/* SLP - Basic Block Vectorization Copyright (C) 2007-2020 Free Software Foundation, Inc. Contributed by Dorit Naishlos and Ira Rosen This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "tree-pass.h" #include "ssa.h" #include "optabs-tree.h" #include "insn-config.h" #include "recog.h" /* FIXME: for insn_data */ #include "fold-const.h" #include "stor-layout.h" #include "gimple-iterator.h" #include "cfgloop.h" #include "tree-vectorizer.h" #include "langhooks.h" #include "gimple-walk.h" #include "dbgcnt.h" #include "tree-vector-builder.h" #include "vec-perm-indices.h" #include "gimple-fold.h" #include "internal-fn.h" #include "dump-context.h" static bool vectorizable_slp_permutation (vec_info *, gimple_stmt_iterator *, slp_tree, stmt_vector_for_cost *); /* Initialize a SLP node. */ _slp_tree::_slp_tree () { SLP_TREE_SCALAR_STMTS (this) = vNULL; SLP_TREE_SCALAR_OPS (this) = vNULL; SLP_TREE_VEC_STMTS (this) = vNULL; SLP_TREE_VEC_DEFS (this) = vNULL; SLP_TREE_NUMBER_OF_VEC_STMTS (this) = 0; SLP_TREE_CHILDREN (this) = vNULL; SLP_TREE_LOAD_PERMUTATION (this) = vNULL; SLP_TREE_LANE_PERMUTATION (this) = vNULL; SLP_TREE_DEF_TYPE (this) = vect_uninitialized_def; SLP_TREE_CODE (this) = ERROR_MARK; SLP_TREE_VECTYPE (this) = NULL_TREE; SLP_TREE_REPRESENTATIVE (this) = NULL; this->refcnt = 1; this->max_nunits = 1; this->lanes = 0; } /* Tear down a SLP node. */ _slp_tree::~_slp_tree () { SLP_TREE_CHILDREN (this).release (); SLP_TREE_SCALAR_STMTS (this).release (); SLP_TREE_SCALAR_OPS (this).release (); SLP_TREE_VEC_STMTS (this).release (); SLP_TREE_VEC_DEFS (this).release (); SLP_TREE_LOAD_PERMUTATION (this).release (); SLP_TREE_LANE_PERMUTATION (this).release (); } /* Recursively free the memory allocated for the SLP tree rooted at NODE. FINAL_P is true if we have vectorized the instance or if we have made a final decision not to vectorize the statements in any way. */ static void vect_free_slp_tree (slp_tree node, bool final_p) { int i; slp_tree child; if (--node->refcnt != 0) return; FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child) vect_free_slp_tree (child, final_p); /* Don't update STMT_VINFO_NUM_SLP_USES if it isn't relevant. Some statements might no longer exist, after having been removed by vect_transform_stmt. Updating the remaining statements would be redundant. */ if (!final_p) { stmt_vec_info stmt_info; FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info) { gcc_assert (STMT_VINFO_NUM_SLP_USES (stmt_info) > 0); STMT_VINFO_NUM_SLP_USES (stmt_info)--; } } delete node; } /* Free the memory allocated for the SLP instance. FINAL_P is true if we have vectorized the instance or if we have made a final decision not to vectorize the statements in any way. */ void vect_free_slp_instance (slp_instance instance, bool final_p) { vect_free_slp_tree (SLP_INSTANCE_TREE (instance), final_p); SLP_INSTANCE_LOADS (instance).release (); free (instance); } /* Create an SLP node for SCALAR_STMTS. */ static slp_tree vect_create_new_slp_node (vec scalar_stmts, unsigned nops) { slp_tree node = new _slp_tree; SLP_TREE_SCALAR_STMTS (node) = scalar_stmts; SLP_TREE_CHILDREN (node).create (nops); SLP_TREE_DEF_TYPE (node) = vect_internal_def; SLP_TREE_REPRESENTATIVE (node) = scalar_stmts[0]; SLP_TREE_LANES (node) = scalar_stmts.length (); unsigned i; stmt_vec_info stmt_info; FOR_EACH_VEC_ELT (scalar_stmts, i, stmt_info) STMT_VINFO_NUM_SLP_USES (stmt_info)++; return node; } /* Create an SLP node for OPS. */ static slp_tree vect_create_new_slp_node (vec ops) { slp_tree node = new _slp_tree; SLP_TREE_SCALAR_OPS (node) = ops; SLP_TREE_DEF_TYPE (node) = vect_external_def; SLP_TREE_LANES (node) = ops.length (); return node; } /* This structure is used in creation of an SLP tree. Each instance corresponds to the same operand in a group of scalar stmts in an SLP node. */ typedef struct _slp_oprnd_info { /* Def-stmts for the operands. */ vec def_stmts; /* Operands. */ vec ops; /* Information about the first statement, its vector def-type, type, the operand itself in case it's constant, and an indication if it's a pattern stmt. */ tree first_op_type; enum vect_def_type first_dt; bool any_pattern; } *slp_oprnd_info; /* Allocate operands info for NOPS operands, and GROUP_SIZE def-stmts for each operand. */ static vec vect_create_oprnd_info (int nops, int group_size) { int i; slp_oprnd_info oprnd_info; vec oprnds_info; oprnds_info.create (nops); for (i = 0; i < nops; i++) { oprnd_info = XNEW (struct _slp_oprnd_info); oprnd_info->def_stmts.create (group_size); oprnd_info->ops.create (group_size); oprnd_info->first_dt = vect_uninitialized_def; oprnd_info->first_op_type = NULL_TREE; oprnd_info->any_pattern = false; oprnds_info.quick_push (oprnd_info); } return oprnds_info; } /* Free operands info. */ static void vect_free_oprnd_info (vec &oprnds_info) { int i; slp_oprnd_info oprnd_info; FOR_EACH_VEC_ELT (oprnds_info, i, oprnd_info) { oprnd_info->def_stmts.release (); oprnd_info->ops.release (); XDELETE (oprnd_info); } oprnds_info.release (); } /* Return true if STMTS contains a pattern statement. */ static bool vect_contains_pattern_stmt_p (vec stmts) { stmt_vec_info stmt_info; unsigned int i; FOR_EACH_VEC_ELT (stmts, i, stmt_info) if (is_pattern_stmt_p (stmt_info)) return true; return false; } /* Return true when all lanes in the external or constant NODE have the same value. */ static bool vect_slp_tree_uniform_p (slp_tree node) { gcc_assert (SLP_TREE_DEF_TYPE (node) == vect_constant_def || SLP_TREE_DEF_TYPE (node) == vect_external_def); /* Pre-exsting vectors. */ if (SLP_TREE_SCALAR_OPS (node).is_empty ()) return false; unsigned i; tree op, first = NULL_TREE; FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_OPS (node), i, op) if (!first) first = op; else if (!operand_equal_p (first, op, 0)) return false; return true; } /* Find the place of the data-ref in STMT_INFO in the interleaving chain that starts from FIRST_STMT_INFO. Return -1 if the data-ref is not a part of the chain. */ int vect_get_place_in_interleaving_chain (stmt_vec_info stmt_info, stmt_vec_info first_stmt_info) { stmt_vec_info next_stmt_info = first_stmt_info; int result = 0; if (first_stmt_info != DR_GROUP_FIRST_ELEMENT (stmt_info)) return -1; do { if (next_stmt_info == stmt_info) return result; next_stmt_info = DR_GROUP_NEXT_ELEMENT (next_stmt_info); if (next_stmt_info) result += DR_GROUP_GAP (next_stmt_info); } while (next_stmt_info); return -1; } /* Check whether it is possible to load COUNT elements of type ELT_TYPE using the method implemented by duplicate_and_interleave. Return true if so, returning the number of intermediate vectors in *NVECTORS_OUT (if nonnull) and the type of each intermediate vector in *VECTOR_TYPE_OUT (if nonnull). */ bool can_duplicate_and_interleave_p (vec_info *vinfo, unsigned int count, tree elt_type, unsigned int *nvectors_out, tree *vector_type_out, tree *permutes) { tree base_vector_type = get_vectype_for_scalar_type (vinfo, elt_type, count); if (!base_vector_type || !VECTOR_MODE_P (TYPE_MODE (base_vector_type))) return false; machine_mode base_vector_mode = TYPE_MODE (base_vector_type); poly_int64 elt_bytes = count * GET_MODE_UNIT_SIZE (base_vector_mode); unsigned int nvectors = 1; for (;;) { scalar_int_mode int_mode; poly_int64 elt_bits = elt_bytes * BITS_PER_UNIT; if (int_mode_for_size (elt_bits, 1).exists (&int_mode)) { /* Get the natural vector type for this SLP group size. */ tree int_type = build_nonstandard_integer_type (GET_MODE_BITSIZE (int_mode), 1); tree vector_type = get_vectype_for_scalar_type (vinfo, int_type, count); if (vector_type && VECTOR_MODE_P (TYPE_MODE (vector_type)) && known_eq (GET_MODE_SIZE (TYPE_MODE (vector_type)), GET_MODE_SIZE (base_vector_mode))) { /* Try fusing consecutive sequences of COUNT / NVECTORS elements together into elements of type INT_TYPE and using the result to build NVECTORS vectors. */ poly_uint64 nelts = GET_MODE_NUNITS (TYPE_MODE (vector_type)); vec_perm_builder sel1 (nelts, 2, 3); vec_perm_builder sel2 (nelts, 2, 3); poly_int64 half_nelts = exact_div (nelts, 2); for (unsigned int i = 0; i < 3; ++i) { sel1.quick_push (i); sel1.quick_push (i + nelts); sel2.quick_push (half_nelts + i); sel2.quick_push (half_nelts + i + nelts); } vec_perm_indices indices1 (sel1, 2, nelts); vec_perm_indices indices2 (sel2, 2, nelts); if (can_vec_perm_const_p (TYPE_MODE (vector_type), indices1) && can_vec_perm_const_p (TYPE_MODE (vector_type), indices2)) { if (nvectors_out) *nvectors_out = nvectors; if (vector_type_out) *vector_type_out = vector_type; if (permutes) { permutes[0] = vect_gen_perm_mask_checked (vector_type, indices1); permutes[1] = vect_gen_perm_mask_checked (vector_type, indices2); } return true; } } } if (!multiple_p (elt_bytes, 2, &elt_bytes)) return false; nvectors *= 2; } } /* Get the defs for the rhs of STMT (collect them in OPRNDS_INFO), check that they are of a valid type and that they match the defs of the first stmt of the SLP group (stored in OPRNDS_INFO). This function tries to match stmts by swapping operands of STMTS[STMT_NUM] when possible. Non-zero *SWAP indicates swap is required for cond_expr stmts. Specifically, *SWAP is 1 if STMT is cond and operands of comparison need to be swapped; *SWAP is 2 if STMT is cond and code of comparison needs to be inverted. If there is any operand swap in this function, *SWAP is set to non-zero value. If there was a fatal error return -1; if the error could be corrected by swapping operands of father node of this one, return 1; if everything is ok return 0. */ static int vect_get_and_check_slp_defs (vec_info *vinfo, unsigned char *swap, vec stmts, unsigned stmt_num, vec *oprnds_info) { stmt_vec_info stmt_info = stmts[stmt_num]; tree oprnd; unsigned int i, number_of_oprnds; enum vect_def_type dt = vect_uninitialized_def; slp_oprnd_info oprnd_info; int first_op_idx = 1; unsigned int commutative_op = -1U; bool first_op_cond = false; bool first = stmt_num == 0; if (gcall *stmt = dyn_cast (stmt_info->stmt)) { number_of_oprnds = gimple_call_num_args (stmt); first_op_idx = 3; if (gimple_call_internal_p (stmt)) { internal_fn ifn = gimple_call_internal_fn (stmt); commutative_op = first_commutative_argument (ifn); /* Masked load, only look at mask. */ if (ifn == IFN_MASK_LOAD) { number_of_oprnds = 1; /* Mask operand index. */ first_op_idx = 5; } } } else if (gassign *stmt = dyn_cast (stmt_info->stmt)) { enum tree_code code = gimple_assign_rhs_code (stmt); number_of_oprnds = gimple_num_ops (stmt) - 1; /* Swap can only be done for cond_expr if asked to, otherwise we could result in different comparison code to the first stmt. */ if (code == COND_EXPR && COMPARISON_CLASS_P (gimple_assign_rhs1 (stmt))) { first_op_cond = true; number_of_oprnds++; } else commutative_op = commutative_tree_code (code) ? 0U : -1U; } else return -1; bool swapped = (*swap != 0); gcc_assert (!swapped || first_op_cond); for (i = 0; i < number_of_oprnds; i++) { again: if (first_op_cond) { /* Map indicating how operands of cond_expr should be swapped. */ int maps[3][4] = {{0, 1, 2, 3}, {1, 0, 2, 3}, {0, 1, 3, 2}}; int *map = maps[*swap]; if (i < 2) oprnd = TREE_OPERAND (gimple_op (stmt_info->stmt, first_op_idx), map[i]); else oprnd = gimple_op (stmt_info->stmt, map[i]); } else oprnd = gimple_op (stmt_info->stmt, first_op_idx + (swapped ? !i : i)); if (TREE_CODE (oprnd) == VIEW_CONVERT_EXPR) oprnd = TREE_OPERAND (oprnd, 0); oprnd_info = (*oprnds_info)[i]; stmt_vec_info def_stmt_info; if (!vect_is_simple_use (oprnd, vinfo, &dt, &def_stmt_info)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: can't analyze def for %T\n", oprnd); return -1; } if (def_stmt_info && is_pattern_stmt_p (def_stmt_info)) oprnd_info->any_pattern = true; if (first) { /* For the swapping logic below force vect_reduction_def for the reduction op in a SLP reduction group. */ if (!STMT_VINFO_DATA_REF (stmt_info) && REDUC_GROUP_FIRST_ELEMENT (stmt_info) && (int)i == STMT_VINFO_REDUC_IDX (stmt_info) && def_stmt_info) dt = vect_reduction_def; oprnd_info->first_dt = dt; oprnd_info->first_op_type = TREE_TYPE (oprnd); } else { /* Not first stmt of the group, check that the def-stmt/s match the def-stmt/s of the first stmt. Allow different definition types for reduction chains: the first stmt must be a vect_reduction_def (a phi node), and the rest end in the reduction chain. */ tree type = TREE_TYPE (oprnd); if ((oprnd_info->first_dt != dt && !(oprnd_info->first_dt == vect_reduction_def && !STMT_VINFO_DATA_REF (stmt_info) && REDUC_GROUP_FIRST_ELEMENT (stmt_info) && def_stmt_info && !STMT_VINFO_DATA_REF (def_stmt_info) && (REDUC_GROUP_FIRST_ELEMENT (def_stmt_info) == REDUC_GROUP_FIRST_ELEMENT (stmt_info))) && !((oprnd_info->first_dt == vect_external_def || oprnd_info->first_dt == vect_constant_def) && (dt == vect_external_def || dt == vect_constant_def))) || !types_compatible_p (oprnd_info->first_op_type, type) || (!STMT_VINFO_DATA_REF (stmt_info) && REDUC_GROUP_FIRST_ELEMENT (stmt_info) && ((!def_stmt_info || STMT_VINFO_DATA_REF (def_stmt_info) || (REDUC_GROUP_FIRST_ELEMENT (def_stmt_info) != REDUC_GROUP_FIRST_ELEMENT (stmt_info))) != (oprnd_info->first_dt != vect_reduction_def)))) { /* Try swapping operands if we got a mismatch. */ if (i == commutative_op && !swapped) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "trying swapped operands\n"); swapped = true; goto again; } if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: different types\n"); return 1; } if ((dt == vect_constant_def || dt == vect_external_def) && !GET_MODE_SIZE (vinfo->vector_mode).is_constant () && (TREE_CODE (type) == BOOLEAN_TYPE || !can_duplicate_and_interleave_p (vinfo, stmts.length (), type))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: invalid type of def " "for variable-length SLP %T\n", oprnd); return -1; } } /* Check the types of the definitions. */ switch (dt) { case vect_external_def: /* Make sure to demote the overall operand to external. */ oprnd_info->first_dt = vect_external_def; /* Fallthru. */ case vect_constant_def: oprnd_info->def_stmts.quick_push (NULL); oprnd_info->ops.quick_push (oprnd); break; case vect_internal_def: case vect_reduction_def: if (oprnd_info->first_dt == vect_reduction_def && !STMT_VINFO_DATA_REF (stmt_info) && REDUC_GROUP_FIRST_ELEMENT (stmt_info) && !STMT_VINFO_DATA_REF (def_stmt_info) && (REDUC_GROUP_FIRST_ELEMENT (def_stmt_info) == REDUC_GROUP_FIRST_ELEMENT (stmt_info))) { /* For a SLP reduction chain we want to duplicate the reduction to each of the chain members. That gets us a sane SLP graph (still the stmts are not 100% correct wrt the initial values). */ gcc_assert (!first); oprnd_info->def_stmts.quick_push (oprnd_info->def_stmts[0]); oprnd_info->ops.quick_push (oprnd_info->ops[0]); break; } /* Fallthru. */ case vect_induction_def: oprnd_info->def_stmts.quick_push (def_stmt_info); oprnd_info->ops.quick_push (oprnd); break; default: /* FORNOW: Not supported. */ if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: illegal type of def %T\n", oprnd); return -1; } } /* Swap operands. */ if (swapped) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "swapped operands to match def types in %G", stmt_info->stmt); } *swap = swapped; return 0; } /* Try to assign vector type VECTYPE to STMT_INFO for BB vectorization. Return true if we can, meaning that this choice doesn't conflict with existing SLP nodes that use STMT_INFO. */ static bool vect_update_shared_vectype (stmt_vec_info stmt_info, tree vectype) { tree old_vectype = STMT_VINFO_VECTYPE (stmt_info); if (old_vectype && useless_type_conversion_p (vectype, old_vectype)) return true; if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info))) { /* We maintain the invariant that if any statement in the group is used, all other members of the group have the same vector type. */ stmt_vec_info first_info = DR_GROUP_FIRST_ELEMENT (stmt_info); stmt_vec_info member_info = first_info; for (; member_info; member_info = DR_GROUP_NEXT_ELEMENT (member_info)) if (STMT_VINFO_NUM_SLP_USES (member_info) > 0 || is_pattern_stmt_p (member_info)) break; if (!member_info) { for (member_info = first_info; member_info; member_info = DR_GROUP_NEXT_ELEMENT (member_info)) STMT_VINFO_VECTYPE (member_info) = vectype; return true; } } else if (STMT_VINFO_NUM_SLP_USES (stmt_info) == 0 && !is_pattern_stmt_p (stmt_info)) { STMT_VINFO_VECTYPE (stmt_info) = vectype; return true; } if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: incompatible vector" " types for: %G", stmt_info->stmt); dump_printf_loc (MSG_NOTE, vect_location, " old vector type: %T\n", old_vectype); dump_printf_loc (MSG_NOTE, vect_location, " new vector type: %T\n", vectype); } return false; } /* Return true if call statements CALL1 and CALL2 are similar enough to be combined into the same SLP group. */ static bool compatible_calls_p (gcall *call1, gcall *call2) { unsigned int nargs = gimple_call_num_args (call1); if (nargs != gimple_call_num_args (call2)) return false; if (gimple_call_combined_fn (call1) != gimple_call_combined_fn (call2)) return false; if (gimple_call_internal_p (call1)) { if (!types_compatible_p (TREE_TYPE (gimple_call_lhs (call1)), TREE_TYPE (gimple_call_lhs (call2)))) return false; for (unsigned int i = 0; i < nargs; ++i) if (!types_compatible_p (TREE_TYPE (gimple_call_arg (call1, i)), TREE_TYPE (gimple_call_arg (call2, i)))) return false; } else { if (!operand_equal_p (gimple_call_fn (call1), gimple_call_fn (call2), 0)) return false; if (gimple_call_fntype (call1) != gimple_call_fntype (call2)) return false; } return true; } /* A subroutine of vect_build_slp_tree for checking VECTYPE, which is the caller's attempt to find the vector type in STMT_INFO with the narrowest element type. Return true if VECTYPE is nonnull and if it is valid for STMT_INFO. When returning true, update MAX_NUNITS to reflect the number of units in VECTYPE. GROUP_SIZE and MAX_NUNITS are as for vect_build_slp_tree. */ static bool vect_record_max_nunits (vec_info *vinfo, stmt_vec_info stmt_info, unsigned int group_size, tree vectype, poly_uint64 *max_nunits) { if (!vectype) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: unsupported data-type in %G\n", stmt_info->stmt); /* Fatal mismatch. */ return false; } /* If populating the vector type requires unrolling then fail before adjusting *max_nunits for basic-block vectorization. */ poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype); unsigned HOST_WIDE_INT const_nunits; if (is_a (vinfo) && (!nunits.is_constant (&const_nunits) || const_nunits > group_size)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: unrolling required " "in basic block SLP\n"); /* Fatal mismatch. */ return false; } /* In case of multiple types we need to detect the smallest type. */ vect_update_max_nunits (max_nunits, vectype); return true; } /* Verify if the scalar stmts STMTS are isomorphic, require data permutation or are of unsupported types of operation. Return true if they are, otherwise return false and indicate in *MATCHES which stmts are not isomorphic to the first one. If MATCHES[0] is false then this indicates the comparison could not be carried out or the stmts will never be vectorized by SLP. Note COND_EXPR is possibly isomorphic to another one after swapping its operands. Set SWAP[i] to 1 if stmt I is COND_EXPR and isomorphic to the first stmt by swapping the two operands of comparison; set SWAP[i] to 2 if stmt I is isormorphic to the first stmt by inverting the code of comparison. Take A1 >= B1 ? X1 : Y1 as an exmple, it can be swapped to (B1 <= A1 ? X1 : Y1); or be inverted to (A1 < B1) ? Y1 : X1. */ static bool vect_build_slp_tree_1 (vec_info *vinfo, unsigned char *swap, vec stmts, unsigned int group_size, poly_uint64 *max_nunits, bool *matches, bool *two_operators, tree *node_vectype) { unsigned int i; stmt_vec_info first_stmt_info = stmts[0]; enum tree_code first_stmt_code = ERROR_MARK; enum tree_code alt_stmt_code = ERROR_MARK; enum tree_code rhs_code = ERROR_MARK; enum tree_code first_cond_code = ERROR_MARK; tree lhs; bool need_same_oprnds = false; tree vectype = NULL_TREE, first_op1 = NULL_TREE; optab optab; int icode; machine_mode optab_op2_mode; machine_mode vec_mode; stmt_vec_info first_load = NULL, prev_first_load = NULL; bool first_stmt_load_p = false, load_p = false; /* For every stmt in NODE find its def stmt/s. */ stmt_vec_info stmt_info; FOR_EACH_VEC_ELT (stmts, i, stmt_info) { gimple *stmt = stmt_info->stmt; swap[i] = 0; matches[i] = false; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "Build SLP for %G", stmt); /* Fail to vectorize statements marked as unvectorizable. */ if (!STMT_VINFO_VECTORIZABLE (stmt_info)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: unvectorizable statement %G", stmt); /* Fatal mismatch. */ matches[0] = false; return false; } lhs = gimple_get_lhs (stmt); if (lhs == NULL_TREE) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: not GIMPLE_ASSIGN nor " "GIMPLE_CALL %G", stmt); /* Fatal mismatch. */ matches[0] = false; return false; } tree nunits_vectype; if (!vect_get_vector_types_for_stmt (vinfo, stmt_info, &vectype, &nunits_vectype, group_size) || (nunits_vectype && !vect_record_max_nunits (vinfo, stmt_info, group_size, nunits_vectype, max_nunits))) { /* Fatal mismatch. */ matches[0] = false; return false; } gcc_assert (vectype); if (is_a (vinfo) && !vect_update_shared_vectype (stmt_info, vectype)) continue; gcall *call_stmt = dyn_cast (stmt); if (call_stmt) { rhs_code = CALL_EXPR; if (gimple_call_internal_p (stmt, IFN_MASK_LOAD)) load_p = true; else if ((gimple_call_internal_p (call_stmt) && (!vectorizable_internal_fn_p (gimple_call_internal_fn (call_stmt)))) || gimple_call_tail_p (call_stmt) || gimple_call_noreturn_p (call_stmt) || !gimple_call_nothrow_p (call_stmt) || gimple_call_chain (call_stmt)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: unsupported call type %G", call_stmt); /* Fatal mismatch. */ matches[0] = false; return false; } } else { rhs_code = gimple_assign_rhs_code (stmt); load_p = gimple_vuse (stmt); } /* Check the operation. */ if (i == 0) { *node_vectype = vectype; first_stmt_code = rhs_code; first_stmt_load_p = load_p; /* Shift arguments should be equal in all the packed stmts for a vector shift with scalar shift operand. */ if (rhs_code == LSHIFT_EXPR || rhs_code == RSHIFT_EXPR || rhs_code == LROTATE_EXPR || rhs_code == RROTATE_EXPR) { vec_mode = TYPE_MODE (vectype); /* First see if we have a vector/vector shift. */ optab = optab_for_tree_code (rhs_code, vectype, optab_vector); if (!optab || optab_handler (optab, vec_mode) == CODE_FOR_nothing) { /* No vector/vector shift, try for a vector/scalar shift. */ optab = optab_for_tree_code (rhs_code, vectype, optab_scalar); if (!optab) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: no optab.\n"); /* Fatal mismatch. */ matches[0] = false; return false; } icode = (int) optab_handler (optab, vec_mode); if (icode == CODE_FOR_nothing) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: " "op not supported by target.\n"); /* Fatal mismatch. */ matches[0] = false; return false; } optab_op2_mode = insn_data[icode].operand[2].mode; if (!VECTOR_MODE_P (optab_op2_mode)) { need_same_oprnds = true; first_op1 = gimple_assign_rhs2 (stmt); } } } else if (rhs_code == WIDEN_LSHIFT_EXPR) { need_same_oprnds = true; first_op1 = gimple_assign_rhs2 (stmt); } else if (!load_p && rhs_code == BIT_FIELD_REF) { tree vec = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); if (TREE_CODE (vec) != SSA_NAME || !types_compatible_p (vectype, TREE_TYPE (vec))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: " "BIT_FIELD_REF not supported\n"); /* Fatal mismatch. */ matches[0] = false; return false; } } else if (call_stmt && gimple_call_internal_p (call_stmt, IFN_DIV_POW2)) { need_same_oprnds = true; first_op1 = gimple_call_arg (call_stmt, 1); } } else { if (first_stmt_code != rhs_code && alt_stmt_code == ERROR_MARK) alt_stmt_code = rhs_code; if ((first_stmt_code != rhs_code && (first_stmt_code != IMAGPART_EXPR || rhs_code != REALPART_EXPR) && (first_stmt_code != REALPART_EXPR || rhs_code != IMAGPART_EXPR) /* Handle mismatches in plus/minus by computing both and merging the results. */ && !((first_stmt_code == PLUS_EXPR || first_stmt_code == MINUS_EXPR) && (alt_stmt_code == PLUS_EXPR || alt_stmt_code == MINUS_EXPR) && rhs_code == alt_stmt_code) && !(STMT_VINFO_GROUPED_ACCESS (stmt_info) && (first_stmt_code == ARRAY_REF || first_stmt_code == BIT_FIELD_REF || first_stmt_code == INDIRECT_REF || first_stmt_code == COMPONENT_REF || first_stmt_code == MEM_REF))) || first_stmt_load_p != load_p) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: different operation " "in stmt %G", stmt); dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "original stmt %G", first_stmt_info->stmt); } /* Mismatch. */ continue; } if (need_same_oprnds) { tree other_op1 = (call_stmt ? gimple_call_arg (call_stmt, 1) : gimple_assign_rhs2 (stmt)); if (!operand_equal_p (first_op1, other_op1, 0)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: different shift " "arguments in %G", stmt); /* Mismatch. */ continue; } } if (!load_p && first_stmt_code == BIT_FIELD_REF && (TREE_OPERAND (gimple_assign_rhs1 (first_stmt_info->stmt), 0) != TREE_OPERAND (gimple_assign_rhs1 (stmt_info->stmt), 0))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: different BIT_FIELD_REF " "arguments in %G", stmt); /* Mismatch. */ continue; } if (!load_p && rhs_code == CALL_EXPR) { if (!compatible_calls_p (as_a (stmts[0]->stmt), as_a (stmt))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: different calls in %G", stmt); /* Mismatch. */ continue; } } } /* Grouped store or load. */ if (STMT_VINFO_GROUPED_ACCESS (stmt_info)) { if (REFERENCE_CLASS_P (lhs)) { /* Store. */ ; } else { /* Load. */ first_load = DR_GROUP_FIRST_ELEMENT (stmt_info); if (prev_first_load) { /* Check that there are no loads from different interleaving chains in the same node. */ if (prev_first_load != first_load) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: different " "interleaving chains in one node %G", stmt); /* Mismatch. */ continue; } } else prev_first_load = first_load; } } /* Grouped access. */ else { if (load_p) { /* Not grouped load. */ if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: not grouped load %G", stmt); /* FORNOW: Not grouped loads are not supported. */ /* Fatal mismatch. */ matches[0] = false; return false; } /* Not memory operation. */ if (TREE_CODE_CLASS (rhs_code) != tcc_binary && TREE_CODE_CLASS (rhs_code) != tcc_unary && TREE_CODE_CLASS (rhs_code) != tcc_expression && TREE_CODE_CLASS (rhs_code) != tcc_comparison && rhs_code != VIEW_CONVERT_EXPR && rhs_code != CALL_EXPR && rhs_code != BIT_FIELD_REF) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: operation unsupported %G", stmt); /* Fatal mismatch. */ matches[0] = false; return false; } if (rhs_code == COND_EXPR) { tree cond_expr = gimple_assign_rhs1 (stmt); enum tree_code cond_code = TREE_CODE (cond_expr); enum tree_code swap_code = ERROR_MARK; enum tree_code invert_code = ERROR_MARK; if (i == 0) first_cond_code = TREE_CODE (cond_expr); else if (TREE_CODE_CLASS (cond_code) == tcc_comparison) { bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0)); swap_code = swap_tree_comparison (cond_code); invert_code = invert_tree_comparison (cond_code, honor_nans); } if (first_cond_code == cond_code) ; /* Isomorphic can be achieved by swapping. */ else if (first_cond_code == swap_code) swap[i] = 1; /* Isomorphic can be achieved by inverting. */ else if (first_cond_code == invert_code) swap[i] = 2; else { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: different" " operation %G", stmt); /* Mismatch. */ continue; } } } matches[i] = true; } for (i = 0; i < group_size; ++i) if (!matches[i]) return false; /* If we allowed a two-operation SLP node verify the target can cope with the permute we are going to use. */ if (alt_stmt_code != ERROR_MARK && TREE_CODE_CLASS (alt_stmt_code) != tcc_reference) { *two_operators = true; } return true; } /* Traits for the hash_set to record failed SLP builds for a stmt set. Note we never remove apart from at destruction time so we do not need a special value for deleted that differs from empty. */ struct bst_traits { typedef vec value_type; typedef vec compare_type; static inline hashval_t hash (value_type); static inline bool equal (value_type existing, value_type candidate); static inline bool is_empty (value_type x) { return !x.exists (); } static inline bool is_deleted (value_type x) { return !x.exists (); } static const bool empty_zero_p = true; static inline void mark_empty (value_type &x) { x.release (); } static inline void mark_deleted (value_type &x) { x.release (); } static inline void remove (value_type &x) { x.release (); } }; inline hashval_t bst_traits::hash (value_type x) { inchash::hash h; for (unsigned i = 0; i < x.length (); ++i) h.add_int (gimple_uid (x[i]->stmt)); return h.end (); } inline bool bst_traits::equal (value_type existing, value_type candidate) { if (existing.length () != candidate.length ()) return false; for (unsigned i = 0; i < existing.length (); ++i) if (existing[i] != candidate[i]) return false; return true; } typedef hash_map , slp_tree, simple_hashmap_traits > scalar_stmts_to_slp_tree_map_t; static slp_tree vect_build_slp_tree_2 (vec_info *vinfo, vec stmts, unsigned int group_size, poly_uint64 *max_nunits, bool *matches, unsigned *npermutes, unsigned *tree_size, scalar_stmts_to_slp_tree_map_t *bst_map); static slp_tree vect_build_slp_tree (vec_info *vinfo, vec stmts, unsigned int group_size, poly_uint64 *max_nunits, bool *matches, unsigned *npermutes, unsigned *tree_size, scalar_stmts_to_slp_tree_map_t *bst_map) { if (slp_tree *leader = bst_map->get (stmts)) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "re-using %sSLP tree %p\n", *leader ? "" : "failed ", *leader); if (*leader) { (*leader)->refcnt++; vect_update_max_nunits (max_nunits, (*leader)->max_nunits); } return *leader; } poly_uint64 this_max_nunits = 1; slp_tree res = vect_build_slp_tree_2 (vinfo, stmts, group_size, &this_max_nunits, matches, npermutes, tree_size, bst_map); if (res) { res->max_nunits = this_max_nunits; vect_update_max_nunits (max_nunits, this_max_nunits); /* Keep a reference for the bst_map use. */ res->refcnt++; } bst_map->put (stmts.copy (), res); return res; } /* Recursively build an SLP tree starting from NODE. Fail (and return a value not equal to zero) if def-stmts are not isomorphic, require data permutation or are of unsupported types of operation. Otherwise, return 0. The value returned is the depth in the SLP tree where a mismatch was found. */ static slp_tree vect_build_slp_tree_2 (vec_info *vinfo, vec stmts, unsigned int group_size, poly_uint64 *max_nunits, bool *matches, unsigned *npermutes, unsigned *tree_size, scalar_stmts_to_slp_tree_map_t *bst_map) { unsigned nops, i, this_tree_size = 0; poly_uint64 this_max_nunits = *max_nunits; slp_tree node; matches[0] = false; stmt_vec_info stmt_info = stmts[0]; if (gcall *stmt = dyn_cast (stmt_info->stmt)) nops = gimple_call_num_args (stmt); else if (gassign *stmt = dyn_cast (stmt_info->stmt)) { nops = gimple_num_ops (stmt) - 1; if (gimple_assign_rhs_code (stmt) == COND_EXPR) nops++; } else if (is_a (stmt_info->stmt)) nops = 0; else return NULL; /* If the SLP node is a PHI (induction or reduction), terminate the recursion. */ if (gphi *stmt = dyn_cast (stmt_info->stmt)) { tree scalar_type = TREE_TYPE (PHI_RESULT (stmt)); tree vectype = get_vectype_for_scalar_type (vinfo, scalar_type); if (!vect_record_max_nunits (vinfo, stmt_info, group_size, vectype, max_nunits)) return NULL; vect_def_type def_type = STMT_VINFO_DEF_TYPE (stmt_info); /* Induction from different IVs is not supported. */ if (def_type == vect_induction_def) { stmt_vec_info other_info; FOR_EACH_VEC_ELT (stmts, i, other_info) if (stmt_info != other_info) return NULL; } else if (def_type == vect_reduction_def || def_type == vect_double_reduction_def || def_type == vect_nested_cycle) { /* Else def types have to match. */ stmt_vec_info other_info; FOR_EACH_VEC_ELT (stmts, i, other_info) if (STMT_VINFO_DEF_TYPE (other_info) != def_type) return NULL; } else return NULL; (*tree_size)++; node = vect_create_new_slp_node (stmts, 0); SLP_TREE_VECTYPE (node) = vectype; return node; } bool two_operators = false; unsigned char *swap = XALLOCAVEC (unsigned char, group_size); tree vectype = NULL_TREE; if (!vect_build_slp_tree_1 (vinfo, swap, stmts, group_size, &this_max_nunits, matches, &two_operators, &vectype)) return NULL; /* If the SLP node is a load, terminate the recursion unless masked. */ if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info))) { if (gcall *stmt = dyn_cast (stmt_info->stmt)) { /* Masked load. */ gcc_assert (gimple_call_internal_p (stmt, IFN_MASK_LOAD)); nops = 1; } else { *max_nunits = this_max_nunits; (*tree_size)++; node = vect_create_new_slp_node (stmts, 0); SLP_TREE_VECTYPE (node) = vectype; /* And compute the load permutation. Whether it is actually a permutation depends on the unrolling factor which is decided later. */ vec load_permutation; int j; stmt_vec_info load_info; load_permutation.create (group_size); stmt_vec_info first_stmt_info = DR_GROUP_FIRST_ELEMENT (SLP_TREE_SCALAR_STMTS (node)[0]); FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), j, load_info) { int load_place = vect_get_place_in_interleaving_chain (load_info, first_stmt_info); gcc_assert (load_place != -1); load_permutation.safe_push (load_place); } SLP_TREE_LOAD_PERMUTATION (node) = load_permutation; return node; } } else if (gimple_assign_single_p (stmt_info->stmt) && !gimple_vuse (stmt_info->stmt) && gimple_assign_rhs_code (stmt_info->stmt) == BIT_FIELD_REF) { /* vect_build_slp_tree_2 determined all BIT_FIELD_REFs reference the same SSA name vector of a compatible type to vectype. */ vec > lperm = vNULL; tree vec = TREE_OPERAND (gimple_assign_rhs1 (stmt_info->stmt), 0); stmt_vec_info estmt_info; FOR_EACH_VEC_ELT (stmts, i, estmt_info) { gassign *estmt = as_a (estmt_info->stmt); tree bfref = gimple_assign_rhs1 (estmt); HOST_WIDE_INT lane; if (!known_eq (bit_field_size (bfref), tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (vectype)))) || !constant_multiple_p (bit_field_offset (bfref), bit_field_size (bfref), &lane)) { lperm.release (); return NULL; } lperm.safe_push (std::make_pair (0, (unsigned)lane)); } slp_tree vnode = vect_create_new_slp_node (vNULL); SLP_TREE_VECTYPE (vnode) = TREE_TYPE (vec); SLP_TREE_VEC_DEFS (vnode).safe_push (vec); /* We are always building a permutation node even if it is an identity permute to shield the rest of the vectorizer from the odd node representing an actual vector without any scalar ops. ??? We could hide it completely with making the permute node external? */ node = vect_create_new_slp_node (stmts, 1); SLP_TREE_CODE (node) = VEC_PERM_EXPR; SLP_TREE_LANE_PERMUTATION (node) = lperm; SLP_TREE_VECTYPE (node) = vectype; SLP_TREE_CHILDREN (node).quick_push (vnode); return node; } /* Get at the operands, verifying they are compatible. */ vec oprnds_info = vect_create_oprnd_info (nops, group_size); slp_oprnd_info oprnd_info; FOR_EACH_VEC_ELT (stmts, i, stmt_info) { int res = vect_get_and_check_slp_defs (vinfo, &swap[i], stmts, i, &oprnds_info); if (res != 0) matches[(res == -1) ? 0 : i] = false; if (!matches[0]) break; } for (i = 0; i < group_size; ++i) if (!matches[i]) { vect_free_oprnd_info (oprnds_info); return NULL; } auto_vec children; stmt_info = stmts[0]; /* Create SLP_TREE nodes for the definition node/s. */ FOR_EACH_VEC_ELT (oprnds_info, i, oprnd_info) { slp_tree child; unsigned int j; if (oprnd_info->first_dt == vect_uninitialized_def) { /* COND_EXPR have one too many eventually if the condition is a SSA name. */ gcc_assert (i == 3 && nops == 4); continue; } if (oprnd_info->first_dt != vect_internal_def && oprnd_info->first_dt != vect_reduction_def && oprnd_info->first_dt != vect_induction_def) { slp_tree invnode = vect_create_new_slp_node (oprnd_info->ops); SLP_TREE_DEF_TYPE (invnode) = oprnd_info->first_dt; oprnd_info->ops = vNULL; children.safe_push (invnode); continue; } if ((child = vect_build_slp_tree (vinfo, oprnd_info->def_stmts, group_size, &this_max_nunits, matches, npermutes, &this_tree_size, bst_map)) != NULL) { oprnd_info->def_stmts = vNULL; children.safe_push (child); continue; } /* If the SLP build failed fatally and we analyze a basic-block simply treat nodes we fail to build as externally defined (and thus build vectors from the scalar defs). The cost model will reject outright expensive cases. ??? This doesn't treat cases where permutation ultimatively fails (or we don't try permutation below). Ideally we'd even compute a permutation that will end up with the maximum SLP tree size... */ if (is_a (vinfo) && !matches[0] /* ??? Rejecting patterns this way doesn't work. We'd have to do extra work to cancel the pattern so the uses see the scalar version. */ && !is_pattern_stmt_p (stmt_info) && !oprnd_info->any_pattern) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "Building vector operands from scalars\n"); this_tree_size++; child = vect_create_new_slp_node (oprnd_info->ops); children.safe_push (child); oprnd_info->ops = vNULL; oprnd_info->def_stmts = vNULL; continue; } /* If the SLP build for operand zero failed and operand zero and one can be commutated try that for the scalar stmts that failed the match. */ if (i == 0 /* A first scalar stmt mismatch signals a fatal mismatch. */ && matches[0] /* ??? For COND_EXPRs we can swap the comparison operands as well as the arms under some constraints. */ && nops == 2 && oprnds_info[1]->first_dt == vect_internal_def && is_gimple_assign (stmt_info->stmt) /* Swapping operands for reductions breaks assumptions later on. */ && STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def && STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def /* Do so only if the number of not successful permutes was nor more than a cut-ff as re-trying the recursive match on possibly each level of the tree would expose exponential behavior. */ && *npermutes < 4) { /* See whether we can swap the matching or the non-matching stmt operands. */ bool swap_not_matching = true; do { for (j = 0; j < group_size; ++j) { if (matches[j] != !swap_not_matching) continue; stmt_vec_info stmt_info = stmts[j]; /* Verify if we can swap operands of this stmt. */ gassign *stmt = dyn_cast (stmt_info->stmt); if (!stmt || !commutative_tree_code (gimple_assign_rhs_code (stmt))) { if (!swap_not_matching) goto fail; swap_not_matching = false; break; } } } while (j != group_size); /* Swap mismatched definition stmts. */ if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "Re-trying with swapped operands of stmts "); for (j = 0; j < group_size; ++j) if (matches[j] == !swap_not_matching) { std::swap (oprnds_info[0]->def_stmts[j], oprnds_info[1]->def_stmts[j]); std::swap (oprnds_info[0]->ops[j], oprnds_info[1]->ops[j]); if (dump_enabled_p ()) dump_printf (MSG_NOTE, "%d ", j); } if (dump_enabled_p ()) dump_printf (MSG_NOTE, "\n"); /* And try again with scratch 'matches' ... */ bool *tem = XALLOCAVEC (bool, group_size); if ((child = vect_build_slp_tree (vinfo, oprnd_info->def_stmts, group_size, &this_max_nunits, tem, npermutes, &this_tree_size, bst_map)) != NULL) { oprnd_info->def_stmts = vNULL; children.safe_push (child); continue; } ++*npermutes; } fail: gcc_assert (child == NULL); FOR_EACH_VEC_ELT (children, j, child) vect_free_slp_tree (child, false); vect_free_oprnd_info (oprnds_info); return NULL; } vect_free_oprnd_info (oprnds_info); /* If we have all children of a child built up from uniform scalars then just throw that away, causing it built up from scalars. The exception is the SLP node for the vector store. */ if (is_a (vinfo) && !STMT_VINFO_GROUPED_ACCESS (stmt_info) /* ??? Rejecting patterns this way doesn't work. We'd have to do extra work to cancel the pattern so the uses see the scalar version. */ && !is_pattern_stmt_p (stmt_info)) { slp_tree child; unsigned j; FOR_EACH_VEC_ELT (children, j, child) if (SLP_TREE_DEF_TYPE (child) == vect_internal_def || !vect_slp_tree_uniform_p (child)) break; if (!child) { /* Roll back. */ matches[0] = false; FOR_EACH_VEC_ELT (children, j, child) vect_free_slp_tree (child, false); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "Building parent vector operands from " "scalars instead\n"); return NULL; } } *tree_size += this_tree_size + 1; *max_nunits = this_max_nunits; if (two_operators) { /* ??? We'd likely want to either cache in bst_map sth like { a+b, NULL, a+b, NULL } and { NULL, a-b, NULL, a-b } or the true { a+b, a+b, a+b, a+b } ... but there we don't have explicit stmts to put in so the keying on 'stmts' doesn't work (but we have the same issue with nodes that use 'ops'). */ slp_tree one = new _slp_tree; slp_tree two = new _slp_tree; SLP_TREE_DEF_TYPE (one) = vect_internal_def; SLP_TREE_DEF_TYPE (two) = vect_internal_def; SLP_TREE_VECTYPE (one) = vectype; SLP_TREE_VECTYPE (two) = vectype; SLP_TREE_CHILDREN (one).safe_splice (children); SLP_TREE_CHILDREN (two).safe_splice (children); slp_tree child; FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (two), i, child) child->refcnt++; /* Here we record the original defs since this node represents the final lane configuration. */ node = vect_create_new_slp_node (stmts, 2); SLP_TREE_VECTYPE (node) = vectype; SLP_TREE_CODE (node) = VEC_PERM_EXPR; SLP_TREE_CHILDREN (node).quick_push (one); SLP_TREE_CHILDREN (node).quick_push (two); gassign *stmt = as_a (stmts[0]->stmt); enum tree_code code0 = gimple_assign_rhs_code (stmt); enum tree_code ocode = ERROR_MARK; stmt_vec_info ostmt_info; unsigned j = 0; FOR_EACH_VEC_ELT (stmts, i, ostmt_info) { gassign *ostmt = as_a (ostmt_info->stmt); if (gimple_assign_rhs_code (ostmt) != code0) { SLP_TREE_LANE_PERMUTATION (node).safe_push (std::make_pair (1, i)); ocode = gimple_assign_rhs_code (ostmt); j = i; } else SLP_TREE_LANE_PERMUTATION (node).safe_push (std::make_pair (0, i)); } SLP_TREE_CODE (one) = code0; SLP_TREE_CODE (two) = ocode; SLP_TREE_LANES (one) = stmts.length (); SLP_TREE_LANES (two) = stmts.length (); SLP_TREE_REPRESENTATIVE (one) = stmts[0]; SLP_TREE_REPRESENTATIVE (two) = stmts[j]; return node; } node = vect_create_new_slp_node (stmts, nops); SLP_TREE_VECTYPE (node) = vectype; SLP_TREE_CHILDREN (node).splice (children); return node; } /* Dump a single SLP tree NODE. */ static void vect_print_slp_tree (dump_flags_t dump_kind, dump_location_t loc, slp_tree node) { unsigned i, j; slp_tree child; stmt_vec_info stmt_info; tree op; dump_metadata_t metadata (dump_kind, loc.get_impl_location ()); dump_user_location_t user_loc = loc.get_user_location (); dump_printf_loc (metadata, user_loc, "node%s %p (max_nunits=%u, refcnt=%u)\n", SLP_TREE_DEF_TYPE (node) == vect_external_def ? " (external)" : (SLP_TREE_DEF_TYPE (node) == vect_constant_def ? " (constant)" : ""), node, estimated_poly_value (node->max_nunits), node->refcnt); if (SLP_TREE_SCALAR_STMTS (node).exists ()) FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info) dump_printf_loc (metadata, user_loc, "\tstmt %u %G", i, stmt_info->stmt); else { dump_printf_loc (metadata, user_loc, "\t{ "); FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_OPS (node), i, op) dump_printf (metadata, "%T%s ", op, i < SLP_TREE_SCALAR_OPS (node).length () - 1 ? "," : ""); dump_printf (metadata, "}\n"); } if (SLP_TREE_LOAD_PERMUTATION (node).exists ()) { dump_printf_loc (metadata, user_loc, "\tload permutation {"); FOR_EACH_VEC_ELT (SLP_TREE_LOAD_PERMUTATION (node), i, j) dump_printf (dump_kind, " %u", j); dump_printf (dump_kind, " }\n"); } if (SLP_TREE_LANE_PERMUTATION (node).exists ()) { dump_printf_loc (metadata, user_loc, "\tlane permutation {"); for (i = 0; i < SLP_TREE_LANE_PERMUTATION (node).length (); ++i) dump_printf (dump_kind, " %u[%u]", SLP_TREE_LANE_PERMUTATION (node)[i].first, SLP_TREE_LANE_PERMUTATION (node)[i].second); dump_printf (dump_kind, " }\n"); } if (SLP_TREE_CHILDREN (node).is_empty ()) return; dump_printf_loc (metadata, user_loc, "\tchildren"); FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child) dump_printf (dump_kind, " %p", (void *)child); dump_printf (dump_kind, "\n"); } DEBUG_FUNCTION void debug (slp_tree node) { debug_dump_context ctx; vect_print_slp_tree (MSG_NOTE, dump_location_t::from_location_t (UNKNOWN_LOCATION), node); } /* Dump a slp tree NODE using flags specified in DUMP_KIND. */ static void vect_print_slp_graph (dump_flags_t dump_kind, dump_location_t loc, slp_tree node, hash_set &visited) { unsigned i; slp_tree child; if (visited.add (node)) return; vect_print_slp_tree (dump_kind, loc, node); FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child) vect_print_slp_graph (dump_kind, loc, child, visited); } static void vect_print_slp_graph (dump_flags_t dump_kind, dump_location_t loc, slp_tree entry) { hash_set visited; vect_print_slp_graph (dump_kind, loc, entry, visited); } /* Mark the tree rooted at NODE with PURE_SLP. */ static void vect_mark_slp_stmts (slp_tree node, hash_set &visited) { int i; stmt_vec_info stmt_info; slp_tree child; if (SLP_TREE_DEF_TYPE (node) != vect_internal_def) return; if (visited.add (node)) return; FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info) STMT_SLP_TYPE (stmt_info) = pure_slp; FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child) vect_mark_slp_stmts (child, visited); } static void vect_mark_slp_stmts (slp_tree node) { hash_set visited; vect_mark_slp_stmts (node, visited); } /* Mark the statements of the tree rooted at NODE as relevant (vect_used). */ static void vect_mark_slp_stmts_relevant (slp_tree node, hash_set &visited) { int i; stmt_vec_info stmt_info; slp_tree child; if (SLP_TREE_DEF_TYPE (node) != vect_internal_def) return; if (visited.add (node)) return; FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info) { gcc_assert (!STMT_VINFO_RELEVANT (stmt_info) || STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope); STMT_VINFO_RELEVANT (stmt_info) = vect_used_in_scope; } FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child) vect_mark_slp_stmts_relevant (child, visited); } static void vect_mark_slp_stmts_relevant (slp_tree node) { hash_set visited; vect_mark_slp_stmts_relevant (node, visited); } /* Copy the SLP subtree rooted at NODE. */ static slp_tree slp_copy_subtree (slp_tree node, hash_map &map) { unsigned i; bool existed_p; slp_tree ©_ref = map.get_or_insert (node, &existed_p); if (existed_p) return copy_ref; copy_ref = new _slp_tree; slp_tree copy = copy_ref; SLP_TREE_DEF_TYPE (copy) = SLP_TREE_DEF_TYPE (node); SLP_TREE_VECTYPE (copy) = SLP_TREE_VECTYPE (node); SLP_TREE_REPRESENTATIVE (copy) = SLP_TREE_REPRESENTATIVE (node); SLP_TREE_LANES (copy) = SLP_TREE_LANES (node); copy->max_nunits = node->max_nunits; copy->refcnt = 0; if (SLP_TREE_SCALAR_STMTS (node).exists ()) { SLP_TREE_SCALAR_STMTS (copy) = SLP_TREE_SCALAR_STMTS (node).copy (); stmt_vec_info stmt_info; FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info) STMT_VINFO_NUM_SLP_USES (stmt_info)++; } if (SLP_TREE_SCALAR_OPS (node).exists ()) SLP_TREE_SCALAR_OPS (copy) = SLP_TREE_SCALAR_OPS (node).copy (); if (SLP_TREE_LOAD_PERMUTATION (node).exists ()) SLP_TREE_LOAD_PERMUTATION (copy) = SLP_TREE_LOAD_PERMUTATION (node).copy (); if (SLP_TREE_LANE_PERMUTATION (node).exists ()) SLP_TREE_LANE_PERMUTATION (copy) = SLP_TREE_LANE_PERMUTATION (node).copy (); if (SLP_TREE_CHILDREN (node).exists ()) SLP_TREE_CHILDREN (copy) = SLP_TREE_CHILDREN (node).copy (); gcc_assert (!SLP_TREE_VEC_STMTS (node).exists ()); slp_tree child; FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (copy), i, child) { SLP_TREE_CHILDREN (copy)[i] = slp_copy_subtree (child, map); SLP_TREE_CHILDREN (copy)[i]->refcnt++; } return copy; } /* Rearrange the statements of NODE according to PERMUTATION. */ static void vect_slp_rearrange_stmts (slp_tree node, unsigned int group_size, vec permutation, hash_set &visited) { unsigned int i; slp_tree child; if (visited.add (node)) return; FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child) vect_slp_rearrange_stmts (child, group_size, permutation, visited); if (SLP_TREE_SCALAR_STMTS (node).exists ()) { gcc_assert (group_size == SLP_TREE_SCALAR_STMTS (node).length ()); vec tmp_stmts; tmp_stmts.create (group_size); tmp_stmts.quick_grow (group_size); stmt_vec_info stmt_info; FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info) tmp_stmts[permutation[i]] = stmt_info; SLP_TREE_SCALAR_STMTS (node).release (); SLP_TREE_SCALAR_STMTS (node) = tmp_stmts; } if (SLP_TREE_SCALAR_OPS (node).exists ()) { gcc_assert (group_size == SLP_TREE_SCALAR_OPS (node).length ()); vec tmp_ops; tmp_ops.create (group_size); tmp_ops.quick_grow (group_size); tree op; FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_OPS (node), i, op) tmp_ops[permutation[i]] = op; SLP_TREE_SCALAR_OPS (node).release (); SLP_TREE_SCALAR_OPS (node) = tmp_ops; } if (SLP_TREE_LANE_PERMUTATION (node).exists ()) { gcc_assert (group_size == SLP_TREE_LANE_PERMUTATION (node).length ()); for (i = 0; i < group_size; ++i) SLP_TREE_LANE_PERMUTATION (node)[i].second = permutation[SLP_TREE_LANE_PERMUTATION (node)[i].second]; } } /* Attempt to reorder stmts in a reduction chain so that we don't require any load permutation. Return true if that was possible, otherwise return false. */ static bool vect_attempt_slp_rearrange_stmts (slp_instance slp_instn) { unsigned int i, j; unsigned int lidx; slp_tree node, load; if (SLP_INSTANCE_LOADS (slp_instn).is_empty ()) return false; /* Compare all the permutation sequences to the first one. We know that at least one load is permuted. */ node = SLP_INSTANCE_LOADS (slp_instn)[0]; if (!SLP_TREE_LOAD_PERMUTATION (node).exists ()) return false; unsigned int group_size = SLP_TREE_LOAD_PERMUTATION (node).length (); for (i = 1; SLP_INSTANCE_LOADS (slp_instn).iterate (i, &load); ++i) { if (!SLP_TREE_LOAD_PERMUTATION (load).exists () || SLP_TREE_LOAD_PERMUTATION (load).length () != group_size) return false; FOR_EACH_VEC_ELT (SLP_TREE_LOAD_PERMUTATION (load), j, lidx) if (lidx != SLP_TREE_LOAD_PERMUTATION (node)[j]) return false; } /* Check that the loads in the first sequence are different and there are no gaps between them. */ auto_sbitmap load_index (group_size); bitmap_clear (load_index); FOR_EACH_VEC_ELT (node->load_permutation, i, lidx) { if (lidx >= group_size) return false; if (bitmap_bit_p (load_index, lidx)) return false; bitmap_set_bit (load_index, lidx); } for (i = 0; i < group_size; i++) if (!bitmap_bit_p (load_index, i)) return false; /* This permutation is valid for reduction. Since the order of the statements in the nodes is not important unless they are memory accesses, we can rearrange the statements in all the nodes according to the order of the loads. */ /* We have to unshare the SLP tree we modify. */ hash_map map; slp_tree unshared = slp_copy_subtree (SLP_INSTANCE_TREE (slp_instn), map); vect_free_slp_tree (SLP_INSTANCE_TREE (slp_instn), false); unshared->refcnt++; SLP_INSTANCE_TREE (slp_instn) = unshared; FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node) SLP_INSTANCE_LOADS (slp_instn)[i] = *map.get (node); node = SLP_INSTANCE_LOADS (slp_instn)[0]; /* Do the actual re-arrangement. */ hash_set visited; vect_slp_rearrange_stmts (SLP_INSTANCE_TREE (slp_instn), group_size, node->load_permutation, visited); /* We are done, no actual permutations need to be generated. */ poly_uint64 unrolling_factor = SLP_INSTANCE_UNROLLING_FACTOR (slp_instn); FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node) { stmt_vec_info first_stmt_info = SLP_TREE_SCALAR_STMTS (node)[0]; first_stmt_info = DR_GROUP_FIRST_ELEMENT (first_stmt_info); /* But we have to keep those permutations that are required because of handling of gaps. */ if (known_eq (unrolling_factor, 1U) || (group_size == DR_GROUP_SIZE (first_stmt_info) && DR_GROUP_GAP (first_stmt_info) == 0)) SLP_TREE_LOAD_PERMUTATION (node).release (); else for (j = 0; j < SLP_TREE_LOAD_PERMUTATION (node).length (); ++j) SLP_TREE_LOAD_PERMUTATION (node)[j] = j; } return true; } /* Gather loads in the SLP graph NODE and populate the INST loads array. */ static void vect_gather_slp_loads (vec &loads, slp_tree node, hash_set &visited) { if (visited.add (node)) return; if (SLP_TREE_CHILDREN (node).length () == 0) { if (SLP_TREE_DEF_TYPE (node) != vect_internal_def) return; stmt_vec_info stmt_info = SLP_TREE_SCALAR_STMTS (node)[0]; if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info))) loads.safe_push (node); } else { unsigned i; slp_tree child; FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child) vect_gather_slp_loads (loads, child, visited); } } static void vect_gather_slp_loads (slp_instance inst, slp_tree node) { hash_set visited; vect_gather_slp_loads (SLP_INSTANCE_LOADS (inst), node, visited); } /* Find the last store in SLP INSTANCE. */ stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree node) { stmt_vec_info last = NULL; stmt_vec_info stmt_vinfo; for (int i = 0; SLP_TREE_SCALAR_STMTS (node).iterate (i, &stmt_vinfo); i++) { stmt_vinfo = vect_orig_stmt (stmt_vinfo); last = last ? get_later_stmt (stmt_vinfo, last) : stmt_vinfo; } return last; } /* Find the first stmt in NODE. */ stmt_vec_info vect_find_first_scalar_stmt_in_slp (slp_tree node) { stmt_vec_info first = NULL; stmt_vec_info stmt_vinfo; for (int i = 0; SLP_TREE_SCALAR_STMTS (node).iterate (i, &stmt_vinfo); i++) { stmt_vinfo = vect_orig_stmt (stmt_vinfo); if (!first || get_later_stmt (stmt_vinfo, first) == first) first = stmt_vinfo; } return first; } /* Splits a group of stores, currently beginning at FIRST_VINFO, into two groups: one (still beginning at FIRST_VINFO) of size GROUP1_SIZE (also containing the first GROUP1_SIZE stmts, since stores are consecutive), the second containing the remainder. Return the first stmt in the second group. */ static stmt_vec_info vect_split_slp_store_group (stmt_vec_info first_vinfo, unsigned group1_size) { gcc_assert (DR_GROUP_FIRST_ELEMENT (first_vinfo) == first_vinfo); gcc_assert (group1_size > 0); int group2_size = DR_GROUP_SIZE (first_vinfo) - group1_size; gcc_assert (group2_size > 0); DR_GROUP_SIZE (first_vinfo) = group1_size; stmt_vec_info stmt_info = first_vinfo; for (unsigned i = group1_size; i > 1; i--) { stmt_info = DR_GROUP_NEXT_ELEMENT (stmt_info); gcc_assert (DR_GROUP_GAP (stmt_info) == 1); } /* STMT is now the last element of the first group. */ stmt_vec_info group2 = DR_GROUP_NEXT_ELEMENT (stmt_info); DR_GROUP_NEXT_ELEMENT (stmt_info) = 0; DR_GROUP_SIZE (group2) = group2_size; for (stmt_info = group2; stmt_info; stmt_info = DR_GROUP_NEXT_ELEMENT (stmt_info)) { DR_GROUP_FIRST_ELEMENT (stmt_info) = group2; gcc_assert (DR_GROUP_GAP (stmt_info) == 1); } /* For the second group, the DR_GROUP_GAP is that before the original group, plus skipping over the first vector. */ DR_GROUP_GAP (group2) = DR_GROUP_GAP (first_vinfo) + group1_size; /* DR_GROUP_GAP of the first group now has to skip over the second group too. */ DR_GROUP_GAP (first_vinfo) += group2_size; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "Split group into %d and %d\n", group1_size, group2_size); return group2; } /* Calculate the unrolling factor for an SLP instance with GROUP_SIZE statements and a vector of NUNITS elements. */ static poly_uint64 calculate_unrolling_factor (poly_uint64 nunits, unsigned int group_size) { return exact_div (common_multiple (nunits, group_size), group_size); } /* Analyze an SLP instance starting from a group of grouped stores. Call vect_build_slp_tree to build a tree of packed stmts if possible. Return FALSE if it's impossible to SLP any stmt in the loop. */ static bool vect_analyze_slp_instance (vec_info *vinfo, scalar_stmts_to_slp_tree_map_t *bst_map, stmt_vec_info stmt_info, unsigned max_tree_size) { slp_instance new_instance; slp_tree node; unsigned int group_size; tree vectype, scalar_type = NULL_TREE; unsigned int i; struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info); vec scalar_stmts; bool constructor = false; if (STMT_VINFO_GROUPED_ACCESS (stmt_info)) { scalar_type = TREE_TYPE (DR_REF (dr)); group_size = DR_GROUP_SIZE (stmt_info); vectype = get_vectype_for_scalar_type (vinfo, scalar_type, group_size); } else if (!dr && REDUC_GROUP_FIRST_ELEMENT (stmt_info)) { gcc_assert (is_a (vinfo)); vectype = STMT_VINFO_VECTYPE (stmt_info); group_size = REDUC_GROUP_SIZE (stmt_info); } else if (is_gimple_assign (stmt_info->stmt) && gimple_assign_rhs_code (stmt_info->stmt) == CONSTRUCTOR) { vectype = TREE_TYPE (gimple_assign_rhs1 (stmt_info->stmt)); group_size = CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt_info->stmt)); constructor = true; } else { gcc_assert (is_a (vinfo)); vectype = STMT_VINFO_VECTYPE (stmt_info); group_size = as_a (vinfo)->reductions.length (); } if (!vectype) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: unsupported data-type %T\n", scalar_type); return false; } poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype); /* Create a node (a root of the SLP tree) for the packed grouped stores. */ scalar_stmts.create (group_size); stmt_vec_info next_info = stmt_info; if (STMT_VINFO_GROUPED_ACCESS (stmt_info)) { /* Collect the stores and store them in SLP_TREE_SCALAR_STMTS. */ while (next_info) { scalar_stmts.safe_push (vect_stmt_to_vectorize (next_info)); next_info = DR_GROUP_NEXT_ELEMENT (next_info); } } else if (!dr && REDUC_GROUP_FIRST_ELEMENT (stmt_info)) { /* Collect the reduction stmts and store them in SLP_TREE_SCALAR_STMTS. */ while (next_info) { scalar_stmts.safe_push (vect_stmt_to_vectorize (next_info)); next_info = REDUC_GROUP_NEXT_ELEMENT (next_info); } /* Mark the first element of the reduction chain as reduction to properly transform the node. In the reduction analysis phase only the last element of the chain is marked as reduction. */ STMT_VINFO_DEF_TYPE (stmt_info) = STMT_VINFO_DEF_TYPE (scalar_stmts.last ()); STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info)) = STMT_VINFO_REDUC_DEF (vect_orig_stmt (scalar_stmts.last ())); } else if (constructor) { tree rhs = gimple_assign_rhs1 (stmt_info->stmt); tree val; FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val) { if (TREE_CODE (val) == SSA_NAME) { gimple* def = SSA_NAME_DEF_STMT (val); stmt_vec_info def_info = vinfo->lookup_stmt (def); /* Value is defined in another basic block. */ if (!def_info) return false; def_info = vect_stmt_to_vectorize (def_info); scalar_stmts.safe_push (def_info); } else return false; } if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "Analyzing vectorizable constructor: %G\n", stmt_info->stmt); } else { /* Collect reduction statements. */ vec reductions = as_a (vinfo)->reductions; for (i = 0; reductions.iterate (i, &next_info); i++) scalar_stmts.safe_push (next_info); } /* Build the tree for the SLP instance. */ bool *matches = XALLOCAVEC (bool, group_size); unsigned npermutes = 0; poly_uint64 max_nunits = nunits; unsigned tree_size = 0; node = vect_build_slp_tree (vinfo, scalar_stmts, group_size, &max_nunits, matches, &npermutes, &tree_size, bst_map); if (node != NULL) { /* Calculate the unrolling factor based on the smallest type. */ poly_uint64 unrolling_factor = calculate_unrolling_factor (max_nunits, group_size); if (maybe_ne (unrolling_factor, 1U) && is_a (vinfo)) { unsigned HOST_WIDE_INT const_max_nunits; if (!max_nunits.is_constant (&const_max_nunits) || const_max_nunits > group_size) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Build SLP failed: store group " "size not a multiple of the vector size " "in basic block SLP\n"); vect_free_slp_tree (node, false); return false; } /* Fatal mismatch. */ matches[0] = true; matches[group_size / const_max_nunits * const_max_nunits] = false; vect_free_slp_tree (node, false); } else { /* Create a new SLP instance. */ new_instance = XNEW (class _slp_instance); SLP_INSTANCE_TREE (new_instance) = node; SLP_INSTANCE_UNROLLING_FACTOR (new_instance) = unrolling_factor; SLP_INSTANCE_LOADS (new_instance) = vNULL; SLP_INSTANCE_ROOT_STMT (new_instance) = constructor ? stmt_info : NULL; vect_gather_slp_loads (new_instance, node); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "SLP size %u vs. limit %u.\n", tree_size, max_tree_size); /* Check whether any load is possibly permuted. */ slp_tree load_node; bool loads_permuted = false; FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (new_instance), i, load_node) { if (!SLP_TREE_LOAD_PERMUTATION (load_node).exists ()) continue; unsigned j; stmt_vec_info load_info; FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (load_node), j, load_info) if (SLP_TREE_LOAD_PERMUTATION (load_node)[j] != j) { loads_permuted = true; break; } } /* If the loads and stores can be handled with load/store-lane instructions do not generate this SLP instance. */ if (is_a (vinfo) && loads_permuted && dr && vect_store_lanes_supported (vectype, group_size, false)) { slp_tree load_node; FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (new_instance), i, load_node) { stmt_vec_info stmt_vinfo = DR_GROUP_FIRST_ELEMENT (SLP_TREE_SCALAR_STMTS (load_node)[0]); /* Use SLP for strided accesses (or if we can't load-lanes). */ if (STMT_VINFO_STRIDED_P (stmt_vinfo) || ! vect_load_lanes_supported (STMT_VINFO_VECTYPE (stmt_vinfo), DR_GROUP_SIZE (stmt_vinfo), false)) break; } if (i == SLP_INSTANCE_LOADS (new_instance).length ()) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Built SLP cancelled: can use " "load/store-lanes\n"); vect_free_slp_instance (new_instance, false); return false; } } /* If this is a reduction chain with a conversion in front amend the SLP tree with a node for that. */ if (!dr && REDUC_GROUP_FIRST_ELEMENT (stmt_info) && STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def) { /* Get at the conversion stmt - we know it's the single use of the last stmt of the reduction chain. */ gimple *tem = vect_orig_stmt (scalar_stmts[group_size - 1])->stmt; use_operand_p use_p; gimple *use_stmt; bool r = single_imm_use (gimple_assign_lhs (tem), &use_p, &use_stmt); gcc_assert (r); next_info = vinfo->lookup_stmt (use_stmt); next_info = vect_stmt_to_vectorize (next_info); scalar_stmts = vNULL; scalar_stmts.create (group_size); for (unsigned i = 0; i < group_size; ++i) scalar_stmts.quick_push (next_info); slp_tree conv = vect_create_new_slp_node (scalar_stmts, 1); SLP_TREE_VECTYPE (conv) = STMT_VINFO_VECTYPE (next_info); SLP_TREE_CHILDREN (conv).quick_push (node); SLP_INSTANCE_TREE (new_instance) = conv; /* We also have to fake this conversion stmt as SLP reduction group so we don't have to mess with too much code elsewhere. */ REDUC_GROUP_FIRST_ELEMENT (next_info) = next_info; REDUC_GROUP_NEXT_ELEMENT (next_info) = NULL; } vinfo->slp_instances.safe_push (new_instance); /* ??? We've replaced the old SLP_INSTANCE_GROUP_SIZE with the number of scalar stmts in the root in a few places. Verify that assumption holds. */ gcc_assert (SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (new_instance)) .length () == group_size); if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "Final SLP tree for instance:\n"); vect_print_slp_graph (MSG_NOTE, vect_location, SLP_INSTANCE_TREE (new_instance)); } return true; } } else { /* Failed to SLP. */ /* Free the allocated memory. */ scalar_stmts.release (); } /* For basic block SLP, try to break the group up into multiples of the vector size. */ unsigned HOST_WIDE_INT const_nunits; if (is_a (vinfo) && STMT_VINFO_GROUPED_ACCESS (stmt_info) && DR_GROUP_FIRST_ELEMENT (stmt_info) && nunits.is_constant (&const_nunits)) { /* We consider breaking the group only on VF boundaries from the existing start. */ for (i = 0; i < group_size; i++) if (!matches[i]) break; if (i >= const_nunits && i < group_size) { /* Split into two groups at the first vector boundary before i. */ gcc_assert ((const_nunits & (const_nunits - 1)) == 0); unsigned group1_size = i & ~(const_nunits - 1); stmt_vec_info rest = vect_split_slp_store_group (stmt_info, group1_size); bool res = vect_analyze_slp_instance (vinfo, bst_map, stmt_info, max_tree_size); /* If the first non-match was in the middle of a vector, skip the rest of that vector. */ if (group1_size < i) { i = group1_size + const_nunits; if (i < group_size) rest = vect_split_slp_store_group (rest, const_nunits); } if (i < group_size) res |= vect_analyze_slp_instance (vinfo, bst_map, rest, max_tree_size); return res; } /* Even though the first vector did not all match, we might be able to SLP (some) of the remainder. FORNOW ignore this possibility. */ } return false; } /* Check if there are stmts in the loop can be vectorized using SLP. Build SLP trees of packed scalar stmts if SLP is possible. */ opt_result vect_analyze_slp (vec_info *vinfo, unsigned max_tree_size) { unsigned int i; stmt_vec_info first_element; DUMP_VECT_SCOPE ("vect_analyze_slp"); scalar_stmts_to_slp_tree_map_t *bst_map = new scalar_stmts_to_slp_tree_map_t (); /* Find SLP sequences starting from groups of grouped stores. */ FOR_EACH_VEC_ELT (vinfo->grouped_stores, i, first_element) vect_analyze_slp_instance (vinfo, bst_map, first_element, max_tree_size); if (loop_vec_info loop_vinfo = dyn_cast (vinfo)) { if (loop_vinfo->reduction_chains.length () > 0) { /* Find SLP sequences starting from reduction chains. */ FOR_EACH_VEC_ELT (loop_vinfo->reduction_chains, i, first_element) if (! vect_analyze_slp_instance (vinfo, bst_map, first_element, max_tree_size)) { /* Dissolve reduction chain group. */ stmt_vec_info vinfo = first_element; stmt_vec_info last = NULL; while (vinfo) { stmt_vec_info next = REDUC_GROUP_NEXT_ELEMENT (vinfo); REDUC_GROUP_FIRST_ELEMENT (vinfo) = NULL; REDUC_GROUP_NEXT_ELEMENT (vinfo) = NULL; last = vinfo; vinfo = next; } STMT_VINFO_DEF_TYPE (first_element) = vect_internal_def; /* It can be still vectorized as part of an SLP reduction. */ loop_vinfo->reductions.safe_push (last); } } /* Find SLP sequences starting from groups of reductions. */ if (loop_vinfo->reductions.length () > 1) vect_analyze_slp_instance (vinfo, bst_map, loop_vinfo->reductions[0], max_tree_size); } /* The map keeps a reference on SLP nodes built, release that. */ for (scalar_stmts_to_slp_tree_map_t::iterator it = bst_map->begin (); it != bst_map->end (); ++it) if ((*it).second) vect_free_slp_tree ((*it).second, false); delete bst_map; /* Optimize permutations in SLP reductions. */ slp_instance instance; FOR_EACH_VEC_ELT (vinfo->slp_instances, i, instance) { slp_tree node = SLP_INSTANCE_TREE (instance); stmt_vec_info stmt_info = SLP_TREE_SCALAR_STMTS (node)[0]; /* Reduction (there are no data-refs in the root). In reduction chain the order of the loads is not important. */ if (!STMT_VINFO_DATA_REF (stmt_info) && !REDUC_GROUP_FIRST_ELEMENT (stmt_info)) vect_attempt_slp_rearrange_stmts (instance); } /* Gather all loads in the SLP graph. */ hash_set visited; FOR_EACH_VEC_ELT (vinfo->slp_instances, i, instance) vect_gather_slp_loads (vinfo->slp_loads, SLP_INSTANCE_TREE (instance), visited); return opt_result::success (); } void vect_optimize_slp (vec_info *vinfo) { slp_tree node; unsigned i; FOR_EACH_VEC_ELT (vinfo->slp_loads, i, node) { if (!SLP_TREE_LOAD_PERMUTATION (node).exists ()) continue; /* In basic block vectorization we allow any subchain of an interleaving chain. FORNOW: not in loop SLP because of realignment complications. */ if (is_a (vinfo)) { bool subchain_p = true; stmt_vec_info next_load_info = NULL; stmt_vec_info load_info; unsigned j; FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), j, load_info) { if (j != 0 && (next_load_info != load_info || DR_GROUP_GAP (load_info) != 1)) { subchain_p = false; break; } next_load_info = DR_GROUP_NEXT_ELEMENT (load_info); } if (subchain_p) { SLP_TREE_LOAD_PERMUTATION (node).release (); continue; } } else { stmt_vec_info load_info; bool this_load_permuted = false; unsigned j; FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), j, load_info) if (SLP_TREE_LOAD_PERMUTATION (node)[j] != j) { this_load_permuted = true; break; } stmt_vec_info first_stmt_info = DR_GROUP_FIRST_ELEMENT (SLP_TREE_SCALAR_STMTS (node)[0]); if (!this_load_permuted /* The load requires permutation when unrolling exposes a gap either because the group is larger than the SLP group-size or because there is a gap between the groups. */ && (known_eq (LOOP_VINFO_VECT_FACTOR (as_a (vinfo)), 1U) || ((SLP_TREE_LANES (node) == DR_GROUP_SIZE (first_stmt_info)) && DR_GROUP_GAP (first_stmt_info) == 0))) { SLP_TREE_LOAD_PERMUTATION (node).release (); continue; } } } } /* For each possible SLP instance decide whether to SLP it and calculate overall unrolling factor needed to SLP the loop. Return TRUE if decided to SLP at least one instance. */ bool vect_make_slp_decision (loop_vec_info loop_vinfo) { unsigned int i; poly_uint64 unrolling_factor = 1; vec slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo); slp_instance instance; int decided_to_slp = 0; DUMP_VECT_SCOPE ("vect_make_slp_decision"); FOR_EACH_VEC_ELT (slp_instances, i, instance) { /* FORNOW: SLP if you can. */ /* All unroll factors have the form: GET_MODE_SIZE (vinfo->vector_mode) * X for some rational X, so they must have a common multiple. */ unrolling_factor = force_common_multiple (unrolling_factor, SLP_INSTANCE_UNROLLING_FACTOR (instance)); /* Mark all the stmts that belong to INSTANCE as PURE_SLP stmts. Later we call vect_detect_hybrid_slp () to find stmts that need hybrid SLP and loop-based vectorization. Such stmts will be marked as HYBRID. */ vect_mark_slp_stmts (SLP_INSTANCE_TREE (instance)); decided_to_slp++; } LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo) = unrolling_factor; if (decided_to_slp && dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "Decided to SLP %d instances. Unrolling factor ", decided_to_slp); dump_dec (MSG_NOTE, unrolling_factor); dump_printf (MSG_NOTE, "\n"); } return (decided_to_slp > 0); } /* Private data for vect_detect_hybrid_slp. */ struct vdhs_data { loop_vec_info loop_vinfo; vec *worklist; }; /* Walker for walk_gimple_op. */ static tree vect_detect_hybrid_slp (tree *tp, int *, void *data) { walk_stmt_info *wi = (walk_stmt_info *)data; vdhs_data *dat = (vdhs_data *)wi->info; if (wi->is_lhs) return NULL_TREE; stmt_vec_info def_stmt_info = dat->loop_vinfo->lookup_def (*tp); if (!def_stmt_info) return NULL_TREE; def_stmt_info = vect_stmt_to_vectorize (def_stmt_info); if (PURE_SLP_STMT (def_stmt_info)) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "marking hybrid: %G", def_stmt_info->stmt); STMT_SLP_TYPE (def_stmt_info) = hybrid; dat->worklist->safe_push (def_stmt_info); } return NULL_TREE; } /* Find stmts that must be both vectorized and SLPed. */ void vect_detect_hybrid_slp (loop_vec_info loop_vinfo) { DUMP_VECT_SCOPE ("vect_detect_hybrid_slp"); /* All stmts participating in SLP are marked pure_slp, all other stmts are loop_vect. First collect all loop_vect stmts into a worklist. */ auto_vec worklist; for (unsigned i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i) { basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i]; for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gphi *phi = gsi.phi (); stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (phi); if (!STMT_SLP_TYPE (stmt_info) && STMT_VINFO_RELEVANT (stmt_info)) worklist.safe_push (stmt_info); } for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); if (is_gimple_debug (stmt)) continue; stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (stmt); if (STMT_VINFO_IN_PATTERN_P (stmt_info)) { for (gimple_stmt_iterator gsi2 = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info)); !gsi_end_p (gsi2); gsi_next (&gsi2)) { stmt_vec_info patt_info = loop_vinfo->lookup_stmt (gsi_stmt (gsi2)); if (!STMT_SLP_TYPE (patt_info) && STMT_VINFO_RELEVANT (patt_info)) worklist.safe_push (patt_info); } stmt_info = STMT_VINFO_RELATED_STMT (stmt_info); } if (!STMT_SLP_TYPE (stmt_info) && STMT_VINFO_RELEVANT (stmt_info)) worklist.safe_push (stmt_info); } } /* Now we have a worklist of non-SLP stmts, follow use->def chains and mark any SLP vectorized stmt as hybrid. ??? We're visiting def stmts N times (once for each non-SLP and once for each hybrid-SLP use). */ walk_stmt_info wi; vdhs_data dat; dat.worklist = &worklist; dat.loop_vinfo = loop_vinfo; memset (&wi, 0, sizeof (wi)); wi.info = (void *)&dat; while (!worklist.is_empty ()) { stmt_vec_info stmt_info = worklist.pop (); /* Since SSA operands are not set up for pattern stmts we need to use walk_gimple_op. */ wi.is_lhs = 0; walk_gimple_op (stmt_info->stmt, vect_detect_hybrid_slp, &wi); } } /* Initialize a bb_vec_info struct for the statements between REGION_BEGIN_IN (inclusive) and REGION_END_IN (exclusive). */ _bb_vec_info::_bb_vec_info (gimple_stmt_iterator region_begin_in, gimple_stmt_iterator region_end_in, vec_info_shared *shared) : vec_info (vec_info::bb, init_cost (NULL), shared), bb (gsi_bb (region_begin_in)), region_begin (region_begin_in), region_end (region_end_in) { for (gimple *stmt : this->region_stmts ()) { gimple_set_uid (stmt, 0); if (is_gimple_debug (stmt)) continue; add_stmt (stmt); } bb->aux = this; } /* Free BB_VINFO struct, as well as all the stmt_vec_info structs of all the stmts in the basic block. */ _bb_vec_info::~_bb_vec_info () { for (gimple *stmt : this->region_stmts ()) /* Reset region marker. */ gimple_set_uid (stmt, -1); bb->aux = NULL; } /* Subroutine of vect_slp_analyze_node_operations. Handle the root of NODE, given then that child nodes have already been processed, and that their def types currently match their SLP node's def type. */ static bool vect_slp_analyze_node_operations_1 (vec_info *vinfo, slp_tree node, slp_instance node_instance, stmt_vector_for_cost *cost_vec) { stmt_vec_info stmt_info = SLP_TREE_REPRESENTATIVE (node); gcc_assert (STMT_SLP_TYPE (stmt_info) != loop_vect); /* Calculate the number of vector statements to be created for the scalar stmts in this node. For SLP reductions it is equal to the number of vector statements in the children (which has already been calculated by the recursive call). Otherwise it is the number of scalar elements in one scalar iteration (DR_GROUP_SIZE) multiplied by VF divided by the number of elements in a vector. */ if (!STMT_VINFO_GROUPED_ACCESS (stmt_info) && REDUC_GROUP_FIRST_ELEMENT (stmt_info)) { for (unsigned i = 0; i < SLP_TREE_CHILDREN (node).length (); ++i) if (SLP_TREE_DEF_TYPE (SLP_TREE_CHILDREN (node)[i]) == vect_internal_def) { SLP_TREE_NUMBER_OF_VEC_STMTS (node) = SLP_TREE_NUMBER_OF_VEC_STMTS (SLP_TREE_CHILDREN (node)[i]); break; } } else { poly_uint64 vf; if (loop_vec_info loop_vinfo = dyn_cast (vinfo)) vf = loop_vinfo->vectorization_factor; else vf = 1; unsigned int group_size = SLP_TREE_LANES (node); tree vectype = SLP_TREE_VECTYPE (node); SLP_TREE_NUMBER_OF_VEC_STMTS (node) = vect_get_num_vectors (vf * group_size, vectype); } /* Handle purely internal nodes. */ if (SLP_TREE_CODE (node) == VEC_PERM_EXPR) return vectorizable_slp_permutation (vinfo, NULL, node, cost_vec); bool dummy; return vect_analyze_stmt (vinfo, stmt_info, &dummy, node, node_instance, cost_vec); } /* Try to build NODE from scalars, returning true on success. NODE_INSTANCE is the SLP instance that contains NODE. */ static bool vect_slp_convert_to_external (vec_info *vinfo, slp_tree node, slp_instance node_instance) { stmt_vec_info stmt_info; unsigned int i; if (!is_a (vinfo) || node == SLP_INSTANCE_TREE (node_instance) || !SLP_TREE_SCALAR_STMTS (node).exists () || vect_contains_pattern_stmt_p (SLP_TREE_SCALAR_STMTS (node))) return false; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "Building vector operands from scalars instead\n"); /* Don't remove and free the child nodes here, since they could be referenced by other structures. The analysis and scheduling phases (need to) ignore child nodes of anything that isn't vect_internal_def. */ unsigned int group_size = SLP_TREE_LANES (node); SLP_TREE_DEF_TYPE (node) = vect_external_def; SLP_TREE_SCALAR_OPS (node).safe_grow (group_size); FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info) { tree lhs = gimple_get_lhs (vect_orig_stmt (stmt_info)->stmt); SLP_TREE_SCALAR_OPS (node)[i] = lhs; } return true; } /* Compute the prologue cost for invariant or constant operands represented by NODE. */ static void vect_prologue_cost_for_slp (slp_tree node, stmt_vector_for_cost *cost_vec) { /* There's a special case of an existing vector, that costs nothing. */ if (SLP_TREE_SCALAR_OPS (node).length () == 0 && !SLP_TREE_VEC_DEFS (node).is_empty ()) return; /* Without looking at the actual initializer a vector of constants can be implemented as load from the constant pool. When all elements are the same we can use a splat. */ tree vectype = SLP_TREE_VECTYPE (node); unsigned group_size = SLP_TREE_SCALAR_OPS (node).length (); unsigned num_vects_to_check; unsigned HOST_WIDE_INT const_nunits; unsigned nelt_limit; if (TYPE_VECTOR_SUBPARTS (vectype).is_constant (&const_nunits) && ! multiple_p (const_nunits, group_size)) { num_vects_to_check = SLP_TREE_NUMBER_OF_VEC_STMTS (node); nelt_limit = const_nunits; } else { /* If either the vector has variable length or the vectors are composed of repeated whole groups we only need to cost construction once. All vectors will be the same. */ num_vects_to_check = 1; nelt_limit = group_size; } tree elt = NULL_TREE; unsigned nelt = 0; for (unsigned j = 0; j < num_vects_to_check * nelt_limit; ++j) { unsigned si = j % group_size; if (nelt == 0) elt = SLP_TREE_SCALAR_OPS (node)[si]; /* ??? We're just tracking whether all operands of a single vector initializer are the same, ideally we'd check if we emitted the same one already. */ else if (elt != SLP_TREE_SCALAR_OPS (node)[si]) elt = NULL_TREE; nelt++; if (nelt == nelt_limit) { record_stmt_cost (cost_vec, 1, SLP_TREE_DEF_TYPE (node) == vect_external_def ? (elt ? scalar_to_vec : vec_construct) : vector_load, NULL, vectype, 0, vect_prologue); nelt = 0; } } } /* Analyze statements contained in SLP tree NODE after recursively analyzing the subtree. NODE_INSTANCE contains NODE and VINFO contains INSTANCE. Return true if the operations are supported. */ static bool vect_slp_analyze_node_operations (vec_info *vinfo, slp_tree node, slp_instance node_instance, hash_set &visited, hash_set &lvisited, stmt_vector_for_cost *cost_vec) { int i, j; slp_tree child; /* Assume we can code-generate all invariants. */ if (SLP_TREE_DEF_TYPE (node) != vect_internal_def) return true; /* If we already analyzed the exact same set of scalar stmts we're done. We share the generated vector stmts for those. The SLP graph is acyclic so not caching whether we failed or succeeded doesn't result in any issue since we throw away the lvisited set when we fail. */ if (visited.contains (node) || lvisited.contains (node)) return true; bool res = true; FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child) { res = vect_slp_analyze_node_operations (vinfo, child, node_instance, visited, lvisited, cost_vec); if (!res) break; } if (res) { res = vect_slp_analyze_node_operations_1 (vinfo, node, node_instance, cost_vec); if (res) lvisited.add (node); } /* When the node can be vectorized cost invariant nodes it references. This is not done in DFS order to allow the refering node vectorizable_* calls to nail down the invariant nodes vector type and possibly unshare it if it needs a different vector type than other referrers. */ if (res) FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), j, child) if ((SLP_TREE_DEF_TYPE (child) == vect_constant_def || SLP_TREE_DEF_TYPE (child) == vect_external_def) /* Perform usual caching, note code-generation still code-gens these nodes multiple times but we expect to CSE them later. */ && !visited.contains (child) && !lvisited.add (child)) { /* ??? After auditing more code paths make a "default" and push the vector type from NODE to all children if it is not already set. */ /* Compute the number of vectors to be generated. */ tree vector_type = SLP_TREE_VECTYPE (child); if (!vector_type) { /* For shifts with a scalar argument we don't need to cost or code-generate anything. ??? Represent this more explicitely. */ gcc_assert ((STMT_VINFO_TYPE (SLP_TREE_REPRESENTATIVE (node)) == shift_vec_info_type) && j == 1); continue; } unsigned group_size = SLP_TREE_LANES (child); poly_uint64 vf = 1; if (loop_vec_info loop_vinfo = dyn_cast (vinfo)) vf = loop_vinfo->vectorization_factor; SLP_TREE_NUMBER_OF_VEC_STMTS (child) = vect_get_num_vectors (vf * group_size, vector_type); /* And cost them. */ vect_prologue_cost_for_slp (child, cost_vec); } /* If this node or any of its children can't be vectorized, try pruning the tree here rather than felling the whole thing. */ if (!res && vect_slp_convert_to_external (vinfo, node, node_instance)) { /* We'll need to revisit this for invariant costing and number of vectorized stmt setting. */ res = true; } return res; } /* Analyze statements in SLP instances of VINFO. Return true if the operations are supported. */ bool vect_slp_analyze_operations (vec_info *vinfo) { slp_instance instance; int i; DUMP_VECT_SCOPE ("vect_slp_analyze_operations"); hash_set visited; for (i = 0; vinfo->slp_instances.iterate (i, &instance); ) { hash_set lvisited; stmt_vector_for_cost cost_vec; cost_vec.create (2); if (!vect_slp_analyze_node_operations (vinfo, SLP_INSTANCE_TREE (instance), instance, visited, lvisited, &cost_vec) /* Instances with a root stmt require vectorized defs for the SLP tree root. */ || (SLP_INSTANCE_ROOT_STMT (instance) && (SLP_TREE_DEF_TYPE (SLP_INSTANCE_TREE (instance)) != vect_internal_def))) { slp_tree node = SLP_INSTANCE_TREE (instance); stmt_vec_info stmt_info = SLP_TREE_SCALAR_STMTS (node)[0]; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "removing SLP instance operations starting from: %G", stmt_info->stmt); vect_free_slp_instance (instance, false); vinfo->slp_instances.ordered_remove (i); cost_vec.release (); } else { for (hash_set::iterator x = lvisited.begin(); x != lvisited.end(); ++x) visited.add (*x); i++; add_stmt_costs (vinfo, vinfo->target_cost_data, &cost_vec); cost_vec.release (); } } return !vinfo->slp_instances.is_empty (); } /* Compute the scalar cost of the SLP node NODE and its children and return it. Do not account defs that are marked in LIFE and update LIFE according to uses of NODE. */ static void vect_bb_slp_scalar_cost (vec_info *vinfo, slp_tree node, vec *life, stmt_vector_for_cost *cost_vec, hash_set &visited) { unsigned i; stmt_vec_info stmt_info; slp_tree child; if (visited.add (node)) return; FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info) { ssa_op_iter op_iter; def_operand_p def_p; if ((*life)[i]) continue; /* If there is a non-vectorized use of the defs then the scalar stmt is kept live in which case we do not account it or any required defs in the SLP children in the scalar cost. This way we make the vectorization more costly when compared to the scalar cost. */ stmt_vec_info orig_stmt_info = vect_orig_stmt (stmt_info); gimple *orig_stmt = orig_stmt_info->stmt; FOR_EACH_SSA_DEF_OPERAND (def_p, orig_stmt, op_iter, SSA_OP_DEF) { imm_use_iterator use_iter; gimple *use_stmt; FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, DEF_FROM_PTR (def_p)) if (!is_gimple_debug (use_stmt)) { stmt_vec_info use_stmt_info = vinfo->lookup_stmt (use_stmt); if (!use_stmt_info || !PURE_SLP_STMT (vect_stmt_to_vectorize (use_stmt_info))) { (*life)[i] = true; BREAK_FROM_IMM_USE_STMT (use_iter); } } } if ((*life)[i]) continue; /* Count scalar stmts only once. */ if (gimple_visited_p (orig_stmt)) continue; gimple_set_visited (orig_stmt, true); vect_cost_for_stmt kind; if (STMT_VINFO_DATA_REF (orig_stmt_info)) { if (DR_IS_READ (STMT_VINFO_DATA_REF (orig_stmt_info))) kind = scalar_load; else kind = scalar_store; } else if (vect_nop_conversion_p (orig_stmt_info)) continue; else kind = scalar_stmt; record_stmt_cost (cost_vec, 1, kind, orig_stmt_info, 0, vect_body); } auto_vec subtree_life; FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child) { if (SLP_TREE_DEF_TYPE (child) == vect_internal_def) { /* Do not directly pass LIFE to the recursive call, copy it to confine changes in the callee to the current child/subtree. */ if (SLP_TREE_CODE (node) == VEC_PERM_EXPR) { subtree_life.safe_grow_cleared (SLP_TREE_LANES (child)); for (unsigned j = 0; j < SLP_TREE_LANE_PERMUTATION (node).length (); ++j) { auto perm = SLP_TREE_LANE_PERMUTATION (node)[j]; if (perm.first == i) subtree_life[perm.second] = (*life)[j]; } } else { gcc_assert (SLP_TREE_LANES (node) == SLP_TREE_LANES (child)); subtree_life.safe_splice (*life); } vect_bb_slp_scalar_cost (vinfo, child, &subtree_life, cost_vec, visited); subtree_life.truncate (0); } } } /* Check if vectorization of the basic block is profitable. */ static bool vect_bb_vectorization_profitable_p (bb_vec_info bb_vinfo) { vec slp_instances = BB_VINFO_SLP_INSTANCES (bb_vinfo); slp_instance instance; int i; unsigned int vec_inside_cost = 0, vec_outside_cost = 0, scalar_cost = 0; unsigned int vec_prologue_cost = 0, vec_epilogue_cost = 0; /* Calculate scalar cost. */ stmt_vector_for_cost scalar_costs; scalar_costs.create (0); hash_set visited; FOR_EACH_VEC_ELT (slp_instances, i, instance) { auto_vec life; life.safe_grow_cleared (SLP_TREE_LANES (SLP_INSTANCE_TREE (instance))); vect_bb_slp_scalar_cost (bb_vinfo, SLP_INSTANCE_TREE (instance), &life, &scalar_costs, visited); } /* Unset visited flag. */ stmt_info_for_cost *si; FOR_EACH_VEC_ELT (scalar_costs, i, si) gimple_set_visited (si->stmt_info->stmt, false); void *target_cost_data = init_cost (NULL); add_stmt_costs (bb_vinfo, target_cost_data, &scalar_costs); scalar_costs.release (); unsigned dummy; finish_cost (target_cost_data, &dummy, &scalar_cost, &dummy); destroy_cost_data (target_cost_data); /* Complete the target-specific cost calculation. */ finish_cost (BB_VINFO_TARGET_COST_DATA (bb_vinfo), &vec_prologue_cost, &vec_inside_cost, &vec_epilogue_cost); vec_outside_cost = vec_prologue_cost + vec_epilogue_cost; if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n"); dump_printf (MSG_NOTE, " Vector inside of basic block cost: %d\n", vec_inside_cost); dump_printf (MSG_NOTE, " Vector prologue cost: %d\n", vec_prologue_cost); dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n", vec_epilogue_cost); dump_printf (MSG_NOTE, " Scalar cost of basic block: %d\n", scalar_cost); } /* Vectorization is profitable if its cost is more than the cost of scalar version. Note that we err on the vector side for equal cost because the cost estimate is otherwise quite pessimistic (constant uses are free on the scalar side but cost a load on the vector side for example). */ if (vec_outside_cost + vec_inside_cost > scalar_cost) return false; return true; } /* Find any vectorizable constructors and add them to the grouped_store array. */ static void vect_slp_check_for_constructors (bb_vec_info bb_vinfo) { for (gimple *stmt : bb_vinfo->region_stmts ()) { gassign *assign = dyn_cast (stmt); if (!assign || gimple_assign_rhs_code (assign) != CONSTRUCTOR) continue; tree rhs = gimple_assign_rhs1 (assign); if (!VECTOR_TYPE_P (TREE_TYPE (rhs)) || maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs)), CONSTRUCTOR_NELTS (rhs)) || VECTOR_TYPE_P (TREE_TYPE (CONSTRUCTOR_ELT (rhs, 0)->value)) || uniform_vector_p (rhs)) continue; stmt_vec_info stmt_info = bb_vinfo->lookup_stmt (assign); BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt_info); } } /* Check if the region described by BB_VINFO can be vectorized, returning true if so. When returning false, set FATAL to true if the same failure would prevent vectorization at other vector sizes, false if it is still worth trying other sizes. N_STMTS is the number of statements in the region. */ static bool vect_slp_analyze_bb_1 (bb_vec_info bb_vinfo, int n_stmts, bool &fatal) { DUMP_VECT_SCOPE ("vect_slp_analyze_bb"); slp_instance instance; int i; poly_uint64 min_vf = 2; /* The first group of checks is independent of the vector size. */ fatal = true; /* Analyze the data references. */ if (!vect_analyze_data_refs (bb_vinfo, &min_vf, NULL)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: unhandled data-ref in basic " "block.\n"); return false; } if (!vect_analyze_data_ref_accesses (bb_vinfo)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: unhandled data access in " "basic block.\n"); return false; } vect_slp_check_for_constructors (bb_vinfo); /* If there are no grouped stores and no constructors in the region there is no need to continue with pattern recog as vect_analyze_slp will fail anyway. */ if (bb_vinfo->grouped_stores.is_empty ()) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: no grouped stores in " "basic block.\n"); return false; } /* While the rest of the analysis below depends on it in some way. */ fatal = false; vect_pattern_recog (bb_vinfo); /* Check the SLP opportunities in the basic block, analyze and build SLP trees. */ if (!vect_analyze_slp (bb_vinfo, n_stmts)) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Failed to SLP the basic block.\n"); dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: failed to find SLP opportunities " "in basic block.\n"); } return false; } /* Optimize permutations. */ vect_optimize_slp (bb_vinfo); vect_record_base_alignments (bb_vinfo); /* Analyze and verify the alignment of data references and the dependence in the SLP instances. */ for (i = 0; BB_VINFO_SLP_INSTANCES (bb_vinfo).iterate (i, &instance); ) { if (! vect_slp_analyze_instance_alignment (bb_vinfo, instance) || ! vect_slp_analyze_instance_dependence (bb_vinfo, instance)) { slp_tree node = SLP_INSTANCE_TREE (instance); stmt_vec_info stmt_info = SLP_TREE_SCALAR_STMTS (node)[0]; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "removing SLP instance operations starting from: %G", stmt_info->stmt); vect_free_slp_instance (instance, false); BB_VINFO_SLP_INSTANCES (bb_vinfo).ordered_remove (i); continue; } /* Mark all the statements that we want to vectorize as pure SLP and relevant. */ vect_mark_slp_stmts (SLP_INSTANCE_TREE (instance)); vect_mark_slp_stmts_relevant (SLP_INSTANCE_TREE (instance)); if (SLP_INSTANCE_ROOT_STMT (instance)) STMT_SLP_TYPE (SLP_INSTANCE_ROOT_STMT (instance)) = pure_slp; i++; } if (! BB_VINFO_SLP_INSTANCES (bb_vinfo).length ()) return false; if (!vect_slp_analyze_operations (bb_vinfo)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: bad operation in basic block.\n"); return false; } /* Cost model: check if the vectorization is worthwhile. */ if (!unlimited_cost_model (NULL) && !vect_bb_vectorization_profitable_p (bb_vinfo)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: vectorization is not " "profitable.\n"); return false; } if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "Basic block will be vectorized using SLP\n"); return true; } /* Subroutine of vect_slp_bb. Try to vectorize the statements between REGION_BEGIN (inclusive) and REGION_END (exclusive), returning true on success. The region has N_STMTS statements and has the datarefs given by DATAREFS. */ static bool vect_slp_bb_region (gimple_stmt_iterator region_begin, gimple_stmt_iterator region_end, vec datarefs, unsigned int n_stmts) { bb_vec_info bb_vinfo; auto_vector_modes vector_modes; /* Autodetect first vector size we try. */ machine_mode next_vector_mode = VOIDmode; targetm.vectorize.autovectorize_vector_modes (&vector_modes, false); unsigned int mode_i = 0; vec_info_shared shared; machine_mode autodetected_vector_mode = VOIDmode; while (1) { bool vectorized = false; bool fatal = false; bb_vinfo = new _bb_vec_info (region_begin, region_end, &shared); bool first_time_p = shared.datarefs.is_empty (); BB_VINFO_DATAREFS (bb_vinfo) = datarefs; if (first_time_p) bb_vinfo->shared->save_datarefs (); else bb_vinfo->shared->check_datarefs (); bb_vinfo->vector_mode = next_vector_mode; if (vect_slp_analyze_bb_1 (bb_vinfo, n_stmts, fatal) && dbg_cnt (vect_slp)) { if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "***** Analysis succeeded with vector mode" " %s\n", GET_MODE_NAME (bb_vinfo->vector_mode)); dump_printf_loc (MSG_NOTE, vect_location, "SLPing BB part\n"); } bb_vinfo->shared->check_datarefs (); vect_schedule_slp (bb_vinfo); unsigned HOST_WIDE_INT bytes; if (dump_enabled_p ()) { if (GET_MODE_SIZE (bb_vinfo->vector_mode).is_constant (&bytes)) dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location, "basic block part vectorized using %wu byte " "vectors\n", bytes); else dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location, "basic block part vectorized using variable " "length vectors\n"); } vectorized = true; } else { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "***** Analysis failed with vector mode %s\n", GET_MODE_NAME (bb_vinfo->vector_mode)); } if (mode_i == 0) autodetected_vector_mode = bb_vinfo->vector_mode; if (!fatal) while (mode_i < vector_modes.length () && vect_chooses_same_modes_p (bb_vinfo, vector_modes[mode_i])) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "***** The result for vector mode %s would" " be the same\n", GET_MODE_NAME (vector_modes[mode_i])); mode_i += 1; } delete bb_vinfo; if (mode_i < vector_modes.length () && VECTOR_MODE_P (autodetected_vector_mode) && (related_vector_mode (vector_modes[mode_i], GET_MODE_INNER (autodetected_vector_mode)) == autodetected_vector_mode) && (related_vector_mode (autodetected_vector_mode, GET_MODE_INNER (vector_modes[mode_i])) == vector_modes[mode_i])) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "***** Skipping vector mode %s, which would" " repeat the analysis for %s\n", GET_MODE_NAME (vector_modes[mode_i]), GET_MODE_NAME (autodetected_vector_mode)); mode_i += 1; } if (vectorized || mode_i == vector_modes.length () || autodetected_vector_mode == VOIDmode /* If vect_slp_analyze_bb_1 signaled that analysis for all vector sizes will fail do not bother iterating. */ || fatal) return vectorized; /* Try the next biggest vector size. */ next_vector_mode = vector_modes[mode_i++]; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "***** Re-trying analysis with vector mode %s\n", GET_MODE_NAME (next_vector_mode)); } } /* Main entry for the BB vectorizer. Analyze and transform BB, returns true if anything in the basic-block was vectorized. */ bool vect_slp_bb (basic_block bb) { gimple_stmt_iterator gsi; bool any_vectorized = false; gsi = gsi_after_labels (bb); while (!gsi_end_p (gsi)) { gimple_stmt_iterator region_begin = gsi; vec datarefs = vNULL; int insns = 0; for (; !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); if (is_gimple_debug (stmt)) { /* Skip leading debug stmts. */ if (gsi_stmt (region_begin) == stmt) gsi_next (®ion_begin); continue; } insns++; if (gimple_location (stmt) != UNKNOWN_LOCATION) vect_location = stmt; if (!vect_find_stmt_data_reference (NULL, stmt, &datarefs)) break; } if (gsi_end_p (region_begin)) break; /* Skip leading unhandled stmts. */ if (gsi_stmt (region_begin) == gsi_stmt (gsi)) { gsi_next (&gsi); continue; } gimple_stmt_iterator region_end = gsi; if (insns > param_slp_max_insns_in_bb) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: too many instructions in " "basic block.\n"); } else if (vect_slp_bb_region (region_begin, region_end, datarefs, insns)) any_vectorized = true; if (gsi_end_p (region_end)) break; /* Skip the unhandled stmt. */ gsi_next (&gsi); } return any_vectorized; } /* Build a variable-length vector in which the elements in ELTS are repeated to a fill NRESULTS vectors of type VECTOR_TYPE. Store the vectors in RESULTS and add any new instructions to SEQ. The approach we use is: (1) Find a vector mode VM with integer elements of mode IM. (2) Replace ELTS[0:NELTS] with ELTS'[0:NELTS'], where each element of ELTS' has mode IM. This involves creating NELTS' VIEW_CONVERT_EXPRs from small vectors to IM. (3) Duplicate each ELTS'[I] into a vector of mode VM. (4) Use a tree of interleaving VEC_PERM_EXPRs to create VMs with the correct byte contents. (5) Use VIEW_CONVERT_EXPR to cast the final VMs to the required type. We try to find the largest IM for which this sequence works, in order to cut down on the number of interleaves. */ void duplicate_and_interleave (vec_info *vinfo, gimple_seq *seq, tree vector_type, vec elts, unsigned int nresults, vec &results) { unsigned int nelts = elts.length (); tree element_type = TREE_TYPE (vector_type); /* (1) Find a vector mode VM with integer elements of mode IM. */ unsigned int nvectors = 1; tree new_vector_type; tree permutes[2]; if (!can_duplicate_and_interleave_p (vinfo, nelts, element_type, &nvectors, &new_vector_type, permutes)) gcc_unreachable (); /* Get a vector type that holds ELTS[0:NELTS/NELTS']. */ unsigned int partial_nelts = nelts / nvectors; tree partial_vector_type = build_vector_type (element_type, partial_nelts); tree_vector_builder partial_elts; auto_vec pieces (nvectors * 2); pieces.quick_grow (nvectors * 2); for (unsigned int i = 0; i < nvectors; ++i) { /* (2) Replace ELTS[0:NELTS] with ELTS'[0:NELTS'], where each element of ELTS' has mode IM. */ partial_elts.new_vector (partial_vector_type, partial_nelts, 1); for (unsigned int j = 0; j < partial_nelts; ++j) partial_elts.quick_push (elts[i * partial_nelts + j]); tree t = gimple_build_vector (seq, &partial_elts); t = gimple_build (seq, VIEW_CONVERT_EXPR, TREE_TYPE (new_vector_type), t); /* (3) Duplicate each ELTS'[I] into a vector of mode VM. */ pieces[i] = gimple_build_vector_from_val (seq, new_vector_type, t); } /* (4) Use a tree of VEC_PERM_EXPRs to create a single VM with the correct byte contents. We need to repeat the following operation log2(nvectors) times: out[i * 2] = VEC_PERM_EXPR (in[i], in[i + hi_start], lo_permute); out[i * 2 + 1] = VEC_PERM_EXPR (in[i], in[i + hi_start], hi_permute); However, if each input repeats every N elements and the VF is a multiple of N * 2, the HI result is the same as the LO. */ unsigned int in_start = 0; unsigned int out_start = nvectors; unsigned int hi_start = nvectors / 2; /* A bound on the number of outputs needed to produce NRESULTS results in the final iteration. */ unsigned int noutputs_bound = nvectors * nresults; for (unsigned int in_repeat = 1; in_repeat < nvectors; in_repeat *= 2) { noutputs_bound /= 2; unsigned int limit = MIN (noutputs_bound, nvectors); for (unsigned int i = 0; i < limit; ++i) { if ((i & 1) != 0 && multiple_p (TYPE_VECTOR_SUBPARTS (new_vector_type), 2 * in_repeat)) { pieces[out_start + i] = pieces[out_start + i - 1]; continue; } tree output = make_ssa_name (new_vector_type); tree input1 = pieces[in_start + (i / 2)]; tree input2 = pieces[in_start + (i / 2) + hi_start]; gassign *stmt = gimple_build_assign (output, VEC_PERM_EXPR, input1, input2, permutes[i & 1]); gimple_seq_add_stmt (seq, stmt); pieces[out_start + i] = output; } std::swap (in_start, out_start); } /* (5) Use VIEW_CONVERT_EXPR to cast the final VM to the required type. */ results.reserve (nresults); for (unsigned int i = 0; i < nresults; ++i) if (i < nvectors) results.quick_push (gimple_build (seq, VIEW_CONVERT_EXPR, vector_type, pieces[in_start + i])); else results.quick_push (results[i - nvectors]); } /* For constant and loop invariant defs in OP_NODE this function creates vector defs that will be used in the vectorized stmts and stores them to SLP_TREE_VEC_DEFS of OP_NODE. */ static void vect_create_constant_vectors (vec_info *vinfo, slp_tree op_node) { unsigned HOST_WIDE_INT nunits; tree vec_cst; unsigned j, number_of_places_left_in_vector; tree vector_type; tree vop; int group_size = op_node->ops.length (); unsigned int vec_num, i; unsigned number_of_copies = 1; bool constant_p; gimple_seq ctor_seq = NULL; auto_vec permute_results; /* We always want SLP_TREE_VECTYPE (op_node) here correctly set. */ vector_type = SLP_TREE_VECTYPE (op_node); unsigned int number_of_vectors = SLP_TREE_NUMBER_OF_VEC_STMTS (op_node); SLP_TREE_VEC_DEFS (op_node).create (number_of_vectors); auto_vec voprnds (number_of_vectors); /* NUMBER_OF_COPIES is the number of times we need to use the same values in created vectors. It is greater than 1 if unrolling is performed. For example, we have two scalar operands, s1 and s2 (e.g., group of strided accesses of size two), while NUNITS is four (i.e., four scalars of this type can be packed in a vector). The output vector will contain two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES will be 2). If GROUP_SIZE > NUNITS, the scalars will be split into several vectors containing the operands. For example, NUNITS is four as before, and the group size is 8 (s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and {s5, s6, s7, s8}. */ /* When using duplicate_and_interleave, we just need one element for each scalar statement. */ if (!TYPE_VECTOR_SUBPARTS (vector_type).is_constant (&nunits)) nunits = group_size; number_of_copies = nunits * number_of_vectors / group_size; number_of_places_left_in_vector = nunits; constant_p = true; tree_vector_builder elts (vector_type, nunits, 1); elts.quick_grow (nunits); stmt_vec_info insert_after = NULL; for (j = 0; j < number_of_copies; j++) { tree op; for (i = group_size - 1; op_node->ops.iterate (i, &op); i--) { /* Create 'vect_ = {op0,op1,...,opn}'. */ number_of_places_left_in_vector--; tree orig_op = op; if (!types_compatible_p (TREE_TYPE (vector_type), TREE_TYPE (op))) { if (CONSTANT_CLASS_P (op)) { if (VECTOR_BOOLEAN_TYPE_P (vector_type)) { /* Can't use VIEW_CONVERT_EXPR for booleans because of possibly different sizes of scalar value and vector element. */ if (integer_zerop (op)) op = build_int_cst (TREE_TYPE (vector_type), 0); else if (integer_onep (op)) op = build_all_ones_cst (TREE_TYPE (vector_type)); else gcc_unreachable (); } else op = fold_unary (VIEW_CONVERT_EXPR, TREE_TYPE (vector_type), op); gcc_assert (op && CONSTANT_CLASS_P (op)); } else { tree new_temp = make_ssa_name (TREE_TYPE (vector_type)); gimple *init_stmt; if (VECTOR_BOOLEAN_TYPE_P (vector_type)) { tree true_val = build_all_ones_cst (TREE_TYPE (vector_type)); tree false_val = build_zero_cst (TREE_TYPE (vector_type)); gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (op))); init_stmt = gimple_build_assign (new_temp, COND_EXPR, op, true_val, false_val); } else { op = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (vector_type), op); init_stmt = gimple_build_assign (new_temp, VIEW_CONVERT_EXPR, op); } gimple_seq_add_stmt (&ctor_seq, init_stmt); op = new_temp; } } elts[number_of_places_left_in_vector] = op; if (!CONSTANT_CLASS_P (op)) constant_p = false; /* For BB vectorization we have to compute an insert location when a def is inside the analyzed region since we cannot simply insert at the BB start in this case. */ stmt_vec_info opdef; if (TREE_CODE (orig_op) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (orig_op) && is_a (vinfo) && (opdef = vinfo->lookup_def (orig_op))) { if (!insert_after) insert_after = opdef; else insert_after = get_later_stmt (insert_after, opdef); } if (number_of_places_left_in_vector == 0) { if (constant_p ? multiple_p (TYPE_VECTOR_SUBPARTS (vector_type), nunits) : known_eq (TYPE_VECTOR_SUBPARTS (vector_type), nunits)) vec_cst = gimple_build_vector (&ctor_seq, &elts); else { if (permute_results.is_empty ()) duplicate_and_interleave (vinfo, &ctor_seq, vector_type, elts, number_of_vectors, permute_results); vec_cst = permute_results[number_of_vectors - j - 1]; } if (!gimple_seq_empty_p (ctor_seq)) { if (insert_after) { gimple_stmt_iterator gsi = gsi_for_stmt (insert_after->stmt); gsi_insert_seq_after (&gsi, ctor_seq, GSI_CONTINUE_LINKING); } else vinfo->insert_seq_on_entry (NULL, ctor_seq); ctor_seq = NULL; } voprnds.quick_push (vec_cst); insert_after = NULL; number_of_places_left_in_vector = nunits; constant_p = true; elts.new_vector (vector_type, nunits, 1); elts.quick_grow (nunits); } } } /* Since the vectors are created in the reverse order, we should invert them. */ vec_num = voprnds.length (); for (j = vec_num; j != 0; j--) { vop = voprnds[j - 1]; SLP_TREE_VEC_DEFS (op_node).quick_push (vop); } /* In case that VF is greater than the unrolling factor needed for the SLP group of stmts, NUMBER_OF_VECTORS to be created is greater than NUMBER_OF_SCALARS/NUNITS or NUNITS/NUMBER_OF_SCALARS, and hence we have to replicate the vectors. */ while (number_of_vectors > SLP_TREE_VEC_DEFS (op_node).length ()) for (i = 0; SLP_TREE_VEC_DEFS (op_node).iterate (i, &vop) && i < vec_num; i++) SLP_TREE_VEC_DEFS (op_node).quick_push (vop); } /* Get the Ith vectorized definition from SLP_NODE. */ tree vect_get_slp_vect_def (slp_tree slp_node, unsigned i) { if (SLP_TREE_VEC_STMTS (slp_node).exists ()) return gimple_get_lhs (SLP_TREE_VEC_STMTS (slp_node)[i]); else return SLP_TREE_VEC_DEFS (slp_node)[i]; } /* Get the vectorized definitions of SLP_NODE in *VEC_DEFS. */ void vect_get_slp_defs (slp_tree slp_node, vec *vec_defs) { vec_defs->create (SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node)); if (SLP_TREE_DEF_TYPE (slp_node) == vect_internal_def) { unsigned j; gimple *vec_def_stmt; FOR_EACH_VEC_ELT (SLP_TREE_VEC_STMTS (slp_node), j, vec_def_stmt) vec_defs->quick_push (gimple_get_lhs (vec_def_stmt)); } else vec_defs->splice (SLP_TREE_VEC_DEFS (slp_node)); } /* Get N vectorized definitions for SLP_NODE. */ void vect_get_slp_defs (vec_info *, slp_tree slp_node, vec > *vec_oprnds, unsigned n) { if (n == -1U) n = SLP_TREE_CHILDREN (slp_node).length (); for (unsigned i = 0; i < n; ++i) { slp_tree child = SLP_TREE_CHILDREN (slp_node)[i]; vec vec_defs = vNULL; vect_get_slp_defs (child, &vec_defs); vec_oprnds->quick_push (vec_defs); } } /* Generate vector permute statements from a list of loads in DR_CHAIN. If ANALYZE_ONLY is TRUE, only check that it is possible to create valid permute statements for the SLP node NODE. */ bool vect_transform_slp_perm_load (vec_info *vinfo, slp_tree node, vec dr_chain, gimple_stmt_iterator *gsi, poly_uint64 vf, bool analyze_only, unsigned *n_perms) { stmt_vec_info stmt_info = SLP_TREE_SCALAR_STMTS (node)[0]; int vec_index = 0; tree vectype = STMT_VINFO_VECTYPE (stmt_info); unsigned int group_size = SLP_TREE_SCALAR_STMTS (node).length (); unsigned int mask_element; machine_mode mode; if (!STMT_VINFO_GROUPED_ACCESS (stmt_info)) return false; stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info); mode = TYPE_MODE (vectype); poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype); /* Initialize the vect stmts of NODE to properly insert the generated stmts later. */ if (! analyze_only) for (unsigned i = SLP_TREE_VEC_STMTS (node).length (); i < SLP_TREE_NUMBER_OF_VEC_STMTS (node); i++) SLP_TREE_VEC_STMTS (node).quick_push (NULL); /* Generate permutation masks for every NODE. Number of masks for each NODE is equal to GROUP_SIZE. E.g., we have a group of three nodes with three loads from the same location in each node, and the vector size is 4. I.e., we have a a0b0c0a1b1c1... sequence and we need to create the following vectors: for a's: a0a0a0a1 a1a1a2a2 a2a3a3a3 for b's: b0b0b0b1 b1b1b2b2 b2b3b3b3 ... The masks for a's should be: {0,0,0,3} {3,3,6,6} {6,9,9,9}. The last mask is illegal since we assume two operands for permute operation, and the mask element values can't be outside that range. Hence, the last mask must be converted into {2,5,5,5}. For the first two permutations we need the first and the second input vectors: {a0,b0,c0,a1} and {b1,c1,a2,b2}, and for the last permutation we need the second and the third vectors: {b1,c1,a2,b2} and {c2,a3,b3,c3}. */ int vect_stmts_counter = 0; unsigned int index = 0; int first_vec_index = -1; int second_vec_index = -1; bool noop_p = true; *n_perms = 0; vec_perm_builder mask; unsigned int nelts_to_build; unsigned int nvectors_per_build; bool repeating_p = (group_size == DR_GROUP_SIZE (stmt_info) && multiple_p (nunits, group_size)); if (repeating_p) { /* A single vector contains a whole number of copies of the node, so: (a) all permutes can use the same mask; and (b) the permutes only need a single vector input. */ mask.new_vector (nunits, group_size, 3); nelts_to_build = mask.encoded_nelts (); nvectors_per_build = SLP_TREE_VEC_STMTS (node).length (); } else { /* We need to construct a separate mask for each vector statement. */ unsigned HOST_WIDE_INT const_nunits, const_vf; if (!nunits.is_constant (&const_nunits) || !vf.is_constant (&const_vf)) return false; mask.new_vector (const_nunits, const_nunits, 1); nelts_to_build = const_vf * group_size; nvectors_per_build = 1; } unsigned int count = mask.encoded_nelts (); mask.quick_grow (count); vec_perm_indices indices; for (unsigned int j = 0; j < nelts_to_build; j++) { unsigned int iter_num = j / group_size; unsigned int stmt_num = j % group_size; unsigned int i = (iter_num * DR_GROUP_SIZE (stmt_info) + SLP_TREE_LOAD_PERMUTATION (node)[stmt_num]); if (repeating_p) { first_vec_index = 0; mask_element = i; } else { /* Enforced before the loop when !repeating_p. */ unsigned int const_nunits = nunits.to_constant (); vec_index = i / const_nunits; mask_element = i % const_nunits; if (vec_index == first_vec_index || first_vec_index == -1) { first_vec_index = vec_index; } else if (vec_index == second_vec_index || second_vec_index == -1) { second_vec_index = vec_index; mask_element += const_nunits; } else { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "permutation requires at " "least three vectors %G", stmt_info->stmt); gcc_assert (analyze_only); return false; } gcc_assert (mask_element < 2 * const_nunits); } if (mask_element != index) noop_p = false; mask[index++] = mask_element; if (index == count && !noop_p) { indices.new_vector (mask, second_vec_index == -1 ? 1 : 2, nunits); if (!can_vec_perm_const_p (mode, indices)) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "unsupported vect permute { "); for (i = 0; i < count; ++i) { dump_dec (MSG_MISSED_OPTIMIZATION, mask[i]); dump_printf (MSG_MISSED_OPTIMIZATION, " "); } dump_printf (MSG_MISSED_OPTIMIZATION, "}\n"); } gcc_assert (analyze_only); return false; } ++*n_perms; } if (index == count) { if (!analyze_only) { tree mask_vec = NULL_TREE; if (! noop_p) mask_vec = vect_gen_perm_mask_checked (vectype, indices); if (second_vec_index == -1) second_vec_index = first_vec_index; for (unsigned int ri = 0; ri < nvectors_per_build; ++ri) { /* Generate the permute statement if necessary. */ tree first_vec = dr_chain[first_vec_index + ri]; tree second_vec = dr_chain[second_vec_index + ri]; gimple *perm_stmt; if (! noop_p) { gassign *stmt = as_a (stmt_info->stmt); tree perm_dest = vect_create_destination_var (gimple_assign_lhs (stmt), vectype); perm_dest = make_ssa_name (perm_dest); perm_stmt = gimple_build_assign (perm_dest, VEC_PERM_EXPR, first_vec, second_vec, mask_vec); vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); } else /* If mask was NULL_TREE generate the requested identity transform. */ perm_stmt = SSA_NAME_DEF_STMT (first_vec); /* Store the vector statement in NODE. */ SLP_TREE_VEC_STMTS (node)[vect_stmts_counter++] = perm_stmt; } } index = 0; first_vec_index = -1; second_vec_index = -1; noop_p = true; } } return true; } /* Vectorize the SLP permutations in NODE as specified in SLP_TREE_LANE_PERMUTATION which is a vector of pairs of SLP child number and lane number. Interleaving of two two-lane two-child SLP subtrees (not supported): [ { 0, 0 }, { 1, 0 }, { 0, 1 }, { 1, 1 } ] A blend of two four-lane two-child SLP subtrees: [ { 0, 0 }, { 1, 1 }, { 0, 2 }, { 1, 3 } ] Highpart of a four-lane one-child SLP subtree (not supported): [ { 0, 2 }, { 0, 3 } ] Where currently only a subset is supported by code generating below. */ static bool vectorizable_slp_permutation (vec_info *vinfo, gimple_stmt_iterator *gsi, slp_tree node, stmt_vector_for_cost *cost_vec) { tree vectype = SLP_TREE_VECTYPE (node); /* ??? We currently only support all same vector input and output types while the SLP IL should really do a concat + select and thus accept arbitrary mismatches. */ slp_tree child; unsigned i; FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child) if (!types_compatible_p (SLP_TREE_VECTYPE (child), vectype)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Unsupported lane permutation\n"); return false; } vec > &perm = SLP_TREE_LANE_PERMUTATION (node); gcc_assert (perm.length () == SLP_TREE_LANES (node)); if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "vectorizing permutation"); for (unsigned i = 0; i < perm.length (); ++i) dump_printf (MSG_NOTE, " op%u[%u]", perm[i].first, perm[i].second); dump_printf (MSG_NOTE, "\n"); } poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype); if (!nunits.is_constant ()) return false; unsigned HOST_WIDE_INT vf = 1; if (loop_vec_info linfo = dyn_cast (vinfo)) if (!LOOP_VINFO_VECT_FACTOR (linfo).is_constant (&vf)) return false; unsigned olanes = vf * SLP_TREE_LANES (node); gcc_assert (multiple_p (olanes, nunits)); /* Compute the { { SLP operand, vector index}, lane } permutation sequence from the { SLP operand, scalar lane } permutation as recorded in the SLP node as intermediate step. This part should already work with SLP children with arbitrary number of lanes. */ auto_vec, unsigned> > vperm; auto_vec active_lane; vperm.create (olanes); active_lane.safe_grow_cleared (SLP_TREE_CHILDREN (node).length ()); for (unsigned i = 0; i < vf; ++i) { for (unsigned pi = 0; pi < perm.length (); ++pi) { std::pair p = perm[pi]; tree vtype = SLP_TREE_VECTYPE (SLP_TREE_CHILDREN (node)[p.first]); unsigned vnunits = TYPE_VECTOR_SUBPARTS (vtype).to_constant (); unsigned vi = (active_lane[p.first] + p.second) / vnunits; unsigned vl = (active_lane[p.first] + p.second) % vnunits; vperm.quick_push (std::make_pair (std::make_pair (p.first, vi), vl)); } /* Advance to the next group. */ for (unsigned j = 0; j < SLP_TREE_CHILDREN (node).length (); ++j) active_lane[j] += SLP_TREE_LANES (SLP_TREE_CHILDREN (node)[j]); } if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "as"); for (unsigned i = 0; i < vperm.length (); ++i) { if (i != 0 && multiple_p (i, TYPE_VECTOR_SUBPARTS (vectype))) dump_printf (MSG_NOTE, ","); dump_printf (MSG_NOTE, " vops%u[%u][%u]", vperm[i].first.first, vperm[i].first.second, vperm[i].first.second); } dump_printf (MSG_NOTE, "\n"); } /* We can only handle two-vector permutes, everything else should be lowered on the SLP level. The following is closely inspired by vect_transform_slp_perm_load and is supposed to eventually replace it. ??? As intermediate step do code-gen in the SLP tree representation somehow? */ std::pair first_vec = std::make_pair (-1U, -1U); std::pair second_vec = std::make_pair (-1U, -1U); unsigned int const_nunits = nunits.to_constant (); unsigned int index = 0; unsigned int mask_element; vec_perm_builder mask; mask.new_vector (const_nunits, const_nunits, 1); unsigned int count = mask.encoded_nelts (); mask.quick_grow (count); vec_perm_indices indices; unsigned nperms = 0; for (unsigned i = 0; i < vperm.length (); ++i) { mask_element = vperm[i].second; if (first_vec.first == -1U || first_vec == vperm[i].first) first_vec = vperm[i].first; else if (second_vec.first == -1U || second_vec == vperm[i].first) { second_vec = vperm[i].first; mask_element += const_nunits; } else { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "permutation requires at " "least three vectors"); gcc_assert (!gsi); return false; } mask[index++] = mask_element; if (index == count) { indices.new_vector (mask, second_vec.first == -1U ? 1 : 2, const_nunits); bool identity_p = indices.series_p (0, 1, 0, 1); if (!identity_p && !can_vec_perm_const_p (TYPE_MODE (vectype), indices)) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "unsupported vect permute { "); for (i = 0; i < count; ++i) { dump_dec (MSG_MISSED_OPTIMIZATION, mask[i]); dump_printf (MSG_MISSED_OPTIMIZATION, " "); } dump_printf (MSG_MISSED_OPTIMIZATION, "}\n"); } gcc_assert (!gsi); return false; } if (!identity_p) nperms++; if (gsi) { if (second_vec.first == -1U) second_vec = first_vec; /* Generate the permute statement if necessary. */ slp_tree first_node = SLP_TREE_CHILDREN (node)[first_vec.first]; tree first_def = vect_get_slp_vect_def (first_node, first_vec.second); gassign *perm_stmt; tree perm_dest = make_ssa_name (vectype); if (!identity_p) { slp_tree second_node = SLP_TREE_CHILDREN (node)[second_vec.first]; tree second_def = vect_get_slp_vect_def (second_node, second_vec.second); tree mask_vec = vect_gen_perm_mask_checked (vectype, indices); perm_stmt = gimple_build_assign (perm_dest, VEC_PERM_EXPR, first_def, second_def, mask_vec); } else /* We need a copy here in case the def was external. */ perm_stmt = gimple_build_assign (perm_dest, first_def); vect_finish_stmt_generation (vinfo, NULL, perm_stmt, gsi); /* Store the vector statement in NODE. */ SLP_TREE_VEC_STMTS (node).quick_push (perm_stmt); } index = 0; first_vec = std::make_pair (-1U, -1U); second_vec = std::make_pair (-1U, -1U); } } if (!gsi) record_stmt_cost (cost_vec, nperms, vec_perm, NULL, vectype, 0, vect_body); return true; } /* Vectorize SLP instance tree in postorder. */ static void vect_schedule_slp_instance (vec_info *vinfo, slp_tree node, slp_instance instance) { gimple_stmt_iterator si; int i; slp_tree child; /* See if we have already vectorized the node in the graph of the SLP instance. */ if ((SLP_TREE_DEF_TYPE (node) == vect_internal_def && SLP_TREE_VEC_STMTS (node).exists ()) || SLP_TREE_VEC_DEFS (node).exists ()) return; /* Vectorize externals and constants. */ if (SLP_TREE_DEF_TYPE (node) == vect_constant_def || SLP_TREE_DEF_TYPE (node) == vect_external_def) { /* ??? vectorizable_shift can end up using a scalar operand which is currently denoted as !SLP_TREE_VECTYPE. No need to vectorize the node in this case. */ if (!SLP_TREE_VECTYPE (node)) return; vect_create_constant_vectors (vinfo, node); return; } FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child) vect_schedule_slp_instance (vinfo, child, instance); gcc_assert (SLP_TREE_NUMBER_OF_VEC_STMTS (node) != 0); SLP_TREE_VEC_STMTS (node).create (SLP_TREE_NUMBER_OF_VEC_STMTS (node)); stmt_vec_info stmt_info = SLP_TREE_REPRESENTATIVE (node); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "------>vectorizing SLP node starting from: %G", stmt_info->stmt); if (STMT_VINFO_DATA_REF (stmt_info) && SLP_TREE_CODE (node) != VEC_PERM_EXPR) { /* Vectorized loads go before the first scalar load to make it ready early, vectorized stores go before the last scalar stmt which is where all uses are ready. */ stmt_vec_info last_stmt_info = NULL; if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info))) last_stmt_info = vect_find_first_scalar_stmt_in_slp (node); else /* DR_IS_WRITE */ last_stmt_info = vect_find_last_scalar_stmt_in_slp (node); si = gsi_for_stmt (last_stmt_info->stmt); } else if (SLP_TREE_CHILDREN (node).is_empty ()) { /* This happens for reduction and induction PHIs where we do not use the insertion iterator. */ gcc_assert (STMT_VINFO_TYPE (SLP_TREE_REPRESENTATIVE (node)) == cycle_phi_info_type || (STMT_VINFO_TYPE (SLP_TREE_REPRESENTATIVE (node)) == induc_vec_info_type)); si = gsi_none (); } else { /* Emit other stmts after the children vectorized defs which is earliest possible. */ gimple *last_stmt = NULL; FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child) if (SLP_TREE_DEF_TYPE (child) == vect_internal_def) { /* For fold-left reductions we are retaining the scalar reduction PHI but we still have SLP_TREE_NUM_VEC_STMTS set so the representation isn't perfect. Resort to the last scalar def here. */ if (SLP_TREE_VEC_STMTS (child).is_empty ()) { gcc_assert (STMT_VINFO_TYPE (SLP_TREE_REPRESENTATIVE (child)) == cycle_phi_info_type); gphi *phi = as_a (vect_find_last_scalar_stmt_in_slp (child)->stmt); if (!last_stmt || vect_stmt_dominates_stmt_p (last_stmt, phi)) last_stmt = phi; } /* We are emitting all vectorized stmts in the same place and the last one is the last. ??? Unless we have a load permutation applied and that figures to re-use an earlier generated load. */ unsigned j; gimple *vstmt; FOR_EACH_VEC_ELT (SLP_TREE_VEC_STMTS (child), j, vstmt) if (!last_stmt || vect_stmt_dominates_stmt_p (last_stmt, vstmt)) last_stmt = vstmt; } else if (!SLP_TREE_VECTYPE (child)) { /* For externals we use unvectorized at all scalar defs. */ unsigned j; tree def; FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_OPS (child), j, def) if (TREE_CODE (def) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (def)) { gimple *stmt = SSA_NAME_DEF_STMT (def); if (!last_stmt || vect_stmt_dominates_stmt_p (last_stmt, stmt)) last_stmt = stmt; } } else { /* For externals we have to look at all defs since their insertion place is decided per vector. But beware of pre-existing vectors where we need to make sure we do not insert before the region boundary. */ if (SLP_TREE_SCALAR_OPS (child).is_empty () && !vinfo->lookup_def (SLP_TREE_VEC_DEFS (child)[0])) last_stmt = gsi_stmt (as_a (vinfo)->region_begin); else { unsigned j; tree vdef; FOR_EACH_VEC_ELT (SLP_TREE_VEC_DEFS (child), j, vdef) if (TREE_CODE (vdef) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (vdef)) { gimple *vstmt = SSA_NAME_DEF_STMT (vdef); if (!last_stmt || vect_stmt_dominates_stmt_p (last_stmt, vstmt)) last_stmt = vstmt; } } } /* This can happen when all children are pre-existing vectors or constants. */ if (!last_stmt) last_stmt = vect_find_first_scalar_stmt_in_slp (node)->stmt; if (is_a (last_stmt)) si = gsi_after_labels (gimple_bb (last_stmt)); else { si = gsi_for_stmt (last_stmt); gsi_next (&si); } } bool done_p = false; /* Handle purely internal nodes. */ if (SLP_TREE_CODE (node) == VEC_PERM_EXPR) { /* ??? the transform kind is stored to STMT_VINFO_TYPE which might be shared with different SLP nodes (but usually it's the same operation apart from the case the stmt is only there for denoting the actual scalar lane defs ...). So do not call vect_transform_stmt but open-code it here (partly). */ bool done = vectorizable_slp_permutation (vinfo, &si, node, NULL); gcc_assert (done); done_p = true; } if (!done_p) vect_transform_stmt (vinfo, stmt_info, &si, node, instance); } /* Replace scalar calls from SLP node NODE with setting of their lhs to zero. For loop vectorization this is done in vectorizable_call, but for SLP it needs to be deferred until end of vect_schedule_slp, because multiple SLP instances may refer to the same scalar stmt. */ static void vect_remove_slp_scalar_calls (vec_info *vinfo, slp_tree node, hash_set &visited) { gimple *new_stmt; gimple_stmt_iterator gsi; int i; slp_tree child; tree lhs; stmt_vec_info stmt_info; if (SLP_TREE_DEF_TYPE (node) != vect_internal_def) return; if (visited.add (node)) return; FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child) vect_remove_slp_scalar_calls (vinfo, child, visited); FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info) { gcall *stmt = dyn_cast (stmt_info->stmt); if (!stmt || gimple_bb (stmt) == NULL) continue; if (is_pattern_stmt_p (stmt_info) || !PURE_SLP_STMT (stmt_info)) continue; lhs = gimple_call_lhs (stmt); new_stmt = gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs))); gsi = gsi_for_stmt (stmt); vinfo->replace_stmt (&gsi, stmt_info, new_stmt); SSA_NAME_DEF_STMT (gimple_assign_lhs (new_stmt)) = new_stmt; } } static void vect_remove_slp_scalar_calls (vec_info *vinfo, slp_tree node) { hash_set visited; vect_remove_slp_scalar_calls (vinfo, node, visited); } /* Vectorize the instance root. */ void vectorize_slp_instance_root_stmt (slp_tree node, slp_instance instance) { gassign *rstmt = NULL; if (SLP_TREE_NUMBER_OF_VEC_STMTS (node) == 1) { gimple *child_stmt; int j; FOR_EACH_VEC_ELT (SLP_TREE_VEC_STMTS (node), j, child_stmt) { tree vect_lhs = gimple_get_lhs (child_stmt); tree root_lhs = gimple_get_lhs (instance->root_stmt->stmt); if (!useless_type_conversion_p (TREE_TYPE (root_lhs), TREE_TYPE (vect_lhs))) vect_lhs = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (root_lhs), vect_lhs); rstmt = gimple_build_assign (root_lhs, vect_lhs); break; } } else if (SLP_TREE_NUMBER_OF_VEC_STMTS (node) > 1) { int nelts = SLP_TREE_NUMBER_OF_VEC_STMTS (node); gimple *child_stmt; int j; vec *v; vec_alloc (v, nelts); FOR_EACH_VEC_ELT (SLP_TREE_VEC_STMTS (node), j, child_stmt) { CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, gimple_get_lhs (child_stmt)); } tree lhs = gimple_get_lhs (instance->root_stmt->stmt); tree rtype = TREE_TYPE (gimple_assign_rhs1 (instance->root_stmt->stmt)); tree r_constructor = build_constructor (rtype, v); rstmt = gimple_build_assign (lhs, r_constructor); } gcc_assert (rstmt); gimple_stmt_iterator rgsi = gsi_for_stmt (instance->root_stmt->stmt); gsi_replace (&rgsi, rstmt, true); } /* Generate vector code for all SLP instances in the loop/basic block. */ void vect_schedule_slp (vec_info *vinfo) { vec slp_instances; slp_instance instance; unsigned int i; slp_instances = vinfo->slp_instances; FOR_EACH_VEC_ELT (slp_instances, i, instance) { slp_tree node = SLP_INSTANCE_TREE (instance); /* Schedule the tree of INSTANCE. */ vect_schedule_slp_instance (vinfo, node, instance); if (SLP_INSTANCE_ROOT_STMT (instance)) vectorize_slp_instance_root_stmt (node, instance); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vectorizing stmts using SLP.\n"); } FOR_EACH_VEC_ELT (slp_instances, i, instance) { slp_tree root = SLP_INSTANCE_TREE (instance); stmt_vec_info store_info; unsigned int j; /* Remove scalar call stmts. Do not do this for basic-block vectorization as not all uses may be vectorized. ??? Why should this be necessary? DCE should be able to remove the stmts itself. ??? For BB vectorization we can as well remove scalar stmts starting from the SLP tree root if they have no uses. */ if (is_a (vinfo)) vect_remove_slp_scalar_calls (vinfo, root); for (j = 0; SLP_TREE_SCALAR_STMTS (root).iterate (j, &store_info); j++) { if (!STMT_VINFO_DATA_REF (store_info)) break; if (SLP_INSTANCE_ROOT_STMT (instance)) continue; store_info = vect_orig_stmt (store_info); /* Free the attached stmt_vec_info and remove the stmt. */ vinfo->remove_stmt (store_info); } } }