/* Data References Analysis and Manipulation Utilities for Vectorization. Copyright (C) 2003-2018 Free Software Foundation, Inc. Contributed by Dorit Naishlos and Ira Rosen This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "predict.h" #include "memmodel.h" #include "tm_p.h" #include "ssa.h" #include "optabs-tree.h" #include "cgraph.h" #include "dumpfile.h" #include "alias.h" #include "fold-const.h" #include "stor-layout.h" #include "tree-eh.h" #include "gimplify.h" #include "gimple-iterator.h" #include "gimplify-me.h" #include "tree-ssa-loop-ivopts.h" #include "tree-ssa-loop-manip.h" #include "tree-ssa-loop.h" #include "cfgloop.h" #include "tree-scalar-evolution.h" #include "tree-vectorizer.h" #include "expr.h" #include "builtins.h" #include "params.h" #include "tree-cfg.h" #include "tree-hash-traits.h" #include "vec-perm-indices.h" #include "internal-fn.h" /* Return true if load- or store-lanes optab OPTAB is implemented for COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */ static bool vect_lanes_optab_supported_p (const char *name, convert_optab optab, tree vectype, unsigned HOST_WIDE_INT count) { machine_mode mode, array_mode; bool limit_p; mode = TYPE_MODE (vectype); if (!targetm.array_mode (mode, count).exists (&array_mode)) { poly_uint64 bits = count * GET_MODE_BITSIZE (mode); limit_p = !targetm.array_mode_supported_p (mode, count); if (!int_mode_for_size (bits, limit_p).exists (&array_mode)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]\n", GET_MODE_NAME (mode), count); return false; } } if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "cannot use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode), GET_MODE_NAME (mode)); return false; } if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode), GET_MODE_NAME (mode)); return true; } /* Return the smallest scalar part of STMT. This is used to determine the vectype of the stmt. We generally set the vectype according to the type of the result (lhs). For stmts whose result-type is different than the type of the arguments (e.g., demotion, promotion), vectype will be reset appropriately (later). Note that we have to visit the smallest datatype in this function, because that determines the VF. If the smallest datatype in the loop is present only as the rhs of a promotion operation - we'd miss it. Such a case, where a variable of this datatype does not appear in the lhs anywhere in the loop, can only occur if it's an invariant: e.g.: 'int_x = (int) short_inv', which we'd expect to have been optimized away by invariant motion. However, we cannot rely on invariant motion to always take invariants out of the loop, and so in the case of promotion we also have to check the rhs. LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding types. */ tree vect_get_smallest_scalar_type (gimple *stmt, HOST_WIDE_INT *lhs_size_unit, HOST_WIDE_INT *rhs_size_unit) { tree scalar_type = gimple_expr_type (stmt); HOST_WIDE_INT lhs, rhs; /* During the analysis phase, this function is called on arbitrary statements that might not have scalar results. */ if (!tree_fits_uhwi_p (TYPE_SIZE_UNIT (scalar_type))) return scalar_type; lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type)); if (is_gimple_assign (stmt) && (gimple_assign_cast_p (stmt) || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR || gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR || gimple_assign_rhs_code (stmt) == FLOAT_EXPR)) { tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt)); rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type)); if (rhs < lhs) scalar_type = rhs_type; } *lhs_size_unit = lhs; *rhs_size_unit = rhs; return scalar_type; } /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be tested at run-time. Return TRUE if DDR was successfully inserted. Return false if versioning is not supported. */ static bool vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo) { struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0) return false; if (!runtime_alias_check_p (ddr, loop, optimize_loop_nest_for_speed_p (loop))) return false; LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr); return true; } /* Record that loop LOOP_VINFO needs to check that VALUE is nonzero. */ static void vect_check_nonzero_value (loop_vec_info loop_vinfo, tree value) { vec checks = LOOP_VINFO_CHECK_NONZERO (loop_vinfo); for (unsigned int i = 0; i < checks.length(); ++i) if (checks[i] == value) return; if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "need run-time check that "); dump_generic_expr (MSG_NOTE, TDF_SLIM, value); dump_printf (MSG_NOTE, " is nonzero\n"); } LOOP_VINFO_CHECK_NONZERO (loop_vinfo).safe_push (value); } /* Return true if we know that the order of vectorized STMT_A and vectorized STMT_B will be the same as the order of STMT_A and STMT_B. At least one of the statements is a write. */ static bool vect_preserves_scalar_order_p (gimple *stmt_a, gimple *stmt_b) { stmt_vec_info stmtinfo_a = vinfo_for_stmt (stmt_a); stmt_vec_info stmtinfo_b = vinfo_for_stmt (stmt_b); /* Single statements are always kept in their original order. */ if (!STMT_VINFO_GROUPED_ACCESS (stmtinfo_a) && !STMT_VINFO_GROUPED_ACCESS (stmtinfo_b)) return true; /* STMT_A and STMT_B belong to overlapping groups. All loads in a group are emitted at the position of the first scalar load and all stores in a group are emitted at the position of the last scalar store. Thus writes will happen no earlier than their current position (but could happen later) while reads will happen no later than their current position (but could happen earlier). Reordering is therefore only possible if the first access is a write. */ gimple *earlier_stmt = get_earlier_stmt (stmt_a, stmt_b); return !DR_IS_WRITE (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))); } /* A subroutine of vect_analyze_data_ref_dependence. Handle DDR_COULD_BE_INDEPENDENT_P ddr DDR that has a known set of dependence distances. These distances are conservatively correct but they don't reflect a guaranteed dependence. Return true if this function does all the work necessary to avoid an alias or false if the caller should use the dependence distances to limit the vectorization factor in the usual way. LOOP_DEPTH is the depth of the loop described by LOOP_VINFO and the other arguments are as for vect_analyze_data_ref_dependence. */ static bool vect_analyze_possibly_independent_ddr (data_dependence_relation *ddr, loop_vec_info loop_vinfo, int loop_depth, unsigned int *max_vf) { struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); lambda_vector dist_v; unsigned int i; FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v) { int dist = dist_v[loop_depth]; if (dist != 0 && !(dist > 0 && DDR_REVERSED_P (ddr))) { /* If the user asserted safelen >= DIST consecutive iterations can be executed concurrently, assume independence. ??? An alternative would be to add the alias check even in this case, and vectorize the fallback loop with the maximum VF set to safelen. However, if the user has explicitly given a length, it's less likely that that would be a win. */ if (loop->safelen >= 2 && abs_hwi (dist) <= loop->safelen) { if ((unsigned int) loop->safelen < *max_vf) *max_vf = loop->safelen; LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false; continue; } /* For dependence distances of 2 or more, we have the option of limiting VF or checking for an alias at runtime. Prefer to check at runtime if we can, to avoid limiting the VF unnecessarily when the bases are in fact independent. Note that the alias checks will be removed if the VF ends up being small enough. */ return vect_mark_for_runtime_alias_test (ddr, loop_vinfo); } } return true; } /* Function vect_analyze_data_ref_dependence. Return TRUE if there (might) exist a dependence between a memory-reference DRA and a memory-reference DRB. When versioning for alias may check a dependence at run-time, return FALSE. Adjust *MAX_VF according to the data dependence. */ static bool vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr, loop_vec_info loop_vinfo, unsigned int *max_vf) { unsigned int i; struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); struct data_reference *dra = DDR_A (ddr); struct data_reference *drb = DDR_B (ddr); stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra)); stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb)); lambda_vector dist_v; unsigned int loop_depth; /* In loop analysis all data references should be vectorizable. */ if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a) || !STMT_VINFO_VECTORIZABLE (stmtinfo_b)) gcc_unreachable (); /* Independent data accesses. */ if (DDR_ARE_DEPENDENT (ddr) == chrec_known) return false; if (dra == drb || (DR_IS_READ (dra) && DR_IS_READ (drb))) return false; /* We do not have to consider dependences between accesses that belong to the same group. */ if (GROUP_FIRST_ELEMENT (stmtinfo_a) && GROUP_FIRST_ELEMENT (stmtinfo_a) == GROUP_FIRST_ELEMENT (stmtinfo_b)) return false; /* Even if we have an anti-dependence then, as the vectorized loop covers at least two scalar iterations, there is always also a true dependence. As the vectorizer does not re-order loads and stores we can ignore the anti-dependence if TBAA can disambiguate both DRs similar to the case with known negative distance anti-dependences (positive distance anti-dependences would violate TBAA constraints). */ if (((DR_IS_READ (dra) && DR_IS_WRITE (drb)) || (DR_IS_WRITE (dra) && DR_IS_READ (drb))) && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)), get_alias_set (DR_REF (drb)))) return false; /* Unknown data dependence. */ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) { /* If user asserted safelen consecutive iterations can be executed concurrently, assume independence. */ if (loop->safelen >= 2) { if ((unsigned int) loop->safelen < *max_vf) *max_vf = loop->safelen; LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false; return false; } if (STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a) || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b)) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "versioning for alias not supported for: " "can't determine dependence between "); dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra)); dump_printf (MSG_MISSED_OPTIMIZATION, " and "); dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb)); dump_printf (MSG_MISSED_OPTIMIZATION, "\n"); } return true; } if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "versioning for alias required: " "can't determine dependence between "); dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra)); dump_printf (MSG_MISSED_OPTIMIZATION, " and "); dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb)); dump_printf (MSG_MISSED_OPTIMIZATION, "\n"); } /* Add to list of ddrs that need to be tested at run-time. */ return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo); } /* Known data dependence. */ if (DDR_NUM_DIST_VECTS (ddr) == 0) { /* If user asserted safelen consecutive iterations can be executed concurrently, assume independence. */ if (loop->safelen >= 2) { if ((unsigned int) loop->safelen < *max_vf) *max_vf = loop->safelen; LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false; return false; } if (STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a) || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b)) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "versioning for alias not supported for: " "bad dist vector for "); dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra)); dump_printf (MSG_MISSED_OPTIMIZATION, " and "); dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb)); dump_printf (MSG_MISSED_OPTIMIZATION, "\n"); } return true; } if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "versioning for alias required: " "bad dist vector for "); dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra)); dump_printf (MSG_MISSED_OPTIMIZATION, " and "); dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb)); dump_printf (MSG_MISSED_OPTIMIZATION, "\n"); } /* Add to list of ddrs that need to be tested at run-time. */ return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo); } loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr)); if (DDR_COULD_BE_INDEPENDENT_P (ddr) && vect_analyze_possibly_independent_ddr (ddr, loop_vinfo, loop_depth, max_vf)) return false; FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v) { int dist = dist_v[loop_depth]; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "dependence distance = %d.\n", dist); if (dist == 0) { if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "dependence distance == 0 between "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra)); dump_printf (MSG_NOTE, " and "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb)); dump_printf (MSG_MISSED_OPTIMIZATION, "\n"); } /* When we perform grouped accesses and perform implicit CSE by detecting equal accesses and doing disambiguation with runtime alias tests like for .. = a[i]; .. = a[i+1]; a[i] = ..; a[i+1] = ..; *p = ..; .. = a[i]; .. = a[i+1]; where we will end up loading { a[i], a[i+1] } once, make sure that inserting group loads before the first load and stores after the last store will do the right thing. Similar for groups like a[i] = ...; ... = a[i]; a[i+1] = ...; where loads from the group interleave with the store. */ if (!vect_preserves_scalar_order_p (DR_STMT (dra), DR_STMT (drb))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "READ_WRITE dependence in interleaving.\n"); return true; } if (loop->safelen < 2) { tree indicator = dr_zero_step_indicator (dra); if (TREE_CODE (indicator) != INTEGER_CST) vect_check_nonzero_value (loop_vinfo, indicator); else if (integer_zerop (indicator)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "access also has a zero step\n"); return true; } } continue; } if (dist > 0 && DDR_REVERSED_P (ddr)) { /* If DDR_REVERSED_P the order of the data-refs in DDR was reversed (to make distance vector positive), and the actual distance is negative. */ if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "dependence distance negative.\n"); /* Record a negative dependence distance to later limit the amount of stmt copying / unrolling we can perform. Only need to handle read-after-write dependence. */ if (DR_IS_READ (drb) && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0 || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist)) STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist; continue; } unsigned int abs_dist = abs (dist); if (abs_dist >= 2 && abs_dist < *max_vf) { /* The dependence distance requires reduction of the maximal vectorization factor. */ *max_vf = abs (dist); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "adjusting maximal vectorization factor to %i\n", *max_vf); } if (abs_dist >= *max_vf) { /* Dependence distance does not create dependence, as far as vectorization is concerned, in this case. */ if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "dependence distance >= VF.\n"); continue; } if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized, possible dependence " "between data-refs "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra)); dump_printf (MSG_NOTE, " and "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb)); dump_printf (MSG_NOTE, "\n"); } return true; } return false; } /* Function vect_analyze_data_ref_dependences. Examine all the data references in the loop, and make sure there do not exist any data dependences between them. Set *MAX_VF according to the maximum vectorization factor the data dependences allow. */ bool vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo, unsigned int *max_vf) { unsigned int i; struct data_dependence_relation *ddr; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "=== vect_analyze_data_ref_dependences ===\n"); LOOP_VINFO_DDRS (loop_vinfo) .create (LOOP_VINFO_DATAREFS (loop_vinfo).length () * LOOP_VINFO_DATAREFS (loop_vinfo).length ()); LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true; /* We need read-read dependences to compute STMT_VINFO_SAME_ALIGN_REFS. */ if (!compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo), &LOOP_VINFO_DDRS (loop_vinfo), LOOP_VINFO_LOOP_NEST (loop_vinfo), true)) return false; /* For epilogues we either have no aliases or alias versioning was applied to original loop. Therefore we may just get max_vf using VF of original loop. */ if (LOOP_VINFO_EPILOGUE_P (loop_vinfo)) *max_vf = LOOP_VINFO_ORIG_MAX_VECT_FACTOR (loop_vinfo); else FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr) if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf)) return false; return true; } /* Function vect_slp_analyze_data_ref_dependence. Return TRUE if there (might) exist a dependence between a memory-reference DRA and a memory-reference DRB. When versioning for alias may check a dependence at run-time, return FALSE. Adjust *MAX_VF according to the data dependence. */ static bool vect_slp_analyze_data_ref_dependence (struct data_dependence_relation *ddr) { struct data_reference *dra = DDR_A (ddr); struct data_reference *drb = DDR_B (ddr); /* We need to check dependences of statements marked as unvectorizable as well, they still can prohibit vectorization. */ /* Independent data accesses. */ if (DDR_ARE_DEPENDENT (ddr) == chrec_known) return false; if (dra == drb) return false; /* Read-read is OK. */ if (DR_IS_READ (dra) && DR_IS_READ (drb)) return false; /* If dra and drb are part of the same interleaving chain consider them independent. */ if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (DR_STMT (dra))) && (GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dra))) == GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (drb))))) return false; /* Unknown data dependence. */ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "can't determine dependence between "); dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra)); dump_printf (MSG_MISSED_OPTIMIZATION, " and "); dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb)); dump_printf (MSG_MISSED_OPTIMIZATION, "\n"); } } else if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "determined dependence between "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra)); dump_printf (MSG_NOTE, " and "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb)); dump_printf (MSG_NOTE, "\n"); } return true; } /* Analyze dependences involved in the transform of SLP NODE. STORES contain the vector of scalar stores of this instance if we are disambiguating the loads. */ static bool vect_slp_analyze_node_dependences (slp_instance instance, slp_tree node, vec stores, gimple *last_store) { /* This walks over all stmts involved in the SLP load/store done in NODE verifying we can sink them up to the last stmt in the group. */ gimple *last_access = vect_find_last_scalar_stmt_in_slp (node); for (unsigned k = 0; k < SLP_INSTANCE_GROUP_SIZE (instance); ++k) { gimple *access = SLP_TREE_SCALAR_STMTS (node)[k]; if (access == last_access) continue; data_reference *dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (access)); for (gimple_stmt_iterator gsi = gsi_for_stmt (access); gsi_stmt (gsi) != last_access; gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); if (! gimple_vuse (stmt) || (DR_IS_READ (dr_a) && ! gimple_vdef (stmt))) continue; /* If we couldn't record a (single) data reference for this stmt we have to give up. */ /* ??? Here and below if dependence analysis fails we can resort to the alias oracle which can handle more kinds of stmts. */ data_reference *dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)); if (!dr_b) return false; bool dependent = false; /* If we run into a store of this same instance (we've just marked those) then delay dependence checking until we run into the last store because this is where it will have been sunk to (and we verify if we can do that as well). */ if (gimple_visited_p (stmt)) { if (stmt != last_store) continue; unsigned i; gimple *store; FOR_EACH_VEC_ELT (stores, i, store) { data_reference *store_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (store)); ddr_p ddr = initialize_data_dependence_relation (dr_a, store_dr, vNULL); dependent = vect_slp_analyze_data_ref_dependence (ddr); free_dependence_relation (ddr); if (dependent) break; } } else { ddr_p ddr = initialize_data_dependence_relation (dr_a, dr_b, vNULL); dependent = vect_slp_analyze_data_ref_dependence (ddr); free_dependence_relation (ddr); } if (dependent) return false; } } return true; } /* Function vect_analyze_data_ref_dependences. Examine all the data references in the basic-block, and make sure there do not exist any data dependences between them. Set *MAX_VF according to the maximum vectorization factor the data dependences allow. */ bool vect_slp_analyze_instance_dependence (slp_instance instance) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "=== vect_slp_analyze_instance_dependence ===\n"); /* The stores of this instance are at the root of the SLP tree. */ slp_tree store = SLP_INSTANCE_TREE (instance); if (! STMT_VINFO_DATA_REF (vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (store)[0]))) store = NULL; /* Verify we can sink stores to the vectorized stmt insert location. */ gimple *last_store = NULL; if (store) { if (! vect_slp_analyze_node_dependences (instance, store, vNULL, NULL)) return false; /* Mark stores in this instance and remember the last one. */ last_store = vect_find_last_scalar_stmt_in_slp (store); for (unsigned k = 0; k < SLP_INSTANCE_GROUP_SIZE (instance); ++k) gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k], true); } bool res = true; /* Verify we can sink loads to the vectorized stmt insert location, special-casing stores of this instance. */ slp_tree load; unsigned int i; FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, load) if (! vect_slp_analyze_node_dependences (instance, load, store ? SLP_TREE_SCALAR_STMTS (store) : vNULL, last_store)) { res = false; break; } /* Unset the visited flag. */ if (store) for (unsigned k = 0; k < SLP_INSTANCE_GROUP_SIZE (instance); ++k) gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k], false); return res; } /* Record in VINFO the base alignment guarantee given by DRB. STMT is the statement that contains DRB, which is useful for recording in the dump file. */ static void vect_record_base_alignment (vec_info *vinfo, gimple *stmt, innermost_loop_behavior *drb) { bool existed; innermost_loop_behavior *&entry = vinfo->base_alignments.get_or_insert (drb->base_address, &existed); if (!existed || entry->base_alignment < drb->base_alignment) { entry = drb; if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "recording new base alignment for "); dump_generic_expr (MSG_NOTE, TDF_SLIM, drb->base_address); dump_printf (MSG_NOTE, "\n"); dump_printf_loc (MSG_NOTE, vect_location, " alignment: %d\n", drb->base_alignment); dump_printf_loc (MSG_NOTE, vect_location, " misalignment: %d\n", drb->base_misalignment); dump_printf_loc (MSG_NOTE, vect_location, " based on: "); dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0); } } } /* If the region we're going to vectorize is reached, all unconditional data references occur at least once. We can therefore pool the base alignment guarantees from each unconditional reference. Do this by going through all the data references in VINFO and checking whether the containing statement makes the reference unconditionally. If so, record the alignment of the base address in VINFO so that it can be used for all other references with the same base. */ void vect_record_base_alignments (vec_info *vinfo) { loop_vec_info loop_vinfo = dyn_cast (vinfo); struct loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL; data_reference *dr; unsigned int i; FOR_EACH_VEC_ELT (vinfo->datarefs, i, dr) if (!DR_IS_CONDITIONAL_IN_STMT (dr)) { gimple *stmt = DR_STMT (dr); vect_record_base_alignment (vinfo, stmt, &DR_INNERMOST (dr)); /* If DR is nested in the loop that is being vectorized, we can also record the alignment of the base wrt the outer loop. */ if (loop && nested_in_vect_loop_p (loop, stmt)) { stmt_vec_info stmt_info = vinfo_for_stmt (stmt); vect_record_base_alignment (vinfo, stmt, &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info)); } } } /* Return the target alignment for the vectorized form of DR. */ static unsigned int vect_calculate_target_alignment (struct data_reference *dr) { gimple *stmt = DR_STMT (dr); stmt_vec_info stmt_info = vinfo_for_stmt (stmt); tree vectype = STMT_VINFO_VECTYPE (stmt_info); return targetm.vectorize.preferred_vector_alignment (vectype); } /* Function vect_compute_data_ref_alignment Compute the misalignment of the data reference DR. Output: 1. If during the misalignment computation it is found that the data reference cannot be vectorized then false is returned. 2. DR_MISALIGNMENT (DR) is defined. FOR NOW: No analysis is actually performed. Misalignment is calculated only for trivial cases. TODO. */ bool vect_compute_data_ref_alignment (struct data_reference *dr) { gimple *stmt = DR_STMT (dr); stmt_vec_info stmt_info = vinfo_for_stmt (stmt); vec_base_alignments *base_alignments = &stmt_info->vinfo->base_alignments; loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); struct loop *loop = NULL; tree ref = DR_REF (dr); tree vectype = STMT_VINFO_VECTYPE (stmt_info); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_compute_data_ref_alignment:\n"); if (loop_vinfo) loop = LOOP_VINFO_LOOP (loop_vinfo); /* Initialize misalignment to unknown. */ SET_DR_MISALIGNMENT (dr, DR_MISALIGNMENT_UNKNOWN); innermost_loop_behavior *drb = vect_dr_behavior (dr); bool step_preserves_misalignment_p; unsigned HOST_WIDE_INT vector_alignment = vect_calculate_target_alignment (dr) / BITS_PER_UNIT; DR_TARGET_ALIGNMENT (dr) = vector_alignment; /* No step for BB vectorization. */ if (!loop) { gcc_assert (integer_zerop (drb->step)); step_preserves_misalignment_p = true; } /* In case the dataref is in an inner-loop of the loop that is being vectorized (LOOP), we use the base and misalignment information relative to the outer-loop (LOOP). This is ok only if the misalignment stays the same throughout the execution of the inner-loop, which is why we have to check that the stride of the dataref in the inner-loop evenly divides by the vector alignment. */ else if (nested_in_vect_loop_p (loop, stmt)) { step_preserves_misalignment_p = (DR_STEP_ALIGNMENT (dr) % vector_alignment) == 0; if (dump_enabled_p ()) { if (step_preserves_misalignment_p) dump_printf_loc (MSG_NOTE, vect_location, "inner step divides the vector alignment.\n"); else dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "inner step doesn't divide the vector" " alignment.\n"); } } /* Similarly we can only use base and misalignment information relative to an innermost loop if the misalignment stays the same throughout the execution of the loop. As above, this is the case if the stride of the dataref evenly divides by the alignment. */ else { poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo); step_preserves_misalignment_p = multiple_p (DR_STEP_ALIGNMENT (dr) * vf, vector_alignment); if (!step_preserves_misalignment_p && dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "step doesn't divide the vector alignment.\n"); } unsigned int base_alignment = drb->base_alignment; unsigned int base_misalignment = drb->base_misalignment; /* Calculate the maximum of the pooled base address alignment and the alignment that we can compute for DR itself. */ innermost_loop_behavior **entry = base_alignments->get (drb->base_address); if (entry && base_alignment < (*entry)->base_alignment) { base_alignment = (*entry)->base_alignment; base_misalignment = (*entry)->base_misalignment; } if (drb->offset_alignment < vector_alignment || !step_preserves_misalignment_p /* We need to know whether the step wrt the vectorized loop is negative when computing the starting misalignment below. */ || TREE_CODE (drb->step) != INTEGER_CST) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Unknown alignment for access: "); dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref); dump_printf (MSG_MISSED_OPTIMIZATION, "\n"); } return true; } if (base_alignment < vector_alignment) { unsigned int max_alignment; tree base = get_base_for_alignment (drb->base_address, &max_alignment); if (max_alignment < vector_alignment || !vect_can_force_dr_alignment_p (base, vector_alignment * BITS_PER_UNIT)) { if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "can't force alignment of ref: "); dump_generic_expr (MSG_NOTE, TDF_SLIM, ref); dump_printf (MSG_NOTE, "\n"); } return true; } /* Force the alignment of the decl. NOTE: This is the only change to the code we make during the analysis phase, before deciding to vectorize the loop. */ if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "force alignment of "); dump_generic_expr (MSG_NOTE, TDF_SLIM, ref); dump_printf (MSG_NOTE, "\n"); } DR_VECT_AUX (dr)->base_decl = base; DR_VECT_AUX (dr)->base_misaligned = true; base_misalignment = 0; } poly_int64 misalignment = base_misalignment + wi::to_poly_offset (drb->init).force_shwi (); /* If this is a backward running DR then first access in the larger vectype actually is N-1 elements before the address in the DR. Adjust misalign accordingly. */ if (tree_int_cst_sgn (drb->step) < 0) /* PLUS because STEP is negative. */ misalignment += ((TYPE_VECTOR_SUBPARTS (vectype) - 1) * TREE_INT_CST_LOW (drb->step)); unsigned int const_misalignment; if (!known_misalignment (misalignment, vector_alignment, &const_misalignment)) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Non-constant misalignment for access: "); dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref); dump_printf (MSG_MISSED_OPTIMIZATION, "\n"); } return true; } SET_DR_MISALIGNMENT (dr, const_misalignment); if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr)); dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref); dump_printf (MSG_MISSED_OPTIMIZATION, "\n"); } return true; } /* Function vect_update_misalignment_for_peel. Sets DR's misalignment - to 0 if it has the same alignment as DR_PEEL, - to the misalignment computed using NPEEL if DR's salignment is known, - to -1 (unknown) otherwise. DR - the data reference whose misalignment is to be adjusted. DR_PEEL - the data reference whose misalignment is being made zero in the vector loop by the peel. NPEEL - the number of iterations in the peel loop if the misalignment of DR_PEEL is known at compile time. */ static void vect_update_misalignment_for_peel (struct data_reference *dr, struct data_reference *dr_peel, int npeel) { unsigned int i; vec same_aligned_drs; struct data_reference *current_dr; int dr_size = vect_get_scalar_dr_size (dr); int dr_peel_size = vect_get_scalar_dr_size (dr_peel); stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr)); stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel)); /* For interleaved data accesses the step in the loop must be multiplied by the size of the interleaving group. */ if (STMT_VINFO_GROUPED_ACCESS (stmt_info)) dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info))); if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info)) dr_peel_size *= GROUP_SIZE (peel_stmt_info); /* It can be assumed that the data refs with the same alignment as dr_peel are aligned in the vector loop. */ same_aligned_drs = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel))); FOR_EACH_VEC_ELT (same_aligned_drs, i, current_dr) { if (current_dr != dr) continue; gcc_assert (!known_alignment_for_access_p (dr) || !known_alignment_for_access_p (dr_peel) || (DR_MISALIGNMENT (dr) / dr_size == DR_MISALIGNMENT (dr_peel) / dr_peel_size)); SET_DR_MISALIGNMENT (dr, 0); return; } if (known_alignment_for_access_p (dr) && known_alignment_for_access_p (dr_peel)) { bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0; int misal = DR_MISALIGNMENT (dr); misal += negative ? -npeel * dr_size : npeel * dr_size; misal &= DR_TARGET_ALIGNMENT (dr) - 1; SET_DR_MISALIGNMENT (dr, misal); return; } if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment " \ "to unknown (-1).\n"); SET_DR_MISALIGNMENT (dr, DR_MISALIGNMENT_UNKNOWN); } /* Function verify_data_ref_alignment Return TRUE if DR can be handled with respect to alignment. */ static bool verify_data_ref_alignment (data_reference_p dr) { enum dr_alignment_support supportable_dr_alignment = vect_supportable_dr_alignment (dr, false); if (!supportable_dr_alignment) { if (dump_enabled_p ()) { if (DR_IS_READ (dr)) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: unsupported unaligned load."); else dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: unsupported unaligned " "store."); dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dr)); dump_printf (MSG_MISSED_OPTIMIZATION, "\n"); } return false; } if (supportable_dr_alignment != dr_aligned && dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "Vectorizing an unaligned access.\n"); return true; } /* Function vect_verify_datarefs_alignment Return TRUE if all data references in the loop can be handled with respect to alignment. */ bool vect_verify_datarefs_alignment (loop_vec_info vinfo) { vec datarefs = vinfo->datarefs; struct data_reference *dr; unsigned int i; FOR_EACH_VEC_ELT (datarefs, i, dr) { gimple *stmt = DR_STMT (dr); stmt_vec_info stmt_info = vinfo_for_stmt (stmt); if (!STMT_VINFO_RELEVANT_P (stmt_info)) continue; /* For interleaving, only the alignment of the first access matters. */ if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && GROUP_FIRST_ELEMENT (stmt_info) != stmt) continue; /* Strided accesses perform only component accesses, alignment is irrelevant for them. */ if (STMT_VINFO_STRIDED_P (stmt_info) && !STMT_VINFO_GROUPED_ACCESS (stmt_info)) continue; if (! verify_data_ref_alignment (dr)) return false; } return true; } /* Given an memory reference EXP return whether its alignment is less than its size. */ static bool not_size_aligned (tree exp) { if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp)))) return true; return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp))) > get_object_alignment (exp)); } /* Function vector_alignment_reachable_p Return true if vector alignment for DR is reachable by peeling a few loop iterations. Return false otherwise. */ static bool vector_alignment_reachable_p (struct data_reference *dr) { gimple *stmt = DR_STMT (dr); stmt_vec_info stmt_info = vinfo_for_stmt (stmt); tree vectype = STMT_VINFO_VECTYPE (stmt_info); if (STMT_VINFO_GROUPED_ACCESS (stmt_info)) { /* For interleaved access we peel only if number of iterations in the prolog loop ({VF - misalignment}), is a multiple of the number of the interleaved accesses. */ int elem_size, mis_in_elements; /* FORNOW: handle only known alignment. */ if (!known_alignment_for_access_p (dr)) return false; poly_uint64 nelements = TYPE_VECTOR_SUBPARTS (vectype); poly_uint64 vector_size = GET_MODE_SIZE (TYPE_MODE (vectype)); elem_size = vector_element_size (vector_size, nelements); mis_in_elements = DR_MISALIGNMENT (dr) / elem_size; if (!multiple_p (nelements - mis_in_elements, GROUP_SIZE (stmt_info))) return false; } /* If misalignment is known at the compile time then allow peeling only if natural alignment is reachable through peeling. */ if (known_alignment_for_access_p (dr) && !aligned_access_p (dr)) { HOST_WIDE_INT elmsize = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype))); if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize); dump_printf (MSG_NOTE, ". misalignment = %d.\n", DR_MISALIGNMENT (dr)); } if (DR_MISALIGNMENT (dr) % elmsize) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "data size does not divide the misalignment.\n"); return false; } } if (!known_alignment_for_access_p (dr)) { tree type = TREE_TYPE (DR_REF (dr)); bool is_packed = not_size_aligned (DR_REF (dr)); if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Unknown misalignment, %snaturally aligned\n", is_packed ? "not " : ""); return targetm.vectorize.vector_alignment_reachable (type, is_packed); } return true; } /* Calculate the cost of the memory access represented by DR. */ static void vect_get_data_access_cost (struct data_reference *dr, unsigned int *inside_cost, unsigned int *outside_cost, stmt_vector_for_cost *body_cost_vec) { gimple *stmt = DR_STMT (dr); stmt_vec_info stmt_info = vinfo_for_stmt (stmt); loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); int ncopies; if (PURE_SLP_STMT (stmt_info)) ncopies = 1; else ncopies = vect_get_num_copies (loop_vinfo, STMT_VINFO_VECTYPE (stmt_info)); if (DR_IS_READ (dr)) vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost, NULL, body_cost_vec, false); else vect_get_store_cost (dr, ncopies, inside_cost, body_cost_vec); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "vect_get_data_access_cost: inside_cost = %d, " "outside_cost = %d.\n", *inside_cost, *outside_cost); } typedef struct _vect_peel_info { struct data_reference *dr; int npeel; unsigned int count; } *vect_peel_info; typedef struct _vect_peel_extended_info { struct _vect_peel_info peel_info; unsigned int inside_cost; unsigned int outside_cost; } *vect_peel_extended_info; /* Peeling hashtable helpers. */ struct peel_info_hasher : free_ptr_hash <_vect_peel_info> { static inline hashval_t hash (const _vect_peel_info *); static inline bool equal (const _vect_peel_info *, const _vect_peel_info *); }; inline hashval_t peel_info_hasher::hash (const _vect_peel_info *peel_info) { return (hashval_t) peel_info->npeel; } inline bool peel_info_hasher::equal (const _vect_peel_info *a, const _vect_peel_info *b) { return (a->npeel == b->npeel); } /* Insert DR into peeling hash table with NPEEL as key. */ static void vect_peeling_hash_insert (hash_table *peeling_htab, loop_vec_info loop_vinfo, struct data_reference *dr, int npeel) { struct _vect_peel_info elem, *slot; _vect_peel_info **new_slot; bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true); elem.npeel = npeel; slot = peeling_htab->find (&elem); if (slot) slot->count++; else { slot = XNEW (struct _vect_peel_info); slot->npeel = npeel; slot->dr = dr; slot->count = 1; new_slot = peeling_htab->find_slot (slot, INSERT); *new_slot = slot; } if (!supportable_dr_alignment && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo))) slot->count += VECT_MAX_COST; } /* Traverse peeling hash table to find peeling option that aligns maximum number of data accesses. */ int vect_peeling_hash_get_most_frequent (_vect_peel_info **slot, _vect_peel_extended_info *max) { vect_peel_info elem = *slot; if (elem->count > max->peel_info.count || (elem->count == max->peel_info.count && max->peel_info.npeel > elem->npeel)) { max->peel_info.npeel = elem->npeel; max->peel_info.count = elem->count; max->peel_info.dr = elem->dr; } return 1; } /* Get the costs of peeling NPEEL iterations checking data access costs for all data refs. If UNKNOWN_MISALIGNMENT is true, we assume DR0's misalignment will be zero after peeling. */ static void vect_get_peeling_costs_all_drs (vec datarefs, struct data_reference *dr0, unsigned int *inside_cost, unsigned int *outside_cost, stmt_vector_for_cost *body_cost_vec, unsigned int npeel, bool unknown_misalignment) { unsigned i; data_reference *dr; FOR_EACH_VEC_ELT (datarefs, i, dr) { gimple *stmt = DR_STMT (dr); stmt_vec_info stmt_info = vinfo_for_stmt (stmt); if (!STMT_VINFO_RELEVANT_P (stmt_info)) continue; /* For interleaving, only the alignment of the first access matters. */ if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && GROUP_FIRST_ELEMENT (stmt_info) != stmt) continue; /* Strided accesses perform only component accesses, alignment is irrelevant for them. */ if (STMT_VINFO_STRIDED_P (stmt_info) && !STMT_VINFO_GROUPED_ACCESS (stmt_info)) continue; int save_misalignment; save_misalignment = DR_MISALIGNMENT (dr); if (npeel == 0) ; else if (unknown_misalignment && dr == dr0) SET_DR_MISALIGNMENT (dr, 0); else vect_update_misalignment_for_peel (dr, dr0, npeel); vect_get_data_access_cost (dr, inside_cost, outside_cost, body_cost_vec); SET_DR_MISALIGNMENT (dr, save_misalignment); } } /* Traverse peeling hash table and calculate cost for each peeling option. Find the one with the lowest cost. */ int vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot, _vect_peel_extended_info *min) { vect_peel_info elem = *slot; int dummy; unsigned int inside_cost = 0, outside_cost = 0; gimple *stmt = DR_STMT (elem->dr); stmt_vec_info stmt_info = vinfo_for_stmt (stmt); loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); stmt_vector_for_cost prologue_cost_vec, body_cost_vec, epilogue_cost_vec; prologue_cost_vec.create (2); body_cost_vec.create (2); epilogue_cost_vec.create (2); vect_get_peeling_costs_all_drs (LOOP_VINFO_DATAREFS (loop_vinfo), elem->dr, &inside_cost, &outside_cost, &body_cost_vec, elem->npeel, false); body_cost_vec.release (); outside_cost += vect_get_known_peeling_cost (loop_vinfo, elem->npeel, &dummy, &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), &prologue_cost_vec, &epilogue_cost_vec); /* Prologue and epilogue costs are added to the target model later. These costs depend only on the scalar iteration cost, the number of peeling iterations finally chosen, and the number of misaligned statements. So discard the information found here. */ prologue_cost_vec.release (); epilogue_cost_vec.release (); if (inside_cost < min->inside_cost || (inside_cost == min->inside_cost && outside_cost < min->outside_cost)) { min->inside_cost = inside_cost; min->outside_cost = outside_cost; min->peel_info.dr = elem->dr; min->peel_info.npeel = elem->npeel; min->peel_info.count = elem->count; } return 1; } /* Choose best peeling option by traversing peeling hash table and either choosing an option with the lowest cost (if cost model is enabled) or the option that aligns as many accesses as possible. */ static struct _vect_peel_extended_info vect_peeling_hash_choose_best_peeling (hash_table *peeling_htab, loop_vec_info loop_vinfo) { struct _vect_peel_extended_info res; res.peel_info.dr = NULL; if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo))) { res.inside_cost = INT_MAX; res.outside_cost = INT_MAX; peeling_htab->traverse <_vect_peel_extended_info *, vect_peeling_hash_get_lowest_cost> (&res); } else { res.peel_info.count = 0; peeling_htab->traverse <_vect_peel_extended_info *, vect_peeling_hash_get_most_frequent> (&res); res.inside_cost = 0; res.outside_cost = 0; } return res; } /* Return true if the new peeling NPEEL is supported. */ static bool vect_peeling_supportable (loop_vec_info loop_vinfo, struct data_reference *dr0, unsigned npeel) { unsigned i; struct data_reference *dr = NULL; vec datarefs = LOOP_VINFO_DATAREFS (loop_vinfo); gimple *stmt; stmt_vec_info stmt_info; enum dr_alignment_support supportable_dr_alignment; /* Ensure that all data refs can be vectorized after the peel. */ FOR_EACH_VEC_ELT (datarefs, i, dr) { int save_misalignment; if (dr == dr0) continue; stmt = DR_STMT (dr); stmt_info = vinfo_for_stmt (stmt); /* For interleaving, only the alignment of the first access matters. */ if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && GROUP_FIRST_ELEMENT (stmt_info) != stmt) continue; /* Strided accesses perform only component accesses, alignment is irrelevant for them. */ if (STMT_VINFO_STRIDED_P (stmt_info) && !STMT_VINFO_GROUPED_ACCESS (stmt_info)) continue; save_misalignment = DR_MISALIGNMENT (dr); vect_update_misalignment_for_peel (dr, dr0, npeel); supportable_dr_alignment = vect_supportable_dr_alignment (dr, false); SET_DR_MISALIGNMENT (dr, save_misalignment); if (!supportable_dr_alignment) return false; } return true; } /* Function vect_enhance_data_refs_alignment This pass will use loop versioning and loop peeling in order to enhance the alignment of data references in the loop. FOR NOW: we assume that whatever versioning/peeling takes place, only the original loop is to be vectorized. Any other loops that are created by the transformations performed in this pass - are not supposed to be vectorized. This restriction will be relaxed. This pass will require a cost model to guide it whether to apply peeling or versioning or a combination of the two. For example, the scheme that intel uses when given a loop with several memory accesses, is as follows: choose one memory access ('p') which alignment you want to force by doing peeling. Then, either (1) generate a loop in which 'p' is aligned and all other accesses are not necessarily aligned, or (2) use loop versioning to generate one loop in which all accesses are aligned, and another loop in which only 'p' is necessarily aligned. ("Automatic Intra-Register Vectorization for the Intel Architecture", Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International Journal of Parallel Programming, Vol. 30, No. 2, April 2002.) Devising a cost model is the most critical aspect of this work. It will guide us on which access to peel for, whether to use loop versioning, how many versions to create, etc. The cost model will probably consist of generic considerations as well as target specific considerations (on powerpc for example, misaligned stores are more painful than misaligned loads). Here are the general steps involved in alignment enhancements: -- original loop, before alignment analysis: for (i=0; i datarefs = LOOP_VINFO_DATAREFS (loop_vinfo); struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); enum dr_alignment_support supportable_dr_alignment; struct data_reference *dr0 = NULL, *first_store = NULL; struct data_reference *dr; unsigned int i, j; bool do_peeling = false; bool do_versioning = false; bool stat; gimple *stmt; stmt_vec_info stmt_info; unsigned int npeel = 0; bool one_misalignment_known = false; bool one_misalignment_unknown = false; bool one_dr_unsupportable = false; struct data_reference *unsupportable_dr = NULL; poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo); unsigned possible_npeel_number = 1; tree vectype; unsigned int mis, same_align_drs_max = 0; hash_table peeling_htab (1); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "=== vect_enhance_data_refs_alignment ===\n"); /* Reset data so we can safely be called multiple times. */ LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0); LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = 0; /* While cost model enhancements are expected in the future, the high level view of the code at this time is as follows: A) If there is a misaligned access then see if peeling to align this access can make all data references satisfy vect_supportable_dr_alignment. If so, update data structures as needed and return true. B) If peeling wasn't possible and there is a data reference with an unknown misalignment that does not satisfy vect_supportable_dr_alignment then see if loop versioning checks can be used to make all data references satisfy vect_supportable_dr_alignment. If so, update data structures as needed and return true. C) If neither peeling nor versioning were successful then return false if any data reference does not satisfy vect_supportable_dr_alignment. D) Return true (all data references satisfy vect_supportable_dr_alignment). Note, Possibility 3 above (which is peeling and versioning together) is not being done at this time. */ /* (1) Peeling to force alignment. */ /* (1.1) Decide whether to perform peeling, and how many iterations to peel: Considerations: + How many accesses will become aligned due to the peeling - How many accesses will become unaligned due to the peeling, and the cost of misaligned accesses. - The cost of peeling (the extra runtime checks, the increase in code size). */ FOR_EACH_VEC_ELT (datarefs, i, dr) { stmt = DR_STMT (dr); stmt_info = vinfo_for_stmt (stmt); if (!STMT_VINFO_RELEVANT_P (stmt_info)) continue; /* For interleaving, only the alignment of the first access matters. */ if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && GROUP_FIRST_ELEMENT (stmt_info) != stmt) continue; /* For invariant accesses there is nothing to enhance. */ if (integer_zerop (DR_STEP (dr))) continue; /* Strided accesses perform only component accesses, alignment is irrelevant for them. */ if (STMT_VINFO_STRIDED_P (stmt_info) && !STMT_VINFO_GROUPED_ACCESS (stmt_info)) continue; supportable_dr_alignment = vect_supportable_dr_alignment (dr, true); do_peeling = vector_alignment_reachable_p (dr); if (do_peeling) { if (known_alignment_for_access_p (dr)) { unsigned int npeel_tmp = 0; bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0; vectype = STMT_VINFO_VECTYPE (stmt_info); unsigned int target_align = DR_TARGET_ALIGNMENT (dr); unsigned int dr_size = vect_get_scalar_dr_size (dr); mis = (negative ? DR_MISALIGNMENT (dr) : -DR_MISALIGNMENT (dr)); if (DR_MISALIGNMENT (dr) != 0) npeel_tmp = (mis & (target_align - 1)) / dr_size; /* For multiple types, it is possible that the bigger type access will have more than one peeling option. E.g., a loop with two types: one of size (vector size / 4), and the other one of size (vector size / 8). Vectorization factor will 8. If both accesses are misaligned by 3, the first one needs one scalar iteration to be aligned, and the second one needs 5. But the first one will be aligned also by peeling 5 scalar iterations, and in that case both accesses will be aligned. Hence, except for the immediate peeling amount, we also want to try to add full vector size, while we don't exceed vectorization factor. We do this automatically for cost model, since we calculate cost for every peeling option. */ if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo))) { poly_uint64 nscalars = (STMT_SLP_TYPE (stmt_info) ? vf * GROUP_SIZE (stmt_info) : vf); possible_npeel_number = vect_get_num_vectors (nscalars, vectype); /* NPEEL_TMP is 0 when there is no misalignment, but also allow peeling NELEMENTS. */ if (DR_MISALIGNMENT (dr) == 0) possible_npeel_number++; } /* Save info about DR in the hash table. Also include peeling amounts according to the explanation above. */ for (j = 0; j < possible_npeel_number; j++) { vect_peeling_hash_insert (&peeling_htab, loop_vinfo, dr, npeel_tmp); npeel_tmp += target_align / dr_size; } one_misalignment_known = true; } else { /* If we don't know any misalignment values, we prefer peeling for data-ref that has the maximum number of data-refs with the same alignment, unless the target prefers to align stores over load. */ unsigned same_align_drs = STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length (); if (!dr0 || same_align_drs_max < same_align_drs) { same_align_drs_max = same_align_drs; dr0 = dr; } /* For data-refs with the same number of related accesses prefer the one where the misalign computation will be invariant in the outermost loop. */ else if (same_align_drs_max == same_align_drs) { struct loop *ivloop0, *ivloop; ivloop0 = outermost_invariant_loop_for_expr (loop, DR_BASE_ADDRESS (dr0)); ivloop = outermost_invariant_loop_for_expr (loop, DR_BASE_ADDRESS (dr)); if ((ivloop && !ivloop0) || (ivloop && ivloop0 && flow_loop_nested_p (ivloop, ivloop0))) dr0 = dr; } one_misalignment_unknown = true; /* Check for data refs with unsupportable alignment that can be peeled. */ if (!supportable_dr_alignment) { one_dr_unsupportable = true; unsupportable_dr = dr; } if (!first_store && DR_IS_WRITE (dr)) first_store = dr; } } else { if (!aligned_access_p (dr)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "vector alignment may not be reachable\n"); break; } } } /* Check if we can possibly peel the loop. */ if (!vect_can_advance_ivs_p (loop_vinfo) || !slpeel_can_duplicate_loop_p (loop, single_exit (loop)) || loop->inner) do_peeling = false; struct _vect_peel_extended_info peel_for_known_alignment; struct _vect_peel_extended_info peel_for_unknown_alignment; struct _vect_peel_extended_info best_peel; peel_for_unknown_alignment.inside_cost = INT_MAX; peel_for_unknown_alignment.outside_cost = INT_MAX; peel_for_unknown_alignment.peel_info.count = 0; if (do_peeling && one_misalignment_unknown) { /* Check if the target requires to prefer stores over loads, i.e., if misaligned stores are more expensive than misaligned loads (taking drs with same alignment into account). */ unsigned int load_inside_cost = 0; unsigned int load_outside_cost = 0; unsigned int store_inside_cost = 0; unsigned int store_outside_cost = 0; unsigned int estimated_npeels = vect_vf_for_cost (loop_vinfo) / 2; stmt_vector_for_cost dummy; dummy.create (2); vect_get_peeling_costs_all_drs (datarefs, dr0, &load_inside_cost, &load_outside_cost, &dummy, estimated_npeels, true); dummy.release (); if (first_store) { dummy.create (2); vect_get_peeling_costs_all_drs (datarefs, first_store, &store_inside_cost, &store_outside_cost, &dummy, estimated_npeels, true); dummy.release (); } else { store_inside_cost = INT_MAX; store_outside_cost = INT_MAX; } if (load_inside_cost > store_inside_cost || (load_inside_cost == store_inside_cost && load_outside_cost > store_outside_cost)) { dr0 = first_store; peel_for_unknown_alignment.inside_cost = store_inside_cost; peel_for_unknown_alignment.outside_cost = store_outside_cost; } else { peel_for_unknown_alignment.inside_cost = load_inside_cost; peel_for_unknown_alignment.outside_cost = load_outside_cost; } stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec; prologue_cost_vec.create (2); epilogue_cost_vec.create (2); int dummy2; peel_for_unknown_alignment.outside_cost += vect_get_known_peeling_cost (loop_vinfo, estimated_npeels, &dummy2, &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), &prologue_cost_vec, &epilogue_cost_vec); prologue_cost_vec.release (); epilogue_cost_vec.release (); peel_for_unknown_alignment.peel_info.count = 1 + STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr0))).length (); } peel_for_unknown_alignment.peel_info.npeel = 0; peel_for_unknown_alignment.peel_info.dr = dr0; best_peel = peel_for_unknown_alignment; peel_for_known_alignment.inside_cost = INT_MAX; peel_for_known_alignment.outside_cost = INT_MAX; peel_for_known_alignment.peel_info.count = 0; peel_for_known_alignment.peel_info.dr = NULL; if (do_peeling && one_misalignment_known) { /* Peeling is possible, but there is no data access that is not supported unless aligned. So we try to choose the best possible peeling from the hash table. */ peel_for_known_alignment = vect_peeling_hash_choose_best_peeling (&peeling_htab, loop_vinfo); } /* Compare costs of peeling for known and unknown alignment. */ if (peel_for_known_alignment.peel_info.dr != NULL && peel_for_unknown_alignment.inside_cost >= peel_for_known_alignment.inside_cost) { best_peel = peel_for_known_alignment; /* If the best peeling for known alignment has NPEEL == 0, perform no peeling at all except if there is an unsupportable dr that we can align. */ if (best_peel.peel_info.npeel == 0 && !one_dr_unsupportable) do_peeling = false; } /* If there is an unsupportable data ref, prefer this over all choices so far since we'd have to discard a chosen peeling except when it accidentally aligned the unsupportable data ref. */ if (one_dr_unsupportable) dr0 = unsupportable_dr; else if (do_peeling) { /* Calculate the penalty for no peeling, i.e. leaving everything as-is. TODO: Use nopeel_outside_cost or get rid of it? */ unsigned nopeel_inside_cost = 0; unsigned nopeel_outside_cost = 0; stmt_vector_for_cost dummy; dummy.create (2); vect_get_peeling_costs_all_drs (datarefs, NULL, &nopeel_inside_cost, &nopeel_outside_cost, &dummy, 0, false); dummy.release (); /* Add epilogue costs. As we do not peel for alignment here, no prologue costs will be recorded. */ stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec; prologue_cost_vec.create (2); epilogue_cost_vec.create (2); int dummy2; nopeel_outside_cost += vect_get_known_peeling_cost (loop_vinfo, 0, &dummy2, &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), &prologue_cost_vec, &epilogue_cost_vec); prologue_cost_vec.release (); epilogue_cost_vec.release (); npeel = best_peel.peel_info.npeel; dr0 = best_peel.peel_info.dr; /* If no peeling is not more expensive than the best peeling we have so far, don't perform any peeling. */ if (nopeel_inside_cost <= best_peel.inside_cost) do_peeling = false; } if (do_peeling) { stmt = DR_STMT (dr0); stmt_info = vinfo_for_stmt (stmt); vectype = STMT_VINFO_VECTYPE (stmt_info); if (known_alignment_for_access_p (dr0)) { bool negative = tree_int_cst_compare (DR_STEP (dr0), size_zero_node) < 0; if (!npeel) { /* Since it's known at compile time, compute the number of iterations in the peeled loop (the peeling factor) for use in updating DR_MISALIGNMENT values. The peeling factor is the vectorization factor minus the misalignment as an element count. */ mis = negative ? DR_MISALIGNMENT (dr0) : -DR_MISALIGNMENT (dr0); unsigned int target_align = DR_TARGET_ALIGNMENT (dr0); npeel = ((mis & (target_align - 1)) / vect_get_scalar_dr_size (dr0)); } /* For interleaved data access every iteration accesses all the members of the group, therefore we divide the number of iterations by the group size. */ stmt_info = vinfo_for_stmt (DR_STMT (dr0)); if (STMT_VINFO_GROUPED_ACCESS (stmt_info)) npeel /= GROUP_SIZE (stmt_info); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "Try peeling by %d\n", npeel); } /* Ensure that all datarefs can be vectorized after the peel. */ if (!vect_peeling_supportable (loop_vinfo, dr0, npeel)) do_peeling = false; /* Check if all datarefs are supportable and log. */ if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0) { stat = vect_verify_datarefs_alignment (loop_vinfo); if (!stat) do_peeling = false; else return stat; } /* Cost model #1 - honor --param vect-max-peeling-for-alignment. */ if (do_peeling) { unsigned max_allowed_peel = PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT); if (max_allowed_peel != (unsigned)-1) { unsigned max_peel = npeel; if (max_peel == 0) { unsigned int target_align = DR_TARGET_ALIGNMENT (dr0); max_peel = target_align / vect_get_scalar_dr_size (dr0) - 1; } if (max_peel > max_allowed_peel) { do_peeling = false; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "Disable peeling, max peels reached: %d\n", max_peel); } } } /* Cost model #2 - if peeling may result in a remaining loop not iterating enough to be vectorized then do not peel. Since this is a cost heuristic rather than a correctness decision, use the most likely runtime value for variable vectorization factors. */ if (do_peeling && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)) { unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo); unsigned int max_peel = npeel == 0 ? assumed_vf - 1 : npeel; if ((unsigned HOST_WIDE_INT) LOOP_VINFO_INT_NITERS (loop_vinfo) < assumed_vf + max_peel) do_peeling = false; } if (do_peeling) { /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i. If the misalignment of DR_i is identical to that of dr0 then set DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i) by the peeling factor times the element size of DR_i (MOD the vectorization factor times the size). Otherwise, the misalignment of DR_i must be set to unknown. */ FOR_EACH_VEC_ELT (datarefs, i, dr) if (dr != dr0) { /* Strided accesses perform only component accesses, alignment is irrelevant for them. */ stmt_info = vinfo_for_stmt (DR_STMT (dr)); if (STMT_VINFO_STRIDED_P (stmt_info) && !STMT_VINFO_GROUPED_ACCESS (stmt_info)) continue; vect_update_misalignment_for_peel (dr, dr0, npeel); } LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0; if (npeel) LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel; else LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = DR_MISALIGNMENT (dr0); SET_DR_MISALIGNMENT (dr0, 0); if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "Alignment of access forced using peeling.\n"); dump_printf_loc (MSG_NOTE, vect_location, "Peeling for alignment will be applied.\n"); } /* The inside-loop cost will be accounted for in vectorizable_load and vectorizable_store correctly with adjusted alignments. Drop the body_cst_vec on the floor here. */ stat = vect_verify_datarefs_alignment (loop_vinfo); gcc_assert (stat); return stat; } } /* (2) Versioning to force alignment. */ /* Try versioning if: 1) optimize loop for speed 2) there is at least one unsupported misaligned data ref with an unknown misalignment, and 3) all misaligned data refs with a known misalignment are supported, and 4) the number of runtime alignment checks is within reason. */ do_versioning = optimize_loop_nest_for_speed_p (loop) && (!loop->inner); /* FORNOW */ if (do_versioning) { FOR_EACH_VEC_ELT (datarefs, i, dr) { stmt = DR_STMT (dr); stmt_info = vinfo_for_stmt (stmt); /* For interleaving, only the alignment of the first access matters. */ if (aligned_access_p (dr) || (STMT_VINFO_GROUPED_ACCESS (stmt_info) && GROUP_FIRST_ELEMENT (stmt_info) != stmt)) continue; if (STMT_VINFO_STRIDED_P (stmt_info)) { /* Strided loads perform only component accesses, alignment is irrelevant for them. */ if (!STMT_VINFO_GROUPED_ACCESS (stmt_info)) continue; do_versioning = false; break; } supportable_dr_alignment = vect_supportable_dr_alignment (dr, false); if (!supportable_dr_alignment) { gimple *stmt; int mask; tree vectype; if (known_alignment_for_access_p (dr) || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length () >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS)) { do_versioning = false; break; } stmt = DR_STMT (dr); vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt)); gcc_assert (vectype); /* At present we don't support versioning for alignment with variable VF, since there's no guarantee that the VF is a power of two. We could relax this if we added a way of enforcing a power-of-two size. */ unsigned HOST_WIDE_INT size; if (!GET_MODE_SIZE (TYPE_MODE (vectype)).is_constant (&size)) { do_versioning = false; break; } /* The rightmost bits of an aligned address must be zeros. Construct the mask needed for this test. For example, GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the mask must be 15 = 0xf. */ mask = size - 1; /* FORNOW: use the same mask to test all potentially unaligned references in the loop. The vectorizer currently supports a single vector size, see the reference to GET_MODE_NUNITS (TYPE_MODE (vectype)) where the vectorization factor is computed. */ gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo) || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask); LOOP_VINFO_PTR_MASK (loop_vinfo) = mask; LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push ( DR_STMT (dr)); } } /* Versioning requires at least one misaligned data reference. */ if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)) do_versioning = false; else if (!do_versioning) LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0); } if (do_versioning) { vec may_misalign_stmts = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo); gimple *stmt; /* It can now be assumed that the data references in the statements in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version of the loop being vectorized. */ FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt) { stmt_vec_info stmt_info = vinfo_for_stmt (stmt); dr = STMT_VINFO_DATA_REF (stmt_info); SET_DR_MISALIGNMENT (dr, 0); if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "Alignment of access forced using versioning.\n"); } if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "Versioning for alignment will be applied.\n"); /* Peeling and versioning can't be done together at this time. */ gcc_assert (! (do_peeling && do_versioning)); stat = vect_verify_datarefs_alignment (loop_vinfo); gcc_assert (stat); return stat; } /* This point is reached if neither peeling nor versioning is being done. */ gcc_assert (! (do_peeling || do_versioning)); stat = vect_verify_datarefs_alignment (loop_vinfo); return stat; } /* Function vect_find_same_alignment_drs. Update group and alignment relations according to the chosen vectorization factor. */ static void vect_find_same_alignment_drs (struct data_dependence_relation *ddr) { struct data_reference *dra = DDR_A (ddr); struct data_reference *drb = DDR_B (ddr); stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra)); stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb)); if (DDR_ARE_DEPENDENT (ddr) == chrec_known) return; if (dra == drb) return; if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0) || !operand_equal_p (DR_OFFSET (dra), DR_OFFSET (drb), 0) || !operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0)) return; /* Two references with distance zero have the same alignment. */ poly_offset_int diff = (wi::to_poly_offset (DR_INIT (dra)) - wi::to_poly_offset (DR_INIT (drb))); if (maybe_ne (diff, 0)) { /* Get the wider of the two alignments. */ unsigned int align_a = (vect_calculate_target_alignment (dra) / BITS_PER_UNIT); unsigned int align_b = (vect_calculate_target_alignment (drb) / BITS_PER_UNIT); unsigned int max_align = MAX (align_a, align_b); /* Require the gap to be a multiple of the larger vector alignment. */ if (!multiple_p (diff, max_align)) return; } STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb); STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra); if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "accesses have the same alignment: "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra)); dump_printf (MSG_NOTE, " and "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb)); dump_printf (MSG_NOTE, "\n"); } } /* Function vect_analyze_data_refs_alignment Analyze the alignment of the data-references in the loop. Return FALSE if a data reference is found that cannot be vectorized. */ bool vect_analyze_data_refs_alignment (loop_vec_info vinfo) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "=== vect_analyze_data_refs_alignment ===\n"); /* Mark groups of data references with same alignment using data dependence information. */ vec ddrs = vinfo->ddrs; struct data_dependence_relation *ddr; unsigned int i; FOR_EACH_VEC_ELT (ddrs, i, ddr) vect_find_same_alignment_drs (ddr); vec datarefs = vinfo->datarefs; struct data_reference *dr; vect_record_base_alignments (vinfo); FOR_EACH_VEC_ELT (datarefs, i, dr) { stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr)); if (STMT_VINFO_VECTORIZABLE (stmt_info) && !vect_compute_data_ref_alignment (dr)) { /* Strided accesses perform only component accesses, misalignment information is irrelevant for them. */ if (STMT_VINFO_STRIDED_P (stmt_info) && !STMT_VINFO_GROUPED_ACCESS (stmt_info)) continue; if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: can't calculate alignment " "for data ref.\n"); return false; } } return true; } /* Analyze alignment of DRs of stmts in NODE. */ static bool vect_slp_analyze_and_verify_node_alignment (slp_tree node) { /* We vectorize from the first scalar stmt in the node unless the node is permuted in which case we start from the first element in the group. */ gimple *first_stmt = SLP_TREE_SCALAR_STMTS (node)[0]; data_reference_p first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt)); if (SLP_TREE_LOAD_PERMUTATION (node).exists ()) first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (first_stmt)); data_reference_p dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt)); if (! vect_compute_data_ref_alignment (dr) /* For creating the data-ref pointer we need alignment of the first element anyway. */ || (dr != first_dr && ! vect_compute_data_ref_alignment (first_dr)) || ! verify_data_ref_alignment (dr)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: bad data alignment in basic " "block.\n"); return false; } return true; } /* Function vect_slp_analyze_instance_alignment Analyze the alignment of the data-references in the SLP instance. Return FALSE if a data reference is found that cannot be vectorized. */ bool vect_slp_analyze_and_verify_instance_alignment (slp_instance instance) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "=== vect_slp_analyze_and_verify_instance_alignment ===\n"); slp_tree node; unsigned i; FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, node) if (! vect_slp_analyze_and_verify_node_alignment (node)) return false; node = SLP_INSTANCE_TREE (instance); if (STMT_VINFO_DATA_REF (vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0])) && ! vect_slp_analyze_and_verify_node_alignment (SLP_INSTANCE_TREE (instance))) return false; return true; } /* Analyze groups of accesses: check that DR belongs to a group of accesses of legal size, step, etc. Detect gaps, single element interleaving, and other special cases. Set grouped access info. Collect groups of strided stores for further use in SLP analysis. Worker for vect_analyze_group_access. */ static bool vect_analyze_group_access_1 (struct data_reference *dr) { tree step = DR_STEP (dr); tree scalar_type = TREE_TYPE (DR_REF (dr)); HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type)); gimple *stmt = DR_STMT (dr); stmt_vec_info stmt_info = vinfo_for_stmt (stmt); loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info); HOST_WIDE_INT dr_step = -1; HOST_WIDE_INT groupsize, last_accessed_element = 1; bool slp_impossible = false; /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the size of the interleaving group (including gaps). */ if (tree_fits_shwi_p (step)) { dr_step = tree_to_shwi (step); /* Check that STEP is a multiple of type size. Otherwise there is a non-element-sized gap at the end of the group which we cannot represent in GROUP_GAP or GROUP_SIZE. ??? As we can handle non-constant step fine here we should simply remove uses of GROUP_GAP between the last and first element and instead rely on DR_STEP. GROUP_SIZE then would simply not include that gap. */ if ((dr_step % type_size) != 0) { if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "Step "); dump_generic_expr (MSG_NOTE, TDF_SLIM, step); dump_printf (MSG_NOTE, " is not a multiple of the element size for "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr)); dump_printf (MSG_NOTE, "\n"); } return false; } groupsize = absu_hwi (dr_step) / type_size; } else groupsize = 0; /* Not consecutive access is possible only if it is a part of interleaving. */ if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt))) { /* Check if it this DR is a part of interleaving, and is a single element of the group that is accessed in the loop. */ /* Gaps are supported only for loads. STEP must be a multiple of the type size. */ if (DR_IS_READ (dr) && (dr_step % type_size) == 0 && groupsize > 0) { GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt; GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize; GROUP_GAP (stmt_info) = groupsize - 1; if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "Detected single element interleaving "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr)); dump_printf (MSG_NOTE, " step "); dump_generic_expr (MSG_NOTE, TDF_SLIM, step); dump_printf (MSG_NOTE, "\n"); } return true; } if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not consecutive access "); dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0); } if (bb_vinfo) { /* Mark the statement as unvectorizable. */ STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false; return true; } dump_printf_loc (MSG_NOTE, vect_location, "using strided accesses\n"); STMT_VINFO_STRIDED_P (stmt_info) = true; return true; } if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt) { /* First stmt in the interleaving chain. Check the chain. */ gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt)); struct data_reference *data_ref = dr; unsigned int count = 1; tree prev_init = DR_INIT (data_ref); gimple *prev = stmt; HOST_WIDE_INT diff, gaps = 0; /* By construction, all group members have INTEGER_CST DR_INITs. */ while (next) { /* Skip same data-refs. In case that two or more stmts share data-ref (supported only for loads), we vectorize only the first stmt, and the rest get their vectorized loads from the first one. */ if (!tree_int_cst_compare (DR_INIT (data_ref), DR_INIT (STMT_VINFO_DATA_REF ( vinfo_for_stmt (next))))) { if (DR_IS_WRITE (data_ref)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Two store stmts share the same dr.\n"); return false; } if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "Two or more load stmts share the same dr.\n"); /* For load use the same data-ref load. */ GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev; prev = next; next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next)); continue; } prev = next; data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next)); /* All group members have the same STEP by construction. */ gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0)); /* Check that the distance between two accesses is equal to the type size. Otherwise, we have gaps. */ diff = (TREE_INT_CST_LOW (DR_INIT (data_ref)) - TREE_INT_CST_LOW (prev_init)) / type_size; if (diff != 1) { /* FORNOW: SLP of accesses with gaps is not supported. */ slp_impossible = true; if (DR_IS_WRITE (data_ref)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "interleaved store with gaps\n"); return false; } gaps += diff - 1; } last_accessed_element += diff; /* Store the gap from the previous member of the group. If there is no gap in the access, GROUP_GAP is always 1. */ GROUP_GAP (vinfo_for_stmt (next)) = diff; prev_init = DR_INIT (data_ref); next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next)); /* Count the number of data-refs in the chain. */ count++; } if (groupsize == 0) groupsize = count + gaps; /* This could be UINT_MAX but as we are generating code in a very inefficient way we have to cap earlier. See PR78699 for example. */ if (groupsize > 4096) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "group is too large\n"); return false; } /* Check that the size of the interleaving is equal to count for stores, i.e., that there are no gaps. */ if (groupsize != count && !DR_IS_READ (dr)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "interleaved store with gaps\n"); return false; } /* If there is a gap after the last load in the group it is the difference between the groupsize and the last accessed element. When there is no gap, this difference should be 0. */ GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - last_accessed_element; GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize; if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "Detected interleaving "); if (DR_IS_READ (dr)) dump_printf (MSG_NOTE, "load "); else dump_printf (MSG_NOTE, "store "); dump_printf (MSG_NOTE, "of size %u starting with ", (unsigned)groupsize); dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0); if (GROUP_GAP (vinfo_for_stmt (stmt)) != 0) dump_printf_loc (MSG_NOTE, vect_location, "There is a gap of %u elements after the group\n", GROUP_GAP (vinfo_for_stmt (stmt))); } /* SLP: create an SLP data structure for every interleaving group of stores for further analysis in vect_analyse_slp. */ if (DR_IS_WRITE (dr) && !slp_impossible) { if (loop_vinfo) LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt); if (bb_vinfo) BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt); } } return true; } /* Analyze groups of accesses: check that DR belongs to a group of accesses of legal size, step, etc. Detect gaps, single element interleaving, and other special cases. Set grouped access info. Collect groups of strided stores for further use in SLP analysis. */ static bool vect_analyze_group_access (struct data_reference *dr) { if (!vect_analyze_group_access_1 (dr)) { /* Dissolve the group if present. */ gimple *next; gimple *stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dr))); while (stmt) { stmt_vec_info vinfo = vinfo_for_stmt (stmt); next = GROUP_NEXT_ELEMENT (vinfo); GROUP_FIRST_ELEMENT (vinfo) = NULL; GROUP_NEXT_ELEMENT (vinfo) = NULL; stmt = next; } return false; } return true; } /* Analyze the access pattern of the data-reference DR. In case of non-consecutive accesses call vect_analyze_group_access() to analyze groups of accesses. */ static bool vect_analyze_data_ref_access (struct data_reference *dr) { tree step = DR_STEP (dr); tree scalar_type = TREE_TYPE (DR_REF (dr)); gimple *stmt = DR_STMT (dr); stmt_vec_info stmt_info = vinfo_for_stmt (stmt); loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); struct loop *loop = NULL; if (STMT_VINFO_GATHER_SCATTER_P (stmt_info)) return true; if (loop_vinfo) loop = LOOP_VINFO_LOOP (loop_vinfo); if (loop_vinfo && !step) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "bad data-ref access in loop\n"); return false; } /* Allow loads with zero step in inner-loop vectorization. */ if (loop_vinfo && integer_zerop (step)) { GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL; if (!nested_in_vect_loop_p (loop, stmt)) return DR_IS_READ (dr); /* Allow references with zero step for outer loops marked with pragma omp simd only - it guarantees absence of loop-carried dependencies between inner loop iterations. */ if (loop->safelen < 2) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "zero step in inner loop of nest\n"); return false; } } if (loop && nested_in_vect_loop_p (loop, stmt)) { /* Interleaved accesses are not yet supported within outer-loop vectorization for references in the inner-loop. */ GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL; /* For the rest of the analysis we use the outer-loop step. */ step = STMT_VINFO_DR_STEP (stmt_info); if (integer_zerop (step)) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "zero step in outer loop.\n"); return DR_IS_READ (dr); } } /* Consecutive? */ if (TREE_CODE (step) == INTEGER_CST) { HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step); if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type)) || (dr_step < 0 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step))) { /* Mark that it is not interleaving. */ GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL; return true; } } if (loop && nested_in_vect_loop_p (loop, stmt)) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "grouped access in outer loop.\n"); return false; } /* Assume this is a DR handled by non-constant strided load case. */ if (TREE_CODE (step) != INTEGER_CST) return (STMT_VINFO_STRIDED_P (stmt_info) && (!STMT_VINFO_GROUPED_ACCESS (stmt_info) || vect_analyze_group_access (dr))); /* Not consecutive access - check if it's a part of interleaving group. */ return vect_analyze_group_access (dr); } /* Compare two data-references DRA and DRB to group them into chunks suitable for grouping. */ static int dr_group_sort_cmp (const void *dra_, const void *drb_) { data_reference_p dra = *(data_reference_p *)const_cast(dra_); data_reference_p drb = *(data_reference_p *)const_cast(drb_); int cmp; /* Stabilize sort. */ if (dra == drb) return 0; /* DRs in different loops never belong to the same group. */ loop_p loopa = gimple_bb (DR_STMT (dra))->loop_father; loop_p loopb = gimple_bb (DR_STMT (drb))->loop_father; if (loopa != loopb) return loopa->num < loopb->num ? -1 : 1; /* Ordering of DRs according to base. */ cmp = data_ref_compare_tree (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb)); if (cmp != 0) return cmp; /* And according to DR_OFFSET. */ cmp = data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb)); if (cmp != 0) return cmp; /* Put reads before writes. */ if (DR_IS_READ (dra) != DR_IS_READ (drb)) return DR_IS_READ (dra) ? -1 : 1; /* Then sort after access size. */ cmp = data_ref_compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))), TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)))); if (cmp != 0) return cmp; /* And after step. */ cmp = data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb)); if (cmp != 0) return cmp; /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */ cmp = data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb)); if (cmp == 0) return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1; return cmp; } /* If OP is the result of a conversion, return the unconverted value, otherwise return null. */ static tree strip_conversion (tree op) { if (TREE_CODE (op) != SSA_NAME) return NULL_TREE; gimple *stmt = SSA_NAME_DEF_STMT (op); if (!is_gimple_assign (stmt) || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))) return NULL_TREE; return gimple_assign_rhs1 (stmt); } /* Return true if vectorizable_* routines can handle statements STMT1 and STMT2 being in a single group. */ static bool can_group_stmts_p (gimple *stmt1, gimple *stmt2) { if (gimple_assign_single_p (stmt1)) return gimple_assign_single_p (stmt2); if (is_gimple_call (stmt1) && gimple_call_internal_p (stmt1)) { /* Check for two masked loads or two masked stores. */ if (!is_gimple_call (stmt2) || !gimple_call_internal_p (stmt2)) return false; internal_fn ifn = gimple_call_internal_fn (stmt1); if (ifn != IFN_MASK_LOAD && ifn != IFN_MASK_STORE) return false; if (ifn != gimple_call_internal_fn (stmt2)) return false; /* Check that the masks are the same. Cope with casts of masks, like those created by build_mask_conversion. */ tree mask1 = gimple_call_arg (stmt1, 2); tree mask2 = gimple_call_arg (stmt2, 2); if (!operand_equal_p (mask1, mask2, 0)) { mask1 = strip_conversion (mask1); if (!mask1) return false; mask2 = strip_conversion (mask2); if (!mask2) return false; if (!operand_equal_p (mask1, mask2, 0)) return false; } return true; } return false; } /* Function vect_analyze_data_ref_accesses. Analyze the access pattern of all the data references in the loop. FORNOW: the only access pattern that is considered vectorizable is a simple step 1 (consecutive) access. FORNOW: handle only arrays and pointer accesses. */ bool vect_analyze_data_ref_accesses (vec_info *vinfo) { unsigned int i; vec datarefs = vinfo->datarefs; struct data_reference *dr; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "=== vect_analyze_data_ref_accesses ===\n"); if (datarefs.is_empty ()) return true; /* Sort the array of datarefs to make building the interleaving chains linear. Don't modify the original vector's order, it is needed for determining what dependencies are reversed. */ vec datarefs_copy = datarefs.copy (); datarefs_copy.qsort (dr_group_sort_cmp); /* Build the interleaving chains. */ for (i = 0; i < datarefs_copy.length () - 1;) { data_reference_p dra = datarefs_copy[i]; stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra)); stmt_vec_info lastinfo = NULL; if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a) || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a)) { ++i; continue; } for (i = i + 1; i < datarefs_copy.length (); ++i) { data_reference_p drb = datarefs_copy[i]; stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb)); if (!STMT_VINFO_VECTORIZABLE (stmtinfo_b) || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b)) break; /* ??? Imperfect sorting (non-compatible types, non-modulo accesses, same accesses) can lead to a group to be artificially split here as we don't just skip over those. If it really matters we can push those to a worklist and re-iterate over them. The we can just skip ahead to the next DR here. */ /* DRs in a different loop should not be put into the same interleaving group. */ if (gimple_bb (DR_STMT (dra))->loop_father != gimple_bb (DR_STMT (drb))->loop_father) break; /* Check that the data-refs have same first location (except init) and they are both either store or load (not load and store, not masked loads or stores). */ if (DR_IS_READ (dra) != DR_IS_READ (drb) || data_ref_compare_tree (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb)) != 0 || data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb)) != 0 || !can_group_stmts_p (DR_STMT (dra), DR_STMT (drb))) break; /* Check that the data-refs have the same constant size. */ tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))); tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))); if (!tree_fits_uhwi_p (sza) || !tree_fits_uhwi_p (szb) || !tree_int_cst_equal (sza, szb)) break; /* Check that the data-refs have the same step. */ if (data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb)) != 0) break; /* Check the types are compatible. ??? We don't distinguish this during sorting. */ if (!types_compatible_p (TREE_TYPE (DR_REF (dra)), TREE_TYPE (DR_REF (drb)))) break; /* Check that the DR_INITs are compile-time constants. */ if (TREE_CODE (DR_INIT (dra)) != INTEGER_CST || TREE_CODE (DR_INIT (drb)) != INTEGER_CST) break; /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */ HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra)); HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb)); HOST_WIDE_INT init_prev = TREE_INT_CST_LOW (DR_INIT (datarefs_copy[i-1])); gcc_assert (init_a <= init_b && init_a <= init_prev && init_prev <= init_b); /* Do not place the same access in the interleaving chain twice. */ if (init_b == init_prev) { gcc_assert (gimple_uid (DR_STMT (datarefs_copy[i-1])) < gimple_uid (DR_STMT (drb))); /* ??? For now we simply "drop" the later reference which is otherwise the same rather than finishing off this group. In the end we'd want to re-process duplicates forming multiple groups from the refs, likely by just collecting all candidates (including duplicates and split points below) in a vector and then process them together. */ continue; } /* If init_b == init_a + the size of the type * k, we have an interleaving, and DRA is accessed before DRB. */ HOST_WIDE_INT type_size_a = tree_to_uhwi (sza); if (type_size_a == 0 || (init_b - init_a) % type_size_a != 0) break; /* If we have a store, the accesses are adjacent. This splits groups into chunks we support (we don't support vectorization of stores with gaps). */ if (!DR_IS_READ (dra) && init_b - init_prev != type_size_a) break; /* If the step (if not zero or non-constant) is greater than the difference between data-refs' inits this splits groups into suitable sizes. */ if (tree_fits_shwi_p (DR_STEP (dra))) { HOST_WIDE_INT step = tree_to_shwi (DR_STEP (dra)); if (step != 0 && step <= (init_b - init_a)) break; } if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "Detected interleaving "); if (DR_IS_READ (dra)) dump_printf (MSG_NOTE, "load "); else dump_printf (MSG_NOTE, "store "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra)); dump_printf (MSG_NOTE, " and "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb)); dump_printf (MSG_NOTE, "\n"); } /* Link the found element into the group list. */ if (!GROUP_FIRST_ELEMENT (stmtinfo_a)) { GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (dra); lastinfo = stmtinfo_a; } GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (dra); GROUP_NEXT_ELEMENT (lastinfo) = DR_STMT (drb); lastinfo = stmtinfo_b; } } FOR_EACH_VEC_ELT (datarefs_copy, i, dr) if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) && !vect_analyze_data_ref_access (dr)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: complicated access pattern.\n"); if (is_a (vinfo)) { /* Mark the statement as not vectorizable. */ STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false; continue; } else { datarefs_copy.release (); return false; } } datarefs_copy.release (); return true; } /* Function vect_vfa_segment_size. Input: DR: The data reference. LENGTH_FACTOR: segment length to consider. Return a value suitable for the dr_with_seg_len::seg_len field. This is the "distance travelled" by the pointer from the first iteration in the segment to the last. Note that it does not include the size of the access; in effect it only describes the first byte. */ static tree vect_vfa_segment_size (struct data_reference *dr, tree length_factor) { length_factor = size_binop (MINUS_EXPR, fold_convert (sizetype, length_factor), size_one_node); return size_binop (MULT_EXPR, fold_convert (sizetype, DR_STEP (dr)), length_factor); } /* Return a value that, when added to abs (vect_vfa_segment_size (dr)), gives the worst-case number of bytes covered by the segment. */ static unsigned HOST_WIDE_INT vect_vfa_access_size (data_reference *dr) { stmt_vec_info stmt_vinfo = vinfo_for_stmt (DR_STMT (dr)); tree ref_type = TREE_TYPE (DR_REF (dr)); unsigned HOST_WIDE_INT ref_size = tree_to_uhwi (TYPE_SIZE_UNIT (ref_type)); unsigned HOST_WIDE_INT access_size = ref_size; if (GROUP_FIRST_ELEMENT (stmt_vinfo)) { gcc_assert (GROUP_FIRST_ELEMENT (stmt_vinfo) == DR_STMT (dr)); access_size *= GROUP_SIZE (stmt_vinfo) - GROUP_GAP (stmt_vinfo); } if (STMT_VINFO_VEC_STMT (stmt_vinfo) && (vect_supportable_dr_alignment (dr, false) == dr_explicit_realign_optimized)) { /* We might access a full vector's worth. */ tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo); access_size += tree_to_uhwi (TYPE_SIZE_UNIT (vectype)) - ref_size; } return access_size; } /* Get the minimum alignment for all the scalar accesses that DR describes. */ static unsigned int vect_vfa_align (const data_reference *dr) { return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr))); } /* Function vect_no_alias_p. Given data references A and B with equal base and offset, see whether the alias relation can be decided at compilation time. Return 1 if it can and the references alias, 0 if it can and the references do not alias, and -1 if we cannot decide at compile time. SEGMENT_LENGTH_A, SEGMENT_LENGTH_B, ACCESS_SIZE_A and ACCESS_SIZE_B are the equivalent of dr_with_seg_len::{seg_len,access_size} for A and B. */ static int vect_compile_time_alias (struct data_reference *a, struct data_reference *b, tree segment_length_a, tree segment_length_b, unsigned HOST_WIDE_INT access_size_a, unsigned HOST_WIDE_INT access_size_b) { poly_offset_int offset_a = wi::to_poly_offset (DR_INIT (a)); poly_offset_int offset_b = wi::to_poly_offset (DR_INIT (b)); poly_uint64 const_length_a; poly_uint64 const_length_b; /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of [a, a+12) */ if (tree_int_cst_compare (DR_STEP (a), size_zero_node) < 0) { const_length_a = (-wi::to_poly_wide (segment_length_a)).force_uhwi (); offset_a = (offset_a + access_size_a) - const_length_a; } else const_length_a = tree_to_poly_uint64 (segment_length_a); if (tree_int_cst_compare (DR_STEP (b), size_zero_node) < 0) { const_length_b = (-wi::to_poly_wide (segment_length_b)).force_uhwi (); offset_b = (offset_b + access_size_b) - const_length_b; } else const_length_b = tree_to_poly_uint64 (segment_length_b); const_length_a += access_size_a; const_length_b += access_size_b; if (ranges_known_overlap_p (offset_a, const_length_a, offset_b, const_length_b)) return 1; if (!ranges_maybe_overlap_p (offset_a, const_length_a, offset_b, const_length_b)) return 0; return -1; } /* Return true if the minimum nonzero dependence distance for loop LOOP_DEPTH in DDR is >= VF. */ static bool dependence_distance_ge_vf (data_dependence_relation *ddr, unsigned int loop_depth, poly_uint64 vf) { if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE || DDR_NUM_DIST_VECTS (ddr) == 0) return false; /* If the dependence is exact, we should have limited the VF instead. */ gcc_checking_assert (DDR_COULD_BE_INDEPENDENT_P (ddr)); unsigned int i; lambda_vector dist_v; FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v) { HOST_WIDE_INT dist = dist_v[loop_depth]; if (dist != 0 && !(dist > 0 && DDR_REVERSED_P (ddr)) && maybe_lt ((unsigned HOST_WIDE_INT) abs_hwi (dist), vf)) return false; } if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "dependence distance between "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr))); dump_printf (MSG_NOTE, " and "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr))); dump_printf (MSG_NOTE, " is >= VF\n"); } return true; } /* Dump LOWER_BOUND using flags DUMP_KIND. Dumps are known to be enabled. */ static void dump_lower_bound (int dump_kind, const vec_lower_bound &lower_bound) { dump_printf (dump_kind, "%s (", lower_bound.unsigned_p ? "unsigned" : "abs"); dump_generic_expr (dump_kind, TDF_SLIM, lower_bound.expr); dump_printf (dump_kind, ") >= "); dump_dec (dump_kind, lower_bound.min_value); } /* Record that the vectorized loop requires the vec_lower_bound described by EXPR, UNSIGNED_P and MIN_VALUE. */ static void vect_check_lower_bound (loop_vec_info loop_vinfo, tree expr, bool unsigned_p, poly_uint64 min_value) { vec lower_bounds = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo); for (unsigned int i = 0; i < lower_bounds.length (); ++i) if (operand_equal_p (lower_bounds[i].expr, expr, 0)) { unsigned_p &= lower_bounds[i].unsigned_p; min_value = upper_bound (lower_bounds[i].min_value, min_value); if (lower_bounds[i].unsigned_p != unsigned_p || maybe_lt (lower_bounds[i].min_value, min_value)) { lower_bounds[i].unsigned_p = unsigned_p; lower_bounds[i].min_value = min_value; if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "updating run-time check to "); dump_lower_bound (MSG_NOTE, lower_bounds[i]); dump_printf (MSG_NOTE, "\n"); } } return; } vec_lower_bound lower_bound (expr, unsigned_p, min_value); if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "need a run-time check that "); dump_lower_bound (MSG_NOTE, lower_bound); dump_printf (MSG_NOTE, "\n"); } LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).safe_push (lower_bound); } /* Return true if it's unlikely that the step of the vectorized form of DR will span fewer than GAP bytes. */ static bool vect_small_gap_p (loop_vec_info loop_vinfo, data_reference *dr, poly_int64 gap) { stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr)); HOST_WIDE_INT count = estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo)); if (GROUP_FIRST_ELEMENT (stmt_info)) count *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info))); return estimated_poly_value (gap) <= count * vect_get_scalar_dr_size (dr); } /* Return true if we know that there is no alias between DR_A and DR_B when abs (DR_STEP (DR_A)) >= N for some N. When returning true, set *LOWER_BOUND_OUT to this N. */ static bool vectorizable_with_step_bound_p (data_reference *dr_a, data_reference *dr_b, poly_uint64 *lower_bound_out) { /* Check that there is a constant gap of known sign between DR_A and DR_B. */ poly_int64 init_a, init_b; if (!operand_equal_p (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b), 0) || !operand_equal_p (DR_OFFSET (dr_a), DR_OFFSET (dr_b), 0) || !operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0) || !poly_int_tree_p (DR_INIT (dr_a), &init_a) || !poly_int_tree_p (DR_INIT (dr_b), &init_b) || !ordered_p (init_a, init_b)) return false; /* Sort DR_A and DR_B by the address they access. */ if (maybe_lt (init_b, init_a)) { std::swap (init_a, init_b); std::swap (dr_a, dr_b); } /* If the two accesses could be dependent within a scalar iteration, make sure that we'd retain their order. */ if (maybe_gt (init_a + vect_get_scalar_dr_size (dr_a), init_b) && !vect_preserves_scalar_order_p (DR_STMT (dr_a), DR_STMT (dr_b))) return false; /* There is no alias if abs (DR_STEP) is greater than or equal to the bytes spanned by the combination of the two accesses. */ *lower_bound_out = init_b + vect_get_scalar_dr_size (dr_b) - init_a; return true; } /* Function vect_prune_runtime_alias_test_list. Prune a list of ddrs to be tested at run-time by versioning for alias. Merge several alias checks into one if possible. Return FALSE if resulting list of ddrs is longer then allowed by PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */ bool vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo) { typedef pair_hash tree_pair_hash; hash_set compared_objects; vec may_alias_ddrs = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo); vec &comp_alias_ddrs = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo); vec &check_unequal_addrs = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo); poly_uint64 vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo); tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo); ddr_p ddr; unsigned int i; tree length_factor; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "=== vect_prune_runtime_alias_test_list ===\n"); /* Step values are irrelevant for aliasing if the number of vector iterations is equal to the number of scalar iterations (which can happen for fully-SLP loops). */ bool ignore_step_p = known_eq (LOOP_VINFO_VECT_FACTOR (loop_vinfo), 1U); if (!ignore_step_p) { /* Convert the checks for nonzero steps into bound tests. */ tree value; FOR_EACH_VEC_ELT (LOOP_VINFO_CHECK_NONZERO (loop_vinfo), i, value) vect_check_lower_bound (loop_vinfo, value, true, 1); } if (may_alias_ddrs.is_empty ()) return true; comp_alias_ddrs.create (may_alias_ddrs.length ()); unsigned int loop_depth = index_in_loop_nest (LOOP_VINFO_LOOP (loop_vinfo)->num, LOOP_VINFO_LOOP_NEST (loop_vinfo)); /* First, we collect all data ref pairs for aliasing checks. */ FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr) { int comp_res; poly_uint64 lower_bound; struct data_reference *dr_a, *dr_b; gimple *dr_group_first_a, *dr_group_first_b; tree segment_length_a, segment_length_b; unsigned HOST_WIDE_INT access_size_a, access_size_b; unsigned int align_a, align_b; gimple *stmt_a, *stmt_b; /* Ignore the alias if the VF we chose ended up being no greater than the dependence distance. */ if (dependence_distance_ge_vf (ddr, loop_depth, vect_factor)) continue; if (DDR_OBJECT_A (ddr)) { vec_object_pair new_pair (DDR_OBJECT_A (ddr), DDR_OBJECT_B (ddr)); if (!compared_objects.add (new_pair)) { if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "checking that "); dump_generic_expr (MSG_NOTE, TDF_SLIM, new_pair.first); dump_printf (MSG_NOTE, " and "); dump_generic_expr (MSG_NOTE, TDF_SLIM, new_pair.second); dump_printf (MSG_NOTE, " have different addresses\n"); } LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).safe_push (new_pair); } continue; } dr_a = DDR_A (ddr); stmt_a = DR_STMT (DDR_A (ddr)); dr_b = DDR_B (ddr); stmt_b = DR_STMT (DDR_B (ddr)); /* Skip the pair if inter-iteration dependencies are irrelevant and intra-iteration dependencies are guaranteed to be honored. */ if (ignore_step_p && (vect_preserves_scalar_order_p (stmt_a, stmt_b) || vectorizable_with_step_bound_p (dr_a, dr_b, &lower_bound))) { if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "no need for alias check between "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a)); dump_printf (MSG_NOTE, " and "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b)); dump_printf (MSG_NOTE, " when VF is 1\n"); } continue; } /* See whether we can handle the alias using a bounds check on the step, and whether that's likely to be the best approach. (It might not be, for example, if the minimum step is much larger than the number of bytes handled by one vector iteration.) */ if (!ignore_step_p && TREE_CODE (DR_STEP (dr_a)) != INTEGER_CST && vectorizable_with_step_bound_p (dr_a, dr_b, &lower_bound) && (vect_small_gap_p (loop_vinfo, dr_a, lower_bound) || vect_small_gap_p (loop_vinfo, dr_b, lower_bound))) { bool unsigned_p = dr_known_forward_stride_p (dr_a); if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "no alias between "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a)); dump_printf (MSG_NOTE, " and "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b)); dump_printf (MSG_NOTE, " when the step "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_STEP (dr_a)); dump_printf (MSG_NOTE, " is outside "); if (unsigned_p) dump_printf (MSG_NOTE, "[0"); else { dump_printf (MSG_NOTE, "("); dump_dec (MSG_NOTE, poly_int64 (-lower_bound)); } dump_printf (MSG_NOTE, ", "); dump_dec (MSG_NOTE, lower_bound); dump_printf (MSG_NOTE, ")\n"); } vect_check_lower_bound (loop_vinfo, DR_STEP (dr_a), unsigned_p, lower_bound); continue; } dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a)); if (dr_group_first_a) { stmt_a = dr_group_first_a; dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a)); } dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b)); if (dr_group_first_b) { stmt_b = dr_group_first_b; dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b)); } if (ignore_step_p) { segment_length_a = size_zero_node; segment_length_b = size_zero_node; } else { if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0)) length_factor = scalar_loop_iters; else length_factor = size_int (vect_factor); segment_length_a = vect_vfa_segment_size (dr_a, length_factor); segment_length_b = vect_vfa_segment_size (dr_b, length_factor); } access_size_a = vect_vfa_access_size (dr_a); access_size_b = vect_vfa_access_size (dr_b); align_a = vect_vfa_align (dr_a); align_b = vect_vfa_align (dr_b); comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b)); if (comp_res == 0) comp_res = data_ref_compare_tree (DR_OFFSET (dr_a), DR_OFFSET (dr_b)); /* See whether the alias is known at compilation time. */ if (comp_res == 0 && TREE_CODE (DR_STEP (dr_a)) == INTEGER_CST && TREE_CODE (DR_STEP (dr_b)) == INTEGER_CST && poly_int_tree_p (segment_length_a) && poly_int_tree_p (segment_length_b)) { int res = vect_compile_time_alias (dr_a, dr_b, segment_length_a, segment_length_b, access_size_a, access_size_b); if (res >= 0 && dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "can tell at compile time that "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a)); dump_printf (MSG_NOTE, " and "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b)); if (res == 0) dump_printf (MSG_NOTE, " do not alias\n"); else dump_printf (MSG_NOTE, " alias\n"); } if (res == 0) continue; if (res == 1) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "not vectorized: compilation time alias.\n"); return false; } } dr_with_seg_len_pair_t dr_with_seg_len_pair (dr_with_seg_len (dr_a, segment_length_a, access_size_a, align_a), dr_with_seg_len (dr_b, segment_length_b, access_size_b, align_b)); /* Canonicalize pairs by sorting the two DR members. */ if (comp_res > 0) std::swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second); comp_alias_ddrs.safe_push (dr_with_seg_len_pair); } prune_runtime_alias_test_list (&comp_alias_ddrs, vect_factor); unsigned int count = (comp_alias_ddrs.length () + check_unequal_addrs.length ()); dump_printf_loc (MSG_NOTE, vect_location, "improved number of alias checks from %d to %d\n", may_alias_ddrs.length (), count); if ((int) count > PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "number of versioning for alias " "run-time tests exceeds %d " "(--param vect-max-version-for-alias-checks)\n", PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS)); return false; } return true; } /* Check whether we can use an internal function for a gather load or scatter store. READ_P is true for loads and false for stores. MASKED_P is true if the load or store is conditional. MEMORY_TYPE is the type of the memory elements being loaded or stored. OFFSET_BITS is the number of bits in each scalar offset and OFFSET_SIGN is the sign of the offset. SCALE is the amount by which the offset should be multiplied *after* it has been converted to address width. Return true if the function is supported, storing the function id in *IFN_OUT and the type of a vector element in *ELEMENT_TYPE_OUT. */ bool vect_gather_scatter_fn_p (bool read_p, bool masked_p, tree vectype, tree memory_type, unsigned int offset_bits, signop offset_sign, int scale, internal_fn *ifn_out, tree *element_type_out) { unsigned int memory_bits = tree_to_uhwi (TYPE_SIZE (memory_type)); unsigned int element_bits = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (vectype))); if (offset_bits > element_bits) /* Internal functions require the offset to be the same width as the vector elements. We can extend narrower offsets, but it isn't safe to truncate wider offsets. */ return false; if (element_bits != memory_bits) /* For now the vector elements must be the same width as the memory elements. */ return false; /* Work out which function we need. */ internal_fn ifn; if (read_p) ifn = masked_p ? IFN_MASK_GATHER_LOAD : IFN_GATHER_LOAD; else ifn = masked_p ? IFN_MASK_SCATTER_STORE : IFN_SCATTER_STORE; /* Test whether the target supports this combination. */ if (!internal_gather_scatter_fn_supported_p (ifn, vectype, memory_type, offset_sign, scale)) return false; *ifn_out = ifn; *element_type_out = TREE_TYPE (vectype); return true; } /* CALL is a call to an internal gather load or scatter store function. Describe the operation in INFO. */ static void vect_describe_gather_scatter_call (gcall *call, gather_scatter_info *info) { stmt_vec_info stmt_info = vinfo_for_stmt (call); tree vectype = STMT_VINFO_VECTYPE (stmt_info); data_reference *dr = STMT_VINFO_DATA_REF (stmt_info); info->ifn = gimple_call_internal_fn (call); info->decl = NULL_TREE; info->base = gimple_call_arg (call, 0); info->offset = gimple_call_arg (call, 1); info->offset_dt = vect_unknown_def_type; info->offset_vectype = NULL_TREE; info->scale = TREE_INT_CST_LOW (gimple_call_arg (call, 2)); info->element_type = TREE_TYPE (vectype); info->memory_type = TREE_TYPE (DR_REF (dr)); } /* Return true if a non-affine read or write in STMT is suitable for a gather load or scatter store. Describe the operation in *INFO if so. */ bool vect_check_gather_scatter (gimple *stmt, loop_vec_info loop_vinfo, gather_scatter_info *info) { HOST_WIDE_INT scale = 1; poly_int64 pbitpos, pbitsize; struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); stmt_vec_info stmt_info = vinfo_for_stmt (stmt); struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info); tree offtype = NULL_TREE; tree decl = NULL_TREE, base, off; tree vectype = STMT_VINFO_VECTYPE (stmt_info); tree memory_type = TREE_TYPE (DR_REF (dr)); machine_mode pmode; int punsignedp, reversep, pvolatilep = 0; internal_fn ifn; tree element_type; bool masked_p = false; /* See whether this is already a call to a gather/scatter internal function. If not, see whether it's a masked load or store. */ gcall *call = dyn_cast (stmt); if (call && gimple_call_internal_p (call)) { ifn = gimple_call_internal_fn (stmt); if (internal_gather_scatter_fn_p (ifn)) { vect_describe_gather_scatter_call (call, info); return true; } masked_p = (ifn == IFN_MASK_LOAD || ifn == IFN_MASK_STORE); } /* True if we should aim to use internal functions rather than built-in functions. */ bool use_ifn_p = (DR_IS_READ (dr) ? supports_vec_gather_load_p () : supports_vec_scatter_store_p ()); base = DR_REF (dr); /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF, see if we can use the def stmt of the address. */ if (masked_p && TREE_CODE (base) == MEM_REF && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME && integer_zerop (TREE_OPERAND (base, 1)) && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0))) { gimple *def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0)); if (is_gimple_assign (def_stmt) && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR) base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0); } /* The gather and scatter builtins need address of the form loop_invariant + vector * {1, 2, 4, 8} or loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }. Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture of loop invariants/SSA_NAMEs defined in the loop, with casts, multiplications and additions in it. To get a vector, we need a single SSA_NAME that will be defined in the loop and will contain everything that is not loop invariant and that can be vectorized. The following code attempts to find such a preexistng SSA_NAME OFF and put the loop invariants into a tree BASE that can be gimplified before the loop. */ base = get_inner_reference (base, &pbitsize, &pbitpos, &off, &pmode, &punsignedp, &reversep, &pvolatilep); gcc_assert (base && !reversep); poly_int64 pbytepos = exact_div (pbitpos, BITS_PER_UNIT); if (TREE_CODE (base) == MEM_REF) { if (!integer_zerop (TREE_OPERAND (base, 1))) { if (off == NULL_TREE) off = wide_int_to_tree (sizetype, mem_ref_offset (base)); else off = size_binop (PLUS_EXPR, off, fold_convert (sizetype, TREE_OPERAND (base, 1))); } base = TREE_OPERAND (base, 0); } else base = build_fold_addr_expr (base); if (off == NULL_TREE) off = size_zero_node; /* If base is not loop invariant, either off is 0, then we start with just the constant offset in the loop invariant BASE and continue with base as OFF, otherwise give up. We could handle that case by gimplifying the addition of base + off into some SSA_NAME and use that as off, but for now punt. */ if (!expr_invariant_in_loop_p (loop, base)) { if (!integer_zerop (off)) return false; off = base; base = size_int (pbytepos); } /* Otherwise put base + constant offset into the loop invariant BASE and continue with OFF. */ else { base = fold_convert (sizetype, base); base = size_binop (PLUS_EXPR, base, size_int (pbytepos)); } /* OFF at this point may be either a SSA_NAME or some tree expression from get_inner_reference. Try to peel off loop invariants from it into BASE as long as possible. */ STRIP_NOPS (off); while (offtype == NULL_TREE) { enum tree_code code; tree op0, op1, add = NULL_TREE; if (TREE_CODE (off) == SSA_NAME) { gimple *def_stmt = SSA_NAME_DEF_STMT (off); if (expr_invariant_in_loop_p (loop, off)) return false; if (gimple_code (def_stmt) != GIMPLE_ASSIGN) break; op0 = gimple_assign_rhs1 (def_stmt); code = gimple_assign_rhs_code (def_stmt); op1 = gimple_assign_rhs2 (def_stmt); } else { if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS) return false; code = TREE_CODE (off); extract_ops_from_tree (off, &code, &op0, &op1); } switch (code) { case POINTER_PLUS_EXPR: case PLUS_EXPR: if (expr_invariant_in_loop_p (loop, op0)) { add = op0; off = op1; do_add: add = fold_convert (sizetype, add); if (scale != 1) add = size_binop (MULT_EXPR, add, size_int (scale)); base = size_binop (PLUS_EXPR, base, add); continue; } if (expr_invariant_in_loop_p (loop, op1)) { add = op1; off = op0; goto do_add; } break; case MINUS_EXPR: if (expr_invariant_in_loop_p (loop, op1)) { add = fold_convert (sizetype, op1); add = size_binop (MINUS_EXPR, size_zero_node, add); off = op0; goto do_add; } break; case MULT_EXPR: if (scale == 1 && tree_fits_shwi_p (op1)) { int new_scale = tree_to_shwi (op1); /* Only treat this as a scaling operation if the target supports it. */ if (use_ifn_p && !vect_gather_scatter_fn_p (DR_IS_READ (dr), masked_p, vectype, memory_type, 1, TYPE_SIGN (TREE_TYPE (op0)), new_scale, &ifn, &element_type)) break; scale = new_scale; off = op0; continue; } break; case SSA_NAME: off = op0; continue; CASE_CONVERT: if (!POINTER_TYPE_P (TREE_TYPE (op0)) && !INTEGRAL_TYPE_P (TREE_TYPE (op0))) break; if (TYPE_PRECISION (TREE_TYPE (op0)) == TYPE_PRECISION (TREE_TYPE (off))) { off = op0; continue; } /* The internal functions need the offset to be the same width as the elements of VECTYPE. Don't include operations that cast the offset from that width to a different width. */ if (use_ifn_p && (int_size_in_bytes (TREE_TYPE (vectype)) == int_size_in_bytes (TREE_TYPE (off)))) break; if (TYPE_PRECISION (TREE_TYPE (op0)) < TYPE_PRECISION (TREE_TYPE (off))) { off = op0; offtype = TREE_TYPE (off); STRIP_NOPS (off); continue; } break; default: break; } break; } /* If at the end OFF still isn't a SSA_NAME or isn't defined in the loop, punt. */ if (TREE_CODE (off) != SSA_NAME || expr_invariant_in_loop_p (loop, off)) return false; if (offtype == NULL_TREE) offtype = TREE_TYPE (off); if (use_ifn_p) { if (!vect_gather_scatter_fn_p (DR_IS_READ (dr), masked_p, vectype, memory_type, TYPE_PRECISION (offtype), TYPE_SIGN (offtype), scale, &ifn, &element_type)) return false; } else { if (DR_IS_READ (dr)) { if (targetm.vectorize.builtin_gather) decl = targetm.vectorize.builtin_gather (vectype, offtype, scale); } else { if (targetm.vectorize.builtin_scatter) decl = targetm.vectorize.builtin_scatter (vectype, offtype, scale); } if (!decl) return false; ifn = IFN_LAST; element_type = TREE_TYPE (vectype); } info->ifn = ifn; info->decl = decl; info->base = base; info->offset = off; info->offset_dt = vect_unknown_def_type; info->offset_vectype = NULL_TREE; info->scale = scale; info->element_type = element_type; info->memory_type = memory_type; return true; } /* Function vect_analyze_data_refs. Find all the data references in the loop or basic block. The general structure of the analysis of data refs in the vectorizer is as follows: 1- vect_analyze_data_refs(loop/bb): call compute_data_dependences_for_loop/bb to find and analyze all data-refs in the loop/bb and their dependences. 2- vect_analyze_dependences(): apply dependence testing using ddrs. 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok. 4- vect_analyze_drs_access(): check that ref_stmt.step is ok. */ bool vect_analyze_data_refs (vec_info *vinfo, poly_uint64 *min_vf) { struct loop *loop = NULL; unsigned int i; struct data_reference *dr; tree scalar_type; if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, vect_location, "=== vect_analyze_data_refs ===\n"); if (loop_vec_info loop_vinfo = dyn_cast (vinfo)) loop = LOOP_VINFO_LOOP (loop_vinfo); /* Go through the data-refs, check that the analysis succeeded. Update pointer from stmt_vec_info struct to DR and vectype. */ vec datarefs = vinfo->datarefs; FOR_EACH_VEC_ELT (datarefs, i, dr) { gimple *stmt; stmt_vec_info stmt_info; tree base, offset, init; enum { SG_NONE, GATHER, SCATTER } gatherscatter = SG_NONE; bool simd_lane_access = false; poly_uint64 vf; again: if (!dr || !DR_REF (dr)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: unhandled data-ref\n"); return false; } stmt = DR_STMT (dr); stmt_info = vinfo_for_stmt (stmt); /* Discard clobbers from the dataref vector. We will remove clobber stmts during vectorization. */ if (gimple_clobber_p (stmt)) { free_data_ref (dr); if (i == datarefs.length () - 1) { datarefs.pop (); break; } datarefs.ordered_remove (i); dr = datarefs[i]; goto again; } /* Check that analysis of the data-ref succeeded. */ if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr) || !DR_STEP (dr)) { bool maybe_gather = DR_IS_READ (dr) && !TREE_THIS_VOLATILE (DR_REF (dr)) && (targetm.vectorize.builtin_gather != NULL || supports_vec_gather_load_p ()); bool maybe_scatter = DR_IS_WRITE (dr) && !TREE_THIS_VOLATILE (DR_REF (dr)) && (targetm.vectorize.builtin_scatter != NULL || supports_vec_scatter_store_p ()); bool maybe_simd_lane_access = is_a (vinfo) && loop->simduid; /* If target supports vector gather loads or scatter stores, or if this might be a SIMD lane access, see if they can't be used. */ if (is_a (vinfo) && (maybe_gather || maybe_scatter || maybe_simd_lane_access) && !nested_in_vect_loop_p (loop, stmt)) { struct data_reference *newdr = create_data_ref (NULL, loop_containing_stmt (stmt), DR_REF (dr), stmt, !maybe_scatter, DR_IS_CONDITIONAL_IN_STMT (dr)); gcc_assert (newdr != NULL && DR_REF (newdr)); if (DR_BASE_ADDRESS (newdr) && DR_OFFSET (newdr) && DR_INIT (newdr) && DR_STEP (newdr) && integer_zerop (DR_STEP (newdr))) { if (maybe_simd_lane_access) { tree off = DR_OFFSET (newdr); STRIP_NOPS (off); if (TREE_CODE (DR_INIT (newdr)) == INTEGER_CST && TREE_CODE (off) == MULT_EXPR && tree_fits_uhwi_p (TREE_OPERAND (off, 1))) { tree step = TREE_OPERAND (off, 1); off = TREE_OPERAND (off, 0); STRIP_NOPS (off); if (CONVERT_EXPR_P (off) && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off, 0))) < TYPE_PRECISION (TREE_TYPE (off))) off = TREE_OPERAND (off, 0); if (TREE_CODE (off) == SSA_NAME) { gimple *def = SSA_NAME_DEF_STMT (off); tree reft = TREE_TYPE (DR_REF (newdr)); if (is_gimple_call (def) && gimple_call_internal_p (def) && (gimple_call_internal_fn (def) == IFN_GOMP_SIMD_LANE)) { tree arg = gimple_call_arg (def, 0); gcc_assert (TREE_CODE (arg) == SSA_NAME); arg = SSA_NAME_VAR (arg); if (arg == loop->simduid /* For now. */ && tree_int_cst_equal (TYPE_SIZE_UNIT (reft), step)) { DR_OFFSET (newdr) = ssize_int (0); DR_STEP (newdr) = step; DR_OFFSET_ALIGNMENT (newdr) = BIGGEST_ALIGNMENT; DR_STEP_ALIGNMENT (newdr) = highest_pow2_factor (step); dr = newdr; simd_lane_access = true; } } } } } if (!simd_lane_access && (maybe_gather || maybe_scatter)) { dr = newdr; if (maybe_gather) gatherscatter = GATHER; else gatherscatter = SCATTER; } } if (gatherscatter == SG_NONE && !simd_lane_access) free_data_ref (newdr); } if (gatherscatter == SG_NONE && !simd_lane_access) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: data ref analysis " "failed "); dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0); } if (is_a (vinfo)) break; return false; } } if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: base addr of dr is a " "constant\n"); if (is_a (vinfo)) break; if (gatherscatter != SG_NONE || simd_lane_access) free_data_ref (dr); return false; } if (TREE_THIS_VOLATILE (DR_REF (dr))) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: volatile type "); dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0); } if (is_a (vinfo)) break; return false; } if (stmt_can_throw_internal (stmt)) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: statement can throw an " "exception "); dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0); } if (is_a (vinfo)) break; if (gatherscatter != SG_NONE || simd_lane_access) free_data_ref (dr); return false; } if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1))) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: statement is bitfield " "access "); dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0); } if (is_a (vinfo)) break; if (gatherscatter != SG_NONE || simd_lane_access) free_data_ref (dr); return false; } base = unshare_expr (DR_BASE_ADDRESS (dr)); offset = unshare_expr (DR_OFFSET (dr)); init = unshare_expr (DR_INIT (dr)); if (is_gimple_call (stmt) && (!gimple_call_internal_p (stmt) || (gimple_call_internal_fn (stmt) != IFN_MASK_LOAD && gimple_call_internal_fn (stmt) != IFN_MASK_STORE))) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: dr in a call "); dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0); } if (is_a (vinfo)) break; if (gatherscatter != SG_NONE || simd_lane_access) free_data_ref (dr); return false; } /* Update DR field in stmt_vec_info struct. */ /* If the dataref is in an inner-loop of the loop that is considered for for vectorization, we also want to analyze the access relative to the outer-loop (DR contains information only relative to the inner-most enclosing loop). We do that by building a reference to the first location accessed by the inner-loop, and analyze it relative to the outer-loop. */ if (loop && nested_in_vect_loop_p (loop, stmt)) { /* Build a reference to the first location accessed by the inner loop: *(BASE + INIT + OFFSET). By construction, this address must be invariant in the inner loop, so we can consider it as being used in the outer loop. */ tree init_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), init, offset); tree init_addr = fold_build_pointer_plus (base, init_offset); tree init_ref = build_fold_indirect_ref (init_addr); if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "analyze in outer loop: "); dump_generic_expr (MSG_NOTE, TDF_SLIM, init_ref); dump_printf (MSG_NOTE, "\n"); } if (!dr_analyze_innermost (&STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info), init_ref, loop)) /* dr_analyze_innermost already explained the failure. */ return false; if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "\touter base_address: "); dump_generic_expr (MSG_NOTE, TDF_SLIM, STMT_VINFO_DR_BASE_ADDRESS (stmt_info)); dump_printf (MSG_NOTE, "\n\touter offset from base address: "); dump_generic_expr (MSG_NOTE, TDF_SLIM, STMT_VINFO_DR_OFFSET (stmt_info)); dump_printf (MSG_NOTE, "\n\touter constant offset from base address: "); dump_generic_expr (MSG_NOTE, TDF_SLIM, STMT_VINFO_DR_INIT (stmt_info)); dump_printf (MSG_NOTE, "\n\touter step: "); dump_generic_expr (MSG_NOTE, TDF_SLIM, STMT_VINFO_DR_STEP (stmt_info)); dump_printf (MSG_NOTE, "\n\touter base alignment: %d\n", STMT_VINFO_DR_BASE_ALIGNMENT (stmt_info)); dump_printf (MSG_NOTE, "\n\touter base misalignment: %d\n", STMT_VINFO_DR_BASE_MISALIGNMENT (stmt_info)); dump_printf (MSG_NOTE, "\n\touter offset alignment: %d\n", STMT_VINFO_DR_OFFSET_ALIGNMENT (stmt_info)); dump_printf (MSG_NOTE, "\n\touter step alignment: %d\n", STMT_VINFO_DR_STEP_ALIGNMENT (stmt_info)); } } if (STMT_VINFO_DATA_REF (stmt_info)) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: more than one data ref " "in stmt: "); dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0); } if (is_a (vinfo)) break; if (gatherscatter != SG_NONE || simd_lane_access) free_data_ref (dr); return false; } STMT_VINFO_DATA_REF (stmt_info) = dr; if (simd_lane_access) { STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) = true; free_data_ref (datarefs[i]); datarefs[i] = dr; } if (TREE_CODE (DR_BASE_ADDRESS (dr)) == ADDR_EXPR && VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (dr), 0)) && DECL_NONALIASED (TREE_OPERAND (DR_BASE_ADDRESS (dr), 0))) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: base object not addressable " "for stmt: "); dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0); } if (is_a (vinfo)) { /* In BB vectorization the ref can still participate in dependence analysis, we just can't vectorize it. */ STMT_VINFO_VECTORIZABLE (stmt_info) = false; continue; } return false; } /* Set vectype for STMT. */ scalar_type = TREE_TYPE (DR_REF (dr)); STMT_VINFO_VECTYPE (stmt_info) = get_vectype_for_scalar_type (scalar_type); if (!STMT_VINFO_VECTYPE (stmt_info)) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: no vectype for stmt: "); dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0); dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: "); dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS, scalar_type); dump_printf (MSG_MISSED_OPTIMIZATION, "\n"); } if (is_a (vinfo)) { /* No vector type is fine, the ref can still participate in dependence analysis, we just can't vectorize it. */ STMT_VINFO_VECTORIZABLE (stmt_info) = false; continue; } if (gatherscatter != SG_NONE || simd_lane_access) { STMT_VINFO_DATA_REF (stmt_info) = NULL; if (gatherscatter != SG_NONE) free_data_ref (dr); } return false; } else { if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "got vectype for stmt: "); dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0); dump_generic_expr (MSG_NOTE, TDF_SLIM, STMT_VINFO_VECTYPE (stmt_info)); dump_printf (MSG_NOTE, "\n"); } } /* Adjust the minimal vectorization factor according to the vector type. */ vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info)); *min_vf = upper_bound (*min_vf, vf); if (gatherscatter != SG_NONE) { gather_scatter_info gs_info; if (!vect_check_gather_scatter (stmt, as_a (vinfo), &gs_info) || !get_vectype_for_scalar_type (TREE_TYPE (gs_info.offset))) { STMT_VINFO_DATA_REF (stmt_info) = NULL; free_data_ref (dr); if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, (gatherscatter == GATHER) ? "not vectorized: not suitable for gather " "load " : "not vectorized: not suitable for scatter " "store "); dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0); } return false; } free_data_ref (datarefs[i]); datarefs[i] = dr; STMT_VINFO_GATHER_SCATTER_P (stmt_info) = gatherscatter; } else if (is_a (vinfo) && TREE_CODE (DR_STEP (dr)) != INTEGER_CST) { if (nested_in_vect_loop_p (loop, stmt)) { if (dump_enabled_p ()) { dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "not vectorized: not suitable for strided " "load "); dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0); } return false; } STMT_VINFO_STRIDED_P (stmt_info) = true; } } /* If we stopped analysis at the first dataref we could not analyze when trying to vectorize a basic-block mark the rest of the datarefs as not vectorizable and truncate the vector of datarefs. That avoids spending useless time in analyzing their dependence. */ if (i != datarefs.length ()) { gcc_assert (is_a (vinfo)); for (unsigned j = i; j < datarefs.length (); ++j) { data_reference_p dr = datarefs[j]; STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false; free_data_ref (dr); } datarefs.truncate (i); } return true; } /* Function vect_get_new_vect_var. Returns a name for a new variable. The current naming scheme appends the prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to the name of vectorizer generated variables, and appends that to NAME if provided. */ tree vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name) { const char *prefix; tree new_vect_var; switch (var_kind) { case vect_simple_var: prefix = "vect"; break; case vect_scalar_var: prefix = "stmp"; break; case vect_mask_var: prefix = "mask"; break; case vect_pointer_var: prefix = "vectp"; break; default: gcc_unreachable (); } if (name) { char* tmp = concat (prefix, "_", name, NULL); new_vect_var = create_tmp_reg (type, tmp); free (tmp); } else new_vect_var = create_tmp_reg (type, prefix); return new_vect_var; } /* Like vect_get_new_vect_var but return an SSA name. */ tree vect_get_new_ssa_name (tree type, enum vect_var_kind var_kind, const char *name) { const char *prefix; tree new_vect_var; switch (var_kind) { case vect_simple_var: prefix = "vect"; break; case vect_scalar_var: prefix = "stmp"; break; case vect_pointer_var: prefix = "vectp"; break; default: gcc_unreachable (); } if (name) { char* tmp = concat (prefix, "_", name, NULL); new_vect_var = make_temp_ssa_name (type, NULL, tmp); free (tmp); } else new_vect_var = make_temp_ssa_name (type, NULL, prefix); return new_vect_var; } /* Duplicate ptr info and set alignment/misaligment on NAME from DR. */ static void vect_duplicate_ssa_name_ptr_info (tree name, data_reference *dr) { duplicate_ssa_name_ptr_info (name, DR_PTR_INFO (dr)); int misalign = DR_MISALIGNMENT (dr); if (misalign == DR_MISALIGNMENT_UNKNOWN) mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name)); else set_ptr_info_alignment (SSA_NAME_PTR_INFO (name), DR_TARGET_ALIGNMENT (dr), misalign); } /* Function vect_create_addr_base_for_vector_ref. Create an expression that computes the address of the first memory location that will be accessed for a data reference. Input: STMT: The statement containing the data reference. NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list. OFFSET: Optional. If supplied, it is be added to the initial address. LOOP: Specify relative to which loop-nest should the address be computed. For example, when the dataref is in an inner-loop nested in an outer-loop that is now being vectorized, LOOP can be either the outer-loop, or the inner-loop. The first memory location accessed by the following dataref ('in' points to short): for (i=0; ibase_address); tree base_offset = unshare_expr (drb->offset); tree init = unshare_expr (drb->init); if (loop_vinfo) base_name = get_name (data_ref_base); else { base_offset = ssize_int (0); init = ssize_int (0); base_name = get_name (DR_REF (dr)); } /* Create base_offset */ base_offset = size_binop (PLUS_EXPR, fold_convert (sizetype, base_offset), fold_convert (sizetype, init)); if (offset) { offset = fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, offset), step); base_offset = fold_build2 (PLUS_EXPR, sizetype, base_offset, offset); } if (byte_offset) { byte_offset = fold_convert (sizetype, byte_offset); base_offset = fold_build2 (PLUS_EXPR, sizetype, base_offset, byte_offset); } /* base + base_offset */ if (loop_vinfo) addr_base = fold_build_pointer_plus (data_ref_base, base_offset); else { addr_base = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (DR_REF (dr))), unshare_expr (DR_REF (dr))); } vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info)); dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name); addr_base = force_gimple_operand (addr_base, &seq, true, dest); gimple_seq_add_seq (new_stmt_list, seq); if (DR_PTR_INFO (dr) && TREE_CODE (addr_base) == SSA_NAME && !SSA_NAME_PTR_INFO (addr_base)) { vect_duplicate_ssa_name_ptr_info (addr_base, dr); if (offset || byte_offset) mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr_base)); } if (dump_enabled_p ()) { dump_printf_loc (MSG_NOTE, vect_location, "created "); dump_generic_expr (MSG_NOTE, TDF_SLIM, addr_base); dump_printf (MSG_NOTE, "\n"); } return addr_base; } /* Function vect_create_data_ref_ptr. Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first location accessed in the loop by STMT, along with the def-use update chain to appropriately advance the pointer through the loop iterations. Also set aliasing information for the pointer. This pointer is used by the callers to this function to create a memory reference expression for vector load/store access. Input: 1. STMT: a stmt that references memory. Expected to be of the form GIMPLE_ASSIGN or GIMPLE_ASSIGN . 2. AGGR_TYPE: the type of the reference, which should be either a vector or an array. 3. AT_LOOP: the loop where the vector memref is to be created. 4. OFFSET (optional): an offset to be added to the initial address accessed by the data-ref in STMT. 5. BSI: location where the new stmts are to be placed if there is no loop 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain pointing to the initial address. 7. BYTE_OFFSET (optional, defaults to NULL): a byte offset to be added to the initial address accessed by the data-ref in STMT. This is similar to OFFSET, but OFFSET is counted in elements, while BYTE_OFFSET in bytes. 8. IV_STEP (optional, defaults to NULL): the amount that should be added to the IV during each iteration of the loop. NULL says to move by one copy of AGGR_TYPE up or down, depending on the step of the data reference. Output: 1. Declare a new ptr to vector_type, and have it point to the base of the data reference (initial addressed accessed by the data reference). For example, for vector of type V8HI, the following code is generated: v8hi *ap; ap = (v8hi *)initial_address; if OFFSET is not supplied: initial_address = &a[init]; if OFFSET is supplied: initial_address = &a[init + OFFSET]; if BYTE_OFFSET is supplied: initial_address = &a[init] + BYTE_OFFSET; Return the initial_address in INITIAL_ADDRESS. 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also update the pointer in each iteration of the loop. Return the increment stmt that updates the pointer in PTR_INCR. 3. Set INV_P to true if the access pattern of the data reference in the vectorized loop is invariant. Set it to false otherwise. 4. Return the pointer. */ tree vect_create_data_ref_ptr (gimple *stmt, tree aggr_type, struct loop *at_loop, tree offset, tree *initial_address, gimple_stmt_iterator *gsi, gimple **ptr_incr, bool only_init, bool *inv_p, tree byte_offset, tree iv_step) { const char *base_name; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); struct loop *loop = NULL; bool nested_in_vect_loop = false; struct loop *containing_loop = NULL; tree aggr_ptr_type; tree aggr_ptr; tree new_temp; gimple_seq new_stmt_list = NULL; edge pe = NULL; basic_block new_bb; tree aggr_ptr_init; struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info); tree aptr; gimple_stmt_iterator incr_gsi; bool insert_after; tree indx_before_incr, indx_after_incr; gimple *incr; tree step; bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info); gcc_assert (iv_step != NULL_TREE || TREE_CODE (aggr_type) == ARRAY_TYPE || TREE_CODE (aggr_type) == VECTOR_TYPE); if (loop_vinfo) { loop = LOOP_VINFO_LOOP (loop_vinfo); nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt); containing_loop = (gimple_bb (stmt))->loop_father; pe = loop_preheader_edge (loop); } else { gcc_assert (bb_vinfo); only_init = true; *ptr_incr = NULL; } /* Check the step (evolution) of the load in LOOP, and record whether it's invariant. */ step = vect_dr_behavior (dr)->step; if (integer_zerop (step)) *inv_p = true; else *inv_p = false; /* Create an expression for the first address accessed by this load in LOOP. */ base_name = get_name (DR_BASE_ADDRESS (dr)); if (dump_enabled_p ()) { tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr)); dump_printf_loc (MSG_NOTE, vect_location, "create %s-pointer variable to type: ", get_tree_code_name (TREE_CODE (aggr_type))); dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type); if (TREE_CODE (dr_base_type) == ARRAY_TYPE) dump_printf (MSG_NOTE, " vectorizing an array ref: "); else if (TREE_CODE (dr_base_type) == VECTOR_TYPE) dump_printf (MSG_NOTE, " vectorizing a vector ref: "); else if (TREE_CODE (dr_base_type) == RECORD_TYPE) dump_printf (MSG_NOTE, " vectorizing a record based array ref: "); else dump_printf (MSG_NOTE, " vectorizing a pointer ref: "); dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr)); dump_printf (MSG_NOTE, "\n"); } /* (1) Create the new aggregate-pointer variable. Vector and array types inherit the alias set of their component type by default so we need to use a ref-all pointer if the data reference does not conflict with the created aggregated data reference because it is not addressable. */ bool need_ref_all = false; if (!alias_sets_conflict_p (get_alias_set (aggr_type), get_alias_set (DR_REF (dr)))) need_ref_all = true; /* Likewise for any of the data references in the stmt group. */ else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1) { gimple *orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info); do { stmt_vec_info sinfo = vinfo_for_stmt (orig_stmt); struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo); if (!alias_sets_conflict_p (get_alias_set (aggr_type), get_alias_set (DR_REF (sdr)))) { need_ref_all = true; break; } orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (sinfo); } while (orig_stmt); } aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode, need_ref_all); aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name); /* Note: If the dataref is in an inner-loop nested in LOOP, and we are vectorizing LOOP (i.e., outer-loop vectorization), we need to create two def-use update cycles for the pointer: one relative to the outer-loop (LOOP), which is what steps (3) and (4) below do. The other is relative to the inner-loop (which is the inner-most loop containing the dataref), and this is done be step (5) below. When vectorizing inner-most loops, the vectorized loop (LOOP) is also the inner-most loop, and so steps (3),(4) work the same, and step (5) is redundant. Steps (3),(4) create the following: vp0 = &base_addr; LOOP: vp1 = phi(vp0,vp2) ... ... vp2 = vp1 + step goto LOOP If there is an inner-loop nested in loop, then step (5) will also be applied, and an additional update in the inner-loop will be created: vp0 = &base_addr; LOOP: vp1 = phi(vp0,vp2) ... inner: vp3 = phi(vp1,vp4) vp4 = vp3 + inner_step if () goto inner ... vp2 = vp1 + step if () goto LOOP */ /* (2) Calculate the initial address of the aggregate-pointer, and set the aggregate-pointer to point to it before the loop. */ /* Create: (&(base[init_val+offset]+byte_offset) in the loop preheader. */ new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list, offset, byte_offset); if (new_stmt_list) { if (pe) { new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list); gcc_assert (!new_bb); } else gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT); } *initial_address = new_temp; aggr_ptr_init = new_temp; /* (3) Handle the updating of the aggregate-pointer inside the loop. This is needed when ONLY_INIT is false, and also when AT_LOOP is the inner-loop nested in LOOP (during outer-loop vectorization). */ /* No update in loop is required. */ if (only_init && (!loop_vinfo || at_loop == loop)) aptr = aggr_ptr_init; else { if (iv_step == NULL_TREE) { /* The step of the aggregate pointer is the type size. */ iv_step = TYPE_SIZE_UNIT (aggr_type); /* One exception to the above is when the scalar step of the load in LOOP is zero. In this case the step here is also zero. */ if (*inv_p) iv_step = size_zero_node; else if (tree_int_cst_sgn (step) == -1) iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step); } standard_iv_increment_position (loop, &incr_gsi, &insert_after); create_iv (aggr_ptr_init, fold_convert (aggr_ptr_type, iv_step), aggr_ptr, loop, &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr); incr = gsi_stmt (incr_gsi); set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo)); /* Copy the points-to information if it exists. */ if (DR_PTR_INFO (dr)) { vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr); vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr); } if (ptr_incr) *ptr_incr = incr; aptr = indx_before_incr; } if (!nested_in_vect_loop || only_init) return aptr; /* (4) Handle the updating of the aggregate-pointer inside the inner-loop nested in LOOP, if exists. */ gcc_assert (nested_in_vect_loop); if (!only_init) { standard_iv_increment_position (containing_loop, &incr_gsi, &insert_after); create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr, containing_loop, &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr); incr = gsi_stmt (incr_gsi); set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo)); /* Copy the points-to information if it exists. */ if (DR_PTR_INFO (dr)) { vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr); vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr); } if (ptr_incr) *ptr_incr = incr; return indx_before_incr; } else gcc_unreachable (); } /* Function bump_vector_ptr Increment a pointer (to a vector type) by vector-size. If requested, i.e. if PTR-INCR is given, then also connect the new increment stmt to the existing def-use update-chain of the pointer, by modifying the PTR_INCR as illustrated below: The pointer def-use update-chain before this function: DATAREF_PTR = phi (p_0, p_2) .... PTR_INCR: p_2 = DATAREF_PTR + step The pointer def-use update-chain after this function: DATAREF_PTR = phi (p_0, p_2) .... NEW_DATAREF_PTR = DATAREF_PTR + BUMP .... PTR_INCR: p_2 = NEW_DATAREF_PTR + step Input: DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated in the loop. PTR_INCR - optional. The stmt that updates the pointer in each iteration of the loop. The increment amount across iterations is expected to be vector_size. BSI - location where the new update stmt is to be placed. STMT - the original scalar memory-access stmt that is being vectorized. BUMP - optional. The offset by which to bump the pointer. If not given, the offset is assumed to be vector_size. Output: Return NEW_DATAREF_PTR as illustrated above. */ tree bump_vector_ptr (tree dataref_ptr, gimple *ptr_incr, gimple_stmt_iterator *gsi, gimple *stmt, tree bump) { stmt_vec_info stmt_info = vinfo_for_stmt (stmt); struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info); tree vectype = STMT_VINFO_VECTYPE (stmt_info); tree update = TYPE_SIZE_UNIT (vectype); gassign *incr_stmt; ssa_op_iter iter; use_operand_p use_p; tree new_dataref_ptr; if (bump) update = bump; if (TREE_CODE (dataref_ptr) == SSA_NAME) new_dataref_ptr = copy_ssa_name (dataref_ptr); else new_dataref_ptr = make_ssa_name (TREE_TYPE (dataref_ptr)); incr_stmt = gimple_build_assign (new_dataref_ptr, POINTER_PLUS_EXPR, dataref_ptr, update); vect_finish_stmt_generation (stmt, incr_stmt, gsi); /* Copy the points-to information if it exists. */ if (DR_PTR_INFO (dr)) { duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr)); mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr)); } if (!ptr_incr) return new_dataref_ptr; /* Update the vector-pointer's cross-iteration increment. */ FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE) { tree use = USE_FROM_PTR (use_p); if (use == dataref_ptr) SET_USE (use_p, new_dataref_ptr); else gcc_assert (operand_equal_p (use, update, 0)); } return new_dataref_ptr; } /* Function vect_create_destination_var. Create a new temporary of type VECTYPE. */ tree vect_create_destination_var (tree scalar_dest, tree vectype) { tree vec_dest; const char *name; char *new_name; tree type; enum vect_var_kind kind; kind = vectype ? VECTOR_BOOLEAN_TYPE_P (vectype) ? vect_mask_var : vect_simple_var : vect_scalar_var; type = vectype ? vectype : TREE_TYPE (scalar_dest); gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME); name = get_name (scalar_dest); if (name) new_name = xasprintf ("%s_%u", name, SSA_NAME_VERSION (scalar_dest)); else new_name = xasprintf ("_%u", SSA_NAME_VERSION (scalar_dest)); vec_dest = vect_get_new_vect_var (type, kind, new_name); free (new_name); return vec_dest; } /* Function vect_grouped_store_supported. Returns TRUE if interleave high and interleave low permutations are supported, and FALSE otherwise. */ bool vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count) { machine_mode mode = TYPE_MODE (vectype); /* vect_permute_store_chain requires the group size to be equal to 3 or be a power of two. */ if (count != 3 && exact_log2 (count) == -1) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "the size of the group of accesses" " is not a power of 2 or not eqaul to 3\n"); return false; } /* Check that the permutation is supported. */ if (VECTOR_MODE_P (mode)) { unsigned int i; if (count == 3) { unsigned int j0 = 0, j1 = 0, j2 = 0; unsigned int i, j; unsigned int nelt; if (!GET_MODE_NUNITS (mode).is_constant (&nelt)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "cannot handle groups of 3 stores for" " variable-length vectors\n"); return false; } vec_perm_builder sel (nelt, nelt, 1); sel.quick_grow (nelt); vec_perm_indices indices; for (j = 0; j < 3; j++) { int nelt0 = ((3 - j) * nelt) % 3; int nelt1 = ((3 - j) * nelt + 1) % 3; int nelt2 = ((3 - j) * nelt + 2) % 3; for (i = 0; i < nelt; i++) { if (3 * i + nelt0 < nelt) sel[3 * i + nelt0] = j0++; if (3 * i + nelt1 < nelt) sel[3 * i + nelt1] = nelt + j1++; if (3 * i + nelt2 < nelt) sel[3 * i + nelt2] = 0; } indices.new_vector (sel, 2, nelt); if (!can_vec_perm_const_p (mode, indices)) { if (dump_enabled_p ()) dump_printf (MSG_MISSED_OPTIMIZATION, "permutation op not supported by target.\n"); return false; } for (i = 0; i < nelt; i++) { if (3 * i + nelt0 < nelt) sel[3 * i + nelt0] = 3 * i + nelt0; if (3 * i + nelt1 < nelt) sel[3 * i + nelt1] = 3 * i + nelt1; if (3 * i + nelt2 < nelt) sel[3 * i + nelt2] = nelt + j2++; } indices.new_vector (sel, 2, nelt); if (!can_vec_perm_const_p (mode, indices)) { if (dump_enabled_p ()) dump_printf (MSG_MISSED_OPTIMIZATION, "permutation op not supported by target.\n"); return false; } } return true; } else { /* If length is not equal to 3 then only power of 2 is supported. */ gcc_assert (pow2p_hwi (count)); poly_uint64 nelt = GET_MODE_NUNITS (mode); /* The encoding has 2 interleaved stepped patterns. */ vec_perm_builder sel (nelt, 2, 3); sel.quick_grow (6); for (i = 0; i < 3; i++) { sel[i * 2] = i; sel[i * 2 + 1] = i + nelt; } vec_perm_indices indices (sel, 2, nelt); if (can_vec_perm_const_p (mode, indices)) { for (i = 0; i < 6; i++) sel[i] += exact_div (nelt, 2); indices.new_vector (sel, 2, nelt); if (can_vec_perm_const_p (mode, indices)) return true; } } } if (dump_enabled_p ()) dump_printf (MSG_MISSED_OPTIMIZATION, "permutaion op not supported by target.\n"); return false; } /* Return TRUE if vec_{mask_}store_lanes is available for COUNT vectors of type VECTYPE. MASKED_P says whether the masked form is needed. */ bool vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count, bool masked_p) { if (masked_p) return vect_lanes_optab_supported_p ("vec_mask_store_lanes", vec_mask_store_lanes_optab, vectype, count); else return vect_lanes_optab_supported_p ("vec_store_lanes", vec_store_lanes_optab, vectype, count); } /* Function vect_permute_store_chain. Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be a power of 2 or equal to 3, generate interleave_high/low stmts to reorder the data correctly for the stores. Return the final references for stores in RESULT_CHAIN. E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8. The input is 4 vectors each containing 8 elements. We assign a number to each element, the input sequence is: 1st vec: 0 1 2 3 4 5 6 7 2nd vec: 8 9 10 11 12 13 14 15 3rd vec: 16 17 18 19 20 21 22 23 4th vec: 24 25 26 27 28 29 30 31 The output sequence should be: 1st vec: 0 8 16 24 1 9 17 25 2nd vec: 2 10 18 26 3 11 19 27 3rd vec: 4 12 20 28 5 13 21 30 4th vec: 6 14 22 30 7 15 23 31 i.e., we interleave the contents of the four vectors in their order. We use interleave_high/low instructions to create such output. The input of each interleave_high/low operation is two vectors: 1st vec 2nd vec 0 1 2 3 4 5 6 7 the even elements of the result vector are obtained left-to-right from the high/low elements of the first vector. The odd elements of the result are obtained left-to-right from the high/low elements of the second vector. The output of interleave_high will be: 0 4 1 5 and of interleave_low: 2 6 3 7 The permutation is done in log LENGTH stages. In each stage interleave_high and interleave_low stmts are created for each pair of vectors in DR_CHAIN, where the first argument is taken from the first half of DR_CHAIN and the second argument from it's second half. In our example, I1: interleave_high (1st vec, 3rd vec) I2: interleave_low (1st vec, 3rd vec) I3: interleave_high (2nd vec, 4th vec) I4: interleave_low (2nd vec, 4th vec) The output for the first stage is: I1: 0 16 1 17 2 18 3 19 I2: 4 20 5 21 6 22 7 23 I3: 8 24 9 25 10 26 11 27 I4: 12 28 13 29 14 30 15 31 The output of the second stage, i.e. the final result is: I1: 0 8 16 24 1 9 17 25 I2: 2 10 18 26 3 11 19 27 I3: 4 12 20 28 5 13 21 30 I4: 6 14 22 30 7 15 23 31. */ void vect_permute_store_chain (vec dr_chain, unsigned int length, gimple *stmt, gimple_stmt_iterator *gsi, vec *result_chain) { tree vect1, vect2, high, low; gimple *perm_stmt; tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt)); tree perm_mask_low, perm_mask_high; tree data_ref; tree perm3_mask_low, perm3_mask_high; unsigned int i, j, n, log_length = exact_log2 (length); result_chain->quick_grow (length); memcpy (result_chain->address (), dr_chain.address (), length * sizeof (tree)); if (length == 3) { /* vect_grouped_store_supported ensures that this is constant. */ unsigned int nelt = TYPE_VECTOR_SUBPARTS (vectype).to_constant (); unsigned int j0 = 0, j1 = 0, j2 = 0; vec_perm_builder sel (nelt, nelt, 1); sel.quick_grow (nelt); vec_perm_indices indices; for (j = 0; j < 3; j++) { int nelt0 = ((3 - j) * nelt) % 3; int nelt1 = ((3 - j) * nelt + 1) % 3; int nelt2 = ((3 - j) * nelt + 2) % 3; for (i = 0; i < nelt; i++) { if (3 * i + nelt0 < nelt) sel[3 * i + nelt0] = j0++; if (3 * i + nelt1 < nelt) sel[3 * i + nelt1] = nelt + j1++; if (3 * i + nelt2 < nelt) sel[3 * i + nelt2] = 0; } indices.new_vector (sel, 2, nelt); perm3_mask_low = vect_gen_perm_mask_checked (vectype, indices); for (i = 0; i < nelt; i++) { if (3 * i + nelt0 < nelt) sel[3 * i + nelt0] = 3 * i + nelt0; if (3 * i + nelt1 < nelt) sel[3 * i + nelt1] = 3 * i + nelt1; if (3 * i + nelt2 < nelt) sel[3 * i + nelt2] = nelt + j2++; } indices.new_vector (sel, 2, nelt); perm3_mask_high = vect_gen_perm_mask_checked (vectype, indices); vect1 = dr_chain[0]; vect2 = dr_chain[1]; /* Create interleaving stmt: low = VEC_PERM_EXPR */ data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low"); perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1, vect2, perm3_mask_low); vect_finish_stmt_generation (stmt, perm_stmt, gsi); vect1 = data_ref; vect2 = dr_chain[2]; /* Create interleaving stmt: low = VEC_PERM_EXPR */ data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high"); perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1, vect2, perm3_mask_high); vect_finish_stmt_generation (stmt, perm_stmt, gsi); (*result_chain)[j] = data_ref; } } else { /* If length is not equal to 3 then only power of 2 is supported. */ gcc_assert (pow2p_hwi (length)); /* The encoding has 2 interleaved stepped patterns. */ poly_uint64 nelt = TYPE_VECTOR_SUBPARTS (vectype); vec_perm_builder sel (nelt, 2, 3); sel.quick_grow (6); for (i = 0; i < 3; i++) { sel[i * 2] = i; sel[i * 2 + 1] = i + nelt; } vec_perm_indices indices (sel, 2, nelt); perm_mask_high = vect_gen_perm_mask_checked (vectype, indices); for (i = 0; i < 6; i++) sel[i] += exact_div (nelt, 2); indices.new_vector (sel, 2, nelt); perm_mask_low = vect_gen_perm_mask_checked (vectype, indices); for (i = 0, n = log_length; i < n; i++) { for (j = 0; j < length/2; j++) { vect1 = dr_chain[j]; vect2 = dr_chain[j+length/2]; /* Create interleaving stmt: high = VEC_PERM_EXPR */ high = make_temp_ssa_name (vectype, NULL, "vect_inter_high"); perm_stmt = gimple_build_assign (high, VEC_PERM_EXPR, vect1, vect2, perm_mask_high); vect_finish_stmt_generation (stmt, perm_stmt, gsi); (*result_chain)[2*j] = high; /* Create interleaving stmt: low = VEC_PERM_EXPR */ low = make_temp_ssa_name (vectype, NULL, "vect_inter_low"); perm_stmt = gimple_build_assign (low, VEC_PERM_EXPR, vect1, vect2, perm_mask_low); vect_finish_stmt_generation (stmt, perm_stmt, gsi); (*result_chain)[2*j+1] = low; } memcpy (dr_chain.address (), result_chain->address (), length * sizeof (tree)); } } } /* Function vect_setup_realignment This function is called when vectorizing an unaligned load using the dr_explicit_realign[_optimized] scheme. This function generates the following code at the loop prolog: p = initial_addr; x msq_init = *(floor(p)); # prolog load realignment_token = call target_builtin; loop: x msq = phi (msq_init, ---) The stmts marked with x are generated only for the case of dr_explicit_realign_optimized. The code above sets up a new (vector) pointer, pointing to the first location accessed by STMT, and a "floor-aligned" load using that pointer. It also generates code to compute the "realignment-token" (if the relevant target hook was defined), and creates a phi-node at the loop-header bb whose arguments are the result of the prolog-load (created by this function) and the result of a load that takes place in the loop (to be created by the caller to this function). For the case of dr_explicit_realign_optimized: The caller to this function uses the phi-result (msq) to create the realignment code inside the loop, and sets up the missing phi argument, as follows: loop: msq = phi (msq_init, lsq) lsq = *(floor(p')); # load in loop result = realign_load (msq, lsq, realignment_token); For the case of dr_explicit_realign: loop: msq = *(floor(p)); # load in loop p' = p + (VS-1); lsq = *(floor(p')); # load in loop result = realign_load (msq, lsq, realignment_token); Input: STMT - (scalar) load stmt to be vectorized. This load accesses a memory location that may be unaligned. BSI - place where new code is to be inserted. ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes is used. Output: REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load target hook, if defined. Return value - the result of the loop-header phi node. */ tree vect_setup_realignment (gimple *stmt, gimple_stmt_iterator *gsi, tree *realignment_token, enum dr_alignment_support alignment_support_scheme, tree init_addr, struct loop **at_loop) { stmt_vec_info stmt_info = vinfo_for_stmt (stmt); tree vectype = STMT_VINFO_VECTYPE (stmt_info); loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info); struct loop *loop = NULL; edge pe = NULL; tree scalar_dest = gimple_assign_lhs (stmt); tree vec_dest; gimple *inc; tree ptr; tree data_ref; basic_block new_bb; tree msq_init = NULL_TREE; tree new_temp; gphi *phi_stmt; tree msq = NULL_TREE; gimple_seq stmts = NULL; bool inv_p; bool compute_in_loop = false; bool nested_in_vect_loop = false; struct loop *containing_loop = (gimple_bb (stmt))->loop_father; struct loop *loop_for_initial_load = NULL; if (loop_vinfo) { loop = LOOP_VINFO_LOOP (loop_vinfo); nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt); } gcc_assert (alignment_support_scheme == dr_explicit_realign || alignment_support_scheme == dr_explicit_realign_optimized); /* We need to generate three things: 1. the misalignment computation 2. the extra vector load (for the optimized realignment scheme). 3. the phi node for the two vectors from which the realignment is done (for the optimized realignment scheme). */ /* 1. Determine where to generate the misalignment computation. If INIT_ADDR is NULL_TREE, this indicates that the misalignment calculation will be generated by this function, outside the loop (in the preheader). Otherwise, INIT_ADDR had already been computed for us by the caller, inside the loop. Background: If the misalignment remains fixed throughout the iterations of the loop, then both realignment schemes are applicable, and also the misalignment computation can be done outside LOOP. This is because we are vectorizing LOOP, and so the memory accesses in LOOP advance in steps that are a multiple of VS (the Vector Size), and therefore the misalignment in different vectorized LOOP iterations is always the same. The problem arises only if the memory access is in an inner-loop nested inside LOOP, which is now being vectorized using outer-loop vectorization. This is the only case when the misalignment of the memory access may not remain fixed throughout the iterations of the inner-loop (as explained in detail in vect_supportable_dr_alignment). In this case, not only is the optimized realignment scheme not applicable, but also the misalignment computation (and generation of the realignment token that is passed to REALIGN_LOAD) have to be done inside the loop. In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode or not, which in turn determines if the misalignment is computed inside the inner-loop, or outside LOOP. */ if (init_addr != NULL_TREE || !loop_vinfo) { compute_in_loop = true; gcc_assert (alignment_support_scheme == dr_explicit_realign); } /* 2. Determine where to generate the extra vector load. For the optimized realignment scheme, instead of generating two vector loads in each iteration, we generate a single extra vector load in the preheader of the loop, and in each iteration reuse the result of the vector load from the previous iteration. In case the memory access is in an inner-loop nested inside LOOP, which is now being vectorized using outer-loop vectorization, we need to determine whether this initial vector load should be generated at the preheader of the inner-loop, or can be generated at the preheader of LOOP. If the memory access has no evolution in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has to be generated inside LOOP (in the preheader of the inner-loop). */ if (nested_in_vect_loop) { tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info); bool invariant_in_outerloop = (tree_int_cst_compare (outerloop_step, size_zero_node) == 0); loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner); } else loop_for_initial_load = loop; if (at_loop) *at_loop = loop_for_initial_load; if (loop_for_initial_load) pe = loop_preheader_edge (loop_for_initial_load); /* 3. For the case of the optimized realignment, create the first vector load at the loop preheader. */ if (alignment_support_scheme == dr_explicit_realign_optimized) { /* Create msq_init = *(floor(p1)) in the loop preheader */ gassign *new_stmt; gcc_assert (!compute_in_loop); vec_dest = vect_create_destination_var (scalar_dest, vectype); ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load, NULL_TREE, &init_addr, NULL, &inc, true, &inv_p); if (TREE_CODE (ptr) == SSA_NAME) new_temp = copy_ssa_name (ptr); else new_temp = make_ssa_name (TREE_TYPE (ptr)); unsigned int align = DR_TARGET_ALIGNMENT (dr); new_stmt = gimple_build_assign (new_temp, BIT_AND_EXPR, ptr, build_int_cst (TREE_TYPE (ptr), -(HOST_WIDE_INT) align)); new_bb = gsi_insert_on_edge_immediate (pe, new_stmt); gcc_assert (!new_bb); data_ref = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp, build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0)); new_stmt = gimple_build_assign (vec_dest, data_ref); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_assign_set_lhs (new_stmt, new_temp); if (pe) { new_bb = gsi_insert_on_edge_immediate (pe, new_stmt); gcc_assert (!new_bb); } else gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); msq_init = gimple_assign_lhs (new_stmt); } /* 4. Create realignment token using a target builtin, if available. It is done either inside the containing loop, or before LOOP (as determined above). */ if (targetm.vectorize.builtin_mask_for_load) { gcall *new_stmt; tree builtin_decl; /* Compute INIT_ADDR - the initial addressed accessed by this memref. */ if (!init_addr) { /* Generate the INIT_ADDR computation outside LOOP. */ init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts, NULL_TREE); if (loop) { pe = loop_preheader_edge (loop); new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts); gcc_assert (!new_bb); } else gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); } builtin_decl = targetm.vectorize.builtin_mask_for_load (); new_stmt = gimple_build_call (builtin_decl, 1, init_addr); vec_dest = vect_create_destination_var (scalar_dest, gimple_call_return_type (new_stmt)); new_temp = make_ssa_name (vec_dest, new_stmt); gimple_call_set_lhs (new_stmt, new_temp); if (compute_in_loop) gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); else { /* Generate the misalignment computation outside LOOP. */ pe = loop_preheader_edge (loop); new_bb = gsi_insert_on_edge_immediate (pe, new_stmt); gcc_assert (!new_bb); } *realignment_token = gimple_call_lhs (new_stmt); /* The result of the CALL_EXPR to this builtin is determined from the value of the parameter and no global variables are touched which makes the builtin a "const" function. Requiring the builtin to have the "const" attribute makes it unnecessary to call mark_call_clobbered. */ gcc_assert (TREE_READONLY (builtin_decl)); } if (alignment_support_scheme == dr_explicit_realign) return msq; gcc_assert (!compute_in_loop); gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized); /* 5. Create msq = phi in loop */ pe = loop_preheader_edge (containing_loop); vec_dest = vect_create_destination_var (scalar_dest, vectype); msq = make_ssa_name (vec_dest); phi_stmt = create_phi_node (msq, containing_loop->header); add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION); return msq; } /* Function vect_grouped_load_supported. COUNT is the size of the load group (the number of statements plus the number of gaps). SINGLE_ELEMENT_P is true if there is actually only one statement, with a gap of COUNT - 1. Returns true if a suitable permute exists. */ bool vect_grouped_load_supported (tree vectype, bool single_element_p, unsigned HOST_WIDE_INT count) { machine_mode mode = TYPE_MODE (vectype); /* If this is single-element interleaving with an element distance that leaves unused vector loads around punt - we at least create very sub-optimal code in that case (and blow up memory, see PR65518). */ if (single_element_p && maybe_gt (count, TYPE_VECTOR_SUBPARTS (vectype))) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "single-element interleaving not supported " "for not adjacent vector loads\n"); return false; } /* vect_permute_load_chain requires the group size to be equal to 3 or be a power of two. */ if (count != 3 && exact_log2 (count) == -1) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "the size of the group of accesses" " is not a power of 2 or not equal to 3\n"); return false; } /* Check that the permutation is supported. */ if (VECTOR_MODE_P (mode)) { unsigned int i, j; if (count == 3) { unsigned int nelt; if (!GET_MODE_NUNITS (mode).is_constant (&nelt)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "cannot handle groups of 3 loads for" " variable-length vectors\n"); return false; } vec_perm_builder sel (nelt, nelt, 1); sel.quick_grow (nelt); vec_perm_indices indices; unsigned int k; for (k = 0; k < 3; k++) { for (i = 0; i < nelt; i++) if (3 * i + k < 2 * nelt) sel[i] = 3 * i + k; else sel[i] = 0; indices.new_vector (sel, 2, nelt); if (!can_vec_perm_const_p (mode, indices)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "shuffle of 3 loads is not supported by" " target\n"); return false; } for (i = 0, j = 0; i < nelt; i++) if (3 * i + k < 2 * nelt) sel[i] = i; else sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++); indices.new_vector (sel, 2, nelt); if (!can_vec_perm_const_p (mode, indices)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "shuffle of 3 loads is not supported by" " target\n"); return false; } } return true; } else { /* If length is not equal to 3 then only power of 2 is supported. */ gcc_assert (pow2p_hwi (count)); poly_uint64 nelt = GET_MODE_NUNITS (mode); /* The encoding has a single stepped pattern. */ vec_perm_builder sel (nelt, 1, 3); sel.quick_grow (3); for (i = 0; i < 3; i++) sel[i] = i * 2; vec_perm_indices indices (sel, 2, nelt); if (can_vec_perm_const_p (mode, indices)) { for (i = 0; i < 3; i++) sel[i] = i * 2 + 1; indices.new_vector (sel, 2, nelt); if (can_vec_perm_const_p (mode, indices)) return true; } } } if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "extract even/odd not supported by target\n"); return false; } /* Return TRUE if vec_{masked_}load_lanes is available for COUNT vectors of type VECTYPE. MASKED_P says whether the masked form is needed. */ bool vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count, bool masked_p) { if (masked_p) return vect_lanes_optab_supported_p ("vec_mask_load_lanes", vec_mask_load_lanes_optab, vectype, count); else return vect_lanes_optab_supported_p ("vec_load_lanes", vec_load_lanes_optab, vectype, count); } /* Function vect_permute_load_chain. Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be a power of 2 or equal to 3, generate extract_even/odd stmts to reorder the input data correctly. Return the final references for loads in RESULT_CHAIN. E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8. The input is 4 vectors each containing 8 elements. We assign a number to each element, the input sequence is: 1st vec: 0 1 2 3 4 5 6 7 2nd vec: 8 9 10 11 12 13 14 15 3rd vec: 16 17 18 19 20 21 22 23 4th vec: 24 25 26 27 28 29 30 31 The output sequence should be: 1st vec: 0 4 8 12 16 20 24 28 2nd vec: 1 5 9 13 17 21 25 29 3rd vec: 2 6 10 14 18 22 26 30 4th vec: 3 7 11 15 19 23 27 31 i.e., the first output vector should contain the first elements of each interleaving group, etc. We use extract_even/odd instructions to create such output. The input of each extract_even/odd operation is two vectors 1st vec 2nd vec 0 1 2 3 4 5 6 7 and the output is the vector of extracted even/odd elements. The output of extract_even will be: 0 2 4 6 and of extract_odd: 1 3 5 7 The permutation is done in log LENGTH stages. In each stage extract_even and extract_odd stmts are created for each pair of vectors in DR_CHAIN in their order. In our example, E1: extract_even (1st vec, 2nd vec) E2: extract_odd (1st vec, 2nd vec) E3: extract_even (3rd vec, 4th vec) E4: extract_odd (3rd vec, 4th vec) The output for the first stage will be: E1: 0 2 4 6 8 10 12 14 E2: 1 3 5 7 9 11 13 15 E3: 16 18 20 22 24 26 28 30 E4: 17 19 21 23 25 27 29 31 In order to proceed and create the correct sequence for the next stage (or for the correct output, if the second stage is the last one, as in our example), we first put the output of extract_even operation and then the output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN). The input for the second stage is: 1st vec (E1): 0 2 4 6 8 10 12 14 2nd vec (E3): 16 18 20 22 24 26 28 30 3rd vec (E2): 1 3 5 7 9 11 13 15 4th vec (E4): 17 19 21 23 25 27 29 31 The output of the second stage: E1: 0 4 8 12 16 20 24 28 E2: 2 6 10 14 18 22 26 30 E3: 1 5 9 13 17 21 25 29 E4: 3 7 11 15 19 23 27 31 And RESULT_CHAIN after reordering: 1st vec (E1): 0 4 8 12 16 20 24 28 2nd vec (E3): 1 5 9 13 17 21 25 29 3rd vec (E2): 2 6 10 14 18 22 26 30 4th vec (E4): 3 7 11 15 19 23 27 31. */ static void vect_permute_load_chain (vec dr_chain, unsigned int length, gimple *stmt, gimple_stmt_iterator *gsi, vec *result_chain) { tree data_ref, first_vect, second_vect; tree perm_mask_even, perm_mask_odd; tree perm3_mask_low, perm3_mask_high; gimple *perm_stmt; tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt)); unsigned int i, j, log_length = exact_log2 (length); result_chain->quick_grow (length); memcpy (result_chain->address (), dr_chain.address (), length * sizeof (tree)); if (length == 3) { /* vect_grouped_load_supported ensures that this is constant. */ unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype).to_constant (); unsigned int k; vec_perm_builder sel (nelt, nelt, 1); sel.quick_grow (nelt); vec_perm_indices indices; for (k = 0; k < 3; k++) { for (i = 0; i < nelt; i++) if (3 * i + k < 2 * nelt) sel[i] = 3 * i + k; else sel[i] = 0; indices.new_vector (sel, 2, nelt); perm3_mask_low = vect_gen_perm_mask_checked (vectype, indices); for (i = 0, j = 0; i < nelt; i++) if (3 * i + k < 2 * nelt) sel[i] = i; else sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++); indices.new_vector (sel, 2, nelt); perm3_mask_high = vect_gen_perm_mask_checked (vectype, indices); first_vect = dr_chain[0]; second_vect = dr_chain[1]; /* Create interleaving stmt (low part of): low = VEC_PERM_EXPR */ data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low"); perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect, second_vect, perm3_mask_low); vect_finish_stmt_generation (stmt, perm_stmt, gsi); /* Create interleaving stmt (high part of): high = VEC_PERM_EXPR */ first_vect = data_ref; second_vect = dr_chain[2]; data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high"); perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect, second_vect, perm3_mask_high); vect_finish_stmt_generation (stmt, perm_stmt, gsi); (*result_chain)[k] = data_ref; } } else { /* If length is not equal to 3 then only power of 2 is supported. */ gcc_assert (pow2p_hwi (length)); /* The encoding has a single stepped pattern. */ poly_uint64 nelt = TYPE_VECTOR_SUBPARTS (vectype); vec_perm_builder sel (nelt, 1, 3); sel.quick_grow (3); for (i = 0; i < 3; ++i) sel[i] = i * 2; vec_perm_indices indices (sel, 2, nelt); perm_mask_even = vect_gen_perm_mask_checked (vectype, indices); for (i = 0; i < 3; ++i) sel[i] = i * 2 + 1; indices.new_vector (sel, 2, nelt); perm_mask_odd = vect_gen_perm_mask_checked (vectype, indices); for (i = 0; i < log_length; i++) { for (j = 0; j < length; j += 2) { first_vect = dr_chain[j]; second_vect = dr_chain[j+1]; /* data_ref = permute_even (first_data_ref, second_data_ref); */ data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even"); perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect, second_vect, perm_mask_even); vect_finish_stmt_generation (stmt, perm_stmt, gsi); (*result_chain)[j/2] = data_ref; /* data_ref = permute_odd (first_data_ref, second_data_ref); */ data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd"); perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect, second_vect, perm_mask_odd); vect_finish_stmt_generation (stmt, perm_stmt, gsi); (*result_chain)[j/2+length/2] = data_ref; } memcpy (dr_chain.address (), result_chain->address (), length * sizeof (tree)); } } } /* Function vect_shift_permute_load_chain. Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate sequence of stmts to reorder the input data accordingly. Return the final references for loads in RESULT_CHAIN. Return true if successed, false otherwise. E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8. The input is 3 vectors each containing 8 elements. We assign a number to each element, the input sequence is: 1st vec: 0 1 2 3 4 5 6 7 2nd vec: 8 9 10 11 12 13 14 15 3rd vec: 16 17 18 19 20 21 22 23 The output sequence should be: 1st vec: 0 3 6 9 12 15 18 21 2nd vec: 1 4 7 10 13 16 19 22 3rd vec: 2 5 8 11 14 17 20 23 We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output. First we shuffle all 3 vectors to get correct elements order: 1st vec: ( 0 3 6) ( 1 4 7) ( 2 5) 2nd vec: ( 8 11 14) ( 9 12 15) (10 13) 3rd vec: (16 19 22) (17 20 23) (18 21) Next we unite and shift vector 3 times: 1st step: shift right by 6 the concatenation of: "1st vec" and "2nd vec" ( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13) "2nd vec" and "3rd vec" ( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21) "3rd vec" and "1st vec" (16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5) | New vectors | So that now new vectors are: 1st vec: ( 2 5) ( 8 11 14) ( 9 12 15) 2nd vec: (10 13) (16 19 22) (17 20 23) 3rd vec: (18 21) ( 0 3 6) ( 1 4 7) 2nd step: shift right by 5 the concatenation of: "1st vec" and "3rd vec" ( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7) "2nd vec" and "1st vec" (10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15) "3rd vec" and "2nd vec" (18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23) | New vectors | So that now new vectors are: 1st vec: ( 9 12 15) (18 21) ( 0 3 6) 2nd vec: (17 20 23) ( 2 5) ( 8 11 14) 3rd vec: ( 1 4 7) (10 13) (16 19 22) READY 3rd step: shift right by 5 the concatenation of: "1st vec" and "1st vec" ( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6) shift right by 3 the concatenation of: "2nd vec" and "2nd vec" (17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14) | New vectors | So that now all vectors are READY: 1st vec: ( 0 3 6) ( 9 12 15) (18 21) 2nd vec: ( 2 5) ( 8 11 14) (17 20 23) 3rd vec: ( 1 4 7) (10 13) (16 19 22) This algorithm is faster than one in vect_permute_load_chain if: 1. "shift of a concatination" is faster than general permutation. This is usually so. 2. The TARGET machine can't execute vector instructions in parallel. This is because each step of the algorithm depends on previous. The algorithm in vect_permute_load_chain is much more parallel. The algorithm is applicable only for LOAD CHAIN LENGTH less than VF. */ static bool vect_shift_permute_load_chain (vec dr_chain, unsigned int length, gimple *stmt, gimple_stmt_iterator *gsi, vec *result_chain) { tree vect[3], vect_shift[3], data_ref, first_vect, second_vect; tree perm2_mask1, perm2_mask2, perm3_mask; tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask; gimple *perm_stmt; tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt)); unsigned int i; stmt_vec_info stmt_info = vinfo_for_stmt (stmt); loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); unsigned HOST_WIDE_INT nelt, vf; if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nelt) || !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf)) /* Not supported for variable-length vectors. */ return false; vec_perm_builder sel (nelt, nelt, 1); sel.quick_grow (nelt); result_chain->quick_grow (length); memcpy (result_chain->address (), dr_chain.address (), length * sizeof (tree)); if (pow2p_hwi (length) && vf > 4) { unsigned int j, log_length = exact_log2 (length); for (i = 0; i < nelt / 2; ++i) sel[i] = i * 2; for (i = 0; i < nelt / 2; ++i) sel[nelt / 2 + i] = i * 2 + 1; vec_perm_indices indices (sel, 2, nelt); if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "shuffle of 2 fields structure is not \ supported by target\n"); return false; } perm2_mask1 = vect_gen_perm_mask_checked (vectype, indices); for (i = 0; i < nelt / 2; ++i) sel[i] = i * 2 + 1; for (i = 0; i < nelt / 2; ++i) sel[nelt / 2 + i] = i * 2; indices.new_vector (sel, 2, nelt); if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "shuffle of 2 fields structure is not \ supported by target\n"); return false; } perm2_mask2 = vect_gen_perm_mask_checked (vectype, indices); /* Generating permutation constant to shift all elements. For vector length 8 it is {4 5 6 7 8 9 10 11}. */ for (i = 0; i < nelt; i++) sel[i] = nelt / 2 + i; indices.new_vector (sel, 2, nelt); if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "shift permutation is not supported by target\n"); return false; } shift1_mask = vect_gen_perm_mask_checked (vectype, indices); /* Generating permutation constant to select vector from 2. For vector length 8 it is {0 1 2 3 12 13 14 15}. */ for (i = 0; i < nelt / 2; i++) sel[i] = i; for (i = nelt / 2; i < nelt; i++) sel[i] = nelt + i; indices.new_vector (sel, 2, nelt); if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "select is not supported by target\n"); return false; } select_mask = vect_gen_perm_mask_checked (vectype, indices); for (i = 0; i < log_length; i++) { for (j = 0; j < length; j += 2) { first_vect = dr_chain[j]; second_vect = dr_chain[j + 1]; data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2"); perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect, first_vect, perm2_mask1); vect_finish_stmt_generation (stmt, perm_stmt, gsi); vect[0] = data_ref; data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2"); perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, second_vect, second_vect, perm2_mask2); vect_finish_stmt_generation (stmt, perm_stmt, gsi); vect[1] = data_ref; data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift"); perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[0], vect[1], shift1_mask); vect_finish_stmt_generation (stmt, perm_stmt, gsi); (*result_chain)[j/2 + length/2] = data_ref; data_ref = make_temp_ssa_name (vectype, NULL, "vect_select"); perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[0], vect[1], select_mask); vect_finish_stmt_generation (stmt, perm_stmt, gsi); (*result_chain)[j/2] = data_ref; } memcpy (dr_chain.address (), result_chain->address (), length * sizeof (tree)); } return true; } if (length == 3 && vf > 2) { unsigned int k = 0, l = 0; /* Generating permutation constant to get all elements in rigth order. For vector length 8 it is {0 3 6 1 4 7 2 5}. */ for (i = 0; i < nelt; i++) { if (3 * k + (l % 3) >= nelt) { k = 0; l += (3 - (nelt % 3)); } sel[i] = 3 * k + (l % 3); k++; } vec_perm_indices indices (sel, 2, nelt); if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "shuffle of 3 fields structure is not \ supported by target\n"); return false; } perm3_mask = vect_gen_perm_mask_checked (vectype, indices); /* Generating permutation constant to shift all elements. For vector length 8 it is {6 7 8 9 10 11 12 13}. */ for (i = 0; i < nelt; i++) sel[i] = 2 * (nelt / 3) + (nelt % 3) + i; indices.new_vector (sel, 2, nelt); if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "shift permutation is not supported by target\n"); return false; } shift1_mask = vect_gen_perm_mask_checked (vectype, indices); /* Generating permutation constant to shift all elements. For vector length 8 it is {5 6 7 8 9 10 11 12}. */ for (i = 0; i < nelt; i++) sel[i] = 2 * (nelt / 3) + 1 + i; indices.new_vector (sel, 2, nelt); if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "shift permutation is not supported by target\n"); return false; } shift2_mask = vect_gen_perm_mask_checked (vectype, indices); /* Generating permutation constant to shift all elements. For vector length 8 it is {3 4 5 6 7 8 9 10}. */ for (i = 0; i < nelt; i++) sel[i] = (nelt / 3) + (nelt % 3) / 2 + i; indices.new_vector (sel, 2, nelt); if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "shift permutation is not supported by target\n"); return false; } shift3_mask = vect_gen_perm_mask_checked (vectype, indices); /* Generating permutation constant to shift all elements. For vector length 8 it is {5 6 7 8 9 10 11 12}. */ for (i = 0; i < nelt; i++) sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i; indices.new_vector (sel, 2, nelt); if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) { if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, "shift permutation is not supported by target\n"); return false; } shift4_mask = vect_gen_perm_mask_checked (vectype, indices); for (k = 0; k < 3; k++) { data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3"); perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, dr_chain[k], dr_chain[k], perm3_mask); vect_finish_stmt_generation (stmt, perm_stmt, gsi); vect[k] = data_ref; } for (k = 0; k < 3; k++) { data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1"); perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[k % 3], vect[(k + 1) % 3], shift1_mask); vect_finish_stmt_generation (stmt, perm_stmt, gsi); vect_shift[k] = data_ref; } for (k = 0; k < 3; k++) { data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2"); perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect_shift[(4 - k) % 3], vect_shift[(3 - k) % 3], shift2_mask); vect_finish_stmt_generation (stmt, perm_stmt, gsi); vect[k] = data_ref; } (*result_chain)[3 - (nelt % 3)] = vect[2]; data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3"); perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[0], vect[0], shift3_mask); vect_finish_stmt_generation (stmt, perm_stmt, gsi); (*result_chain)[nelt % 3] = data_ref; data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4"); perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[1], vect[1], shift4_mask); vect_finish_stmt_generation (stmt, perm_stmt, gsi); (*result_chain)[0] = data_ref; return true; } return false; } /* Function vect_transform_grouped_load. Given a chain of input interleaved data-refs (in DR_CHAIN), build statements to perform their permutation and ascribe the result vectorized statements to the scalar statements. */ void vect_transform_grouped_load (gimple *stmt, vec dr_chain, int size, gimple_stmt_iterator *gsi) { machine_mode mode; vec result_chain = vNULL; /* DR_CHAIN contains input data-refs that are a part of the interleaving. RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted vectors, that are ready for vector computation. */ result_chain.create (size); /* If reassociation width for vector type is 2 or greater target machine can execute 2 or more vector instructions in parallel. Otherwise try to get chain for loads group using vect_shift_permute_load_chain. */ mode = TYPE_MODE (STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt))); if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1 || pow2p_hwi (size) || !vect_shift_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain)) vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain); vect_record_grouped_load_vectors (stmt, result_chain); result_chain.release (); } /* RESULT_CHAIN contains the output of a group of grouped loads that were generated as part of the vectorization of STMT. Assign the statement for each vector to the associated scalar statement. */ void vect_record_grouped_load_vectors (gimple *stmt, vec result_chain) { gimple *first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)); gimple *next_stmt, *new_stmt; unsigned int i, gap_count; tree tmp_data_ref; /* Put a permuted data-ref in the VECTORIZED_STMT field. Since we scan the chain starting from it's first node, their order corresponds the order of data-refs in RESULT_CHAIN. */ next_stmt = first_stmt; gap_count = 1; FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref) { if (!next_stmt) break; /* Skip the gaps. Loads created for the gaps will be removed by dead code elimination pass later. No need to check for the first stmt in the group, since it always exists. GROUP_GAP is the number of steps in elements from the previous access (if there is no gap GROUP_GAP is 1). We skip loads that correspond to the gaps. */ if (next_stmt != first_stmt && gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt))) { gap_count++; continue; } while (next_stmt) { new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref); /* We assume that if VEC_STMT is not NULL, this is a case of multiple copies, and we put the new vector statement in the first available RELATED_STMT. */ if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt))) STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt; else { if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt))) { gimple *prev_stmt = STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)); gimple *rel_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)); while (rel_stmt) { prev_stmt = rel_stmt; rel_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt)); } STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) = new_stmt; } } next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt)); gap_count = 1; /* If NEXT_STMT accesses the same DR as the previous statement, put the same TMP_DATA_REF as its vectorized statement; otherwise get the next data-ref from RESULT_CHAIN. */ if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt))) break; } } } /* Function vect_force_dr_alignment_p. Returns whether the alignment of a DECL can be forced to be aligned on ALIGNMENT bit boundary. */ bool vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment) { if (!VAR_P (decl)) return false; if (decl_in_symtab_p (decl) && !symtab_node::get (decl)->can_increase_alignment_p ()) return false; if (TREE_STATIC (decl)) return (alignment <= MAX_OFILE_ALIGNMENT); else return (alignment <= MAX_STACK_ALIGNMENT); } /* Return whether the data reference DR is supported with respect to its alignment. If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even it is aligned, i.e., check if it is possible to vectorize it with different alignment. */ enum dr_alignment_support vect_supportable_dr_alignment (struct data_reference *dr, bool check_aligned_accesses) { gimple *stmt = DR_STMT (dr); stmt_vec_info stmt_info = vinfo_for_stmt (stmt); tree vectype = STMT_VINFO_VECTYPE (stmt_info); machine_mode mode = TYPE_MODE (vectype); loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); struct loop *vect_loop = NULL; bool nested_in_vect_loop = false; if (aligned_access_p (dr) && !check_aligned_accesses) return dr_aligned; /* For now assume all conditional loads/stores support unaligned access without any special code. */ if (is_gimple_call (stmt) && gimple_call_internal_p (stmt) && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD || gimple_call_internal_fn (stmt) == IFN_MASK_STORE)) return dr_unaligned_supported; if (loop_vinfo) { vect_loop = LOOP_VINFO_LOOP (loop_vinfo); nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt); } /* Possibly unaligned access. */ /* We can choose between using the implicit realignment scheme (generating a misaligned_move stmt) and the explicit realignment scheme (generating aligned loads with a REALIGN_LOAD). There are two variants to the explicit realignment scheme: optimized, and unoptimized. We can optimize the realignment only if the step between consecutive vector loads is equal to the vector size. Since the vector memory accesses advance in steps of VS (Vector Size) in the vectorized loop, it is guaranteed that the misalignment amount remains the same throughout the execution of the vectorized loop. Therefore, we can create the "realignment token" (the permutation mask that is passed to REALIGN_LOAD) at the loop preheader. However, in the case of outer-loop vectorization, when vectorizing a memory access in the inner-loop nested within the LOOP that is now being vectorized, while it is guaranteed that the misalignment of the vectorized memory access will remain the same in different outer-loop iterations, it is *not* guaranteed that is will remain the same throughout the execution of the inner-loop. This is because the inner-loop advances with the original scalar step (and not in steps of VS). If the inner-loop step happens to be a multiple of VS, then the misalignment remains fixed and we can use the optimized realignment scheme. For example: for (i=0; i; vs += va; v1 = v2; } } } */ if (DR_IS_READ (dr)) { bool is_packed = false; tree type = (TREE_TYPE (DR_REF (dr))); if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing && (!targetm.vectorize.builtin_mask_for_load || targetm.vectorize.builtin_mask_for_load ())) { tree vectype = STMT_VINFO_VECTYPE (stmt_info); /* If we are doing SLP then the accesses need not have the same alignment, instead it depends on the SLP group size. */ if (loop_vinfo && STMT_SLP_TYPE (stmt_info) && !multiple_p (LOOP_VINFO_VECT_FACTOR (loop_vinfo) * GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info))), TYPE_VECTOR_SUBPARTS (vectype))) ; else if (!loop_vinfo || (nested_in_vect_loop && maybe_ne (TREE_INT_CST_LOW (DR_STEP (dr)), GET_MODE_SIZE (TYPE_MODE (vectype))))) return dr_explicit_realign; else return dr_explicit_realign_optimized; } if (!known_alignment_for_access_p (dr)) is_packed = not_size_aligned (DR_REF (dr)); if (targetm.vectorize.support_vector_misalignment (mode, type, DR_MISALIGNMENT (dr), is_packed)) /* Can't software pipeline the loads, but can at least do them. */ return dr_unaligned_supported; } else { bool is_packed = false; tree type = (TREE_TYPE (DR_REF (dr))); if (!known_alignment_for_access_p (dr)) is_packed = not_size_aligned (DR_REF (dr)); if (targetm.vectorize.support_vector_misalignment (mode, type, DR_MISALIGNMENT (dr), is_packed)) return dr_unaligned_supported; } /* Unsupported. */ return dr_unaligned_unsupported; }