_build3 (BIT_FIELD_REF, ltype, vec_oprnd, size, pos); elem = force_gimple_operand_gsi (gsi, elem, true, NULL_TREE, true, GSI_SAME_STMT); tree this_off = build_int_cst (TREE_TYPE (alias_off), group_el * elsz); newref = build2 (MEM_REF, ltype, running_off, this_off); vect_copy_ref_info (newref, DR_REF (first_dr_info->dr)); /* And store it to *running_off. */ assign = gimple_build_assign (newref, elem); vect_finish_stmt_generation (vinfo, stmt_info, assign, gsi); group_el += lnel; if (! slp || group_el == group_size) { newoff = copy_ssa_name (running_off, NULL); incr = gimple_build_assign (newoff, POINTER_PLUS_EXPR, running_off, stride_step); vect_finish_stmt_generation (vinfo, stmt_info, incr, gsi); running_off = newoff; group_el = 0; } if (g == group_size - 1 && !slp) { if (j == 0 && i == 0) *vec_stmt = assign; STMT_VINFO_VEC_STMTS (stmt_info).safe_push (assign); } } } next_stmt_info = DR_GROUP_NEXT_ELEMENT (next_stmt_info); vec_oprnds.release (); if (slp) break; } return true; } auto_vec dr_chain (group_size); oprnds.create (group_size); /* Gather-scatter accesses perform only component accesses, alignment is irrelevant for them. */ if (memory_access_type == VMAT_GATHER_SCATTER) alignment_support_scheme = dr_unaligned_supported; else alignment_support_scheme = vect_supportable_dr_alignment (vinfo, first_dr_info, false); gcc_assert (alignment_support_scheme); vec_loop_masks *loop_masks = (loop_vinfo && LOOP_VINFO_FULLY_MASKED_P (loop_vinfo) ? &LOOP_VINFO_MASKS (loop_vinfo) : NULL); vec_loop_lens *loop_lens = (loop_vinfo && LOOP_VINFO_FULLY_WITH_LENGTH_P (loop_vinfo) ? &LOOP_VINFO_LENS (loop_vinfo) : NULL); /* Shouldn't go with length-based approach if fully masked. */ gcc_assert (!loop_lens || !loop_masks); /* Targets with store-lane instructions must not require explicit realignment. vect_supportable_dr_alignment always returns either dr_aligned or dr_unaligned_supported for masked operations. */ gcc_assert ((memory_access_type != VMAT_LOAD_STORE_LANES && !mask && !loop_masks) || alignment_support_scheme == dr_aligned || alignment_support_scheme == dr_unaligned_supported); if (memory_access_type == VMAT_CONTIGUOUS_DOWN || memory_access_type == VMAT_CONTIGUOUS_REVERSE) offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1); tree bump; tree vec_offset = NULL_TREE; if (STMT_VINFO_GATHER_SCATTER_P (stmt_info)) { aggr_type = NULL_TREE; bump = NULL_TREE; } else if (memory_access_type == VMAT_GATHER_SCATTER) { aggr_type = elem_type; vect_get_strided_load_store_ops (stmt_info, loop_vinfo, &gs_info, &bump, &vec_offset); } else { if (memory_access_type == VMAT_LOAD_STORE_LANES) aggr_type = build_array_type_nelts (elem_type, vec_num * nunits); else aggr_type = vectype; bump = vect_get_data_ptr_increment (vinfo, dr_info, aggr_type, memory_access_type); } if (mask) LOOP_VINFO_HAS_MASK_STORE (loop_vinfo) = true; /* In case the vectorization factor (VF) is bigger than the number of elements that we can fit in a vectype (nunits), we have to generate more than one vector stmt - i.e - we need to "unroll" the vector stmt by a factor VF/nunits. */ /* In case of interleaving (non-unit grouped access): S1: &base + 2 = x2 S2: &base = x0 S3: &base + 1 = x1 S4: &base + 3 = x3 We create vectorized stores starting from base address (the access of the first stmt in the chain (S2 in the above example), when the last store stmt of the chain (S4) is reached: VS1: &base = vx2 VS2: &base + vec_size*1 = vx0 VS3: &base + vec_size*2 = vx1 VS4: &base + vec_size*3 = vx3 Then permutation statements are generated: VS5: vx5 = VEC_PERM_EXPR < vx0, vx3, {0, 8, 1, 9, 2, 10, 3, 11} > VS6: vx6 = VEC_PERM_EXPR < vx0, vx3, {4, 12, 5, 13, 6, 14, 7, 15} > ... And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts (the order of the data-refs in the output of vect_permute_store_chain corresponds to the order of scalar stmts in the interleaving chain - see the documentation of vect_permute_store_chain()). In case of both multiple types and interleaving, above vector stores and permutation stmts are created for every copy. The result vector stmts are put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding STMT_VINFO_RELATED_STMT for the next copies. */ auto_vec vec_masks; tree vec_mask = NULL; auto_vec vec_offsets; auto_vec > gvec_oprnds; gvec_oprnds.safe_grow_cleared (group_size, true); for (j = 0; j < ncopies; j++) { gimple *new_stmt; if (j == 0) { if (slp) { /* Get vectorized arguments for SLP_NODE. */ vect_get_vec_defs (vinfo, stmt_info, slp_node, 1, op, &vec_oprnds); vec_oprnd = vec_oprnds[0]; } else { /* For interleaved stores we collect vectorized defs for all the stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then used as an input to vect_permute_store_chain(). If the store is not grouped, DR_GROUP_SIZE is 1, and DR_CHAIN and OPRNDS are of size 1. */ stmt_vec_info next_stmt_info = first_stmt_info; for (i = 0; i < group_size; i++) { /* Since gaps are not supported for interleaved stores, DR_GROUP_SIZE is the exact number of stmts in the chain. Therefore, NEXT_STMT_INFO can't be NULL_TREE. In case that there is no interleaving, DR_GROUP_SIZE is 1, and only one iteration of the loop will be executed. */ op = vect_get_store_rhs (next_stmt_info); vect_get_vec_defs_for_operand (vinfo, next_stmt_info, ncopies, op, &gvec_oprnds[i]); vec_oprnd = gvec_oprnds[i][0]; dr_chain.quick_push (gvec_oprnds[i][0]); oprnds.quick_push (gvec_oprnds[i][0]); next_stmt_info = DR_GROUP_NEXT_ELEMENT (next_stmt_info); } if (mask) { vect_get_vec_defs_for_operand (vinfo, stmt_info, ncopies, mask, &vec_masks, mask_vectype); vec_mask = vec_masks[0]; } } /* We should have catched mismatched types earlier. */ gcc_assert (useless_type_conversion_p (vectype, TREE_TYPE (vec_oprnd))); bool simd_lane_access_p = STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) != 0; if (simd_lane_access_p && !loop_masks && TREE_CODE (DR_BASE_ADDRESS (first_dr_info->dr)) == ADDR_EXPR && VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (first_dr_info->dr), 0)) && integer_zerop (get_dr_vinfo_offset (vinfo, first_dr_info)) && integer_zerop (DR_INIT (first_dr_info->dr)) && alias_sets_conflict_p (get_alias_set (aggr_type), get_alias_set (TREE_TYPE (ref_type)))) { dataref_ptr = unshare_expr (DR_BASE_ADDRESS (first_dr_info->dr)); dataref_offset = build_int_cst (ref_type, 0); } else if (STMT_VINFO_GATHER_SCATTER_P (stmt_info)) { vect_get_gather_scatter_ops (loop_vinfo, loop, stmt_info, &gs_info, &dataref_ptr, &vec_offsets); vec_offset = vec_offsets[0]; } else dataref_ptr = vect_create_data_ref_ptr (vinfo, first_stmt_info, aggr_type, simd_lane_access_p ? loop : NULL, offset, &dummy, gsi, &ptr_incr, simd_lane_access_p, NULL_TREE, bump); } else { /* For interleaved stores we created vectorized defs for all the defs stored in OPRNDS in the previous iteration (previous copy). DR_CHAIN is then used as an input to vect_permute_store_chain(). If the store is not grouped, DR_GROUP_SIZE is 1, and DR_CHAIN and OPRNDS are of size 1. */ for (i = 0; i < group_size; i++) { vec_oprnd = gvec_oprnds[i][j]; dr_chain[i] = gvec_oprnds[i][j]; oprnds[i] = gvec_oprnds[i][j]; } if (mask) vec_mask = vec_masks[j]; if (dataref_offset) dataref_offset = int_const_binop (PLUS_EXPR, dataref_offset, bump); else if (STMT_VINFO_GATHER_SCATTER_P (stmt_info)) vec_offset = vec_offsets[j]; else dataref_ptr = bump_vector_ptr (vinfo, dataref_ptr, ptr_incr, gsi, stmt_info, bump); } if (memory_access_type == VMAT_LOAD_STORE_LANES) { tree vec_array; /* Get an array into which we can store the individual vectors. */ vec_array = create_vector_array (vectype, vec_num); /* Invalidate the current contents of VEC_ARRAY. This should become an RTL clobber too, which prevents the vector registers from being upward-exposed. */ vect_clobber_variable (vinfo, stmt_info, gsi, vec_array); /* Store the individual vectors into the array. */ for (i = 0; i < vec_num; i++) { vec_oprnd = dr_chain[i]; write_vector_array (vinfo, stmt_info, gsi, vec_oprnd, vec_array, i); } tree final_mask = NULL; if (loop_masks) final_mask = vect_get_loop_mask (gsi, loop_masks, ncopies, vectype, j); if (vec_mask) final_mask = prepare_load_store_mask (mask_vectype, final_mask, vec_mask, gsi); gcall *call; if (final_mask) { /* Emit: MASK_STORE_LANES (DATAREF_PTR, ALIAS_PTR, VEC_MASK, VEC_ARRAY). */ unsigned int align = TYPE_ALIGN (TREE_TYPE (vectype)); tree alias_ptr = build_int_cst (ref_type, align); call = gimple_build_call_internal (IFN_MASK_STORE_LANES, 4, dataref_ptr, alias_ptr, final_mask, vec_array); } else { /* Emit: MEM_REF[...all elements...] = STORE_LANES (VEC_ARRAY). */ data_ref = create_array_ref (aggr_type, dataref_ptr, ref_type); call = gimple_build_call_internal (IFN_STORE_LANES, 1, vec_array); gimple_call_set_lhs (call, data_ref); } gimple_call_set_nothrow (call, true); vect_finish_stmt_generation (vinfo, stmt_info, call, gsi); new_stmt = call; /* Record that VEC_ARRAY is now dead. */ vect_clobber_variable (vinfo, stmt_info, gsi, vec_array); } else { new_stmt = NULL; if (grouped_store) { if (j == 0) result_chain.create (group_size); /* Permute. */ vect_permute_store_chain (vinfo, dr_chain, group_size, stmt_info, gsi, &result_chain); } stmt_vec_info next_stmt_info = first_stmt_info; for (i = 0; i < vec_num; i++) { unsigned misalign; unsigned HOST_WIDE_INT align; tree final_mask = NULL_TREE; if (loop_masks) final_mask = vect_get_loop_mask (gsi, loop_masks, vec_num * ncopies, vectype, vec_num * j + i); if (vec_mask) final_mask = prepare_load_store_mask (mask_vectype, final_mask, vec_mask, gsi); if (memory_access_type == VMAT_GATHER_SCATTER) { tree scale = size_int (gs_info.scale); gcall *call; if (final_mask) call = gimple_build_call_internal (IFN_MASK_SCATTER_STORE, 5, dataref_ptr, vec_offset, scale, vec_oprnd, final_mask); else call = gimple_build_call_internal (IFN_SCATTER_STORE, 4, dataref_ptr, vec_offset, scale, vec_oprnd); gimple_call_set_nothrow (call, true); vect_finish_stmt_generation (vinfo, stmt_info, call, gsi); new_stmt = call; break; } if (i > 0) /* Bump the vector pointer. */ dataref_ptr = bump_vector_ptr (vinfo, dataref_ptr, ptr_incr, gsi, stmt_info, bump); if (slp) vec_oprnd = vec_oprnds[i]; else if (grouped_store) /* For grouped stores vectorized defs are interleaved in vect_permute_store_chain(). */ vec_oprnd = result_chain[i]; align = known_alignment (DR_TARGET_ALIGNMENT (first_dr_info)); if (aligned_access_p (first_dr_info)) misalign = 0; else if (DR_MISALIGNMENT (first_dr_info) == -1) { align = dr_alignment (vect_dr_behavior (vinfo, first_dr_info)); misalign = 0; } else misalign = DR_MISALIGNMENT (first_dr_info); if (dataref_offset == NULL_TREE && TREE_CODE (dataref_ptr) == SSA_NAME) set_ptr_info_alignment (get_ptr_info (dataref_ptr), align, misalign); align = least_bit_hwi (misalign | align); if (memory_access_type == VMAT_CONTIGUOUS_REVERSE) { tree perm_mask = perm_mask_for_reverse (vectype); tree perm_dest = vect_create_destination_var (vect_get_store_rhs (stmt_info), vectype); tree new_temp = make_ssa_name (perm_dest); /* Generate the permute statement. */ gimple *perm_stmt = gimple_build_assign (new_temp, VEC_PERM_EXPR, vec_oprnd, vec_oprnd, perm_mask); vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); perm_stmt = SSA_NAME_DEF_STMT (new_temp); vec_oprnd = new_temp; } /* Arguments are ready. Create the new vector stmt. */ if (final_mask) { tree ptr = build_int_cst (ref_type, align * BITS_PER_UNIT); gcall *call = gimple_build_call_internal (IFN_MASK_STORE, 4, dataref_ptr, ptr, final_mask, vec_oprnd); gimple_call_set_nothrow (call, true); vect_finish_stmt_generation (vinfo, stmt_info, call, gsi); new_stmt = call; } else if (loop_lens) { tree final_len = vect_get_loop_len (loop_vinfo, loop_lens, vec_num * ncopies, vec_num * j + i); tree ptr = build_int_cst (ref_type, align * BITS_PER_UNIT); machine_mode vmode = TYPE_MODE (vectype); opt_machine_mode new_ovmode = get_len_load_store_mode (vmode, false); machine_mode new_vmode = new_ovmode.require (); /* Need conversion if it's wrapped with VnQI. */ if (vmode != new_vmode) { tree new_vtype = build_vector_type_for_mode (unsigned_intQI_type_node, new_vmode); tree var = vect_get_new_ssa_name (new_vtype, vect_simple_var); vec_oprnd = build1 (VIEW_CONVERT_EXPR, new_vtype, vec_oprnd); gassign *new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, vec_oprnd); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); vec_oprnd = var; } gcall *call = gimple_build_call_internal (IFN_LEN_STORE, 4, dataref_ptr, ptr, final_len, vec_oprnd); gimple_call_set_nothrow (call, true); vect_finish_stmt_generation (vinfo, stmt_info, call, gsi); new_stmt = call; } else { data_ref = fold_build2 (MEM_REF, vectype, dataref_ptr, dataref_offset ? dataref_offset : build_int_cst (ref_type, 0)); if (aligned_access_p (first_dr_info)) ; else TREE_TYPE (data_ref) = build_aligned_type (TREE_TYPE (data_ref), align * BITS_PER_UNIT); vect_copy_ref_info (data_ref, DR_REF (first_dr_info->dr)); new_stmt = gimple_build_assign (data_ref, vec_oprnd); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } if (slp) continue; next_stmt_info = DR_GROUP_NEXT_ELEMENT (next_stmt_info); if (!next_stmt_info) break; } } if (!slp) { if (j == 0) *vec_stmt = new_stmt; STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } } for (i = 0; i < group_size; ++i) { vec oprndsi = gvec_oprnds[i]; oprndsi.release (); } oprnds.release (); result_chain.release (); vec_oprnds.release (); return true; } /* Given a vector type VECTYPE, turns permutation SEL into the equivalent VECTOR_CST mask. No checks are made that the target platform supports the mask, so callers may wish to test can_vec_perm_const_p separately, or use vect_gen_perm_mask_checked. */ tree vect_gen_perm_mask_any (tree vectype, const vec_perm_indices &sel) { tree mask_type; poly_uint64 nunits = sel.length (); gcc_assert (known_eq (nunits, TYPE_VECTOR_SUBPARTS (vectype))); mask_type = build_vector_type (ssizetype, nunits); return vec_perm_indices_to_tree (mask_type, sel); } /* Checked version of vect_gen_perm_mask_any. Asserts can_vec_perm_const_p, i.e. that the target supports the pattern _for arbitrary input vectors_. */ tree vect_gen_perm_mask_checked (tree vectype, const vec_perm_indices &sel) { gcc_assert (can_vec_perm_const_p (TYPE_MODE (vectype), sel)); return vect_gen_perm_mask_any (vectype, sel); } /* Given a vector variable X and Y, that was generated for the scalar STMT_INFO, generate instructions to permute the vector elements of X and Y using permutation mask MASK_VEC, insert them at *GSI and return the permuted vector variable. */ static tree permute_vec_elements (vec_info *vinfo, tree x, tree y, tree mask_vec, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi) { tree vectype = TREE_TYPE (x); tree perm_dest, data_ref; gimple *perm_stmt; tree scalar_dest = gimple_get_lhs (stmt_info->stmt); if (scalar_dest && TREE_CODE (scalar_dest) == SSA_NAME) perm_dest = vect_create_destination_var (scalar_dest, vectype); else perm_dest = vect_get_new_vect_var (vectype, vect_simple_var, NULL); data_ref = make_ssa_name (perm_dest); /* Generate the permute statement. */ perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, x, y, mask_vec); vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); return data_ref; } /* Hoist the definitions of all SSA uses on STMT_INFO out of the loop LOOP, inserting them on the loops preheader edge. Returns true if we were successful in doing so (and thus STMT_INFO can be moved then), otherwise returns false. */ static bool hoist_defs_of_uses (stmt_vec_info stmt_info, class loop *loop) { ssa_op_iter i; tree op; bool any = false; FOR_EACH_SSA_TREE_OPERAND (op, stmt_info->stmt, i, SSA_OP_USE) { gimple *def_stmt = SSA_NAME_DEF_STMT (op); if (!gimple_nop_p (def_stmt) && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))) { /* Make sure we don't need to recurse. While we could do so in simple cases when there are more complex use webs we don't have an easy way to preserve stmt order to fulfil dependencies within them. */ tree op2; ssa_op_iter i2; if (gimple_code (def_stmt) == GIMPLE_PHI) return false; FOR_EACH_SSA_TREE_OPERAND (op2, def_stmt, i2, SSA_OP_USE) { gimple *def_stmt2 = SSA_NAME_DEF_STMT (op2); if (!gimple_nop_p (def_stmt2) && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt2))) return false; } any = true; } } if (!any) return true; FOR_EACH_SSA_TREE_OPERAND (op, stmt_info->stmt, i, SSA_OP_USE) { gimple *def_stmt = SSA_NAME_DEF_STMT (op); if (!gimple_nop_p (def_stmt) && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))) { gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt); gsi_remove (&gsi, false); gsi_insert_on_edge_immediate (loop_preheader_edge (loop), def_stmt); } } return true; } /* vectorizable_load. Check if STMT_INFO reads a non scalar data-ref (array/pointer/structure) that can be vectorized. If VEC_STMT is also passed, vectorize STMT_INFO: create a vectorized stmt to replace it, put it in VEC_STMT, and insert it at GSI. Return true if STMT_INFO is vectorizable in this way. */ static bool vectorizable_load (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, gimple **vec_stmt, slp_tree slp_node, stmt_vector_for_cost *cost_vec) { tree scalar_dest; tree vec_dest = NULL; tree data_ref = NULL; loop_vec_info loop_vinfo = dyn_cast (vinfo); class loop *loop = NULL; class loop *containing_loop = gimple_bb (stmt_info->stmt)->loop_father; bool nested_in_vect_loop = false; tree elem_type; tree new_temp; machine_mode mode; tree dummy; tree dataref_ptr = NULL_TREE; tree dataref_offset = NULL_TREE; gimple *ptr_incr = NULL; int ncopies; int i, j; unsigned int group_size; poly_uint64 group_gap_adj; tree msq = NULL_TREE, lsq; tree offset = NULL_TREE; tree byte_offset = NULL_TREE; tree realignment_token = NULL_TREE; gphi *phi = NULL; vec dr_chain = vNULL; bool grouped_load = false; stmt_vec_info first_stmt_info; stmt_vec_info first_stmt_info_for_drptr = NULL; bool compute_in_loop = false; class loop *at_loop; int vec_num; bool slp = (slp_node != NULL); bool slp_perm = false; bb_vec_info bb_vinfo = dyn_cast (vinfo); poly_uint64 vf; tree aggr_type; gather_scatter_info gs_info; tree ref_type; enum vect_def_type mask_dt = vect_unknown_def_type; if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) return false; if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def && ! vec_stmt) return false; if (!STMT_VINFO_DATA_REF (stmt_info)) return false; /* ??? Alignment analysis for SLP looks at SLP_TREE_SCALAR_STMTS[0] for unpermuted loads but we get passed SLP_TREE_REPRESENTATIVE which can be different when reduction chains were re-ordered. Now that we figured we're a dataref reset stmt_info back to SLP_TREE_SCALAR_STMTS[0]. When we're SLP only things should be refactored in a way to maintain the dr_vec_info pointer for the relevant access explicitely. */ stmt_vec_info orig_stmt_info = stmt_info; if (slp_node) stmt_info = SLP_TREE_SCALAR_STMTS (slp_node)[0]; tree mask = NULL_TREE, mask_vectype = NULL_TREE; if (gassign *assign = dyn_cast (stmt_info->stmt)) { scalar_dest = gimple_assign_lhs (assign); if (TREE_CODE (scalar_dest) != SSA_NAME) return false; tree_code code = gimple_assign_rhs_code (assign); if (code != ARRAY_REF && code != BIT_FIELD_REF && code != INDIRECT_REF && code != COMPONENT_REF && code != IMAGPART_EXPR && code != REALPART_EXPR && code != MEM_REF && TREE_CODE_CLASS (code) != tcc_declaration) return false; } else { gcall *call = dyn_cast (stmt_info->stmt); if (!call || !gimple_call_internal_p (call)) return false; internal_fn ifn = gimple_call_internal_fn (call); if (!internal_load_fn_p (ifn)) return false; scalar_dest = gimple_call_lhs (call); if (!scalar_dest) return false; int mask_index = internal_fn_mask_index (ifn); if (mask_index >= 0 && !vect_check_scalar_mask (vinfo, stmt_info, slp_node, /* ??? For SLP we only have operands for the mask operand. */ slp_node ? 0 : mask_index, &mask, NULL, &mask_dt, &mask_vectype)) return false; } tree vectype = STMT_VINFO_VECTYPE (stmt_info); poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype); if (loop_vinfo) { loop = LOOP_VINFO_LOOP (loop_vinfo); nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt_info); vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo); } else vf = 1; /* Multiple types in SLP are handled by creating the appropriate number of vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in case of SLP. */ if (slp) ncopies = 1; else ncopies = vect_get_num_copies (loop_vinfo, vectype); gcc_assert (ncopies >= 1); /* FORNOW. This restriction should be relaxed. */ if (nested_in_vect_loop && ncopies > 1) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "multiple types in nested loop.\n"); return false; } /* Invalidate assumptions made by dependence analysis when vectorization on the unrolled body effectively re-orders stmts. */ if (ncopies > 1 && STMT_VINFO_MIN_NEG_DIST (stmt_info) != 0 && maybe_gt (LOOP_VINFO_VECT_FACTOR (loop_vinfo), STMT_VINFO_MIN_NEG_DIST (stmt_info))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "cannot perform implicit CSE when unrolling " "with negative dependence distance\n"); return false; } elem_type = TREE_TYPE (vectype); mode = TYPE_MODE (vectype); /* FORNOW. In some cases can vectorize even if data-type not supported (e.g. - data copies). */ if (optab_handler (mov_optab, mode) == CODE_FOR_nothing) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Aligned load, but unsupported type.\n"); return false; } /* Check if the load is a part of an interleaving chain. */ if (STMT_VINFO_GROUPED_ACCESS (stmt_info)) { grouped_load = true; /* FORNOW */ gcc_assert (!nested_in_vect_loop); gcc_assert (!STMT_VINFO_GATHER_SCATTER_P (stmt_info)); first_stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info); group_size = DR_GROUP_SIZE (first_stmt_info); /* Refuse non-SLP vectorization of SLP-only groups. */ if (!slp && STMT_VINFO_SLP_VECT_ONLY (first_stmt_info)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "cannot vectorize load in non-SLP mode.\n"); return false; } if (slp && SLP_TREE_LOAD_PERMUTATION (slp_node).exists ()) { slp_perm = true; if (!loop_vinfo) { /* In BB vectorization we may not actually use a loaded vector accessing elements in excess of DR_GROUP_SIZE. */ stmt_vec_info group_info = SLP_TREE_SCALAR_STMTS (slp_node)[0]; group_info = DR_GROUP_FIRST_ELEMENT (group_info); unsigned HOST_WIDE_INT nunits; unsigned j, k, maxk = 0; FOR_EACH_VEC_ELT (SLP_TREE_LOAD_PERMUTATION (slp_node), j, k) if (k > maxk) maxk = k; tree vectype = STMT_VINFO_VECTYPE (group_info); if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits) || maxk >= (DR_GROUP_SIZE (group_info) & ~(nunits - 1))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "BB vectorization with gaps at the end of " "a load is not supported\n"); return false; } } auto_vec tem; unsigned n_perms; if (!vect_transform_slp_perm_load (vinfo, slp_node, tem, NULL, vf, true, &n_perms)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "unsupported load permutation\n"); return false; } } /* Invalidate assumptions made by dependence analysis when vectorization on the unrolled body effectively re-orders stmts. */ if (!PURE_SLP_STMT (stmt_info) && STMT_VINFO_MIN_NEG_DIST (stmt_info) != 0 && maybe_gt (LOOP_VINFO_VECT_FACTOR (loop_vinfo), STMT_VINFO_MIN_NEG_DIST (stmt_info))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "cannot perform implicit CSE when performing " "group loads with negative dependence distance\n"); return false; } } else group_size = 1; vect_memory_access_type memory_access_type; enum dr_alignment_support alignment_support_scheme; if (!get_load_store_type (vinfo, stmt_info, vectype, slp_node, mask, VLS_LOAD, ncopies, &memory_access_type, &alignment_support_scheme, &gs_info)) return false; if (mask) { if (memory_access_type == VMAT_CONTIGUOUS) { machine_mode vec_mode = TYPE_MODE (vectype); if (!VECTOR_MODE_P (vec_mode) || !can_vec_mask_load_store_p (vec_mode, TYPE_MODE (mask_vectype), true)) return false; } else if (memory_access_type != VMAT_LOAD_STORE_LANES && memory_access_type != VMAT_GATHER_SCATTER) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "unsupported access type for masked load.\n"); return false; } else if (memory_access_type == VMAT_GATHER_SCATTER && gs_info.ifn == IFN_LAST && !gs_info.decl) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "unsupported masked emulated gather.\n"); return false; } } if (!vec_stmt) /* transformation not required. */ { if (slp_node && mask && !vect_maybe_update_slp_op_vectype (SLP_TREE_CHILDREN (slp_node)[0], mask_vectype)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "incompatible vector types for invariants\n"); return false; } if (!slp) STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info) = memory_access_type; if (loop_vinfo && LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)) check_load_store_for_partial_vectors (loop_vinfo, vectype, VLS_LOAD, group_size, memory_access_type, &gs_info, mask); if (dump_enabled_p () && memory_access_type != VMAT_ELEMENTWISE && memory_access_type != VMAT_GATHER_SCATTER && alignment_support_scheme != dr_aligned) dump_printf_loc (MSG_NOTE, vect_location, "Vectorizing an unaligned access.\n"); STMT_VINFO_TYPE (orig_stmt_info) = load_vec_info_type; vect_model_load_cost (vinfo, stmt_info, ncopies, vf, memory_access_type, &gs_info, slp_node, cost_vec); return true; } if (!slp) gcc_assert (memory_access_type == STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info)); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "transform load. ncopies = %d\n", ncopies); /* Transform. */ dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info), *first_dr_info = NULL; ensure_base_align (dr_info); if (memory_access_type == VMAT_GATHER_SCATTER && gs_info.decl) { vect_build_gather_load_calls (vinfo, stmt_info, gsi, vec_stmt, &gs_info, mask); return true; } if (memory_access_type == VMAT_INVARIANT) { gcc_assert (!grouped_load && !mask && !bb_vinfo); /* If we have versioned for aliasing or the loop doesn't have any data dependencies that would preclude this, then we are sure this is a loop invariant load and thus we can insert it on the preheader edge. */ bool hoist_p = (LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) && !nested_in_vect_loop && hoist_defs_of_uses (stmt_info, loop)); if (hoist_p) { gassign *stmt = as_a (stmt_info->stmt); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "hoisting out of the vectorized loop: %G", stmt); scalar_dest = copy_ssa_name (scalar_dest); tree rhs = unshare_expr (gimple_assign_rhs1 (stmt)); gsi_insert_on_edge_immediate (loop_preheader_edge (loop), gimple_build_assign (scalar_dest, rhs)); } /* These copies are all equivalent, but currently the representation requires a separate STMT_VINFO_VEC_STMT for each one. */ gimple_stmt_iterator gsi2 = *gsi; gsi_next (&gsi2); for (j = 0; j < ncopies; j++) { if (hoist_p) new_temp = vect_init_vector (vinfo, stmt_info, scalar_dest, vectype, NULL); else new_temp = vect_init_vector (vinfo, stmt_info, scalar_dest, vectype, &gsi2); gimple *new_stmt = SSA_NAME_DEF_STMT (new_temp); if (slp) SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); else { if (j == 0) *vec_stmt = new_stmt; STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } } return true; } if (memory_access_type == VMAT_ELEMENTWISE || memory_access_type == VMAT_STRIDED_SLP) { gimple_stmt_iterator incr_gsi; bool insert_after; tree offvar; tree ivstep; tree running_off; vec *v = NULL; tree stride_base, stride_step, alias_off; /* Checked by get_load_store_type. */ unsigned int const_nunits = nunits.to_constant (); unsigned HOST_WIDE_INT cst_offset = 0; tree dr_offset; gcc_assert (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)); gcc_assert (!nested_in_vect_loop); if (grouped_load) { first_stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info); first_dr_info = STMT_VINFO_DR_INFO (first_stmt_info); } else { first_stmt_info = stmt_info; first_dr_info = dr_info; } if (slp && grouped_load) { group_size = DR_GROUP_SIZE (first_stmt_info); ref_type = get_group_alias_ptr_type (first_stmt_info); } else { if (grouped_load) cst_offset = (tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (vectype))) * vect_get_place_in_interleaving_chain (stmt_info, first_stmt_info)); group_size = 1; ref_type = reference_alias_ptr_type (DR_REF (dr_info->dr)); } dr_offset = get_dr_vinfo_offset (vinfo, first_dr_info); stride_base = fold_build_pointer_plus (DR_BASE_ADDRESS (first_dr_info->dr), size_binop (PLUS_EXPR, convert_to_ptrofftype (dr_offset), convert_to_ptrofftype (DR_INIT (first_dr_info->dr)))); stride_step = fold_convert (sizetype, DR_STEP (first_dr_info->dr)); /* For a load with loop-invariant (but other than power-of-2) stride (i.e. not a grouped access) like so: for (i = 0; i < n; i += stride) ... = array[i]; we generate a new induction variable and new accesses to form a new vector (or vectors, depending on ncopies): for (j = 0; ; j += VF*stride) tmp1 = array[j]; tmp2 = array[j + stride]; ... vectemp = {tmp1, tmp2, ...} */ ivstep = fold_build2 (MULT_EXPR, TREE_TYPE (stride_step), stride_step, build_int_cst (TREE_TYPE (stride_step), vf)); standard_iv_increment_position (loop, &incr_gsi, &insert_after); stride_base = cse_and_gimplify_to_preheader (loop_vinfo, stride_base); ivstep = cse_and_gimplify_to_preheader (loop_vinfo, ivstep); create_iv (stride_base, ivstep, NULL, loop, &incr_gsi, insert_after, &offvar, NULL); stride_step = cse_and_gimplify_to_preheader (loop_vinfo, stride_step); running_off = offvar; alias_off = build_int_cst (ref_type, 0); int nloads = const_nunits; int lnel = 1; tree ltype = TREE_TYPE (vectype); tree lvectype = vectype; auto_vec dr_chain; if (memory_access_type == VMAT_STRIDED_SLP) { if (group_size < const_nunits) { /* First check if vec_init optab supports construction from vector elts directly. Otherwise avoid emitting a constructor of vector elements by performing the loads using an integer type of the same size, constructing a vector of those and then re-interpreting it as the original vector type. This avoids a huge runtime penalty due to the general inability to perform store forwarding from smaller stores to a larger load. */ tree ptype; tree vtype = vector_vector_composition_type (vectype, const_nunits / group_size, &ptype); if (vtype != NULL_TREE) { nloads = const_nunits / group_size; lnel = group_size; lvectype = vtype; ltype = ptype; } } else { nloads = 1; lnel = const_nunits; ltype = vectype; } ltype = build_aligned_type (ltype, TYPE_ALIGN (TREE_TYPE (vectype))); } /* Load vector(1) scalar_type if it's 1 element-wise vectype. */ else if (nloads == 1) ltype = vectype; if (slp) { /* For SLP permutation support we need to load the whole group, not only the number of vector stmts the permutation result fits in. */ if (slp_perm) { /* We don't yet generate SLP_TREE_LOAD_PERMUTATIONs for variable VF. */ unsigned int const_vf = vf.to_constant (); ncopies = CEIL (group_size * const_vf, const_nunits); dr_chain.create (ncopies); } else ncopies = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node); } unsigned int group_el = 0; unsigned HOST_WIDE_INT elsz = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (vectype))); for (j = 0; j < ncopies; j++) { if (nloads > 1) vec_alloc (v, nloads); gimple *new_stmt = NULL; for (i = 0; i < nloads; i++) { tree this_off = build_int_cst (TREE_TYPE (alias_off), group_el * elsz + cst_offset); tree data_ref = build2 (MEM_REF, ltype, running_off, this_off); vect_copy_ref_info (data_ref, DR_REF (first_dr_info->dr)); new_stmt = gimple_build_assign (make_ssa_name (ltype), data_ref); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); if (nloads > 1) CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, gimple_assign_lhs (new_stmt)); group_el += lnel; if (! slp || group_el == group_size) { tree newoff = copy_ssa_name (running_off); gimple *incr = gimple_build_assign (newoff, POINTER_PLUS_EXPR, running_off, stride_step); vect_finish_stmt_generation (vinfo, stmt_info, incr, gsi); running_off = newoff; group_el = 0; } } if (nloads > 1) { tree vec_inv = build_constructor (lvectype, v); new_temp = vect_init_vector (vinfo, stmt_info, vec_inv, lvectype, gsi); new_stmt = SSA_NAME_DEF_STMT (new_temp); if (lvectype != vectype) { new_stmt = gimple_build_assign (make_ssa_name (vectype), VIEW_CONVERT_EXPR, build1 (VIEW_CONVERT_EXPR, vectype, new_temp)); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } } if (slp) { if (slp_perm) dr_chain.quick_push (gimple_assign_lhs (new_stmt)); else SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); } else { if (j == 0) *vec_stmt = new_stmt; STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } } if (slp_perm) { unsigned n_perms; vect_transform_slp_perm_load (vinfo, slp_node, dr_chain, gsi, vf, false, &n_perms); } return true; } if (memory_access_type == VMAT_GATHER_SCATTER || (!slp && memory_access_type == VMAT_CONTIGUOUS)) grouped_load = false; if (grouped_load) { first_stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info); group_size = DR_GROUP_SIZE (first_stmt_info); /* For SLP vectorization we directly vectorize a subchain without permutation. */ if (slp && ! SLP_TREE_LOAD_PERMUTATION (slp_node).exists ()) first_stmt_info = SLP_TREE_SCALAR_STMTS (slp_node)[0]; /* For BB vectorization always use the first stmt to base the data ref pointer on. */ if (bb_vinfo) first_stmt_info_for_drptr = vect_find_first_scalar_stmt_in_slp (slp_node); /* Check if the chain of loads is already vectorized. */ if (STMT_VINFO_VEC_STMTS (first_stmt_info).exists () /* For SLP we would need to copy over SLP_TREE_VEC_STMTS. ??? But we can only do so if there is exactly one as we have no way to get at the rest. Leave the CSE opportunity alone. ??? With the group load eventually participating in multiple different permutations (having multiple slp nodes which refer to the same group) the CSE is even wrong code. See PR56270. */ && !slp) { *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0]; return true; } first_dr_info = STMT_VINFO_DR_INFO (first_stmt_info); group_gap_adj = 0; /* VEC_NUM is the number of vect stmts to be created for this group. */ if (slp) { grouped_load = false; /* If an SLP permutation is from N elements to N elements, and if one vector holds a whole number of N, we can load the inputs to the permutation in the same way as an unpermuted sequence. In other cases we need to load the whole group, not only the number of vector stmts the permutation result fits in. */ unsigned scalar_lanes = SLP_TREE_LANES (slp_node); if (slp_perm && (group_size != scalar_lanes || !multiple_p (nunits, group_size))) { /* We don't yet generate such SLP_TREE_LOAD_PERMUTATIONs for variable VF; see vect_transform_slp_perm_load. */ unsigned int const_vf = vf.to_constant (); unsigned int const_nunits = nunits.to_constant (); vec_num = CEIL (group_size * const_vf, const_nunits); group_gap_adj = vf * group_size - nunits * vec_num; } else { vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node); group_gap_adj = group_size - scalar_lanes; } } else vec_num = group_size; ref_type = get_group_alias_ptr_type (first_stmt_info); } else { first_stmt_info = stmt_info; first_dr_info = dr_info; group_size = vec_num = 1; group_gap_adj = 0; ref_type = reference_alias_ptr_type (DR_REF (first_dr_info->dr)); } gcc_assert (alignment_support_scheme); vec_loop_masks *loop_masks = (loop_vinfo && LOOP_VINFO_FULLY_MASKED_P (loop_vinfo) ? &LOOP_VINFO_MASKS (loop_vinfo) : NULL); vec_loop_lens *loop_lens = (loop_vinfo && LOOP_VINFO_FULLY_WITH_LENGTH_P (loop_vinfo) ? &LOOP_VINFO_LENS (loop_vinfo) : NULL); /* Shouldn't go with length-based approach if fully masked. */ gcc_assert (!loop_lens || !loop_masks); /* Targets with store-lane instructions must not require explicit realignment. vect_supportable_dr_alignment always returns either dr_aligned or dr_unaligned_supported for masked operations. */ gcc_assert ((memory_access_type != VMAT_LOAD_STORE_LANES && !mask && !loop_masks) || alignment_support_scheme == dr_aligned || alignment_support_scheme == dr_unaligned_supported); /* In case the vectorization factor (VF) is bigger than the number of elements that we can fit in a vectype (nunits), we have to generate more than one vector stmt - i.e - we need to "unroll" the vector stmt by a factor VF/nunits. In doing so, we record a pointer from one copy of the vector stmt to the next, in the field STMT_VINFO_RELATED_STMT. This is necessary in order to allow following stages to find the correct vector defs to be used when vectorizing stmts that use the defs of the current stmt. The example below illustrates the vectorization process when VF=16 and nunits=4 (i.e., we need to create 4 vectorized stmts): before vectorization: RELATED_STMT VEC_STMT S1: x = memref - - S2: z = x + 1 - - step 1: vectorize stmt S1: We first create the vector stmt VS1_0, and, as usual, record a pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1. Next, we create the vector stmt VS1_1, and record a pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0. Similarly, for VS1_2 and VS1_3. This is the resulting chain of stmts and pointers: RELATED_STMT VEC_STMT VS1_0: vx0 = memref0 VS1_1 - VS1_1: vx1 = memref1 VS1_2 - VS1_2: vx2 = memref2 VS1_3 - VS1_3: vx3 = memref3 - - S1: x = load - VS1_0 S2: z = x + 1 - - */ /* In case of interleaving (non-unit grouped access): S1: x2 = &base + 2 S2: x0 = &base S3: x1 = &base + 1 S4: x3 = &base + 3 Vectorized loads are created in the order of memory accesses starting from the access of the first stmt of the chain: VS1: vx0 = &base VS2: vx1 = &base + vec_size*1 VS3: vx3 = &base + vec_size*2 VS4: vx4 = &base + vec_size*3 Then permutation statements are generated: VS5: vx5 = VEC_PERM_EXPR < vx0, vx1, { 0, 2, ..., i*2 } > VS6: vx6 = VEC_PERM_EXPR < vx0, vx1, { 1, 3, ..., i*2+1 } > ... And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts (the order of the data-refs in the output of vect_permute_load_chain corresponds to the order of scalar stmts in the interleaving chain - see the documentation of vect_permute_load_chain()). The generation of permutation stmts and recording them in STMT_VINFO_VEC_STMT is done in vect_transform_grouped_load(). In case of both multiple types and interleaving, the vector loads and permutation stmts above are created for every copy. The result vector stmts are put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding STMT_VINFO_RELATED_STMT for the next copies. */ /* If the data reference is aligned (dr_aligned) or potentially unaligned on a target that supports unaligned accesses (dr_unaligned_supported) we generate the following code: p = initial_addr; indx = 0; loop { p = p + indx * vectype_size; vec_dest = *(p); indx = indx + 1; } Otherwise, the data reference is potentially unaligned on a target that does not support unaligned accesses (dr_explicit_realign_optimized) - then generate the following code, in which the data in each iteration is obtained by two vector loads, one from the previous iteration, and one from the current iteration: p1 = initial_addr; msq_init = *(floor(p1)) p2 = initial_addr + VS - 1; realignment_token = call target_builtin; indx = 0; loop { p2 = p2 + indx * vectype_size lsq = *(floor(p2)) vec_dest = realign_load (msq, lsq, realignment_token) indx = indx + 1; msq = lsq; } */ /* If the misalignment remains the same throughout the execution of the loop, we can create the init_addr and permutation mask at the loop preheader. Otherwise, it needs to be created inside the loop. This can only occur when vectorizing memory accesses in the inner-loop nested within an outer-loop that is being vectorized. */ if (nested_in_vect_loop && !multiple_p (DR_STEP_ALIGNMENT (dr_info->dr), GET_MODE_SIZE (TYPE_MODE (vectype)))) { gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized); compute_in_loop = true; } bool diff_first_stmt_info = first_stmt_info_for_drptr && first_stmt_info != first_stmt_info_for_drptr; if ((alignment_support_scheme == dr_explicit_realign_optimized || alignment_support_scheme == dr_explicit_realign) && !compute_in_loop) { /* If we have different first_stmt_info, we can't set up realignment here, since we can't guarantee first_stmt_info DR has been initialized yet, use first_stmt_info_for_drptr DR by bumping the distance from first_stmt_info DR instead as below. */ if (!diff_first_stmt_info) msq = vect_setup_realignment (vinfo, first_stmt_info, gsi, &realignment_token, alignment_support_scheme, NULL_TREE, &at_loop); if (alignment_support_scheme == dr_explicit_realign_optimized) { phi = as_a (SSA_NAME_DEF_STMT (msq)); byte_offset = size_binop (MINUS_EXPR, TYPE_SIZE_UNIT (vectype), size_one_node); gcc_assert (!first_stmt_info_for_drptr); } } else at_loop = loop; if (memory_access_type == VMAT_CONTIGUOUS_REVERSE) offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1); tree bump; tree vec_offset = NULL_TREE; if (STMT_VINFO_GATHER_SCATTER_P (stmt_info)) { aggr_type = NULL_TREE; bump = NULL_TREE; } else if (memory_access_type == VMAT_GATHER_SCATTER) { aggr_type = elem_type; vect_get_strided_load_store_ops (stmt_info, loop_vinfo, &gs_info, &bump, &vec_offset); } else { if (memory_access_type == VMAT_LOAD_STORE_LANES) aggr_type = build_array_type_nelts (elem_type, vec_num * nunits); else aggr_type = vectype; bump = vect_get_data_ptr_increment (vinfo, dr_info, aggr_type, memory_access_type); } vec vec_offsets = vNULL; auto_vec vec_masks; if (mask) vect_get_vec_defs (vinfo, stmt_info, slp_node, ncopies, mask, &vec_masks, mask_vectype, NULL_TREE); tree vec_mask = NULL_TREE; poly_uint64 group_elt = 0; for (j = 0; j < ncopies; j++) { /* 1. Create the vector or array pointer update chain. */ if (j == 0) { bool simd_lane_access_p = STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) != 0; if (simd_lane_access_p && TREE_CODE (DR_BASE_ADDRESS (first_dr_info->dr)) == ADDR_EXPR && VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (first_dr_info->dr), 0)) && integer_zerop (get_dr_vinfo_offset (vinfo, first_dr_info)) && integer_zerop (DR_INIT (first_dr_info->dr)) && alias_sets_conflict_p (get_alias_set (aggr_type), get_alias_set (TREE_TYPE (ref_type))) && (alignment_support_scheme == dr_aligned || alignment_support_scheme == dr_unaligned_supported)) { dataref_ptr = unshare_expr (DR_BASE_ADDRESS (first_dr_info->dr)); dataref_offset = build_int_cst (ref_type, 0); } else if (diff_first_stmt_info) { dataref_ptr = vect_create_data_ref_ptr (vinfo, first_stmt_info_for_drptr, aggr_type, at_loop, offset, &dummy, gsi, &ptr_incr, simd_lane_access_p, byte_offset, bump); /* Adjust the pointer by the difference to first_stmt. */ data_reference_p ptrdr = STMT_VINFO_DATA_REF (first_stmt_info_for_drptr); tree diff = fold_convert (sizetype, size_binop (MINUS_EXPR, DR_INIT (first_dr_info->dr), DR_INIT (ptrdr))); dataref_ptr = bump_vector_ptr (vinfo, dataref_ptr, ptr_incr, gsi, stmt_info, diff); if (alignment_support_scheme == dr_explicit_realign) { msq = vect_setup_realignment (vinfo, first_stmt_info_for_drptr, gsi, &realignment_token, alignment_support_scheme, dataref_ptr, &at_loop); gcc_assert (!compute_in_loop); } } else if (STMT_VINFO_GATHER_SCATTER_P (stmt_info)) { vect_get_gather_scatter_ops (loop_vinfo, loop, stmt_info, &gs_info, &dataref_ptr, &vec_offsets); } else dataref_ptr = vect_create_data_ref_ptr (vinfo, first_stmt_info, aggr_type, at_loop, offset, &dummy, gsi, &ptr_incr, simd_lane_access_p, byte_offset, bump); if (mask) vec_mask = vec_masks[0]; } else { if (dataref_offset) dataref_offset = int_const_binop (PLUS_EXPR, dataref_offset, bump); else if (!STMT_VINFO_GATHER_SCATTER_P (stmt_info)) dataref_ptr = bump_vector_ptr (vinfo, dataref_ptr, ptr_incr, gsi, stmt_info, bump); if (mask) vec_mask = vec_masks[j]; } if (grouped_load || slp_perm) dr_chain.create (vec_num); gimple *new_stmt = NULL; if (memory_access_type == VMAT_LOAD_STORE_LANES) { tree vec_array; vec_array = create_vector_array (vectype, vec_num); tree final_mask = NULL_TREE; if (loop_masks) final_mask = vect_get_loop_mask (gsi, loop_masks, ncopies, vectype, j); if (vec_mask) final_mask = prepare_load_store_mask (mask_vectype, final_mask, vec_mask, gsi); gcall *call; if (final_mask) { /* Emit: VEC_ARRAY = MASK_LOAD_LANES (DATAREF_PTR, ALIAS_PTR, VEC_MASK). */ unsigned int align = TYPE_ALIGN (TREE_TYPE (vectype)); tree alias_ptr = build_int_cst (ref_type, align); call = gimple_build_call_internal (IFN_MASK_LOAD_LANES, 3, dataref_ptr, alias_ptr, final_mask); } else { /* Emit: VEC_ARRAY = LOAD_LANES (MEM_REF[...all elements...]). */ data_ref = create_array_ref (aggr_type, dataref_ptr, ref_type); call = gimple_build_call_internal (IFN_LOAD_LANES, 1, data_ref); } gimple_call_set_lhs (call, vec_array); gimple_call_set_nothrow (call, true); vect_finish_stmt_generation (vinfo, stmt_info, call, gsi); new_stmt = call; /* Extract each vector into an SSA_NAME. */ for (i = 0; i < vec_num; i++) { new_temp = read_vector_array (vinfo, stmt_info, gsi, scalar_dest, vec_array, i); dr_chain.quick_push (new_temp); } /* Record the mapping between SSA_NAMEs and statements. */ vect_record_grouped_load_vectors (vinfo, stmt_info, dr_chain); /* Record that VEC_ARRAY is now dead. */ vect_clobber_variable (vinfo, stmt_info, gsi, vec_array); } else { for (i = 0; i < vec_num; i++) { tree final_mask = NULL_TREE; if (loop_masks && memory_access_type != VMAT_INVARIANT) final_mask = vect_get_loop_mask (gsi, loop_masks, vec_num * ncopies, vectype, vec_num * j + i); if (vec_mask) final_mask = prepare_load_store_mask (mask_vectype, final_mask, vec_mask, gsi); if (i > 0) dataref_ptr = bump_vector_ptr (vinfo, dataref_ptr, ptr_incr, gsi, stmt_info, bump); /* 2. Create the vector-load in the loop. */ switch (alignment_support_scheme) { case dr_aligned: case dr_unaligned_supported: { unsigned int misalign; unsigned HOST_WIDE_INT align; if (memory_access_type == VMAT_GATHER_SCATTER && gs_info.ifn != IFN_LAST) { if (STMT_VINFO_GATHER_SCATTER_P (stmt_info)) vec_offset = vec_offsets[j]; tree zero = build_zero_cst (vectype); tree scale = size_int (gs_info.scale); gcall *call; if (final_mask) call = gimple_build_call_internal (IFN_MASK_GATHER_LOAD, 5, dataref_ptr, vec_offset, scale, zero, final_mask); else call = gimple_build_call_internal (IFN_GATHER_LOAD, 4, dataref_ptr, vec_offset, scale, zero); gimple_call_set_nothrow (call, true); new_stmt = call; data_ref = NULL_TREE; break; } else if (memory_access_type == VMAT_GATHER_SCATTER) { /* Emulated gather-scatter. */ gcc_assert (!final_mask); unsigned HOST_WIDE_INT const_nunits = nunits.to_constant (); unsigned HOST_WIDE_INT const_offset_nunits = TYPE_VECTOR_SUBPARTS (gs_info.offset_vectype) .to_constant (); vec *ctor_elts; vec_alloc (ctor_elts, const_nunits); gimple_seq stmts = NULL; /* We support offset vectors with more elements than the data vector for now. */ unsigned HOST_WIDE_INT factor = const_offset_nunits / const_nunits; vec_offset = vec_offsets[j / factor]; unsigned elt_offset = (j % factor) * const_nunits; tree idx_type = TREE_TYPE (TREE_TYPE (vec_offset)); tree scale = size_int (gs_info.scale); align = get_object_alignment (DR_REF (first_dr_info->dr)); tree ltype = build_aligned_type (TREE_TYPE (vectype), align); for (unsigned k = 0; k < const_nunits; ++k) { tree boff = size_binop (MULT_EXPR, TYPE_SIZE (idx_type), bitsize_int (k + elt_offset)); tree idx = gimple_build (&stmts, BIT_FIELD_REF, idx_type, vec_offset, TYPE_SIZE (idx_type), boff); idx = gimple_convert (&stmts, sizetype, idx); idx = gimple_build (&stmts, MULT_EXPR, sizetype, idx, scale); tree ptr = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (dataref_ptr), dataref_ptr, idx); ptr = gimple_convert (&stmts, ptr_type_node, ptr); tree elt = make_ssa_name (TREE_TYPE (vectype)); tree ref = build2 (MEM_REF, ltype, ptr, build_int_cst (ref_type, 0)); new_stmt = gimple_build_assign (elt, ref); gimple_seq_add_stmt (&stmts, new_stmt); CONSTRUCTOR_APPEND_ELT (ctor_elts, NULL_TREE, elt); } gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); new_stmt = gimple_build_assign (NULL_TREE, build_constructor (vectype, ctor_elts)); data_ref = NULL_TREE; break; } align = known_alignment (DR_TARGET_ALIGNMENT (first_dr_info)); if (alignment_support_scheme == dr_aligned) { gcc_assert (aligned_access_p (first_dr_info)); misalign = 0; } else if (DR_MISALIGNMENT (first_dr_info) == -1) { align = dr_alignment (vect_dr_behavior (vinfo, first_dr_info)); misalign = 0; } else misalign = DR_MISALIGNMENT (first_dr_info); if (dataref_offset == NULL_TREE && TREE_CODE (dataref_ptr) == SSA_NAME) set_ptr_info_alignment (get_ptr_info (dataref_ptr), align, misalign); align = least_bit_hwi (misalign | align); if (final_mask) { tree ptr = build_int_cst (ref_type, align * BITS_PER_UNIT); gcall *call = gimple_build_call_internal (IFN_MASK_LOAD, 3, dataref_ptr, ptr, final_mask); gimple_call_set_nothrow (call, true); new_stmt = call; data_ref = NULL_TREE; } else if (loop_lens && memory_access_type != VMAT_INVARIANT) { tree final_len = vect_get_loop_len (loop_vinfo, loop_lens, vec_num * ncopies, vec_num * j + i); tree ptr = build_int_cst (ref_type, align * BITS_PER_UNIT); gcall *call = gimple_build_call_internal (IFN_LEN_LOAD, 3, dataref_ptr, ptr, final_len); gimple_call_set_nothrow (call, true); new_stmt = call; data_ref = NULL_TREE; /* Need conversion if it's wrapped with VnQI. */ machine_mode vmode = TYPE_MODE (vectype); opt_machine_mode new_ovmode = get_len_load_store_mode (vmode, true); machine_mode new_vmode = new_ovmode.require (); if (vmode != new_vmode) { tree qi_type = unsigned_intQI_type_node; tree new_vtype = build_vector_type_for_mode (qi_type, new_vmode); tree var = vect_get_new_ssa_name (new_vtype, vect_simple_var); gimple_set_lhs (call, var); vect_finish_stmt_generation (vinfo, stmt_info, call, gsi); tree op = build1 (VIEW_CONVERT_EXPR, vectype, var); new_stmt = gimple_build_assign (vec_dest, VIEW_CONVERT_EXPR, op); } } else { tree ltype = vectype; tree new_vtype = NULL_TREE; unsigned HOST_WIDE_INT gap = DR_GROUP_GAP (first_stmt_info); unsigned int vect_align = vect_known_alignment_in_bytes (first_dr_info); unsigned int scalar_dr_size = vect_get_scalar_dr_size (first_dr_info); /* If there's no peeling for gaps but we have a gap with slp loads then load the lower half of the vector only. See get_group_load_store_type for when we apply this optimization. */ if (slp && loop_vinfo && !LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && gap != 0 && known_eq (nunits, (group_size - gap) * 2) && known_eq (nunits, group_size) && gap >= (vect_align / scalar_dr_size)) { tree half_vtype; new_vtype = vector_vector_composition_type (vectype, 2, &half_vtype); if (new_vtype != NULL_TREE) ltype = half_vtype; } tree offset = (dataref_offset ? dataref_offset : build_int_cst (ref_type, 0)); if (ltype != vectype && memory_access_type == VMAT_CONTIGUOUS_REVERSE) { unsigned HOST_WIDE_INT gap_offset = gap * tree_to_uhwi (TYPE_SIZE_UNIT (elem_type)); tree gapcst = build_int_cst (ref_type, gap_offset); offset = size_binop (PLUS_EXPR, offset, gapcst); } data_ref = fold_build2 (MEM_REF, ltype, dataref_ptr, offset); if (alignment_support_scheme == dr_aligned) ; else TREE_TYPE (data_ref) = build_aligned_type (TREE_TYPE (data_ref), align * BITS_PER_UNIT); if (ltype != vectype) { vect_copy_ref_info (data_ref, DR_REF (first_dr_info->dr)); tree tem = make_ssa_name (ltype); new_stmt = gimple_build_assign (tem, data_ref); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); data_ref = NULL; vec *v; vec_alloc (v, 2); if (memory_access_type == VMAT_CONTIGUOUS_REVERSE) { CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_zero_cst (ltype)); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, tem); } else { CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, tem); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_zero_cst (ltype)); } gcc_assert (new_vtype != NULL_TREE); if (new_vtype == vectype) new_stmt = gimple_build_assign ( vec_dest, build_constructor (vectype, v)); else { tree new_vname = make_ssa_name (new_vtype); new_stmt = gimple_build_assign ( new_vname, build_constructor (new_vtype, v)); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); new_stmt = gimple_build_assign ( vec_dest, build1 (VIEW_CONVERT_EXPR, vectype, new_vname)); } } } break; } case dr_explicit_realign: { tree ptr, bump; tree vs = size_int (TYPE_VECTOR_SUBPARTS (vectype)); if (compute_in_loop) msq = vect_setup_realignment (vinfo, first_stmt_info, gsi, &realignment_token, dr_explicit_realign, dataref_ptr, NULL); if (TREE_CODE (dataref_ptr) == SSA_NAME) ptr = copy_ssa_name (dataref_ptr); else ptr = make_ssa_name (TREE_TYPE (dataref_ptr)); // For explicit realign the target alignment should be // known at compile time. unsigned HOST_WIDE_INT align = DR_TARGET_ALIGNMENT (first_dr_info).to_constant (); new_stmt = gimple_build_assign (ptr, BIT_AND_EXPR, dataref_ptr, build_int_cst (TREE_TYPE (dataref_ptr), -(HOST_WIDE_INT) align)); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); data_ref = build2 (MEM_REF, vectype, ptr, build_int_cst (ref_type, 0)); vect_copy_ref_info (data_ref, DR_REF (first_dr_info->dr)); vec_dest = vect_create_destination_var (scalar_dest, vectype); new_stmt = gimple_build_assign (vec_dest, data_ref); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); gimple_move_vops (new_stmt, stmt_info->stmt); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); msq = new_temp; bump = size_binop (MULT_EXPR, vs, TYPE_SIZE_UNIT (elem_type)); bump = size_binop (MINUS_EXPR, bump, size_one_node); ptr = bump_vector_ptr (vinfo, dataref_ptr, NULL, gsi, stmt_info, bump); new_stmt = gimple_build_assign (NULL_TREE, BIT_AND_EXPR, ptr, build_int_cst (TREE_TYPE (ptr), -(HOST_WIDE_INT) align)); ptr = copy_ssa_name (ptr, new_stmt); gimple_assign_set_lhs (new_stmt, ptr); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); data_ref = build2 (MEM_REF, vectype, ptr, build_int_cst (ref_type, 0)); break; } case dr_explicit_realign_optimized: { if (TREE_CODE (dataref_ptr) == SSA_NAME) new_temp = copy_ssa_name (dataref_ptr); else new_temp = make_ssa_name (TREE_TYPE (dataref_ptr)); // We should only be doing this if we know the target // alignment at compile time. unsigned HOST_WIDE_INT align = DR_TARGET_ALIGNMENT (first_dr_info).to_constant (); new_stmt = gimple_build_assign (new_temp, BIT_AND_EXPR, dataref_ptr, build_int_cst (TREE_TYPE (dataref_ptr), -(HOST_WIDE_INT) align)); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); data_ref = build2 (MEM_REF, vectype, new_temp, build_int_cst (ref_type, 0)); break; } default: gcc_unreachable (); } vec_dest = vect_create_destination_var (scalar_dest, vectype); /* DATA_REF is null if we've already built the statement. */ if (data_ref) { vect_copy_ref_info (data_ref, DR_REF (first_dr_info->dr)); new_stmt = gimple_build_assign (vec_dest, data_ref); } new_temp = make_ssa_name (vec_dest, new_stmt); gimple_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); /* 3. Handle explicit realignment if necessary/supported. Create in loop: vec_dest = realign_load (msq, lsq, realignment_token) */ if (alignment_support_scheme == dr_explicit_realign_optimized || alignment_support_scheme == dr_explicit_realign) { lsq = gimple_assign_lhs (new_stmt); if (!realignment_token) realignment_token = dataref_ptr; vec_dest = vect_create_destination_var (scalar_dest, vectype); new_stmt = gimple_build_assign (vec_dest, REALIGN_LOAD_EXPR, msq, lsq, realignment_token); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); if (alignment_support_scheme == dr_explicit_realign_optimized) { gcc_assert (phi); if (i == vec_num - 1 && j == ncopies - 1) add_phi_arg (phi, lsq, loop_latch_edge (containing_loop), UNKNOWN_LOCATION); msq = lsq; } } if (memory_access_type == VMAT_CONTIGUOUS_REVERSE) { tree perm_mask = perm_mask_for_reverse (vectype); new_temp = permute_vec_elements (vinfo, new_temp, new_temp, perm_mask, stmt_info, gsi); new_stmt = SSA_NAME_DEF_STMT (new_temp); } /* Collect vector loads and later create their permutation in vect_transform_grouped_load (). */ if (grouped_load || slp_perm) dr_chain.quick_push (new_temp); /* Store vector loads in the corresponding SLP_NODE. */ if (slp && !slp_perm) SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); /* With SLP permutation we load the gaps as well, without we need to skip the gaps after we manage to fully load all elements. group_gap_adj is DR_GROUP_SIZE here. */ group_elt += nunits; if (maybe_ne (group_gap_adj, 0U) && !slp_perm && known_eq (group_elt, group_size - group_gap_adj)) { poly_wide_int bump_val = (wi::to_wide (TYPE_SIZE_UNIT (elem_type)) * group_gap_adj); if (tree_int_cst_sgn (vect_dr_behavior (vinfo, dr_info)->step) == -1) bump_val = -bump_val; tree bump = wide_int_to_tree (sizetype, bump_val); dataref_ptr = bump_vector_ptr (vinfo, dataref_ptr, ptr_incr, gsi, stmt_info, bump); group_elt = 0; } } /* Bump the vector pointer to account for a gap or for excess elements loaded for a permuted SLP load. */ if (maybe_ne (group_gap_adj, 0U) && slp_perm) { poly_wide_int bump_val = (wi::to_wide (TYPE_SIZE_UNIT (elem_type)) * group_gap_adj); if (tree_int_cst_sgn (vect_dr_behavior (vinfo, dr_info)->step) == -1) bump_val = -bump_val; tree bump = wide_int_to_tree (sizetype, bump_val); dataref_ptr = bump_vector_ptr (vinfo, dataref_ptr, ptr_incr, gsi, stmt_info, bump); } } if (slp && !slp_perm) continue; if (slp_perm) { unsigned n_perms; /* For SLP we know we've seen all possible uses of dr_chain so direct vect_transform_slp_perm_load to DCE the unused parts. ??? This is a hack to prevent compile-time issues as seen in PR101120 and friends. */ bool ok = vect_transform_slp_perm_load (vinfo, slp_node, dr_chain, gsi, vf, false, &n_perms, nullptr, true); gcc_assert (ok); } else { if (grouped_load) { if (memory_access_type != VMAT_LOAD_STORE_LANES) vect_transform_grouped_load (vinfo, stmt_info, dr_chain, group_size, gsi); *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0]; } else { STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } } dr_chain.release (); } if (!slp) *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0]; return true; } /* Function vect_is_simple_cond. Input: LOOP - the loop that is being vectorized. COND - Condition that is checked for simple use. Output: *COMP_VECTYPE - the vector type for the comparison. *DTS - The def types for the arguments of the comparison Returns whether a COND can be vectorized. Checks whether condition operands are supportable using vec_is_simple_use. */ static bool vect_is_simple_cond (tree cond, vec_info *vinfo, stmt_vec_info stmt_info, slp_tree slp_node, tree *comp_vectype, enum vect_def_type *dts, tree vectype) { tree lhs, rhs; tree vectype1 = NULL_TREE, vectype2 = NULL_TREE; slp_tree slp_op; /* Mask case. */ if (TREE_CODE (cond) == SSA_NAME && VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (cond))) { if (!vect_is_simple_use (vinfo, stmt_info, slp_node, 0, &cond, &slp_op, &dts[0], comp_vectype) || !*comp_vectype || !VECTOR_BOOLEAN_TYPE_P (*comp_vectype)) return false; return true; } if (!COMPARISON_CLASS_P (cond)) return false; lhs = TREE_OPERAND (cond, 0); rhs = TREE_OPERAND (cond, 1); if (TREE_CODE (lhs) == SSA_NAME) { if (!vect_is_simple_use (vinfo, stmt_info, slp_node, 0, &lhs, &slp_op, &dts[0], &vectype1)) return false; } else if (TREE_CODE (lhs) == INTEGER_CST || TREE_CODE (lhs) == REAL_CST || TREE_CODE (lhs) == FIXED_CST) dts[0] = vect_constant_def; else return false; if (TREE_CODE (rhs) == SSA_NAME) { if (!vect_is_simple_use (vinfo, stmt_info, slp_node, 1, &rhs, &slp_op, &dts[1], &vectype2)) return false; } else if (TREE_CODE (rhs) == INTEGER_CST || TREE_CODE (rhs) == REAL_CST || TREE_CODE (rhs) == FIXED_CST) dts[1] = vect_constant_def; else return false; if (vectype1 && vectype2 && maybe_ne (TYPE_VECTOR_SUBPARTS (vectype1), TYPE_VECTOR_SUBPARTS (vectype2))) return false; *comp_vectype = vectype1 ? vectype1 : vectype2; /* Invariant comparison. */ if (! *comp_vectype) { tree scalar_type = TREE_TYPE (lhs); if (VECT_SCALAR_BOOLEAN_TYPE_P (scalar_type)) *comp_vectype = truth_type_for (vectype); else { /* If we can widen the comparison to match vectype do so. */ if (INTEGRAL_TYPE_P (scalar_type) && !slp_node && tree_int_cst_lt (TYPE_SIZE (scalar_type), TYPE_SIZE (TREE_TYPE (vectype)))) scalar_type = build_nonstandard_integer_type (vector_element_bits (vectype), TYPE_UNSIGNED (scalar_type)); *comp_vectype = get_vectype_for_scalar_type (vinfo, scalar_type, slp_node); } } return true; } /* vectorizable_condition. Check if STMT_INFO is conditional modify expression that can be vectorized. If VEC_STMT is also passed, vectorize STMT_INFO: create a vectorized stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it at GSI. When STMT_INFO is vectorized as a nested cycle, for_reduction is true. Return true if STMT_INFO is vectorizable in this way. */ static bool vectorizable_condition (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, gimple **vec_stmt, slp_tree slp_node, stmt_vector_for_cost *cost_vec) { tree scalar_dest = NULL_TREE; tree vec_dest = NULL_TREE; tree cond_expr, cond_expr0 = NULL_TREE, cond_expr1 = NULL_TREE; tree then_clause, else_clause; tree comp_vectype = NULL_TREE; tree vec_cond_lhs = NULL_TREE, vec_cond_rhs = NULL_TREE; tree vec_then_clause = NULL_TREE, vec_else_clause = NULL_TREE; tree vec_compare; tree new_temp; loop_vec_info loop_vinfo = dyn_cast (vinfo); enum vect_def_type dts[4] = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type}; int ndts = 4; int ncopies; int vec_num; enum tree_code code, cond_code, bitop1 = NOP_EXPR, bitop2 = NOP_EXPR; int i; bb_vec_info bb_vinfo = dyn_cast (vinfo); vec vec_oprnds0 = vNULL; vec vec_oprnds1 = vNULL; vec vec_oprnds2 = vNULL; vec vec_oprnds3 = vNULL; tree vec_cmp_type; bool masked = false; if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) return false; /* Is vectorizable conditional operation? */ gassign *stmt = dyn_cast (stmt_info->stmt); if (!stmt) return false; code = gimple_assign_rhs_code (stmt); if (code != COND_EXPR) return false; stmt_vec_info reduc_info = NULL; int reduc_index = -1; vect_reduction_type reduction_type = TREE_CODE_REDUCTION; bool for_reduction = STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info)) != NULL; if (for_reduction) { if (STMT_SLP_TYPE (stmt_info)) return false; reduc_info = info_for_reduction (vinfo, stmt_info); reduction_type = STMT_VINFO_REDUC_TYPE (reduc_info); reduc_index = STMT_VINFO_REDUC_IDX (stmt_info); gcc_assert (reduction_type != EXTRACT_LAST_REDUCTION || reduc_index != -1); } else { if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def) return false; } tree vectype = STMT_VINFO_VECTYPE (stmt_info); tree vectype1 = NULL_TREE, vectype2 = NULL_TREE; if (slp_node) { ncopies = 1; vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node); } else { ncopies = vect_get_num_copies (loop_vinfo, vectype); vec_num = 1; } gcc_assert (ncopies >= 1); if (for_reduction && ncopies > 1) return false; /* FORNOW */ cond_expr = gimple_assign_rhs1 (stmt); if (!vect_is_simple_cond (cond_expr, vinfo, stmt_info, slp_node, &comp_vectype, &dts[0], vectype) || !comp_vectype) return false; unsigned op_adjust = COMPARISON_CLASS_P (cond_expr) ? 1 : 0; slp_tree then_slp_node, else_slp_node; if (!vect_is_simple_use (vinfo, stmt_info, slp_node, 1 + op_adjust, &then_clause, &then_slp_node, &dts[2], &vectype1)) return false; if (!vect_is_simple_use (vinfo, stmt_info, slp_node, 2 + op_adjust, &else_clause, &else_slp_node, &dts[3], &vectype2)) return false; if (vectype1 && !useless_type_conversion_p (vectype, vectype1)) return false; if (vectype2 && !useless_type_conversion_p (vectype, vectype2)) return false; masked = !COMPARISON_CLASS_P (cond_expr); vec_cmp_type = truth_type_for (comp_vectype); if (vec_cmp_type == NULL_TREE) return false; cond_code = TREE_CODE (cond_expr); if (!masked) { cond_expr0 = TREE_OPERAND (cond_expr, 0); cond_expr1 = TREE_OPERAND (cond_expr, 1); } /* For conditional reductions, the "then" value needs to be the candidate value calculated by this iteration while the "else" value needs to be the result carried over from previous iterations. If the COND_EXPR is the other way around, we need to swap it. */ bool must_invert_cmp_result = false; if (reduction_type == EXTRACT_LAST_REDUCTION && reduc_index == 1) { if (masked) must_invert_cmp_result = true; else { bool honor_nans = HONOR_NANS (TREE_TYPE (cond_expr0)); tree_code new_code = invert_tree_comparison (cond_code, honor_nans); if (new_code == ERROR_MARK) must_invert_cmp_result = true; else { cond_code = new_code; /* Make sure we don't accidentally use the old condition. */ cond_expr = NULL_TREE; } } std::swap (then_clause, else_clause); } if (!masked && VECTOR_BOOLEAN_TYPE_P (comp_vectype)) { /* Boolean values may have another representation in vectors and therefore we prefer bit operations over comparison for them (which also works for scalar masks). We store opcodes to use in bitop1 and bitop2. Statement is vectorized as BITOP2 (rhs1 BITOP1 rhs2) or rhs1 BITOP2 (BITOP1 rhs2) depending on bitop1 and bitop2 arity. */ switch (cond_code) { case GT_EXPR: bitop1 = BIT_NOT_EXPR; bitop2 = BIT_AND_EXPR; break; case GE_EXPR: bitop1 = BIT_NOT_EXPR; bitop2 = BIT_IOR_EXPR; break; case LT_EXPR: bitop1 = BIT_NOT_EXPR; bitop2 = BIT_AND_EXPR; std::swap (cond_expr0, cond_expr1); break; case LE_EXPR: bitop1 = BIT_NOT_EXPR; bitop2 = BIT_IOR_EXPR; std::swap (cond_expr0, cond_expr1); break; case NE_EXPR: bitop1 = BIT_XOR_EXPR; break; case EQ_EXPR: bitop1 = BIT_XOR_EXPR; bitop2 = BIT_NOT_EXPR; break; default: return false; } cond_code = SSA_NAME; } if (TREE_CODE_CLASS (cond_code) == tcc_comparison && reduction_type == EXTRACT_LAST_REDUCTION && !expand_vec_cmp_expr_p (comp_vectype, vec_cmp_type, cond_code)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "reduction comparison operation not supported.\n"); return false; } if (!vec_stmt) { if (bitop1 != NOP_EXPR) { machine_mode mode = TYPE_MODE (comp_vectype); optab optab; optab = optab_for_tree_code (bitop1, comp_vectype, optab_default); if (!optab || optab_handler (optab, mode) == CODE_FOR_nothing) return false; if (bitop2 != NOP_EXPR) { optab = optab_for_tree_code (bitop2, comp_vectype, optab_default); if (!optab || optab_handler (optab, mode) == CODE_FOR_nothing) return false; } } vect_cost_for_stmt kind = vector_stmt; if (reduction_type == EXTRACT_LAST_REDUCTION) /* Count one reduction-like operation per vector. */ kind = vec_to_scalar; else if (!expand_vec_cond_expr_p (vectype, comp_vectype, cond_code)) return false; if (slp_node && (!vect_maybe_update_slp_op_vectype (SLP_TREE_CHILDREN (slp_node)[0], comp_vectype) || (op_adjust == 1 && !vect_maybe_update_slp_op_vectype (SLP_TREE_CHILDREN (slp_node)[1], comp_vectype)) || !vect_maybe_update_slp_op_vectype (then_slp_node, vectype) || !vect_maybe_update_slp_op_vectype (else_slp_node, vectype))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "incompatible vector types for invariants\n"); return false; } if (loop_vinfo && for_reduction && LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)) { if (reduction_type == EXTRACT_LAST_REDUCTION) vect_record_loop_mask (loop_vinfo, &LOOP_VINFO_MASKS (loop_vinfo), ncopies * vec_num, vectype, NULL); /* Extra inactive lanes should be safe for vect_nested_cycle. */ else if (STMT_VINFO_DEF_TYPE (reduc_info) != vect_nested_cycle) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "conditional reduction prevents the use" " of partial vectors.\n"); LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false; } } STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type; vect_model_simple_cost (vinfo, stmt_info, ncopies, dts, ndts, slp_node, cost_vec, kind); return true; } /* Transform. */ /* Handle def. */ scalar_dest = gimple_assign_lhs (stmt); if (reduction_type != EXTRACT_LAST_REDUCTION) vec_dest = vect_create_destination_var (scalar_dest, vectype); bool swap_cond_operands = false; /* See whether another part of the vectorized code applies a loop mask to the condition, or to its inverse. */ vec_loop_masks *masks = NULL; if (loop_vinfo && LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)) { if (reduction_type == EXTRACT_LAST_REDUCTION) masks = &LOOP_VINFO_MASKS (loop_vinfo); else { scalar_cond_masked_key cond (cond_expr, ncopies); if (loop_vinfo->scalar_cond_masked_set.contains (cond)) masks = &LOOP_VINFO_MASKS (loop_vinfo); else { bool honor_nans = HONOR_NANS (TREE_TYPE (cond.op0)); cond.code = invert_tree_comparison (cond.code, honor_nans); if (loop_vinfo->scalar_cond_masked_set.contains (cond)) { masks = &LOOP_VINFO_MASKS (loop_vinfo); cond_code = cond.code; swap_cond_operands = true; } } } } /* Handle cond expr. */ if (masked) vect_get_vec_defs (vinfo, stmt_info, slp_node, ncopies, cond_expr, &vec_oprnds0, comp_vectype, then_clause, &vec_oprnds2, vectype, reduction_type != EXTRACT_LAST_REDUCTION ? else_clause : NULL, &vec_oprnds3, vectype); else vect_get_vec_defs (vinfo, stmt_info, slp_node, ncopies, cond_expr0, &vec_oprnds0, comp_vectype, cond_expr1, &vec_oprnds1, comp_vectype, then_clause, &vec_oprnds2, vectype, reduction_type != EXTRACT_LAST_REDUCTION ? else_clause : NULL, &vec_oprnds3, vectype); /* Arguments are ready. Create the new vector stmt. */ FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_cond_lhs) { vec_then_clause = vec_oprnds2[i]; if (reduction_type != EXTRACT_LAST_REDUCTION) vec_else_clause = vec_oprnds3[i]; if (swap_cond_operands) std::swap (vec_then_clause, vec_else_clause); if (masked) vec_compare = vec_cond_lhs; else { vec_cond_rhs = vec_oprnds1[i]; if (bitop1 == NOP_EXPR) { gimple_seq stmts = NULL; vec_compare = gimple_build (&stmts, cond_code, vec_cmp_type, vec_cond_lhs, vec_cond_rhs); gsi_insert_before (gsi, stmts, GSI_SAME_STMT); } else { new_temp = make_ssa_name (vec_cmp_type); gassign *new_stmt; if (bitop1 == BIT_NOT_EXPR) new_stmt = gimple_build_assign (new_temp, bitop1, vec_cond_rhs); else new_stmt = gimple_build_assign (new_temp, bitop1, vec_cond_lhs, vec_cond_rhs); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); if (bitop2 == NOP_EXPR) vec_compare = new_temp; else if (bitop2 == BIT_NOT_EXPR) { /* Instead of doing ~x ? y : z do x ? z : y. */ vec_compare = new_temp; std::swap (vec_then_clause, vec_else_clause); } else { vec_compare = make_ssa_name (vec_cmp_type); new_stmt = gimple_build_assign (vec_compare, bitop2, vec_cond_lhs, new_temp); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } } } /* If we decided to apply a loop mask to the result of the vector comparison, AND the comparison with the mask now. Later passes should then be able to reuse the AND results between mulitple vector statements. For example: for (int i = 0; i < 100; ++i) x[i] = y[i] ? z[i] : 10; results in following optimized GIMPLE: mask__35.8_43 = vect__4.7_41 != { 0, ... }; vec_mask_and_46 = loop_mask_40 & mask__35.8_43; _19 = &MEM[base: z_12(D), index: ivtmp_56, step: 4, offset: 0B]; vect_iftmp.11_47 = .MASK_LOAD (_19, 4B, vec_mask_and_46); vect_iftmp.12_52 = VEC_COND_EXPR ; instead of using a masked and unmasked forms of vec != { 0, ... } (masked in the MASK_LOAD, unmasked in the VEC_COND_EXPR). */ /* Force vec_compare to be an SSA_NAME rather than a comparison, in cases where that's necessary. */ if (masks || reduction_type == EXTRACT_LAST_REDUCTION) { if (!is_gimple_val (vec_compare)) { tree vec_compare_name = make_ssa_name (vec_cmp_type); gassign *new_stmt = gimple_build_assign (vec_compare_name, vec_compare); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); vec_compare = vec_compare_name; } if (must_invert_cmp_result) { tree vec_compare_name = make_ssa_name (vec_cmp_type); gassign *new_stmt = gimple_build_assign (vec_compare_name, BIT_NOT_EXPR, vec_compare); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); vec_compare = vec_compare_name; } if (masks) { tree loop_mask = vect_get_loop_mask (gsi, masks, vec_num * ncopies, vectype, i); tree tmp2 = make_ssa_name (vec_cmp_type); gassign *g = gimple_build_assign (tmp2, BIT_AND_EXPR, vec_compare, loop_mask); vect_finish_stmt_generation (vinfo, stmt_info, g, gsi); vec_compare = tmp2; } } gimple *new_stmt; if (reduction_type == EXTRACT_LAST_REDUCTION) { gimple *old_stmt = vect_orig_stmt (stmt_info)->stmt; tree lhs = gimple_get_lhs (old_stmt); new_stmt = gimple_build_call_internal (IFN_FOLD_EXTRACT_LAST, 3, else_clause, vec_compare, vec_then_clause); gimple_call_set_lhs (new_stmt, lhs); SSA_NAME_DEF_STMT (lhs) = new_stmt; if (old_stmt == gsi_stmt (*gsi)) vect_finish_replace_stmt (vinfo, stmt_info, new_stmt); else { /* In this case we're moving the definition to later in the block. That doesn't matter because the only uses of the lhs are in phi statements. */ gimple_stmt_iterator old_gsi = gsi_for_stmt (old_stmt); gsi_remove (&old_gsi, true); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } } else { new_temp = make_ssa_name (vec_dest); new_stmt = gimple_build_assign (new_temp, VEC_COND_EXPR, vec_compare, vec_then_clause, vec_else_clause); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } if (slp_node) SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); else STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } if (!slp_node) *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0]; vec_oprnds0.release (); vec_oprnds1.release (); vec_oprnds2.release (); vec_oprnds3.release (); return true; } /* vectorizable_comparison. Check if STMT_INFO is comparison expression that can be vectorized. If VEC_STMT is also passed, vectorize STMT_INFO: create a vectorized comparison, put it in VEC_STMT, and insert it at GSI. Return true if STMT_INFO is vectorizable in this way. */ static bool vectorizable_comparison (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, gimple **vec_stmt, slp_tree slp_node, stmt_vector_for_cost *cost_vec) { tree lhs, rhs1, rhs2; tree vectype1 = NULL_TREE, vectype2 = NULL_TREE; tree vectype = STMT_VINFO_VECTYPE (stmt_info); tree vec_rhs1 = NULL_TREE, vec_rhs2 = NULL_TREE; tree new_temp; loop_vec_info loop_vinfo = dyn_cast (vinfo); enum vect_def_type dts[2] = {vect_unknown_def_type, vect_unknown_def_type}; int ndts = 2; poly_uint64 nunits; int ncopies; enum tree_code code, bitop1 = NOP_EXPR, bitop2 = NOP_EXPR; int i; bb_vec_info bb_vinfo = dyn_cast (vinfo); vec vec_oprnds0 = vNULL; vec vec_oprnds1 = vNULL; tree mask_type; tree mask; if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) return false; if (!vectype || !VECTOR_BOOLEAN_TYPE_P (vectype)) return false; mask_type = vectype; nunits = TYPE_VECTOR_SUBPARTS (vectype); if (slp_node) ncopies = 1; else ncopies = vect_get_num_copies (loop_vinfo, vectype); gcc_assert (ncopies >= 1); if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def) return false; gassign *stmt = dyn_cast (stmt_info->stmt); if (!stmt) return false; code = gimple_assign_rhs_code (stmt); if (TREE_CODE_CLASS (code) != tcc_comparison) return false; slp_tree slp_rhs1, slp_rhs2; if (!vect_is_simple_use (vinfo, stmt_info, slp_node, 0, &rhs1, &slp_rhs1, &dts[0], &vectype1)) return false; if (!vect_is_simple_use (vinfo, stmt_info, slp_node, 1, &rhs2, &slp_rhs2, &dts[1], &vectype2)) return false; if (vectype1 && vectype2 && maybe_ne (TYPE_VECTOR_SUBPARTS (vectype1), TYPE_VECTOR_SUBPARTS (vectype2))) return false; vectype = vectype1 ? vectype1 : vectype2; /* Invariant comparison. */ if (!vectype) { if (VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (rhs1))) vectype = mask_type; else vectype = get_vectype_for_scalar_type (vinfo, TREE_TYPE (rhs1), slp_node); if (!vectype || maybe_ne (TYPE_VECTOR_SUBPARTS (vectype), nunits)) return false; } else if (maybe_ne (nunits, TYPE_VECTOR_SUBPARTS (vectype))) return false; /* Can't compare mask and non-mask types. */ if (vectype1 && vectype2 && (VECTOR_BOOLEAN_TYPE_P (vectype1) ^ VECTOR_BOOLEAN_TYPE_P (vectype2))) return false; /* Boolean values may have another representation in vectors and therefore we prefer bit operations over comparison for them (which also works for scalar masks). We store opcodes to use in bitop1 and bitop2. Statement is vectorized as BITOP2 (rhs1 BITOP1 rhs2) or rhs1 BITOP2 (BITOP1 rhs2) depending on bitop1 and bitop2 arity. */ bool swap_p = false; if (VECTOR_BOOLEAN_TYPE_P (vectype)) { if (code == GT_EXPR) { bitop1 = BIT_NOT_EXPR; bitop2 = BIT_AND_EXPR; } else if (code == GE_EXPR) { bitop1 = BIT_NOT_EXPR; bitop2 = BIT_IOR_EXPR; } else if (code == LT_EXPR) { bitop1 = BIT_NOT_EXPR; bitop2 = BIT_AND_EXPR; swap_p = true; } else if (code == LE_EXPR) { bitop1 = BIT_NOT_EXPR; bitop2 = BIT_IOR_EXPR; swap_p = true; } else { bitop1 = BIT_XOR_EXPR; if (code == EQ_EXPR) bitop2 = BIT_NOT_EXPR; } } if (!vec_stmt) { if (bitop1 == NOP_EXPR) { if (!expand_vec_cmp_expr_p (vectype, mask_type, code)) return false; } else { machine_mode mode = TYPE_MODE (vectype); optab optab; optab = optab_for_tree_code (bitop1, vectype, optab_default); if (!optab || optab_handler (optab, mode) == CODE_FOR_nothing) return false; if (bitop2 != NOP_EXPR) { optab = optab_for_tree_code (bitop2, vectype, optab_default); if (!optab || optab_handler (optab, mode) == CODE_FOR_nothing) return false; } } /* Put types on constant and invariant SLP children. */ if (slp_node && (!vect_maybe_update_slp_op_vectype (slp_rhs1, vectype) || !vect_maybe_update_slp_op_vectype (slp_rhs2, vectype))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "incompatible vector types for invariants\n"); return false; } STMT_VINFO_TYPE (stmt_info) = comparison_vec_info_type; vect_model_simple_cost (vinfo, stmt_info, ncopies * (1 + (bitop2 != NOP_EXPR)), dts, ndts, slp_node, cost_vec); return true; } /* Transform. */ /* Handle def. */ lhs = gimple_assign_lhs (stmt); mask = vect_create_destination_var (lhs, mask_type); vect_get_vec_defs (vinfo, stmt_info, slp_node, ncopies, rhs1, &vec_oprnds0, vectype, rhs2, &vec_oprnds1, vectype); if (swap_p) std::swap (vec_oprnds0, vec_oprnds1); /* Arguments are ready. Create the new vector stmt. */ FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_rhs1) { gimple *new_stmt; vec_rhs2 = vec_oprnds1[i]; new_temp = make_ssa_name (mask); if (bitop1 == NOP_EXPR) { new_stmt = gimple_build_assign (new_temp, code, vec_rhs1, vec_rhs2); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } else { if (bitop1 == BIT_NOT_EXPR) new_stmt = gimple_build_assign (new_temp, bitop1, vec_rhs2); else new_stmt = gimple_build_assign (new_temp, bitop1, vec_rhs1, vec_rhs2); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); if (bitop2 != NOP_EXPR) { tree res = make_ssa_name (mask); if (bitop2 == BIT_NOT_EXPR) new_stmt = gimple_build_assign (res, bitop2, new_temp); else new_stmt = gimple_build_assign (res, bitop2, vec_rhs1, new_temp); vect_finish_stmt_generation (vinfo, stmt_info, new_stmt, gsi); } } if (slp_node) SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); else STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt); } if (!slp_node) *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0]; vec_oprnds0.release (); vec_oprnds1.release (); return true; } /* If SLP_NODE is nonnull, return true if vectorizable_live_operation can handle all live statements in the node. Otherwise return true if STMT_INFO is not live or if vectorizable_live_operation can handle it. GSI and VEC_STMT_P are as for vectorizable_live_operation. */ static bool can_vectorize_live_stmts (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, slp_tree slp_node, slp_instance slp_node_instance, bool vec_stmt_p, stmt_vector_for_cost *cost_vec) { if (slp_node) { stmt_vec_info slp_stmt_info; unsigned int i; FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (slp_node), i, slp_stmt_info) { if (STMT_VINFO_LIVE_P (slp_stmt_info) && !vectorizable_live_operation (vinfo, slp_stmt_info, gsi, slp_node, slp_node_instance, i, vec_stmt_p, cost_vec)) return false; } } else if (STMT_VINFO_LIVE_P (stmt_info) && !vectorizable_live_operation (vinfo, stmt_info, gsi, slp_node, slp_node_instance, -1, vec_stmt_p, cost_vec)) return false; return true; } /* Make sure the statement is vectorizable. */ opt_result vect_analyze_stmt (vec_info *vinfo, stmt_vec_info stmt_info, bool *need_to_vectorize, slp_tree node, slp_instance node_instance, stmt_vector_for_cost *cost_vec) { bb_vec_info bb_vinfo = dyn_cast (vinfo); enum vect_relevant relevance = STMT_VINFO_RELEVANT (stmt_info); bool ok; gimple_seq pattern_def_seq; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "==> examining statement: %G", stmt_info->stmt); if (gimple_has_volatile_ops (stmt_info->stmt)) return opt_result::failure_at (stmt_info->stmt, "not vectorized:" " stmt has volatile operands: %G\n", stmt_info->stmt); if (STMT_VINFO_IN_PATTERN_P (stmt_info) && node == NULL && (pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info))) { gimple_stmt_iterator si; for (si = gsi_start (pattern_def_seq); !gsi_end_p (si); gsi_next (&si)) { stmt_vec_info pattern_def_stmt_info = vinfo->lookup_stmt (gsi_stmt (si)); if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info) || STMT_VINFO_LIVE_P (pattern_def_stmt_info)) { /* Analyze def stmt of STMT if it's a pattern stmt. */ if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "==> examining pattern def statement: %G", pattern_def_stmt_info->stmt); opt_result res = vect_analyze_stmt (vinfo, pattern_def_stmt_info, need_to_vectorize, node, node_instance, cost_vec); if (!res) return res; } } } /* Skip stmts that do not need to be vectorized. In loops this is expected to include: - the COND_EXPR which is the loop exit condition - any LABEL_EXPRs in the loop - computations that are used only for array indexing or loop control. In basic blocks we only analyze statements that are a part of some SLP instance, therefore, all the statements are relevant. Pattern statement needs to be analyzed instead of the original statement if the original statement is not relevant. Otherwise, we analyze both statements. In basic blocks we are called from some SLP instance traversal, don't analyze pattern stmts instead, the pattern stmts already will be part of SLP instance. */ stmt_vec_info pattern_stmt_info = STMT_VINFO_RELATED_STMT (stmt_info); if (!STMT_VINFO_RELEVANT_P (stmt_info) && !STMT_VINFO_LIVE_P (stmt_info)) { if (STMT_VINFO_IN_PATTERN_P (stmt_info) && pattern_stmt_info && (STMT_VINFO_RELEVANT_P (pattern_stmt_info) || STMT_VINFO_LIVE_P (pattern_stmt_info))) { /* Analyze PATTERN_STMT instead of the original stmt. */ stmt_info = pattern_stmt_info; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "==> examining pattern statement: %G", stmt_info->stmt); } else { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "irrelevant.\n"); return opt_result::success (); } } else if (STMT_VINFO_IN_PATTERN_P (stmt_info) && node == NULL && pattern_stmt_info && (STMT_VINFO_RELEVANT_P (pattern_stmt_info) || STMT_VINFO_LIVE_P (pattern_stmt_info))) { /* Analyze PATTERN_STMT too. */ if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "==> examining pattern statement: %G", pattern_stmt_info->stmt); opt_result res = vect_analyze_stmt (vinfo, pattern_stmt_info, need_to_vectorize, node, node_instance, cost_vec); if (!res) return res; } switch (STMT_VINFO_DEF_TYPE (stmt_info)) { case vect_internal_def: break; case vect_reduction_def: case vect_nested_cycle: gcc_assert (!bb_vinfo && (relevance == vect_used_in_outer || relevance == vect_used_in_outer_by_reduction || relevance == vect_used_by_reduction || relevance == vect_unused_in_scope || relevance == vect_used_only_live)); break; case vect_induction_def: gcc_assert (!bb_vinfo); break; case vect_constant_def: case vect_external_def: case vect_unknown_def_type: default: gcc_unreachable (); } if (STMT_VINFO_RELEVANT_P (stmt_info)) { gcall *call = dyn_cast (stmt_info->stmt); gcc_assert (STMT_VINFO_VECTYPE (stmt_info) || (call && gimple_call_lhs (call) == NULL_TREE)); *need_to_vectorize = true; } if (PURE_SLP_STMT (stmt_info) && !node) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "handled only by SLP analysis\n"); return opt_result::success (); } ok = true; if (!bb_vinfo && (STMT_VINFO_RELEVANT_P (stmt_info) || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)) /* Prefer vectorizable_call over vectorizable_simd_clone_call so -mveclibabi= takes preference over library functions with the simd attribute. */ ok = (vectorizable_call (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_simd_clone_call (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_conversion (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_operation (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_assignment (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_load (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_store (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_reduction (as_a (vinfo), stmt_info, node, node_instance, cost_vec) || vectorizable_induction (as_a (vinfo), stmt_info, NULL, node, cost_vec) || vectorizable_shift (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_condition (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_comparison (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_lc_phi (as_a (vinfo), stmt_info, NULL, node)); else { if (bb_vinfo) ok = (vectorizable_call (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_simd_clone_call (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_conversion (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_shift (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_operation (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_assignment (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_load (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_store (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_condition (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_comparison (vinfo, stmt_info, NULL, NULL, node, cost_vec) || vectorizable_phi (vinfo, stmt_info, NULL, node, cost_vec)); } if (!ok) return opt_result::failure_at (stmt_info->stmt, "not vectorized:" " relevant stmt not supported: %G", stmt_info->stmt); /* Stmts that are (also) "live" (i.e. - that are used out of the loop) need extra handling, except for vectorizable reductions. */ if (!bb_vinfo && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type && STMT_VINFO_TYPE (stmt_info) != lc_phi_info_type && !can_vectorize_live_stmts (as_a (vinfo), stmt_info, NULL, node, node_instance, false, cost_vec)) return opt_result::failure_at (stmt_info->stmt, "not vectorized:" " live stmt not supported: %G", stmt_info->stmt); return opt_result::success (); } /* Function vect_transform_stmt. Create a vectorized stmt to replace STMT_INFO, and insert it at GSI. */ bool vect_transform_stmt (vec_info *vinfo, stmt_vec_info stmt_info, gimple_stmt_iterator *gsi, slp_tree slp_node, slp_instance slp_node_instance) { bool is_store = false; gimple *vec_stmt = NULL; bool done; gcc_assert (slp_node || !PURE_SLP_STMT (stmt_info)); switch (STMT_VINFO_TYPE (stmt_info)) { case type_demotion_vec_info_type: case type_promotion_vec_info_type: case type_conversion_vec_info_type: done = vectorizable_conversion (vinfo, stmt_info, gsi, &vec_stmt, slp_node, NULL); gcc_assert (done); break; case induc_vec_info_type: done = vectorizable_induction (as_a (vinfo), stmt_info, &vec_stmt, slp_node, NULL); gcc_assert (done); break; case shift_vec_info_type: done = vectorizable_shift (vinfo, stmt_info, gsi, &vec_stmt, slp_node, NULL); gcc_assert (done); break; case op_vec_info_type: done = vectorizable_operation (vinfo, stmt_info, gsi, &vec_stmt, slp_node, NULL); gcc_assert (done); break; case assignment_vec_info_type: done = vectorizable_assignment (vinfo, stmt_info, gsi, &vec_stmt, slp_node, NULL); gcc_assert (done); break; case load_vec_info_type: done = vectorizable_load (vinfo, stmt_info, gsi, &vec_stmt, slp_node, NULL); gcc_assert (done); break; case store_vec_info_type: done = vectorizable_store (vinfo, stmt_info, gsi, &vec_stmt, slp_node, NULL); gcc_assert (done); if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && !slp_node) { /* In case of interleaving, the whole chain is vectorized when the last store in the chain is reached. Store stmts before the last one are skipped, and there vec_stmt_info shouldn't be freed meanwhile. */ stmt_vec_info group_info = DR_GROUP_FIRST_ELEMENT (stmt_info); if (DR_GROUP_STORE_COUNT (group_info) == DR_GROUP_SIZE (group_info)) is_store = true; } else is_store = true; break; case condition_vec_info_type: done = vectorizable_condition (vinfo, stmt_info, gsi, &vec_stmt, slp_node, NULL); gcc_assert (done); break; case comparison_vec_info_type: done = vectorizable_comparison (vinfo, stmt_info, gsi, &vec_stmt, slp_node, NULL); gcc_assert (done); break; case call_vec_info_type: done = vectorizable_call (vinfo, stmt_info, gsi, &vec_stmt, slp_node, NULL); break; case call_simd_clone_vec_info_type: done = vectorizable_simd_clone_call (vinfo, stmt_info, gsi, &vec_stmt, slp_node, NULL); break; case reduc_vec_info_type: done = vect_transform_reduction (as_a (vinfo), stmt_info, gsi, &vec_stmt, slp_node); gcc_assert (done); break; case cycle_phi_info_type: done = vect_transform_cycle_phi (as_a (vinfo), stmt_info, &vec_stmt, slp_node, slp_node_instance); gcc_assert (done); break; case lc_phi_info_type: done = vectorizable_lc_phi (as_a (vinfo), stmt_info, &vec_stmt, slp_node); gcc_assert (done); break; case phi_info_type: done = vectorizable_phi (vinfo, stmt_info, &vec_stmt, slp_node, NULL); gcc_assert (done); break; default: if (!STMT_VINFO_LIVE_P (stmt_info)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "stmt not supported.\n"); gcc_unreachable (); } done = true; } if (!slp_node && vec_stmt) gcc_assert (STMT_VINFO_VEC_STMTS (stmt_info).exists ()); if (STMT_VINFO_TYPE (stmt_info) == store_vec_info_type) return is_store; /* Handle stmts whose DEF is used outside the loop-nest that is being vectorized. */ done = can_vectorize_live_stmts (vinfo, stmt_info, gsi, slp_node, slp_node_instance, true, NULL); gcc_assert (done); return false; } /* Remove a group of stores (for SLP or interleaving), free their stmt_vec_info. */ void vect_remove_stores (vec_info *vinfo, stmt_vec_info first_stmt_info) { stmt_vec_info next_stmt_info = first_stmt_info; while (next_stmt_info) { stmt_vec_info tmp = DR_GROUP_NEXT_ELEMENT (next_stmt_info); next_stmt_info = vect_orig_stmt (next_stmt_info); /* Free the attached stmt_vec_info and remove the stmt. */ vinfo->remove_stmt (next_stmt_info); next_stmt_info = tmp; } } /* If NUNITS is nonzero, return a vector type that contains NUNITS elements of type SCALAR_TYPE, or null if the target doesn't support such a type. If NUNITS is zero, return a vector type that contains elements of type SCALAR_TYPE, choosing whichever vector size the target prefers. If PREVAILING_MODE is VOIDmode, we have not yet chosen a vector mode for this vectorization region and want to "autodetect" the best choice. Otherwise, PREVAILING_MODE is a previously-chosen vector TYPE_MODE and we want the new type to be interoperable with it. PREVAILING_MODE in this case can be a scalar integer mode or a vector mode; when it is a vector mode, the function acts like a tree-level version of related_vector_mode. */ tree get_related_vectype_for_scalar_type (machine_mode prevailing_mode, tree scalar_type, poly_uint64 nunits) { tree orig_scalar_type = scalar_type; scalar_mode inner_mode; machine_mode simd_mode; tree vectype; if (!is_int_mode (TYPE_MODE (scalar_type), &inner_mode) && !is_float_mode (TYPE_MODE (scalar_type), &inner_mode)) return NULL_TREE; unsigned int nbytes = GET_MODE_SIZE (inner_mode); /* For vector types of elements whose mode precision doesn't match their types precision we use a element type of mode precision. The vectorization routines will have to make sure they support the proper result truncation/extension. We also make sure to build vector types with INTEGER_TYPE component type only. */ if (INTEGRAL_TYPE_P (scalar_type) && (GET_MODE_BITSIZE (inner_mode) != TYPE_PRECISION (scalar_type) || TREE_CODE (scalar_type) != INTEGER_TYPE)) scalar_type = build_nonstandard_integer_type (GET_MODE_BITSIZE (inner_mode), TYPE_UNSIGNED (scalar_type)); /* We shouldn't end up building VECTOR_TYPEs of non-scalar components. When the component mode passes the above test simply use a type corresponding to that mode. The theory is that any use that would cause problems with this will disable vectorization anyway. */ else if (!SCALAR_FLOAT_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)) scalar_type = lang_hooks.types.type_for_mode (inner_mode, 1); /* We can't build a vector type of elements with alignment bigger than their size. */ else if (nbytes < TYPE_ALIGN_UNIT (scalar_type)) scalar_type = lang_hooks.types.type_for_mode (inner_mode, TYPE_UNSIGNED (scalar_type)); /* If we felt back to using the mode fail if there was no scalar type for it. */ if (scalar_type == NULL_TREE) return NULL_TREE; /* If no prevailing mode was supplied, use the mode the target prefers. Otherwise lookup a vector mode based on the prevailing mode. */ if (prevailing_mode == VOIDmode) { gcc_assert (known_eq (nunits, 0U)); simd_mode = targetm.vectorize.preferred_simd_mode (inner_mode); if (SCALAR_INT_MODE_P (simd_mode)) { /* Traditional behavior is not to take the integer mode literally, but simply to use it as a way of determining the vector size. It is up to mode_for_vector to decide what the TYPE_MODE should be. Note that nunits == 1 is allowed in order to support single element vector types. */ if (!multiple_p (GET_MODE_SIZE (simd_mode), nbytes, &nunits) || !mode_for_vector (inner_mode, nunits).exists (&simd_mode)) return NULL_TREE; } } else if (SCALAR_INT_MODE_P (prevailing_mode) || !related_vector_mode (prevailing_mode, inner_mode, nunits).exists (&simd_mode)) { /* Fall back to using mode_for_vector, mostly in the hope of being able to use an integer mode. */ if (known_eq (nunits, 0U) && !multiple_p (GET_MODE_SIZE (prevailing_mode), nbytes, &nunits)) return NULL_TREE; if (!mode_for_vector (inner_mode, nunits).exists (&simd_mode)) return NULL_TREE; } vectype = build_vector_type_for_mode (scalar_type, simd_mode); /* In cases where the mode was chosen by mode_for_vector, check that the target actually supports the chosen mode, or that it at least allows the vector mode to be replaced by a like-sized integer. */ if (!VECTOR_MODE_P (TYPE_MODE (vectype)) && !INTEGRAL_MODE_P (TYPE_MODE (vectype))) return NULL_TREE; /* Re-attach the address-space qualifier if we canonicalized the scalar type. */ if (TYPE_ADDR_SPACE (orig_scalar_type) != TYPE_ADDR_SPACE (vectype)) return build_qualified_type (vectype, KEEP_QUAL_ADDR_SPACE (TYPE_QUALS (orig_scalar_type))); return vectype; } /* Function get_vectype_for_scalar_type. Returns the vector type corresponding to SCALAR_TYPE as supported by the target. If GROUP_SIZE is nonzero and we're performing BB vectorization, make sure that the number of elements in the vector is no bigger than GROUP_SIZE. */ tree get_vectype_for_scalar_type (vec_info *vinfo, tree scalar_type, unsigned int group_size) { /* For BB vectorization, we should always have a group size once we've constructed the SLP tree; the only valid uses of zero GROUP_SIZEs are tentative requests during things like early data reference analysis and pattern recognition. */ if (is_a (vinfo)) gcc_assert (vinfo->slp_instances.is_empty () || group_size != 0); else group_size = 0; tree vectype = get_related_vectype_for_scalar_type (vinfo->vector_mode, scalar_type); if (vectype && vinfo->vector_mode == VOIDmode) vinfo->vector_mode = TYPE_MODE (vectype); /* Register the natural choice of vector type, before the group size has been applied. */ if (vectype) vinfo->used_vector_modes.add (TYPE_MODE (vectype)); /* If the natural choice of vector type doesn't satisfy GROUP_SIZE, try again with an explicit number of elements. */ if (vectype && group_size && maybe_ge (TYPE_VECTOR_SUBPARTS (vectype), group_size)) { /* Start with the biggest number of units that fits within GROUP_SIZE and halve it until we find a valid vector type. Usually either the first attempt will succeed or all will fail (in the latter case because GROUP_SIZE is too small for the target), but it's possible that a target could have a hole between supported vector types. If GROUP_SIZE is not a power of 2, this has the effect of trying the largest power of 2 that fits within the group, even though the group is not a multiple of that vector size. The BB vectorizer will then try to carve up the group into smaller pieces. */ unsigned int nunits = 1 << floor_log2 (group_size); do { vectype = get_related_vectype_for_scalar_type (vinfo->vector_mode, scalar_type, nunits); nunits /= 2; } while (nunits > 1 && !vectype); } return vectype; } /* Return the vector type corresponding to SCALAR_TYPE as supported by the target. NODE, if nonnull, is the SLP tree node that will use the returned vector type. */ tree get_vectype_for_scalar_type (vec_info *vinfo, tree scalar_type, slp_tree node) { unsigned int group_size = 0; if (node) group_size = SLP_TREE_LANES (node); return get_vectype_for_scalar_type (vinfo, scalar_type, group_size); } /* Function get_mask_type_for_scalar_type. Returns the mask type corresponding to a result of comparison of vectors of specified SCALAR_TYPE as supported by target. If GROUP_SIZE is nonzero and we're performing BB vectorization, make sure that the number of elements in the vector is no bigger than GROUP_SIZE. */ tree get_mask_type_for_scalar_type (vec_info *vinfo, tree scalar_type, unsigned int group_size) { tree vectype = get_vectype_for_scalar_type (vinfo, scalar_type, group_size); if (!vectype) return NULL; return truth_type_for (vectype); } /* Function get_same_sized_vectype Returns a vector type corresponding to SCALAR_TYPE of size VECTOR_TYPE if supported by the target. */ tree get_same_sized_vectype (tree scalar_type, tree vector_type) { if (VECT_SCALAR_BOOLEAN_TYPE_P (scalar_type)) return truth_type_for (vector_type); poly_uint64 nunits; if (!multiple_p (GET_MODE_SIZE (TYPE_MODE (vector_type)), GET_MODE_SIZE (TYPE_MODE (scalar_type)), &nunits)) return NULL_TREE; return get_related_vectype_for_scalar_type (TYPE_MODE (vector_type), scalar_type, nunits); } /* Return true if replacing LOOP_VINFO->vector_mode with VECTOR_MODE would not change the chosen vector modes. */ bool vect_chooses_same_modes_p (vec_info *vinfo, machine_mode vector_mode) { for (vec_info::mode_set::iterator i = vinfo->used_vector_modes.begin (); i != vinfo->used_vector_modes.end (); ++i) if (!VECTOR_MODE_P (*i) || related_vector_mode (vector_mode, GET_MODE_INNER (*i), 0) != *i) return false; return true; } /* Function vect_is_simple_use. Input: VINFO - the vect info of the loop or basic block that is being vectorized. OPERAND - operand in the loop or bb. Output: DEF_STMT_INFO_OUT (optional) - information about the defining stmt in case OPERAND is an SSA_NAME that is defined in the vectorizable region DEF_STMT_OUT (optional) - the defining stmt in case OPERAND is an SSA_NAME; the definition could be anywhere in the function DT - the type of definition Returns whether a stmt with OPERAND can be vectorized. For loops, supportable operands are constants, loop invariants, and operands that are defined by the current iteration of the loop. Unsupportable operands are those that are defined by a previous iteration of the loop (as is the case in reduction/induction computations). For basic blocks, supportable operands are constants and bb invariants. For now, operands defined outside the basic block are not supported. */ bool vect_is_simple_use (tree operand, vec_info *vinfo, enum vect_def_type *dt, stmt_vec_info *def_stmt_info_out, gimple **def_stmt_out) { if (def_stmt_info_out) *def_stmt_info_out = NULL; if (def_stmt_out) *def_stmt_out = NULL; *dt = vect_unknown_def_type; if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "vect_is_simple_use: operand "); if (TREE_CODE (operand) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (operand)) dump_gimple_expr (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (operand), 0); else dump_generic_expr (MSG_NOTE, TDF_SLIM, operand); } if (CONSTANT_CLASS_P (operand)) *dt = vect_constant_def; else if (is_gimple_min_invariant (operand)) *dt = vect_external_def; else if (TREE_CODE (operand) != SSA_NAME) *dt = vect_unknown_def_type; else if (SSA_NAME_IS_DEFAULT_DEF (operand)) *dt = vect_external_def; else { gimple *def_stmt = SSA_NAME_DEF_STMT (operand); stmt_vec_info stmt_vinfo = vinfo->lookup_def (operand); if (!stmt_vinfo) *dt = vect_external_def; else { stmt_vinfo = vect_stmt_to_vectorize (stmt_vinfo); def_stmt = stmt_vinfo->stmt; *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo); if (def_stmt_info_out) *def_stmt_info_out = stmt_vinfo; } if (def_stmt_out) *def_stmt_out = def_stmt; } if (dump_enabled_p ()) { dump_printf (MSG_NOTE, ", type of def: "); switch (*dt) { case vect_uninitialized_def: dump_printf (MSG_NOTE, "uninitialized\n"); break; case vect_constant_def: dump_printf (MSG_NOTE, "constant\n"); break; case vect_external_def: dump_printf (MSG_NOTE, "external\n"); break; case vect_internal_def: dump_printf (MSG_NOTE, "internal\n"); break; case vect_induction_def: dump_printf (MSG_NOTE, "induction\n"); break; case vect_reduction_def: dump_printf (MSG_NOTE, "reduction\n"); break; case vect_double_reduction_def: dump_printf (MSG_NOTE, "double reduction\n"); break; case vect_nested_cycle: dump_printf (MSG_NOTE, "nested cycle\n"); break; case vect_unknown_def_type: dump_printf (MSG_NOTE, "unknown\n"); break; } } if (*dt == vect_unknown_def_type) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Unsupported pattern.\n"); return false; } return true; } /* Function vect_is_simple_use. Same as vect_is_simple_use but also determines the vector operand type of OPERAND and stores it to *VECTYPE. If the definition of OPERAND is vect_uninitialized_def, vect_constant_def or vect_external_def *VECTYPE will be set to NULL_TREE and the caller is responsible to compute the best suited vector type for the scalar operand. */ bool vect_is_simple_use (tree operand, vec_info *vinfo, enum vect_def_type *dt, tree *vectype, stmt_vec_info *def_stmt_info_out, gimple **def_stmt_out) { stmt_vec_info def_stmt_info; gimple *def_stmt; if (!vect_is_simple_use (operand, vinfo, dt, &def_stmt_info, &def_stmt)) return false; if (def_stmt_out) *def_stmt_out = def_stmt; if (def_stmt_info_out) *def_stmt_info_out = def_stmt_info; /* Now get a vector type if the def is internal, otherwise supply NULL_TREE and leave it up to the caller to figure out a proper type for the use stmt. */ if (*dt == vect_internal_def || *dt == vect_induction_def || *dt == vect_reduction_def || *dt == vect_double_reduction_def || *dt == vect_nested_cycle) { *vectype = STMT_VINFO_VECTYPE (def_stmt_info); gcc_assert (*vectype != NULL_TREE); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_is_simple_use: vectype %T\n", *vectype); } else if (*dt == vect_uninitialized_def || *dt == vect_constant_def || *dt == vect_external_def) *vectype = NULL_TREE; else gcc_unreachable (); return true; } /* Function vect_is_simple_use. Same as vect_is_simple_use but determines the operand by operand position OPERAND from either STMT or SLP_NODE, filling in *OP and *SLP_DEF (when SLP_NODE is not NULL). */ bool vect_is_simple_use (vec_info *vinfo, stmt_vec_info stmt, slp_tree slp_node, unsigned operand, tree *op, slp_tree *slp_def, enum vect_def_type *dt, tree *vectype, stmt_vec_info *def_stmt_info_out) { if (slp_node) { slp_tree child = SLP_TREE_CHILDREN (slp_node)[operand]; *slp_def = child; *vectype = SLP_TREE_VECTYPE (child); if (SLP_TREE_DEF_TYPE (child) == vect_internal_def) { *op = gimple_get_lhs (SLP_TREE_REPRESENTATIVE (child)->stmt); return vect_is_simple_use (*op, vinfo, dt, def_stmt_info_out); } else { if (def_stmt_info_out) *def_stmt_info_out = NULL; *op = SLP_TREE_SCALAR_OPS (child)[0]; *dt = SLP_TREE_DEF_TYPE (child); return true; } } else { *slp_def = NULL; if (gassign *ass = dyn_cast (stmt->stmt)) { if (gimple_assign_rhs_code (ass) == COND_EXPR && COMPARISON_CLASS_P (gimple_assign_rhs1 (ass))) { if (operand < 2) *op = TREE_OPERAND (gimple_assign_rhs1 (ass), operand); else *op = gimple_op (ass, operand); } else if (gimple_assign_rhs_code (ass) == VIEW_CONVERT_EXPR) *op = TREE_OPERAND (gimple_assign_rhs1 (ass), 0); else *op = gimple_op (ass, operand + 1); } else if (gcall *call = dyn_cast (stmt->stmt)) *op = gimple_call_arg (call, operand); else gcc_unreachable (); return vect_is_simple_use (*op, vinfo, dt, vectype, def_stmt_info_out); } } /* If OP is not NULL and is external or constant update its vector type with VECTYPE. Returns true if successful or false if not, for example when conflicting vector types are present. */ bool vect_maybe_update_slp_op_vectype (slp_tree op, tree vectype) { if (!op || SLP_TREE_DEF_TYPE (op) == vect_internal_def) return true; if (SLP_TREE_VECTYPE (op)) return types_compatible_p (SLP_TREE_VECTYPE (op), vectype); SLP_TREE_VECTYPE (op) = vectype; return true; } /* Function supportable_widening_operation Check whether an operation represented by the code CODE is a widening operation that is supported by the target platform in vector form (i.e., when operating on arguments of type VECTYPE_IN producing a result of type VECTYPE_OUT). Widening operations we currently support are NOP (CONVERT), FLOAT, FIX_TRUNC and WIDEN_MULT. This function checks if these operations are supported by the target platform either directly (via vector tree-codes), or via target builtins. Output: - CODE1 and CODE2 are codes of vector operations to be used when vectorizing the operation, if available. - MULTI_STEP_CVT determines the number of required intermediate steps in case of multi-step conversion (like char->short->int - in that case MULTI_STEP_CVT will be 1). - INTERM_TYPES contains the intermediate type required to perform the widening operation (short in the above example). */ bool supportable_widening_operation (vec_info *vinfo, enum tree_code code, stmt_vec_info stmt_info, tree vectype_out, tree vectype_in, enum tree_code *code1, enum tree_code *code2, int *multi_step_cvt, vec *interm_types) { loop_vec_info loop_info = dyn_cast (vinfo); class loop *vect_loop = NULL; machine_mode vec_mode; enum insn_code icode1, icode2; optab optab1, optab2; tree vectype = vectype_in; tree wide_vectype = vectype_out; enum tree_code c1, c2; int i; tree prev_type, intermediate_type; machine_mode intermediate_mode, prev_mode; optab optab3, optab4; *multi_step_cvt = 0; if (loop_info) vect_loop = LOOP_VINFO_LOOP (loop_info); switch (code) { case WIDEN_MULT_EXPR: /* The result of a vectorized widening operation usually requires two vectors (because the widened results do not fit into one vector). The generated vector results would normally be expected to be generated in the same order as in the original scalar computation, i.e. if 8 results are generated in each vector iteration, they are to be organized as follows: vect1: [res1,res2,res3,res4], vect2: [res5,res6,res7,res8]. However, in the special case that the result of the widening operation is used in a reduction computation only, the order doesn't matter (because when vectorizing a reduction we change the order of the computation). Some targets can take advantage of this and generate more efficient code. For example, targets like Altivec, that support widen_mult using a sequence of {mult_even,mult_odd} generate the following vectors: vect1: [res1,res3,res5,res7], vect2: [res2,res4,res6,res8]. When vectorizing outer-loops, we execute the inner-loop sequentially (each vectorized inner-loop iteration contributes to VF outer-loop iterations in parallel). We therefore don't allow to change the order of the computation in the inner-loop during outer-loop vectorization. */ /* TODO: Another case in which order doesn't *really* matter is when we widen and then contract again, e.g. (short)((int)x * y >> 8). Normally, pack_trunc performs an even/odd permute, whereas the repack from an even/odd expansion would be an interleave, which would be significantly simpler for e.g. AVX2. */ /* In any case, in order to avoid duplicating the code below, recurse on VEC_WIDEN_MULT_EVEN_EXPR. If it succeeds, all the return values are properly set up for the caller. If we fail, we'll continue with a VEC_WIDEN_MULT_LO/HI_EXPR check. */ if (vect_loop && STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction && !nested_in_vect_loop_p (vect_loop, stmt_info) && supportable_widening_operation (vinfo, VEC_WIDEN_MULT_EVEN_EXPR, stmt_info, vectype_out, vectype_in, code1, code2, multi_step_cvt, interm_types)) { /* Elements in a vector with vect_used_by_reduction property cannot be reordered if the use chain with this property does not have the same operation. One such an example is s += a * b, where elements in a and b cannot be reordered. Here we check if the vector defined by STMT is only directly used in the reduction statement. */ tree lhs = gimple_assign_lhs (stmt_info->stmt); stmt_vec_info use_stmt_info = loop_info->lookup_single_use (lhs); if (use_stmt_info && STMT_VINFO_DEF_TYPE (use_stmt_info) == vect_reduction_def) return true; } c1 = VEC_WIDEN_MULT_LO_EXPR; c2 = VEC_WIDEN_MULT_HI_EXPR; break; case DOT_PROD_EXPR: c1 = DOT_PROD_EXPR; c2 = DOT_PROD_EXPR; break; case SAD_EXPR: c1 = SAD_EXPR; c2 = SAD_EXPR; break; case VEC_WIDEN_MULT_EVEN_EXPR: /* Support the recursion induced just above. */ c1 = VEC_WIDEN_MULT_EVEN_EXPR; c2 = VEC_WIDEN_MULT_ODD_EXPR; break; case WIDEN_LSHIFT_EXPR: c1 = VEC_WIDEN_LSHIFT_LO_EXPR; c2 = VEC_WIDEN_LSHIFT_HI_EXPR; break; case WIDEN_PLUS_EXPR: c1 = VEC_WIDEN_PLUS_LO_EXPR; c2 = VEC_WIDEN_PLUS_HI_EXPR; break; case WIDEN_MINUS_EXPR: c1 = VEC_WIDEN_MINUS_LO_EXPR; c2 = VEC_WIDEN_MINUS_HI_EXPR; break; CASE_CONVERT: c1 = VEC_UNPACK_LO_EXPR; c2 = VEC_UNPACK_HI_EXPR; break; case FLOAT_EXPR: c1 = VEC_UNPACK_FLOAT_LO_EXPR; c2 = VEC_UNPACK_FLOAT_HI_EXPR; break; case FIX_TRUNC_EXPR: c1 = VEC_UNPACK_FIX_TRUNC_LO_EXPR; c2 = VEC_UNPACK_FIX_TRUNC_HI_EXPR; break; default: gcc_unreachable (); } if (BYTES_BIG_ENDIAN && c1 != VEC_WIDEN_MULT_EVEN_EXPR) std::swap (c1, c2); if (code == FIX_TRUNC_EXPR) { /* The signedness is determined from output operand. */ optab1 = optab_for_tree_code (c1, vectype_out, optab_default); optab2 = optab_for_tree_code (c2, vectype_out, optab_default); } else if (CONVERT_EXPR_CODE_P (code) && VECTOR_BOOLEAN_TYPE_P (wide_vectype) && VECTOR_BOOLEAN_TYPE_P (vectype) && TYPE_MODE (wide_vectype) == TYPE_MODE (vectype) && SCALAR_INT_MODE_P (TYPE_MODE (vectype))) { /* If the input and result modes are the same, a different optab is needed where we pass in the number of units in vectype. */ optab1 = vec_unpacks_sbool_lo_optab; optab2 = vec_unpacks_sbool_hi_optab; } else { optab1 = optab_for_tree_code (c1, vectype, optab_default); optab2 = optab_for_tree_code (c2, vectype, optab_default); } if (!optab1 || !optab2) return false; vec_mode = TYPE_MODE (vectype); if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing || (icode2 = optab_handler (optab2, vec_mode)) == CODE_FOR_nothing) return false; *code1 = c1; *code2 = c2; if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype) && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype)) { if (!VECTOR_BOOLEAN_TYPE_P (vectype)) return true; /* For scalar masks we may have different boolean vector types having the same QImode. Thus we add additional check for elements number. */ if (known_eq (TYPE_VECTOR_SUBPARTS (vectype), TYPE_VECTOR_SUBPARTS (wide_vectype) * 2)) return true; } /* Check if it's a multi-step conversion that can be done using intermediate types. */ prev_type = vectype; prev_mode = vec_mode; if (!CONVERT_EXPR_CODE_P (code)) return false; /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS intermediate steps in promotion sequence. We try MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do not. */ interm_types->create (MAX_INTERM_CVT_STEPS); for (i = 0; i < MAX_INTERM_CVT_STEPS; i++) { intermediate_mode = insn_data[icode1].operand[0].mode; if (VECTOR_BOOLEAN_TYPE_P (prev_type)) intermediate_type = vect_halve_mask_nunits (prev_type, intermediate_mode); else intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode, TYPE_UNSIGNED (prev_type)); if (VECTOR_BOOLEAN_TYPE_P (intermediate_type) && VECTOR_BOOLEAN_TYPE_P (prev_type) && intermediate_mode == prev_mode && SCALAR_INT_MODE_P (prev_mode)) { /* If the input and result modes are the same, a different optab is needed where we pass in the number of units in vectype. */ optab3 = vec_unpacks_sbool_lo_optab; optab4 = vec_unpacks_sbool_hi_optab; } else { optab3 = optab_for_tree_code (c1, intermediate_type, optab_default); optab4 = optab_for_tree_code (c2, intermediate_type, optab_default); } if (!optab3 || !optab4 || (icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing || insn_data[icode1].operand[0].mode != intermediate_mode || (icode2 = optab_handler (optab2, prev_mode)) == CODE_FOR_nothing || insn_data[icode2].operand[0].mode != intermediate_mode || ((icode1 = optab_handler (optab3, intermediate_mode)) == CODE_FOR_nothing) || ((icode2 = optab_handler (optab4, intermediate_mode)) == CODE_FOR_nothing)) break; interm_types->quick_push (intermediate_type); (*multi_step_cvt)++; if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype) && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype)) { if (!VECTOR_BOOLEAN_TYPE_P (vectype)) return true; if (known_eq (TYPE_VECTOR_SUBPARTS (intermediate_type), TYPE_VECTOR_SUBPARTS (wide_vectype) * 2)) return true; } prev_type = intermediate_type; prev_mode = intermediate_mode; } interm_types->release (); return false; } /* Function supportable_narrowing_operation Check whether an operation represented by the code CODE is a narrowing operation that is supported by the target platform in vector form (i.e., when operating on arguments of type VECTYPE_IN and producing a result of type VECTYPE_OUT). Narrowing operations we currently support are NOP (CONVERT), FIX_TRUNC and FLOAT. This function checks if these operations are supported by the target platform directly via vector tree-codes. Output: - CODE1 is the code of a vector operation to be used when vectorizing the operation, if available. - MULTI_STEP_CVT determines the number of required intermediate steps in case of multi-step conversion (like int->short->char - in that case MULTI_STEP_CVT will be 1). - INTERM_TYPES contains the intermediate type required to perform the narrowing operation (short in the above example). */ bool supportable_narrowing_operation (enum tree_code code, tree vectype_out, tree vectype_in, enum tree_code *code1, int *multi_step_cvt, vec *interm_types) { machine_mode vec_mode; enum insn_code icode1; optab optab1, interm_optab; tree vectype = vectype_in; tree narrow_vectype = vectype_out; enum tree_code c1; tree intermediate_type, prev_type; machine_mode intermediate_mode, prev_mode; int i; bool uns; *multi_step_cvt = 0; switch (code) { CASE_CONVERT: c1 = VEC_PACK_TRUNC_EXPR; if (VECTOR_BOOLEAN_TYPE_P (narrow_vectype) && VECTOR_BOOLEAN_TYPE_P (vectype) && TYPE_MODE (narrow_vectype) == TYPE_MODE (vectype) && SCALAR_INT_MODE_P (TYPE_MODE (vectype))) optab1 = vec_pack_sbool_trunc_optab; else optab1 = optab_for_tree_code (c1, vectype, optab_default); break; case FIX_TRUNC_EXPR: c1 = VEC_PACK_FIX_TRUNC_EXPR; /* The signedness is determined from output operand. */ optab1 = optab_for_tree_code (c1, vectype_out, optab_default); break; case FLOAT_EXPR: c1 = VEC_PACK_FLOAT_EXPR; optab1 = optab_for_tree_code (c1, vectype, optab_default); break; default: gcc_unreachable (); } if (!optab1) return false; vec_mode = TYPE_MODE (vectype); if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing) return false; *code1 = c1; if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype)) { if (!VECTOR_BOOLEAN_TYPE_P (vectype)) return true; /* For scalar masks we may have different boolean vector types having the same QImode. Thus we add additional check for elements number. */ if (known_eq (TYPE_VECTOR_SUBPARTS (vectype) * 2, TYPE_VECTOR_SUBPARTS (narrow_vectype))) return true; } if (code == FLOAT_EXPR) return false; /* Check if it's a multi-step conversion that can be done using intermediate types. */ prev_mode = vec_mode; prev_type = vectype; if (code == FIX_TRUNC_EXPR) uns = TYPE_UNSIGNED (vectype_out); else uns = TYPE_UNSIGNED (vectype); /* For multi-step FIX_TRUNC_EXPR prefer signed floating to integer conversion over unsigned, as unsigned FIX_TRUNC_EXPR is often more costly than signed. */ if (code == FIX_TRUNC_EXPR && uns) { enum insn_code icode2; intermediate_type = lang_hooks.types.type_for_mode (TYPE_MODE (vectype_out), 0); interm_optab = optab_for_tree_code (c1, intermediate_type, optab_default); if (interm_optab != unknown_optab && (icode2 = optab_handler (optab1, vec_mode)) != CODE_FOR_nothing && insn_data[icode1].operand[0].mode == insn_data[icode2].operand[0].mode) { uns = false; optab1 = interm_optab; icode1 = icode2; } } /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS intermediate steps in promotion sequence. We try MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do not. */ interm_types->create (MAX_INTERM_CVT_STEPS); for (i = 0; i < MAX_INTERM_CVT_STEPS; i++) { intermediate_mode = insn_data[icode1].operand[0].mode; if (VECTOR_BOOLEAN_TYPE_P (prev_type)) intermediate_type = vect_double_mask_nunits (prev_type, intermediate_mode); else intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode, uns); if (VECTOR_BOOLEAN_TYPE_P (intermediate_type) && VECTOR_BOOLEAN_TYPE_P (prev_type) && intermediate_mode == prev_mode && SCALAR_INT_MODE_P (prev_mode)) interm_optab = vec_pack_sbool_trunc_optab; else interm_optab = optab_for_tree_code (VEC_PACK_TRUNC_EXPR, intermediate_type, optab_default); if (!interm_optab || ((icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing) || insn_data[icode1].operand[0].mode != intermediate_mode || ((icode1 = optab_handler (interm_optab, intermediate_mode)) == CODE_FOR_nothing)) break; interm_types->quick_push (intermediate_type); (*multi_step_cvt)++; if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype)) { if (!VECTOR_BOOLEAN_TYPE_P (vectype)) return true; if (known_eq (TYPE_VECTOR_SUBPARTS (intermediate_type) * 2, TYPE_VECTOR_SUBPARTS (narrow_vectype))) return true; } prev_mode = intermediate_mode; prev_type = intermediate_type; optab1 = interm_optab; } interm_types->release (); return false; } /* Generate and return a vector mask of MASK_TYPE such that mask[I] is true iff J + START_INDEX < END_INDEX for all J <= I. Add the statements to SEQ. */ tree vect_gen_while (gimple_seq *seq, tree mask_type, tree start_index, tree end_index, const char *name) { tree cmp_type = TREE_TYPE (start_index); gcc_checking_assert (direct_internal_fn_supported_p (IFN_WHILE_ULT, cmp_type, mask_type, OPTIMIZE_FOR_SPEED)); gcall *call = gimple_build_call_internal (IFN_WHILE_ULT, 3, start_index, end_index, build_zero_cst (mask_type)); tree tmp; if (name) tmp = make_temp_ssa_name (mask_type, NULL, name); else tmp = make_ssa_name (mask_type); gimple_call_set_lhs (call, tmp); gimple_seq_add_stmt (seq, call); return tmp; } /* Generate a vector mask of type MASK_TYPE for which index I is false iff J + START_INDEX < END_INDEX for all J <= I. Add the statements to SEQ. */ tree vect_gen_while_not (gimple_seq *seq, tree mask_type, tree start_index, tree end_index) { tree tmp = vect_gen_while (seq, mask_type, start_index, end_index); return gimple_build (seq, BIT_NOT_EXPR, mask_type, tmp); } /* Try to compute the vector types required to vectorize STMT_INFO, returning true on success and false if vectorization isn't possible. If GROUP_SIZE is nonzero and we're performing BB vectorization, take sure that the number of elements in the vectors is no bigger than GROUP_SIZE. On success: - Set *STMT_VECTYPE_OUT to: - NULL_TREE if the statement doesn't need to be vectorized; - the equivalent of STMT_VINFO_VECTYPE otherwise. - Set *NUNITS_VECTYPE_OUT to the vector type that contains the maximum number of units needed to vectorize STMT_INFO, or NULL_TREE if the statement does not help to determine the overall number of units. */ opt_result vect_get_vector_types_for_stmt (vec_info *vinfo, stmt_vec_info stmt_info, tree *stmt_vectype_out, tree *nunits_vectype_out, unsigned int group_size) { gimple *stmt = stmt_info->stmt; /* For BB vectorization, we should always have a group size once we've constructed the SLP tree; the only valid uses of zero GROUP_SIZEs are tentative requests during things like early data reference analysis and pattern recognition. */ if (is_a (vinfo)) gcc_assert (vinfo->slp_instances.is_empty () || group_size != 0); else group_size = 0; *stmt_vectype_out = NULL_TREE; *nunits_vectype_out = NULL_TREE; if (gimple_get_lhs (stmt) == NULL_TREE /* MASK_STORE has no lhs, but is ok. */ && !gimple_call_internal_p (stmt, IFN_MASK_STORE)) { if (is_a (stmt)) { /* Ignore calls with no lhs. These must be calls to #pragma omp simd functions, and what vectorization factor it really needs can't be determined until vectorizable_simd_clone_call. */ if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "defer to SIMD clone analysis.\n"); return opt_result::success (); } return opt_result::failure_at (stmt, "not vectorized: irregular stmt.%G", stmt); } tree vectype; tree scalar_type = NULL_TREE; if (group_size == 0 && STMT_VINFO_VECTYPE (stmt_info)) { vectype = STMT_VINFO_VECTYPE (stmt_info); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "precomputed vectype: %T\n", vectype); } else if (vect_use_mask_type_p (stmt_info)) { unsigned int precision = stmt_info->mask_precision; scalar_type = build_nonstandard_integer_type (precision, 1); vectype = get_mask_type_for_scalar_type (vinfo, scalar_type, group_size); if (!vectype) return opt_result::failure_at (stmt, "not vectorized: unsupported" " data-type %T\n", scalar_type); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vectype: %T\n", vectype); } else { if (data_reference *dr = STMT_VINFO_DATA_REF (stmt_info)) scalar_type = TREE_TYPE (DR_REF (dr)); else if (gimple_call_internal_p (stmt, IFN_MASK_STORE)) scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3)); else scalar_type = TREE_TYPE (gimple_get_lhs (stmt)); if (dump_enabled_p ()) { if (group_size) dump_printf_loc (MSG_NOTE, vect_location, "get vectype for scalar type (group size %d):" " %T\n", group_size, scalar_type); else dump_printf_loc (MSG_NOTE, vect_location, "get vectype for scalar type: %T\n", scalar_type); } vectype = get_vectype_for_scalar_type (vinfo, scalar_type, group_size); if (!vectype) return opt_result::failure_at (stmt, "not vectorized:" " unsupported data-type %T\n", scalar_type); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vectype: %T\n", vectype); } if (scalar_type && VECTOR_MODE_P (TYPE_MODE (scalar_type))) return opt_result::failure_at (stmt, "not vectorized: vector stmt in loop:%G", stmt); *stmt_vectype_out = vectype; /* Don't try to compute scalar types if the stmt produces a boolean vector; use the existing vector type instead. */ tree nunits_vectype = vectype; if (!VECTOR_BOOLEAN_TYPE_P (vectype)) { /* The number of units is set according to the smallest scalar type (or the largest vector size, but we only support one vector size per vectorization). */ scalar_type = vect_get_smallest_scalar_type (stmt_info, TREE_TYPE (vectype)); if (scalar_type != TREE_TYPE (vectype)) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "get vectype for smallest scalar type: %T\n", scalar_type); nunits_vectype = get_vectype_for_scalar_type (vinfo, scalar_type, group_size); if (!nunits_vectype) return opt_result::failure_at (stmt, "not vectorized: unsupported data-type %T\n", scalar_type); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "nunits vectype: %T\n", nunits_vectype); } } if (!multiple_p (TYPE_VECTOR_SUBPARTS (nunits_vectype), TYPE_VECTOR_SUBPARTS (*stmt_vectype_out))) return opt_result::failure_at (stmt, "Not vectorized: Incompatible number " "of vector subparts between %T and %T\n", nunits_vectype, *stmt_vectype_out); if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "nunits = "); dump_dec (MSG_NOTE, TYPE_VECTOR_SUBPARTS (nunits_vectype)); dump_printf (MSG_NOTE, "\n"); } *nunits_vectype_out = nunits_vectype; return opt_result::success (); } /* Generate and return statement sequence that sets vector length LEN that is: min_of_start_and_end = min (START_INDEX, END_INDEX); left_len = END_INDEX - min_of_start_and_end; rhs = min (left_len, LEN_LIMIT); LEN = rhs; Note: the cost of the code generated by this function is modeled by vect_estimate_min_profitable_iters, so changes here may need corresponding changes there. */ gimple_seq vect_gen_len (tree len, tree start_index, tree end_index, tree len_limit) { gimple_seq stmts = NULL; tree len_type = TREE_TYPE (len); gcc_assert (TREE_TYPE (start_index) == len_type); tree min = gimple_build (&stmts, MIN_EXPR, len_type, start_index, end_index); tree left_len = gimple_build (&stmts, MINUS_EXPR, len_type, end_index, min); tree rhs = gimple_build (&stmts, MIN_EXPR, len_type, left_len, len_limit); gimple* stmt = gimple_build_assign (len, rhs); gimple_seq_add_stmt (&stmts, stmt); return stmts; }