/* Global, SSA-based optimizations using mathematical identities. Copyright (C) 2005-2023 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* Currently, the only mini-pass in this file tries to CSE reciprocal operations. These are common in sequences such as this one: modulus = sqrt(x*x + y*y + z*z); x = x / modulus; y = y / modulus; z = z / modulus; that can be optimized to modulus = sqrt(x*x + y*y + z*z); rmodulus = 1.0 / modulus; x = x * rmodulus; y = y * rmodulus; z = z * rmodulus; We do this for loop invariant divisors, and with this pass whenever we notice that a division has the same divisor multiple times. Of course, like in PRE, we don't insert a division if a dominator already has one. However, this cannot be done as an extension of PRE for several reasons. First of all, with some experiments it was found out that the transformation is not always useful if there are only two divisions by the same divisor. This is probably because modern processors can pipeline the divisions; on older, in-order processors it should still be effective to optimize two divisions by the same number. We make this a param, and it shall be called N in the remainder of this comment. Second, if trapping math is active, we have less freedom on where to insert divisions: we can only do so in basic blocks that already contain one. (If divisions don't trap, instead, we can insert divisions elsewhere, which will be in blocks that are common dominators of those that have the division). We really don't want to compute the reciprocal unless a division will be found. To do this, we won't insert the division in a basic block that has less than N divisions *post-dominating* it. The algorithm constructs a subset of the dominator tree, holding the blocks containing the divisions and the common dominators to them, and walk it twice. The first walk is in post-order, and it annotates each block with the number of divisions that post-dominate it: this gives information on where divisions can be inserted profitably. The second walk is in pre-order, and it inserts divisions as explained above, and replaces divisions by multiplications. In the best case, the cost of the pass is O(n_statements). In the worst-case, the cost is due to creating the dominator tree subset, with a cost of O(n_basic_blocks ^ 2); however this can only happen for n_statements / n_basic_blocks statements. So, the amortized cost of creating the dominator tree subset is O(n_basic_blocks) and the worst-case cost of the pass is O(n_statements * n_basic_blocks). More practically, the cost will be small because there are few divisions, and they tend to be in the same basic block, so insert_bb is called very few times. If we did this using domwalk.cc, an efficient implementation would have to work on all the variables in a single pass, because we could not work on just a subset of the dominator tree, as we do now, and the cost would also be something like O(n_statements * n_basic_blocks). The data structures would be more complex in order to work on all the variables in a single pass. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "predict.h" #include "alloc-pool.h" #include "tree-pass.h" #include "ssa.h" #include "optabs-tree.h" #include "gimple-pretty-print.h" #include "alias.h" #include "fold-const.h" #include "gimple-iterator.h" #include "gimple-fold.h" #include "gimplify.h" #include "gimplify-me.h" #include "stor-layout.h" #include "tree-cfg.h" #include "tree-dfa.h" #include "tree-ssa.h" #include "builtins.h" #include "internal-fn.h" #include "case-cfn-macros.h" #include "optabs-libfuncs.h" #include "tree-eh.h" #include "targhooks.h" #include "domwalk.h" #include "tree-ssa-math-opts.h" #include "dbgcnt.h" /* This structure represents one basic block that either computes a division, or is a common dominator for basic block that compute a division. */ struct occurrence { /* The basic block represented by this structure. */ basic_block bb = basic_block(); /* If non-NULL, the SSA_NAME holding the definition for a reciprocal inserted in BB. */ tree recip_def = tree(); /* If non-NULL, the SSA_NAME holding the definition for a squared reciprocal inserted in BB. */ tree square_recip_def = tree(); /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that was inserted in BB. */ gimple *recip_def_stmt = nullptr; /* Pointer to a list of "struct occurrence"s for blocks dominated by BB. */ struct occurrence *children = nullptr; /* Pointer to the next "struct occurrence"s in the list of blocks sharing a common dominator. */ struct occurrence *next = nullptr; /* The number of divisions that are in BB before compute_merit. The number of divisions that are in BB or post-dominate it after compute_merit. */ int num_divisions = 0; /* True if the basic block has a division, false if it is a common dominator for basic blocks that do. If it is false and trapping math is active, BB is not a candidate for inserting a reciprocal. */ bool bb_has_division = false; /* Construct a struct occurrence for basic block BB, and whose children list is headed by CHILDREN. */ occurrence (basic_block bb, struct occurrence *children) : bb (bb), children (children) { bb->aux = this; } /* Destroy a struct occurrence and remove it from its basic block. */ ~occurrence () { bb->aux = nullptr; } /* Allocate memory for a struct occurrence from OCC_POOL. */ static void* operator new (size_t); /* Return memory for a struct occurrence to OCC_POOL. */ static void operator delete (void*, size_t); }; static struct { /* Number of 1.0/X ops inserted. */ int rdivs_inserted; /* Number of 1.0/FUNC ops inserted. */ int rfuncs_inserted; } reciprocal_stats; static struct { /* Number of cexpi calls inserted. */ int inserted; /* Number of conversions removed. */ int conv_removed; } sincos_stats; static struct { /* Number of widening multiplication ops inserted. */ int widen_mults_inserted; /* Number of integer multiply-and-accumulate ops inserted. */ int maccs_inserted; /* Number of fp fused multiply-add ops inserted. */ int fmas_inserted; /* Number of divmod calls inserted. */ int divmod_calls_inserted; /* Number of highpart multiplication ops inserted. */ int highpart_mults_inserted; } widen_mul_stats; /* The instance of "struct occurrence" representing the highest interesting block in the dominator tree. */ static struct occurrence *occ_head; /* Allocation pool for getting instances of "struct occurrence". */ static object_allocator *occ_pool; void* occurrence::operator new (size_t n) { gcc_assert (n == sizeof(occurrence)); return occ_pool->allocate_raw (); } void occurrence::operator delete (void *occ, size_t n) { gcc_assert (n == sizeof(occurrence)); occ_pool->remove_raw (occ); } /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a list of "struct occurrence"s, one per basic block, having IDOM as their common dominator. We try to insert NEW_OCC as deep as possible in the tree, and we also insert any other block that is a common dominator for BB and one block already in the tree. */ static void insert_bb (struct occurrence *new_occ, basic_block idom, struct occurrence **p_head) { struct occurrence *occ, **p_occ; for (p_occ = p_head; (occ = *p_occ) != NULL; ) { basic_block bb = new_occ->bb, occ_bb = occ->bb; basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb); if (dom == bb) { /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC from its list. */ *p_occ = occ->next; occ->next = new_occ->children; new_occ->children = occ; /* Try the next block (it may as well be dominated by BB). */ } else if (dom == occ_bb) { /* OCC_BB dominates BB. Tail recurse to look deeper. */ insert_bb (new_occ, dom, &occ->children); return; } else if (dom != idom) { gcc_assert (!dom->aux); /* There is a dominator between IDOM and BB, add it and make two children out of NEW_OCC and OCC. First, remove OCC from its list. */ *p_occ = occ->next; new_occ->next = occ; occ->next = NULL; /* None of the previous blocks has DOM as a dominator: if we tail recursed, we would reexamine them uselessly. Just switch BB with DOM, and go on looking for blocks dominated by DOM. */ new_occ = new occurrence (dom, new_occ); } else { /* Nothing special, go on with the next element. */ p_occ = &occ->next; } } /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */ new_occ->next = *p_head; *p_head = new_occ; } /* Register that we found a division in BB. IMPORTANCE is a measure of how much weighting to give that division. Use IMPORTANCE = 2 to register a single division. If the division is going to be found multiple times use 1 (as it is with squares). */ static inline void register_division_in (basic_block bb, int importance) { struct occurrence *occ; occ = (struct occurrence *) bb->aux; if (!occ) { occ = new occurrence (bb, NULL); insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head); } occ->bb_has_division = true; occ->num_divisions += importance; } /* Compute the number of divisions that postdominate each block in OCC and its children. */ static void compute_merit (struct occurrence *occ) { struct occurrence *occ_child; basic_block dom = occ->bb; for (occ_child = occ->children; occ_child; occ_child = occ_child->next) { basic_block bb; if (occ_child->children) compute_merit (occ_child); if (flag_exceptions) bb = single_noncomplex_succ (dom); else bb = dom; if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb)) occ->num_divisions += occ_child->num_divisions; } } /* Return whether USE_STMT is a floating-point division by DEF. */ static inline bool is_division_by (gimple *use_stmt, tree def) { return is_gimple_assign (use_stmt) && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR && gimple_assign_rhs2 (use_stmt) == def /* Do not recognize x / x as valid division, as we are getting confused later by replacing all immediate uses x in such a stmt. */ && gimple_assign_rhs1 (use_stmt) != def && !stmt_can_throw_internal (cfun, use_stmt); } /* Return TRUE if USE_STMT is a multiplication of DEF by A. */ static inline bool is_mult_by (gimple *use_stmt, tree def, tree a) { if (gimple_code (use_stmt) == GIMPLE_ASSIGN && gimple_assign_rhs_code (use_stmt) == MULT_EXPR) { tree op0 = gimple_assign_rhs1 (use_stmt); tree op1 = gimple_assign_rhs2 (use_stmt); return (op0 == def && op1 == a) || (op0 == a && op1 == def); } return 0; } /* Return whether USE_STMT is DEF * DEF. */ static inline bool is_square_of (gimple *use_stmt, tree def) { return is_mult_by (use_stmt, def, def); } /* Return whether USE_STMT is a floating-point division by DEF * DEF. */ static inline bool is_division_by_square (gimple *use_stmt, tree def) { if (gimple_code (use_stmt) == GIMPLE_ASSIGN && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR && gimple_assign_rhs1 (use_stmt) != gimple_assign_rhs2 (use_stmt) && !stmt_can_throw_internal (cfun, use_stmt)) { tree denominator = gimple_assign_rhs2 (use_stmt); if (TREE_CODE (denominator) == SSA_NAME) return is_square_of (SSA_NAME_DEF_STMT (denominator), def); } return 0; } /* Walk the subset of the dominator tree rooted at OCC, setting the RECIP_DEF field to a definition of 1.0 / DEF that can be used in the given basic block. The field may be left NULL, of course, if it is not possible or profitable to do the optimization. DEF_BSI is an iterator pointing at the statement defining DEF. If RECIP_DEF is set, a dominator already has a computation that can be used. If should_insert_square_recip is set, then this also inserts the square of the reciprocal immediately after the definition of the reciprocal. */ static void insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ, tree def, tree recip_def, tree square_recip_def, int should_insert_square_recip, int threshold) { tree type; gassign *new_stmt, *new_square_stmt; gimple_stmt_iterator gsi; struct occurrence *occ_child; if (!recip_def && (occ->bb_has_division || !flag_trapping_math) /* Divide by two as all divisions are counted twice in the costing loop. */ && occ->num_divisions / 2 >= threshold) { /* Make a variable with the replacement and substitute it. */ type = TREE_TYPE (def); recip_def = create_tmp_reg (type, "reciptmp"); new_stmt = gimple_build_assign (recip_def, RDIV_EXPR, build_one_cst (type), def); if (should_insert_square_recip) { square_recip_def = create_tmp_reg (type, "powmult_reciptmp"); new_square_stmt = gimple_build_assign (square_recip_def, MULT_EXPR, recip_def, recip_def); } if (occ->bb_has_division) { /* Case 1: insert before an existing division. */ gsi = gsi_after_labels (occ->bb); while (!gsi_end_p (gsi) && (!is_division_by (gsi_stmt (gsi), def)) && (!is_division_by_square (gsi_stmt (gsi), def))) gsi_next (&gsi); gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT); if (should_insert_square_recip) gsi_insert_before (&gsi, new_square_stmt, GSI_SAME_STMT); } else if (def_gsi && occ->bb == gsi_bb (*def_gsi)) { /* Case 2: insert right after the definition. Note that this will never happen if the definition statement can throw, because in that case the sole successor of the statement's basic block will dominate all the uses as well. */ gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT); if (should_insert_square_recip) gsi_insert_after (def_gsi, new_square_stmt, GSI_NEW_STMT); } else { /* Case 3: insert in a basic block not containing defs/uses. */ gsi = gsi_after_labels (occ->bb); gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT); if (should_insert_square_recip) gsi_insert_before (&gsi, new_square_stmt, GSI_SAME_STMT); } reciprocal_stats.rdivs_inserted++; occ->recip_def_stmt = new_stmt; } occ->recip_def = recip_def; occ->square_recip_def = square_recip_def; for (occ_child = occ->children; occ_child; occ_child = occ_child->next) insert_reciprocals (def_gsi, occ_child, def, recip_def, square_recip_def, should_insert_square_recip, threshold); } /* Replace occurrences of expr / (x * x) with expr * ((1 / x) * (1 / x)). Take as argument the use for (x * x). */ static inline void replace_reciprocal_squares (use_operand_p use_p) { gimple *use_stmt = USE_STMT (use_p); basic_block bb = gimple_bb (use_stmt); struct occurrence *occ = (struct occurrence *) bb->aux; if (optimize_bb_for_speed_p (bb) && occ->square_recip_def && occ->recip_def) { gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt); gimple_assign_set_rhs_code (use_stmt, MULT_EXPR); gimple_assign_set_rhs2 (use_stmt, occ->square_recip_def); SET_USE (use_p, occ->square_recip_def); fold_stmt_inplace (&gsi); update_stmt (use_stmt); } } /* Replace the division at USE_P with a multiplication by the reciprocal, if possible. */ static inline void replace_reciprocal (use_operand_p use_p) { gimple *use_stmt = USE_STMT (use_p); basic_block bb = gimple_bb (use_stmt); struct occurrence *occ = (struct occurrence *) bb->aux; if (optimize_bb_for_speed_p (bb) && occ->recip_def && use_stmt != occ->recip_def_stmt) { gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt); gimple_assign_set_rhs_code (use_stmt, MULT_EXPR); SET_USE (use_p, occ->recip_def); fold_stmt_inplace (&gsi); update_stmt (use_stmt); } } /* Free OCC and return one more "struct occurrence" to be freed. */ static struct occurrence * free_bb (struct occurrence *occ) { struct occurrence *child, *next; /* First get the two pointers hanging off OCC. */ next = occ->next; child = occ->children; delete occ; /* Now ensure that we don't recurse unless it is necessary. */ if (!child) return next; else { while (next) next = free_bb (next); return child; } } /* Transform sequences like t = sqrt (a) x = 1.0 / t; r1 = x * x; r2 = a * x; into: t = sqrt (a) r1 = 1.0 / a; r2 = t; x = r1 * r2; depending on the uses of x, r1, r2. This removes one multiplication and allows the sqrt and division operations to execute in parallel. DEF_GSI is the gsi of the initial division by sqrt that defines DEF (x in the example above). */ static void optimize_recip_sqrt (gimple_stmt_iterator *def_gsi, tree def) { gimple *use_stmt; imm_use_iterator use_iter; gimple *stmt = gsi_stmt (*def_gsi); tree x = def; tree orig_sqrt_ssa_name = gimple_assign_rhs2 (stmt); tree div_rhs1 = gimple_assign_rhs1 (stmt); if (TREE_CODE (orig_sqrt_ssa_name) != SSA_NAME || TREE_CODE (div_rhs1) != REAL_CST || !real_equal (&TREE_REAL_CST (div_rhs1), &dconst1)) return; gcall *sqrt_stmt = dyn_cast (SSA_NAME_DEF_STMT (orig_sqrt_ssa_name)); if (!sqrt_stmt || !gimple_call_lhs (sqrt_stmt)) return; switch (gimple_call_combined_fn (sqrt_stmt)) { CASE_CFN_SQRT: CASE_CFN_SQRT_FN: break; default: return; } tree a = gimple_call_arg (sqrt_stmt, 0); /* We have 'a' and 'x'. Now analyze the uses of 'x'. */ /* Statements that use x in x * x. */ auto_vec sqr_stmts; /* Statements that use x in a * x. */ auto_vec mult_stmts; bool has_other_use = false; bool mult_on_main_path = false; FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, x) { if (is_gimple_debug (use_stmt)) continue; if (is_square_of (use_stmt, x)) { sqr_stmts.safe_push (use_stmt); if (gimple_bb (use_stmt) == gimple_bb (stmt)) mult_on_main_path = true; } else if (is_mult_by (use_stmt, x, a)) { mult_stmts.safe_push (use_stmt); if (gimple_bb (use_stmt) == gimple_bb (stmt)) mult_on_main_path = true; } else has_other_use = true; } /* In the x * x and a * x cases we just rewire stmt operands or remove multiplications. In the has_other_use case we introduce a multiplication so make sure we don't introduce a multiplication on a path where there was none. */ if (has_other_use && !mult_on_main_path) return; if (sqr_stmts.is_empty () && mult_stmts.is_empty ()) return; /* If x = 1.0 / sqrt (a) has uses other than those optimized here we want to be able to compose it from the sqr and mult cases. */ if (has_other_use && (sqr_stmts.is_empty () || mult_stmts.is_empty ())) return; if (dump_file) { fprintf (dump_file, "Optimizing reciprocal sqrt multiplications of\n"); print_gimple_stmt (dump_file, sqrt_stmt, 0, TDF_NONE); print_gimple_stmt (dump_file, stmt, 0, TDF_NONE); fprintf (dump_file, "\n"); } bool delete_div = !has_other_use; tree sqr_ssa_name = NULL_TREE; if (!sqr_stmts.is_empty ()) { /* r1 = x * x. Transform the original x = 1.0 / t into tmp1 = 1.0 / a r1 = tmp1. */ sqr_ssa_name = make_temp_ssa_name (TREE_TYPE (a), NULL, "recip_sqrt_sqr"); if (dump_file) { fprintf (dump_file, "Replacing original division\n"); print_gimple_stmt (dump_file, stmt, 0, TDF_NONE); fprintf (dump_file, "with new division\n"); } stmt = gimple_build_assign (sqr_ssa_name, gimple_assign_rhs_code (stmt), gimple_assign_rhs1 (stmt), a); gsi_insert_before (def_gsi, stmt, GSI_SAME_STMT); gsi_remove (def_gsi, true); *def_gsi = gsi_for_stmt (stmt); fold_stmt_inplace (def_gsi); update_stmt (stmt); if (dump_file) print_gimple_stmt (dump_file, stmt, 0, TDF_NONE); delete_div = false; gimple *sqr_stmt; unsigned int i; FOR_EACH_VEC_ELT (sqr_stmts, i, sqr_stmt) { gimple_stmt_iterator gsi2 = gsi_for_stmt (sqr_stmt); gimple_assign_set_rhs_from_tree (&gsi2, sqr_ssa_name); update_stmt (sqr_stmt); } } if (!mult_stmts.is_empty ()) { /* r2 = a * x. Transform this into: r2 = t (The original sqrt (a)). */ unsigned int i; gimple *mult_stmt = NULL; FOR_EACH_VEC_ELT (mult_stmts, i, mult_stmt) { gimple_stmt_iterator gsi2 = gsi_for_stmt (mult_stmt); if (dump_file) { fprintf (dump_file, "Replacing squaring multiplication\n"); print_gimple_stmt (dump_file, mult_stmt, 0, TDF_NONE); fprintf (dump_file, "with assignment\n"); } gimple_assign_set_rhs_from_tree (&gsi2, orig_sqrt_ssa_name); fold_stmt_inplace (&gsi2); update_stmt (mult_stmt); if (dump_file) print_gimple_stmt (dump_file, mult_stmt, 0, TDF_NONE); } } if (has_other_use) { /* Using the two temporaries tmp1, tmp2 from above the original x is now: x = tmp1 * tmp2. */ gcc_assert (orig_sqrt_ssa_name); gcc_assert (sqr_ssa_name); gimple *new_stmt = gimple_build_assign (x, MULT_EXPR, orig_sqrt_ssa_name, sqr_ssa_name); gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT); update_stmt (stmt); } else if (delete_div) { /* Remove the original division. */ gimple_stmt_iterator gsi2 = gsi_for_stmt (stmt); gsi_remove (&gsi2, true); release_defs (stmt); } else release_ssa_name (x); } /* Look for floating-point divisions among DEF's uses, and try to replace them by multiplications with the reciprocal. Add as many statements computing the reciprocal as needed. DEF must be a GIMPLE register of a floating-point type. */ static void execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def) { use_operand_p use_p, square_use_p; imm_use_iterator use_iter, square_use_iter; tree square_def; struct occurrence *occ; int count = 0; int threshold; int square_recip_count = 0; int sqrt_recip_count = 0; gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && TREE_CODE (def) == SSA_NAME); threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def))); /* If DEF is a square (x * x), count the number of divisions by x. If there are more divisions by x than by (DEF * DEF), prefer to optimize the reciprocal of x instead of DEF. This improves cases like: def = x * x t0 = a / def t1 = b / def t2 = c / x Reciprocal optimization of x results in 1 division rather than 2 or 3. */ gimple *def_stmt = SSA_NAME_DEF_STMT (def); if (is_gimple_assign (def_stmt) && gimple_assign_rhs_code (def_stmt) == MULT_EXPR && TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME && gimple_assign_rhs1 (def_stmt) == gimple_assign_rhs2 (def_stmt)) { tree op0 = gimple_assign_rhs1 (def_stmt); FOR_EACH_IMM_USE_FAST (use_p, use_iter, op0) { gimple *use_stmt = USE_STMT (use_p); if (is_division_by (use_stmt, op0)) sqrt_recip_count++; } } FOR_EACH_IMM_USE_FAST (use_p, use_iter, def) { gimple *use_stmt = USE_STMT (use_p); if (is_division_by (use_stmt, def)) { register_division_in (gimple_bb (use_stmt), 2); count++; } if (is_square_of (use_stmt, def)) { square_def = gimple_assign_lhs (use_stmt); FOR_EACH_IMM_USE_FAST (square_use_p, square_use_iter, square_def) { gimple *square_use_stmt = USE_STMT (square_use_p); if (is_division_by (square_use_stmt, square_def)) { /* This is executed twice for each division by a square. */ register_division_in (gimple_bb (square_use_stmt), 1); square_recip_count++; } } } } /* Square reciprocals were counted twice above. */ square_recip_count /= 2; /* If it is more profitable to optimize 1 / x, don't optimize 1 / (x * x). */ if (sqrt_recip_count > square_recip_count) goto out; /* Do the expensive part only if we can hope to optimize something. */ if (count + square_recip_count >= threshold && count >= 1) { gimple *use_stmt; for (occ = occ_head; occ; occ = occ->next) { compute_merit (occ); insert_reciprocals (def_gsi, occ, def, NULL, NULL, square_recip_count, threshold); } FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def) { if (is_division_by (use_stmt, def)) { FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter) replace_reciprocal (use_p); } else if (square_recip_count > 0 && is_square_of (use_stmt, def)) { FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter) { /* Find all uses of the square that are divisions and * replace them by multiplications with the inverse. */ imm_use_iterator square_iterator; gimple *powmult_use_stmt = USE_STMT (use_p); tree powmult_def_name = gimple_assign_lhs (powmult_use_stmt); FOR_EACH_IMM_USE_STMT (powmult_use_stmt, square_iterator, powmult_def_name) FOR_EACH_IMM_USE_ON_STMT (square_use_p, square_iterator) { gimple *powmult_use_stmt = USE_STMT (square_use_p); if (is_division_by (powmult_use_stmt, powmult_def_name)) replace_reciprocal_squares (square_use_p); } } } } } out: for (occ = occ_head; occ; ) occ = free_bb (occ); occ_head = NULL; } /* Return an internal function that implements the reciprocal of CALL, or IFN_LAST if there is no such function that the target supports. */ internal_fn internal_fn_reciprocal (gcall *call) { internal_fn ifn; switch (gimple_call_combined_fn (call)) { CASE_CFN_SQRT: CASE_CFN_SQRT_FN: ifn = IFN_RSQRT; break; default: return IFN_LAST; } tree_pair types = direct_internal_fn_types (ifn, call); if (!direct_internal_fn_supported_p (ifn, types, OPTIMIZE_FOR_SPEED)) return IFN_LAST; return ifn; } /* Go through all the floating-point SSA_NAMEs, and call execute_cse_reciprocals_1 on each of them. */ namespace { const pass_data pass_data_cse_reciprocals = { GIMPLE_PASS, /* type */ "recip", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_TREE_RECIP, /* tv_id */ PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_update_ssa, /* todo_flags_finish */ }; class pass_cse_reciprocals : public gimple_opt_pass { public: pass_cse_reciprocals (gcc::context *ctxt) : gimple_opt_pass (pass_data_cse_reciprocals, ctxt) {} /* opt_pass methods: */ bool gate (function *) final override { return optimize && flag_reciprocal_math; } unsigned int execute (function *) final override; }; // class pass_cse_reciprocals unsigned int pass_cse_reciprocals::execute (function *fun) { basic_block bb; tree arg; occ_pool = new object_allocator ("dominators for recip"); memset (&reciprocal_stats, 0, sizeof (reciprocal_stats)); calculate_dominance_info (CDI_DOMINATORS); calculate_dominance_info (CDI_POST_DOMINATORS); if (flag_checking) FOR_EACH_BB_FN (bb, fun) gcc_assert (!bb->aux); for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg)) if (FLOAT_TYPE_P (TREE_TYPE (arg)) && is_gimple_reg (arg)) { tree name = ssa_default_def (fun, arg); if (name) execute_cse_reciprocals_1 (NULL, name); } FOR_EACH_BB_FN (bb, fun) { tree def; for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gphi *phi = gsi.phi (); def = PHI_RESULT (phi); if (! virtual_operand_p (def) && FLOAT_TYPE_P (TREE_TYPE (def))) execute_cse_reciprocals_1 (NULL, def); } for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); if (gimple_has_lhs (stmt) && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL && FLOAT_TYPE_P (TREE_TYPE (def)) && TREE_CODE (def) == SSA_NAME) { execute_cse_reciprocals_1 (&gsi, def); stmt = gsi_stmt (gsi); if (flag_unsafe_math_optimizations && is_gimple_assign (stmt) && gimple_assign_lhs (stmt) == def && !stmt_can_throw_internal (cfun, stmt) && gimple_assign_rhs_code (stmt) == RDIV_EXPR) optimize_recip_sqrt (&gsi, def); } } if (optimize_bb_for_size_p (bb)) continue; /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */ for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); if (is_gimple_assign (stmt) && gimple_assign_rhs_code (stmt) == RDIV_EXPR) { tree arg1 = gimple_assign_rhs2 (stmt); gimple *stmt1; if (TREE_CODE (arg1) != SSA_NAME) continue; stmt1 = SSA_NAME_DEF_STMT (arg1); if (is_gimple_call (stmt1) && gimple_call_lhs (stmt1)) { bool fail; imm_use_iterator ui; use_operand_p use_p; tree fndecl = NULL_TREE; gcall *call = as_a (stmt1); internal_fn ifn = internal_fn_reciprocal (call); if (ifn == IFN_LAST) { fndecl = gimple_call_fndecl (call); if (!fndecl || !fndecl_built_in_p (fndecl, BUILT_IN_MD)) continue; fndecl = targetm.builtin_reciprocal (fndecl); if (!fndecl) continue; } /* Check that all uses of the SSA name are divisions, otherwise replacing the defining statement will do the wrong thing. */ fail = false; FOR_EACH_IMM_USE_FAST (use_p, ui, arg1) { gimple *stmt2 = USE_STMT (use_p); if (is_gimple_debug (stmt2)) continue; if (!is_gimple_assign (stmt2) || gimple_assign_rhs_code (stmt2) != RDIV_EXPR || gimple_assign_rhs1 (stmt2) == arg1 || gimple_assign_rhs2 (stmt2) != arg1) { fail = true; break; } } if (fail) continue; gimple_replace_ssa_lhs (call, arg1); if (gimple_call_internal_p (call) != (ifn != IFN_LAST)) { auto_vec args; for (unsigned int i = 0; i < gimple_call_num_args (call); i++) args.safe_push (gimple_call_arg (call, i)); gcall *stmt2; if (ifn == IFN_LAST) stmt2 = gimple_build_call_vec (fndecl, args); else stmt2 = gimple_build_call_internal_vec (ifn, args); gimple_call_set_lhs (stmt2, arg1); gimple_move_vops (stmt2, call); gimple_call_set_nothrow (stmt2, gimple_call_nothrow_p (call)); gimple_stmt_iterator gsi2 = gsi_for_stmt (call); gsi_replace (&gsi2, stmt2, true); } else { if (ifn == IFN_LAST) gimple_call_set_fndecl (call, fndecl); else gimple_call_set_internal_fn (call, ifn); update_stmt (call); } reciprocal_stats.rfuncs_inserted++; FOR_EACH_IMM_USE_STMT (stmt, ui, arg1) { gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gimple_assign_set_rhs_code (stmt, MULT_EXPR); fold_stmt_inplace (&gsi); update_stmt (stmt); } } } } } statistics_counter_event (fun, "reciprocal divs inserted", reciprocal_stats.rdivs_inserted); statistics_counter_event (fun, "reciprocal functions inserted", reciprocal_stats.rfuncs_inserted); free_dominance_info (CDI_DOMINATORS); free_dominance_info (CDI_POST_DOMINATORS); delete occ_pool; return 0; } } // anon namespace gimple_opt_pass * make_pass_cse_reciprocals (gcc::context *ctxt) { return new pass_cse_reciprocals (ctxt); } /* If NAME is the result of a type conversion, look for other equivalent dominating or dominated conversions, and replace all uses with the earliest dominating name, removing the redundant conversions. Return the prevailing name. */ static tree execute_cse_conv_1 (tree name, bool *cfg_changed) { if (SSA_NAME_IS_DEFAULT_DEF (name) || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name)) return name; gimple *def_stmt = SSA_NAME_DEF_STMT (name); if (!gimple_assign_cast_p (def_stmt)) return name; tree src = gimple_assign_rhs1 (def_stmt); if (TREE_CODE (src) != SSA_NAME) return name; imm_use_iterator use_iter; gimple *use_stmt; /* Find the earliest dominating def. */ FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, src) { if (use_stmt == def_stmt || !gimple_assign_cast_p (use_stmt)) continue; tree lhs = gimple_assign_lhs (use_stmt); if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) || (gimple_assign_rhs1 (use_stmt) != gimple_assign_rhs1 (def_stmt)) || !types_compatible_p (TREE_TYPE (name), TREE_TYPE (lhs))) continue; bool use_dominates; if (gimple_bb (def_stmt) == gimple_bb (use_stmt)) { gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt); while (!gsi_end_p (gsi) && gsi_stmt (gsi) != def_stmt) gsi_next (&gsi); use_dominates = !gsi_end_p (gsi); } else if (dominated_by_p (CDI_DOMINATORS, gimple_bb (use_stmt), gimple_bb (def_stmt))) use_dominates = false; else if (dominated_by_p (CDI_DOMINATORS, gimple_bb (def_stmt), gimple_bb (use_stmt))) use_dominates = true; else continue; if (use_dominates) { std::swap (name, lhs); std::swap (def_stmt, use_stmt); } } /* Now go through all uses of SRC again, replacing the equivalent dominated conversions. We may replace defs that were not dominated by the then-prevailing defs when we first visited them. */ FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, src) { if (use_stmt == def_stmt || !gimple_assign_cast_p (use_stmt)) continue; tree lhs = gimple_assign_lhs (use_stmt); if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) || (gimple_assign_rhs1 (use_stmt) != gimple_assign_rhs1 (def_stmt)) || !types_compatible_p (TREE_TYPE (name), TREE_TYPE (lhs))) continue; basic_block use_bb = gimple_bb (use_stmt); if (gimple_bb (def_stmt) == use_bb || dominated_by_p (CDI_DOMINATORS, use_bb, gimple_bb (def_stmt))) { sincos_stats.conv_removed++; gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt); replace_uses_by (lhs, name); if (gsi_remove (&gsi, true) && gimple_purge_dead_eh_edges (use_bb)) *cfg_changed = true; release_defs (use_stmt); } } return name; } /* Records an occurrence at statement USE_STMT in the vector of trees STMTS if it is dominated by *TOP_BB or dominates it or this basic block is not yet initialized. Returns true if the occurrence was pushed on the vector. Adjusts *TOP_BB to be the basic block dominating all statements in the vector. */ static bool maybe_record_sincos (vec *stmts, basic_block *top_bb, gimple *use_stmt) { basic_block use_bb = gimple_bb (use_stmt); if (*top_bb && (*top_bb == use_bb || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb))) stmts->safe_push (use_stmt); else if (!*top_bb || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb)) { stmts->safe_push (use_stmt); *top_bb = use_bb; } else return false; return true; } /* Look for sin, cos and cexpi calls with the same argument NAME and create a single call to cexpi CSEing the result in this case. We first walk over all immediate uses of the argument collecting statements that we can CSE in a vector and in a second pass replace the statement rhs with a REALPART or IMAGPART expression on the result of the cexpi call we insert before the use statement that dominates all other candidates. */ static bool execute_cse_sincos_1 (tree name) { gimple_stmt_iterator gsi; imm_use_iterator use_iter; tree fndecl, res, type = NULL_TREE; gimple *def_stmt, *use_stmt, *stmt; int seen_cos = 0, seen_sin = 0, seen_cexpi = 0; auto_vec stmts; basic_block top_bb = NULL; int i; bool cfg_changed = false; name = execute_cse_conv_1 (name, &cfg_changed); FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name) { if (gimple_code (use_stmt) != GIMPLE_CALL || !gimple_call_lhs (use_stmt)) continue; switch (gimple_call_combined_fn (use_stmt)) { CASE_CFN_COS: seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0; break; CASE_CFN_SIN: seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0; break; CASE_CFN_CEXPI: seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0; break; default:; continue; } tree t = mathfn_built_in_type (gimple_call_combined_fn (use_stmt)); if (!type) { type = t; t = TREE_TYPE (name); } /* This checks that NAME has the right type in the first round, and, in subsequent rounds, that the built_in type is the same type, or a compatible type. */ if (type != t && !types_compatible_p (type, t)) return false; } if (seen_cos + seen_sin + seen_cexpi <= 1) return false; /* Simply insert cexpi at the beginning of top_bb but not earlier than the name def statement. */ fndecl = mathfn_built_in (type, BUILT_IN_CEXPI); if (!fndecl) return false; stmt = gimple_build_call (fndecl, 1, name); res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp"); gimple_call_set_lhs (stmt, res); def_stmt = SSA_NAME_DEF_STMT (name); if (!SSA_NAME_IS_DEFAULT_DEF (name) && gimple_code (def_stmt) != GIMPLE_PHI && gimple_bb (def_stmt) == top_bb) { gsi = gsi_for_stmt (def_stmt); gsi_insert_after (&gsi, stmt, GSI_SAME_STMT); } else { gsi = gsi_after_labels (top_bb); gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); } sincos_stats.inserted++; /* And adjust the recorded old call sites. */ for (i = 0; stmts.iterate (i, &use_stmt); ++i) { tree rhs = NULL; switch (gimple_call_combined_fn (use_stmt)) { CASE_CFN_COS: rhs = fold_build1 (REALPART_EXPR, type, res); break; CASE_CFN_SIN: rhs = fold_build1 (IMAGPART_EXPR, type, res); break; CASE_CFN_CEXPI: rhs = res; break; default:; gcc_unreachable (); } /* Replace call with a copy. */ stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs); gsi = gsi_for_stmt (use_stmt); gsi_replace (&gsi, stmt, true); if (gimple_purge_dead_eh_edges (gimple_bb (stmt))) cfg_changed = true; } return cfg_changed; } /* To evaluate powi(x,n), the floating point value x raised to the constant integer exponent n, we use a hybrid algorithm that combines the "window method" with look-up tables. For an introduction to exponentiation algorithms and "addition chains", see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth, "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming", 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */ /* Provide a default value for POWI_MAX_MULTS, the maximum number of multiplications to inline before calling the system library's pow function. powi(x,n) requires at worst 2*bits(n)-2 multiplications, so this default never requires calling pow, powf or powl. */ #ifndef POWI_MAX_MULTS #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2) #endif /* The size of the "optimal power tree" lookup table. All exponents less than this value are simply looked up in the powi_table below. This threshold is also used to size the cache of pseudo registers that hold intermediate results. */ #define POWI_TABLE_SIZE 256 /* The size, in bits of the window, used in the "window method" exponentiation algorithm. This is equivalent to a radix of (1<= POWI_TABLE_SIZE) { if (val & 1) { digit = val & ((1 << POWI_WINDOW_SIZE) - 1); result += powi_lookup_cost (digit, cache) + POWI_WINDOW_SIZE + 1; val >>= POWI_WINDOW_SIZE; } else { val >>= 1; result++; } } return result + powi_lookup_cost (val, cache); } /* Recursive subroutine of powi_as_mults. This function takes the array, CACHE, of already calculated exponents and an exponent N and returns a tree that corresponds to CACHE[1]**N, with type TYPE. */ static tree powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type, unsigned HOST_WIDE_INT n, tree *cache) { tree op0, op1, ssa_target; unsigned HOST_WIDE_INT digit; gassign *mult_stmt; if (n < POWI_TABLE_SIZE && cache[n]) return cache[n]; ssa_target = make_temp_ssa_name (type, NULL, "powmult"); if (n < POWI_TABLE_SIZE) { cache[n] = ssa_target; op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache); op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache); } else if (n & 1) { digit = n & ((1 << POWI_WINDOW_SIZE) - 1); op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache); op1 = powi_as_mults_1 (gsi, loc, type, digit, cache); } else { op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache); op1 = op0; } mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1); gimple_set_location (mult_stmt, loc); gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT); return ssa_target; } /* Convert ARG0**N to a tree of multiplications of ARG0 with itself. This function needs to be kept in sync with powi_cost above. */ tree powi_as_mults (gimple_stmt_iterator *gsi, location_t loc, tree arg0, HOST_WIDE_INT n) { tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0); gassign *div_stmt; tree target; if (n == 0) return build_one_cst (type); memset (cache, 0, sizeof (cache)); cache[1] = arg0; result = powi_as_mults_1 (gsi, loc, type, absu_hwi (n), cache); if (n >= 0) return result; /* If the original exponent was negative, reciprocate the result. */ target = make_temp_ssa_name (type, NULL, "powmult"); div_stmt = gimple_build_assign (target, RDIV_EXPR, build_real (type, dconst1), result); gimple_set_location (div_stmt, loc); gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT); return target; } /* ARG0 and N are the two arguments to a powi builtin in GSI with location info LOC. If the arguments are appropriate, create an equivalent sequence of statements prior to GSI using an optimal number of multiplications, and return an expession holding the result. */ static tree gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc, tree arg0, HOST_WIDE_INT n) { if ((n >= -1 && n <= 2) || (optimize_function_for_speed_p (cfun) && powi_cost (n) <= POWI_MAX_MULTS)) return powi_as_mults (gsi, loc, arg0, n); return NULL_TREE; } /* Build a gimple call statement that calls FN with argument ARG. Set the lhs of the call statement to a fresh SSA name. Insert the statement prior to GSI's current position, and return the fresh SSA name. */ static tree build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc, tree fn, tree arg) { gcall *call_stmt; tree ssa_target; call_stmt = gimple_build_call (fn, 1, arg); ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot"); gimple_set_lhs (call_stmt, ssa_target); gimple_set_location (call_stmt, loc); gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT); return ssa_target; } /* Build a gimple binary operation with the given CODE and arguments ARG0, ARG1, assigning the result to a new SSA name for variable TARGET. Insert the statement prior to GSI's current position, and return the fresh SSA name.*/ static tree build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc, const char *name, enum tree_code code, tree arg0, tree arg1) { tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name); gassign *stmt = gimple_build_assign (result, code, arg0, arg1); gimple_set_location (stmt, loc); gsi_insert_before (gsi, stmt, GSI_SAME_STMT); return result; } /* Build a gimple reference operation with the given CODE and argument ARG, assigning the result to a new SSA name of TYPE with NAME. Insert the statement prior to GSI's current position, and return the fresh SSA name. */ static inline tree build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type, const char *name, enum tree_code code, tree arg0) { tree result = make_temp_ssa_name (type, NULL, name); gimple *stmt = gimple_build_assign (result, build1 (code, type, arg0)); gimple_set_location (stmt, loc); gsi_insert_before (gsi, stmt, GSI_SAME_STMT); return result; } /* Build a gimple assignment to cast VAL to TYPE. Insert the statement prior to GSI's current position, and return the fresh SSA name. */ static tree build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc, tree type, tree val) { tree result = make_ssa_name (type); gassign *stmt = gimple_build_assign (result, NOP_EXPR, val); gimple_set_location (stmt, loc); gsi_insert_before (gsi, stmt, GSI_SAME_STMT); return result; } struct pow_synth_sqrt_info { bool *factors; unsigned int deepest; unsigned int num_mults; }; /* Return true iff the real value C can be represented as a sum of powers of 0.5 up to N. That is: C == SUM (a[i]*(0.5**i)) where a[i] is either 0 or 1. Record in INFO the various parameters of the synthesis algorithm such as the factors a[i], the maximum 0.5 power and the number of multiplications that will be required. */ bool representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n, struct pow_synth_sqrt_info *info) { REAL_VALUE_TYPE factor = dconsthalf; REAL_VALUE_TYPE remainder = c; info->deepest = 0; info->num_mults = 0; memset (info->factors, 0, n * sizeof (bool)); for (unsigned i = 0; i < n; i++) { REAL_VALUE_TYPE res; /* If something inexact happened bail out now. */ if (real_arithmetic (&res, MINUS_EXPR, &remainder, &factor)) return false; /* We have hit zero. The number is representable as a sum of powers of 0.5. */ if (real_equal (&res, &dconst0)) { info->factors[i] = true; info->deepest = i + 1; return true; } else if (!REAL_VALUE_NEGATIVE (res)) { remainder = res; info->factors[i] = true; info->num_mults++; } else info->factors[i] = false; real_arithmetic (&factor, MULT_EXPR, &factor, &dconsthalf); } return false; } /* Return the tree corresponding to FN being applied to ARG N times at GSI and LOC. Look up previous results from CACHE if need be. cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */ static tree get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi, tree fn, location_t loc, tree *cache) { tree res = cache[n]; if (!res) { tree prev = get_fn_chain (arg, n - 1, gsi, fn, loc, cache); res = build_and_insert_call (gsi, loc, fn, prev); cache[n] = res; } return res; } /* Print to STREAM the repeated application of function FNAME to ARG N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print: "foo (foo (x))". */ static void print_nested_fn (FILE* stream, const char *fname, const char* arg, unsigned int n) { if (n == 0) fprintf (stream, "%s", arg); else { fprintf (stream, "%s (", fname); print_nested_fn (stream, fname, arg, n - 1); fprintf (stream, ")"); } } /* Print to STREAM the fractional sequence of sqrt chains applied to ARG, described by INFO. Used for the dump file. */ static void dump_fractional_sqrt_sequence (FILE *stream, const char *arg, struct pow_synth_sqrt_info *info) { for (unsigned int i = 0; i < info->deepest; i++) { bool is_set = info->factors[i]; if (is_set) { print_nested_fn (stream, "sqrt", arg, i + 1); if (i != info->deepest - 1) fprintf (stream, " * "); } } } /* Print to STREAM a representation of raising ARG to an integer power N. Used for the dump file. */ static void dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n) { if (n > 1) fprintf (stream, "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n); else if (n == 1) fprintf (stream, "%s", arg); } /* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of square roots. Place at GSI and LOC. Limit the maximum depth of the sqrt chains to MAX_DEPTH. Return the tree holding the result of the expanded sequence or NULL_TREE if the expansion failed. This routine assumes that ARG1 is a real number with a fractional part (the integer exponent case will have been handled earlier in gimple_expand_builtin_pow). For ARG1 > 0.0: * For ARG1 composed of a whole part WHOLE_PART and a fractional part FRAC_PART i.e. WHOLE_PART == floor (ARG1) and FRAC_PART == ARG1 - WHOLE_PART: Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where POW (ARG0, FRAC_PART) is expanded as a product of square root chains if it can be expressed as such, that is if FRAC_PART satisfies: FRAC_PART == (a[i] * (0.5**i)) where integer a[i] is either 0 or 1. Example: POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625) --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x))) For ARG1 < 0.0 there are two approaches: * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1) is calculated as above. Example: POW (x, -5.625) == 1.0 / POW (x, 5.625) --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x)))) * (B) : WHOLE_PART := - ceil (abs (ARG1)) FRAC_PART := ARG1 - WHOLE_PART and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART). Example: POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6) --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6)) For ARG1 < 0.0 we choose between (A) and (B) depending on how many multiplications we'd have to do. So, for the example in (B): POW (x, -5.875), if we were to follow algorithm (A) we would produce: 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X))) which contains more multiplications than approach (B). Hopefully, this approach will eliminate potentially expensive POW library calls when unsafe floating point math is enabled and allow the compiler to further optimise the multiplies, square roots and divides produced by this function. */ static tree expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc, tree arg0, tree arg1, HOST_WIDE_INT max_depth) { tree type = TREE_TYPE (arg0); machine_mode mode = TYPE_MODE (type); tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT); bool one_over = true; if (!sqrtfn) return NULL_TREE; if (TREE_CODE (arg1) != REAL_CST) return NULL_TREE; REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1); gcc_assert (max_depth > 0); tree *cache = XALLOCAVEC (tree, max_depth + 1); struct pow_synth_sqrt_info synth_info; synth_info.factors = XALLOCAVEC (bool, max_depth + 1); synth_info.deepest = 0; synth_info.num_mults = 0; bool neg_exp = REAL_VALUE_NEGATIVE (exp_init); REAL_VALUE_TYPE exp = real_value_abs (&exp_init); /* The whole and fractional parts of exp. */ REAL_VALUE_TYPE whole_part; REAL_VALUE_TYPE frac_part; real_floor (&whole_part, mode, &exp); real_arithmetic (&frac_part, MINUS_EXPR, &exp, &whole_part); REAL_VALUE_TYPE ceil_whole = dconst0; REAL_VALUE_TYPE ceil_fract = dconst0; if (neg_exp) { real_ceil (&ceil_whole, mode, &exp); real_arithmetic (&ceil_fract, MINUS_EXPR, &ceil_whole, &exp); } if (!representable_as_half_series_p (frac_part, max_depth, &synth_info)) return NULL_TREE; /* Check whether it's more profitable to not use 1.0 / ... */ if (neg_exp) { struct pow_synth_sqrt_info alt_synth_info; alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1); alt_synth_info.deepest = 0; alt_synth_info.num_mults = 0; if (representable_as_half_series_p (ceil_fract, max_depth, &alt_synth_info) && alt_synth_info.deepest <= synth_info.deepest && alt_synth_info.num_mults < synth_info.num_mults) { whole_part = ceil_whole; frac_part = ceil_fract; synth_info.deepest = alt_synth_info.deepest; synth_info.num_mults = alt_synth_info.num_mults; memcpy (synth_info.factors, alt_synth_info.factors, (max_depth + 1) * sizeof (bool)); one_over = false; } } HOST_WIDE_INT n = real_to_integer (&whole_part); REAL_VALUE_TYPE cint; real_from_integer (&cint, VOIDmode, n, SIGNED); if (!real_identical (&whole_part, &cint)) return NULL_TREE; if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS) return NULL_TREE; memset (cache, 0, (max_depth + 1) * sizeof (tree)); tree integer_res = n == 0 ? build_real (type, dconst1) : arg0; /* Calculate the integer part of the exponent. */ if (n > 1) { integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n); if (!integer_res) return NULL_TREE; } if (dump_file) { char string[64]; real_to_decimal (string, &exp_init, sizeof (string), 0, 1); fprintf (dump_file, "synthesizing pow (x, %s) as:\n", string); if (neg_exp) { if (one_over) { fprintf (dump_file, "1.0 / ("); dump_integer_part (dump_file, "x", n); if (n > 0) fprintf (dump_file, " * "); dump_fractional_sqrt_sequence (dump_file, "x", &synth_info); fprintf (dump_file, ")"); } else { dump_fractional_sqrt_sequence (dump_file, "x", &synth_info); fprintf (dump_file, " / ("); dump_integer_part (dump_file, "x", n); fprintf (dump_file, ")"); } } else { dump_fractional_sqrt_sequence (dump_file, "x", &synth_info); if (n > 0) fprintf (dump_file, " * "); dump_integer_part (dump_file, "x", n); } fprintf (dump_file, "\ndeepest sqrt chain: %d\n", synth_info.deepest); } tree fract_res = NULL_TREE; cache[0] = arg0; /* Calculate the fractional part of the exponent. */ for (unsigned i = 0; i < synth_info.deepest; i++) { if (synth_info.factors[i]) { tree sqrt_chain = get_fn_chain (arg0, i + 1, gsi, sqrtfn, loc, cache); if (!fract_res) fract_res = sqrt_chain; else fract_res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR, fract_res, sqrt_chain); } } tree res = NULL_TREE; if (neg_exp) { if (one_over) { if (n > 0) res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR, fract_res, integer_res); else res = fract_res; res = build_and_insert_binop (gsi, loc, "powrootrecip", RDIV_EXPR, build_real (type, dconst1), res); } else { res = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR, fract_res, integer_res); } } else res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR, fract_res, integer_res); return res; } /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI with location info LOC. If possible, create an equivalent and less expensive sequence of statements prior to GSI, and return an expession holding the result. */ static tree gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc, tree arg0, tree arg1) { REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_4, dconst1_6; REAL_VALUE_TYPE c2, dconst3; HOST_WIDE_INT n; tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x; machine_mode mode; bool speed_p = optimize_bb_for_speed_p (gsi_bb (*gsi)); bool hw_sqrt_exists, c_is_int, c2_is_int; dconst1_4 = dconst1; SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2); /* If the exponent isn't a constant, there's nothing of interest to be done. */ if (TREE_CODE (arg1) != REAL_CST) return NULL_TREE; /* Don't perform the operation if flag_signaling_nans is on and the operand is a signaling NaN. */ if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))) && ((TREE_CODE (arg0) == REAL_CST && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))) || REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))) return NULL_TREE; /* If the exponent is equivalent to an integer, expand to an optimal multiplication sequence when profitable. */ c = TREE_REAL_CST (arg1); n = real_to_integer (&c); real_from_integer (&cint, VOIDmode, n, SIGNED); c_is_int = real_identical (&c, &cint); if (c_is_int && ((n >= -1 && n <= 2) || (flag_unsafe_math_optimizations && speed_p && powi_cost (n) <= POWI_MAX_MULTS))) return gimple_expand_builtin_powi (gsi, loc, arg0, n); /* Attempt various optimizations using sqrt and cbrt. */ type = TREE_TYPE (arg0); mode = TYPE_MODE (type); sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT); /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe unless signed zeros must be maintained. pow(-0,0.5) = +0, while sqrt(-0) = -0. */ if (sqrtfn && real_equal (&c, &dconsthalf) && !HONOR_SIGNED_ZEROS (mode)) return build_and_insert_call (gsi, loc, sqrtfn, arg0); hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing; /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math optimizations since 1./3. is not exactly representable. If x is negative and finite, the correct value of pow(x,1./3.) is a NaN with the "invalid" exception raised, because the value of 1./3. actually has an even denominator. The correct value of cbrt(x) is a negative real value. */ cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT); dconst1_3 = real_value_truncate (mode, dconst_third ()); if (flag_unsafe_math_optimizations && cbrtfn && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0)) && real_equal (&c, &dconst1_3)) return build_and_insert_call (gsi, loc, cbrtfn, arg0); /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization if we don't have a hardware sqrt insn. */ dconst1_6 = dconst1_3; SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1); if (flag_unsafe_math_optimizations && sqrtfn && cbrtfn && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0)) && speed_p && hw_sqrt_exists && real_equal (&c, &dconst1_6)) { /* sqrt(x) */ sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0); /* cbrt(sqrt(x)) */ return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0); } /* Attempt to expand the POW as a product of square root chains. Expand the 0.25 case even when otpimising for size. */ if (flag_unsafe_math_optimizations && sqrtfn && hw_sqrt_exists && (speed_p || real_equal (&c, &dconst1_4)) && !HONOR_SIGNED_ZEROS (mode)) { unsigned int max_depth = speed_p ? param_max_pow_sqrt_depth : 2; tree expand_with_sqrts = expand_pow_as_sqrts (gsi, loc, arg0, arg1, max_depth); if (expand_with_sqrts) return expand_with_sqrts; } real_arithmetic (&c2, MULT_EXPR, &c, &dconst2); n = real_to_integer (&c2); real_from_integer (&cint, VOIDmode, n, SIGNED); c2_is_int = real_identical (&c2, &cint); /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into powi(x, n/3) * powi(cbrt(x), n%3), n > 0; 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0. Do not calculate the first factor when n/3 = 0. As cbrt(x) is different from pow(x, 1./3.) due to rounding and behavior with negative x, we need to constrain this transformation to unsafe math and positive x or finite math. */ real_from_integer (&dconst3, VOIDmode, 3, SIGNED); real_arithmetic (&c2, MULT_EXPR, &c, &dconst3); real_round (&c2, mode, &c2); n = real_to_integer (&c2); real_from_integer (&cint, VOIDmode, n, SIGNED); real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3); real_convert (&c2, mode, &c2); if (flag_unsafe_math_optimizations && cbrtfn && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0)) && real_identical (&c2, &c) && !c2_is_int && optimize_function_for_speed_p (cfun) && powi_cost (n / 3) <= POWI_MAX_MULTS) { tree powi_x_ndiv3 = NULL_TREE; /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not possible or profitable, give up. Skip the degenerate case when abs(n) < 3, where the result is always 1. */ if (absu_hwi (n) >= 3) { powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0, abs_hwi (n / 3)); if (!powi_x_ndiv3) return NULL_TREE; } /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi as that creates an unnecessary variable. Instead, just produce either cbrt(x) or cbrt(x) * cbrt(x). */ cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0); if (absu_hwi (n) % 3 == 1) powi_cbrt_x = cbrt_x; else powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR, cbrt_x, cbrt_x); /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */ if (absu_hwi (n) < 3) result = powi_cbrt_x; else result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR, powi_x_ndiv3, powi_cbrt_x); /* If n is negative, reciprocate the result. */ if (n < 0) result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR, build_real (type, dconst1), result); return result; } /* No optimizations succeeded. */ return NULL_TREE; } /* ARG is the argument to a cabs builtin call in GSI with location info LOC. Create a sequence of statements prior to GSI that calculates sqrt(R*R + I*I), where R and I are the real and imaginary components of ARG, respectively. Return an expression holding the result. */ static tree gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg) { tree real_part, imag_part, addend1, addend2, sum, result; tree type = TREE_TYPE (TREE_TYPE (arg)); tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT); machine_mode mode = TYPE_MODE (type); if (!flag_unsafe_math_optimizations || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi))) || !sqrtfn || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing) return NULL_TREE; real_part = build_and_insert_ref (gsi, loc, type, "cabs", REALPART_EXPR, arg); addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR, real_part, real_part); imag_part = build_and_insert_ref (gsi, loc, type, "cabs", IMAGPART_EXPR, arg); addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR, imag_part, imag_part); sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2); result = build_and_insert_call (gsi, loc, sqrtfn, sum); return result; } /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1 on the SSA_NAME argument of each of them. */ namespace { const pass_data pass_data_cse_sincos = { GIMPLE_PASS, /* type */ "sincos", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_TREE_SINCOS, /* tv_id */ PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_update_ssa, /* todo_flags_finish */ }; class pass_cse_sincos : public gimple_opt_pass { public: pass_cse_sincos (gcc::context *ctxt) : gimple_opt_pass (pass_data_cse_sincos, ctxt) {} /* opt_pass methods: */ bool gate (function *) final override { return optimize; } unsigned int execute (function *) final override; }; // class pass_cse_sincos unsigned int pass_cse_sincos::execute (function *fun) { basic_block bb; bool cfg_changed = false; calculate_dominance_info (CDI_DOMINATORS); memset (&sincos_stats, 0, sizeof (sincos_stats)); FOR_EACH_BB_FN (bb, fun) { gimple_stmt_iterator gsi; for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); if (is_gimple_call (stmt) && gimple_call_lhs (stmt)) { tree arg; switch (gimple_call_combined_fn (stmt)) { CASE_CFN_COS: CASE_CFN_SIN: CASE_CFN_CEXPI: arg = gimple_call_arg (stmt, 0); /* Make sure we have either sincos or cexp. */ if (!targetm.libc_has_function (function_c99_math_complex, TREE_TYPE (arg)) && !targetm.libc_has_function (function_sincos, TREE_TYPE (arg))) break; if (TREE_CODE (arg) == SSA_NAME) cfg_changed |= execute_cse_sincos_1 (arg); break; default: break; } } } } statistics_counter_event (fun, "sincos statements inserted", sincos_stats.inserted); statistics_counter_event (fun, "conv statements removed", sincos_stats.conv_removed); return cfg_changed ? TODO_cleanup_cfg : 0; } } // anon namespace gimple_opt_pass * make_pass_cse_sincos (gcc::context *ctxt) { return new pass_cse_sincos (ctxt); } /* Expand powi(x,n) into an optimal number of multiplies, when n is a constant. Also expand CABS. */ namespace { const pass_data pass_data_expand_powcabs = { GIMPLE_PASS, /* type */ "powcabs", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_TREE_POWCABS, /* tv_id */ PROP_ssa, /* properties_required */ PROP_gimple_opt_math, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_update_ssa, /* todo_flags_finish */ }; class pass_expand_powcabs : public gimple_opt_pass { public: pass_expand_powcabs (gcc::context *ctxt) : gimple_opt_pass (pass_data_expand_powcabs, ctxt) {} /* opt_pass methods: */ bool gate (function *) final override { return optimize; } unsigned int execute (function *) final override; }; // class pass_expand_powcabs unsigned int pass_expand_powcabs::execute (function *fun) { basic_block bb; bool cfg_changed = false; calculate_dominance_info (CDI_DOMINATORS); FOR_EACH_BB_FN (bb, fun) { gimple_stmt_iterator gsi; bool cleanup_eh = false; for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); /* Only the last stmt in a bb could throw, no need to call gimple_purge_dead_eh_edges if we change something in the middle of a basic block. */ cleanup_eh = false; if (is_gimple_call (stmt) && gimple_call_lhs (stmt)) { tree arg0, arg1, result; HOST_WIDE_INT n; location_t loc; switch (gimple_call_combined_fn (stmt)) { CASE_CFN_POW: arg0 = gimple_call_arg (stmt, 0); arg1 = gimple_call_arg (stmt, 1); loc = gimple_location (stmt); result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1); if (result) { tree lhs = gimple_get_lhs (stmt); gassign *new_stmt = gimple_build_assign (lhs, result); gimple_set_location (new_stmt, loc); unlink_stmt_vdef (stmt); gsi_replace (&gsi, new_stmt, true); cleanup_eh = true; if (gimple_vdef (stmt)) release_ssa_name (gimple_vdef (stmt)); } break; CASE_CFN_POWI: arg0 = gimple_call_arg (stmt, 0); arg1 = gimple_call_arg (stmt, 1); loc = gimple_location (stmt); if (real_minus_onep (arg0)) { tree t0, t1, cond, one, minus_one; gassign *stmt; t0 = TREE_TYPE (arg0); t1 = TREE_TYPE (arg1); one = build_real (t0, dconst1); minus_one = build_real (t0, dconstm1); cond = make_temp_ssa_name (t1, NULL, "powi_cond"); stmt = gimple_build_assign (cond, BIT_AND_EXPR, arg1, build_int_cst (t1, 1)); gimple_set_location (stmt, loc); gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); result = make_temp_ssa_name (t0, NULL, "powi"); stmt = gimple_build_assign (result, COND_EXPR, cond, minus_one, one); gimple_set_location (stmt, loc); gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); } else { if (!tree_fits_shwi_p (arg1)) break; n = tree_to_shwi (arg1); result = gimple_expand_builtin_powi (&gsi, loc, arg0, n); } if (result) { tree lhs = gimple_get_lhs (stmt); gassign *new_stmt = gimple_build_assign (lhs, result); gimple_set_location (new_stmt, loc); unlink_stmt_vdef (stmt); gsi_replace (&gsi, new_stmt, true); cleanup_eh = true; if (gimple_vdef (stmt)) release_ssa_name (gimple_vdef (stmt)); } break; CASE_CFN_CABS: arg0 = gimple_call_arg (stmt, 0); loc = gimple_location (stmt); result = gimple_expand_builtin_cabs (&gsi, loc, arg0); if (result) { tree lhs = gimple_get_lhs (stmt); gassign *new_stmt = gimple_build_assign (lhs, result); gimple_set_location (new_stmt, loc); unlink_stmt_vdef (stmt); gsi_replace (&gsi, new_stmt, true); cleanup_eh = true; if (gimple_vdef (stmt)) release_ssa_name (gimple_vdef (stmt)); } break; default:; } } } if (cleanup_eh) cfg_changed |= gimple_purge_dead_eh_edges (bb); } return cfg_changed ? TODO_cleanup_cfg : 0; } } // anon namespace gimple_opt_pass * make_pass_expand_powcabs (gcc::context *ctxt) { return new pass_expand_powcabs (ctxt); } /* Return true if stmt is a type conversion operation that can be stripped when used in a widening multiply operation. */ static bool widening_mult_conversion_strippable_p (tree result_type, gimple *stmt) { enum tree_code rhs_code = gimple_assign_rhs_code (stmt); if (TREE_CODE (result_type) == INTEGER_TYPE) { tree op_type; tree inner_op_type; if (!CONVERT_EXPR_CODE_P (rhs_code)) return false; op_type = TREE_TYPE (gimple_assign_lhs (stmt)); /* If the type of OP has the same precision as the result, then we can strip this conversion. The multiply operation will be selected to create the correct extension as a by-product. */ if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type)) return true; /* We can also strip a conversion if it preserves the signed-ness of the operation and doesn't narrow the range. */ inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt)); /* If the inner-most type is unsigned, then we can strip any intermediate widening operation. If it's signed, then the intermediate widening operation must also be signed. */ if ((TYPE_UNSIGNED (inner_op_type) || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type)) && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type)) return true; return false; } return rhs_code == FIXED_CONVERT_EXPR; } /* Return true if RHS is a suitable operand for a widening multiplication, assuming a target type of TYPE. There are two cases: - RHS makes some value at least twice as wide. Store that value in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT. - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so, but leave *TYPE_OUT untouched. */ static bool is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out, tree *new_rhs_out) { gimple *stmt; tree type1, rhs1; if (TREE_CODE (rhs) == SSA_NAME) { stmt = SSA_NAME_DEF_STMT (rhs); if (is_gimple_assign (stmt)) { if (! widening_mult_conversion_strippable_p (type, stmt)) rhs1 = rhs; else { rhs1 = gimple_assign_rhs1 (stmt); if (TREE_CODE (rhs1) == INTEGER_CST) { *new_rhs_out = rhs1; *type_out = NULL; return true; } } } else rhs1 = rhs; type1 = TREE_TYPE (rhs1); if (TREE_CODE (type1) != TREE_CODE (type) || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type)) return false; *new_rhs_out = rhs1; *type_out = type1; return true; } if (TREE_CODE (rhs) == INTEGER_CST) { *new_rhs_out = rhs; *type_out = NULL; return true; } return false; } /* Return true if STMT performs a widening multiplication, assuming the output type is TYPE. If so, store the unwidened types of the operands in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and *RHS2_OUT such that converting those operands to types *TYPE1_OUT and *TYPE2_OUT would give the operands of the multiplication. */ static bool is_widening_mult_p (gimple *stmt, tree *type1_out, tree *rhs1_out, tree *type2_out, tree *rhs2_out) { tree type = TREE_TYPE (gimple_assign_lhs (stmt)); if (TREE_CODE (type) == INTEGER_TYPE) { if (TYPE_OVERFLOW_TRAPS (type)) return false; } else if (TREE_CODE (type) != FIXED_POINT_TYPE) return false; if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out, rhs1_out)) return false; if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out, rhs2_out)) return false; if (*type1_out == NULL) { if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out)) return false; *type1_out = *type2_out; } if (*type2_out == NULL) { if (!int_fits_type_p (*rhs2_out, *type1_out)) return false; *type2_out = *type1_out; } /* Ensure that the larger of the two operands comes first. */ if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out)) { std::swap (*type1_out, *type2_out); std::swap (*rhs1_out, *rhs2_out); } return true; } /* Check to see if the CALL statement is an invocation of copysign with 1. being the first argument. */ static bool is_copysign_call_with_1 (gimple *call) { gcall *c = dyn_cast (call); if (! c) return false; enum combined_fn code = gimple_call_combined_fn (c); if (code == CFN_LAST) return false; if (builtin_fn_p (code)) { switch (as_builtin_fn (code)) { CASE_FLT_FN (BUILT_IN_COPYSIGN): CASE_FLT_FN_FLOATN_NX (BUILT_IN_COPYSIGN): return real_onep (gimple_call_arg (c, 0)); default: return false; } } if (internal_fn_p (code)) { switch (as_internal_fn (code)) { case IFN_COPYSIGN: return real_onep (gimple_call_arg (c, 0)); default: return false; } } return false; } /* Try to expand the pattern x * copysign (1, y) into xorsign (x, y). This only happens when the xorsign optab is defined, if the pattern is not a xorsign pattern or if expansion fails FALSE is returned, otherwise TRUE is returned. */ static bool convert_expand_mult_copysign (gimple *stmt, gimple_stmt_iterator *gsi) { tree treeop0, treeop1, lhs, type; location_t loc = gimple_location (stmt); lhs = gimple_assign_lhs (stmt); treeop0 = gimple_assign_rhs1 (stmt); treeop1 = gimple_assign_rhs2 (stmt); type = TREE_TYPE (lhs); machine_mode mode = TYPE_MODE (type); if (HONOR_SNANS (type)) return false; if (TREE_CODE (treeop0) == SSA_NAME && TREE_CODE (treeop1) == SSA_NAME) { gimple *call0 = SSA_NAME_DEF_STMT (treeop0); if (!has_single_use (treeop0) || !is_copysign_call_with_1 (call0)) { call0 = SSA_NAME_DEF_STMT (treeop1); if (!has_single_use (treeop1) || !is_copysign_call_with_1 (call0)) return false; treeop1 = treeop0; } if (optab_handler (xorsign_optab, mode) == CODE_FOR_nothing) return false; gcall *c = as_a (call0); treeop0 = gimple_call_arg (c, 1); gcall *call_stmt = gimple_build_call_internal (IFN_XORSIGN, 2, treeop1, treeop0); gimple_set_lhs (call_stmt, lhs); gimple_set_location (call_stmt, loc); gsi_replace (gsi, call_stmt, true); return true; } return false; } /* Process a single gimple statement STMT, which has a MULT_EXPR as its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return value is true iff we converted the statement. */ static bool convert_mult_to_widen (gimple *stmt, gimple_stmt_iterator *gsi) { tree lhs, rhs1, rhs2, type, type1, type2; enum insn_code handler; scalar_int_mode to_mode, from_mode, actual_mode; optab op; int actual_precision; location_t loc = gimple_location (stmt); bool from_unsigned1, from_unsigned2; lhs = gimple_assign_lhs (stmt); type = TREE_TYPE (lhs); if (TREE_CODE (type) != INTEGER_TYPE) return false; if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2)) return false; /* if any one of rhs1 and rhs2 is subject to abnormal coalescing, avoid the tranform. */ if ((TREE_CODE (rhs1) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs1)) || (TREE_CODE (rhs2) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs2))) return false; to_mode = SCALAR_INT_TYPE_MODE (type); from_mode = SCALAR_INT_TYPE_MODE (type1); if (to_mode == from_mode) return false; from_unsigned1 = TYPE_UNSIGNED (type1); from_unsigned2 = TYPE_UNSIGNED (type2); if (from_unsigned1 && from_unsigned2) op = umul_widen_optab; else if (!from_unsigned1 && !from_unsigned2) op = smul_widen_optab; else op = usmul_widen_optab; handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode, &actual_mode); if (handler == CODE_FOR_nothing) { if (op != smul_widen_optab) { /* We can use a signed multiply with unsigned types as long as there is a wider mode to use, or it is the smaller of the two types that is unsigned. Note that type1 >= type2, always. */ if ((TYPE_UNSIGNED (type1) && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode)) || (TYPE_UNSIGNED (type2) && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode))) { if (!GET_MODE_WIDER_MODE (from_mode).exists (&from_mode) || GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode)) return false; } op = smul_widen_optab; handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode, &actual_mode); if (handler == CODE_FOR_nothing) return false; from_unsigned1 = from_unsigned2 = false; } else { /* Expand can synthesize smul_widen_optab if the target supports umul_widen_optab. */ op = umul_widen_optab; handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode, &actual_mode); if (handler == CODE_FOR_nothing) return false; } } /* Ensure that the inputs to the handler are in the correct precison for the opcode. This will be the full mode size. */ actual_precision = GET_MODE_PRECISION (actual_mode); if (2 * actual_precision > TYPE_PRECISION (type)) return false; if (actual_precision != TYPE_PRECISION (type1) || from_unsigned1 != TYPE_UNSIGNED (type1)) rhs1 = build_and_insert_cast (gsi, loc, build_nonstandard_integer_type (actual_precision, from_unsigned1), rhs1); if (actual_precision != TYPE_PRECISION (type2) || from_unsigned2 != TYPE_UNSIGNED (type2)) rhs2 = build_and_insert_cast (gsi, loc, build_nonstandard_integer_type (actual_precision, from_unsigned2), rhs2); /* Handle constants. */ if (TREE_CODE (rhs1) == INTEGER_CST) rhs1 = fold_convert (type1, rhs1); if (TREE_CODE (rhs2) == INTEGER_CST) rhs2 = fold_convert (type2, rhs2); gimple_assign_set_rhs1 (stmt, rhs1); gimple_assign_set_rhs2 (stmt, rhs2); gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR); update_stmt (stmt); widen_mul_stats.widen_mults_inserted++; return true; } /* Process a single gimple statement STMT, which is found at the iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its rhs (given by CODE), and try to convert it into a WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value is true iff we converted the statement. */ static bool convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple *stmt, enum tree_code code) { gimple *rhs1_stmt = NULL, *rhs2_stmt = NULL; gimple *conv1_stmt = NULL, *conv2_stmt = NULL, *conv_stmt; tree type, type1, type2, optype; tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs; enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK; optab this_optab; enum tree_code wmult_code; enum insn_code handler; scalar_mode to_mode, from_mode, actual_mode; location_t loc = gimple_location (stmt); int actual_precision; bool from_unsigned1, from_unsigned2; lhs = gimple_assign_lhs (stmt); type = TREE_TYPE (lhs); if (TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != FIXED_POINT_TYPE) return false; if (code == MINUS_EXPR) wmult_code = WIDEN_MULT_MINUS_EXPR; else wmult_code = WIDEN_MULT_PLUS_EXPR; rhs1 = gimple_assign_rhs1 (stmt); rhs2 = gimple_assign_rhs2 (stmt); if (TREE_CODE (rhs1) == SSA_NAME) { rhs1_stmt = SSA_NAME_DEF_STMT (rhs1); if (is_gimple_assign (rhs1_stmt)) rhs1_code = gimple_assign_rhs_code (rhs1_stmt); } if (TREE_CODE (rhs2) == SSA_NAME) { rhs2_stmt = SSA_NAME_DEF_STMT (rhs2); if (is_gimple_assign (rhs2_stmt)) rhs2_code = gimple_assign_rhs_code (rhs2_stmt); } /* Allow for one conversion statement between the multiply and addition/subtraction statement. If there are more than one conversions then we assume they would invalidate this transformation. If that's not the case then they should have been folded before now. */ if (CONVERT_EXPR_CODE_P (rhs1_code)) { conv1_stmt = rhs1_stmt; rhs1 = gimple_assign_rhs1 (rhs1_stmt); if (TREE_CODE (rhs1) == SSA_NAME) { rhs1_stmt = SSA_NAME_DEF_STMT (rhs1); if (is_gimple_assign (rhs1_stmt)) rhs1_code = gimple_assign_rhs_code (rhs1_stmt); } else return false; } if (CONVERT_EXPR_CODE_P (rhs2_code)) { conv2_stmt = rhs2_stmt; rhs2 = gimple_assign_rhs1 (rhs2_stmt); if (TREE_CODE (rhs2) == SSA_NAME) { rhs2_stmt = SSA_NAME_DEF_STMT (rhs2); if (is_gimple_assign (rhs2_stmt)) rhs2_code = gimple_assign_rhs_code (rhs2_stmt); } else return false; } /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call is_widening_mult_p, but we still need the rhs returns. It might also appear that it would be sufficient to use the existing operands of the widening multiply, but that would limit the choice of multiply-and-accumulate instructions. If the widened-multiplication result has more than one uses, it is probably wiser not to do the conversion. Also restrict this operation to single basic block to avoid moving the multiply to a different block with a higher execution frequency. */ if (code == PLUS_EXPR && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR)) { if (!has_single_use (rhs1) || gimple_bb (rhs1_stmt) != gimple_bb (stmt) || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1, &type2, &mult_rhs2)) return false; add_rhs = rhs2; conv_stmt = conv1_stmt; } else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR) { if (!has_single_use (rhs2) || gimple_bb (rhs2_stmt) != gimple_bb (stmt) || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1, &type2, &mult_rhs2)) return false; add_rhs = rhs1; conv_stmt = conv2_stmt; } else return false; to_mode = SCALAR_TYPE_MODE (type); from_mode = SCALAR_TYPE_MODE (type1); if (to_mode == from_mode) return false; from_unsigned1 = TYPE_UNSIGNED (type1); from_unsigned2 = TYPE_UNSIGNED (type2); optype = type1; /* There's no such thing as a mixed sign madd yet, so use a wider mode. */ if (from_unsigned1 != from_unsigned2) { if (!INTEGRAL_TYPE_P (type)) return false; /* We can use a signed multiply with unsigned types as long as there is a wider mode to use, or it is the smaller of the two types that is unsigned. Note that type1 >= type2, always. */ if ((from_unsigned1 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode)) || (from_unsigned2 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode))) { if (!GET_MODE_WIDER_MODE (from_mode).exists (&from_mode) || GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode)) return false; } from_unsigned1 = from_unsigned2 = false; optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode), false); } /* If there was a conversion between the multiply and addition then we need to make sure it fits a multiply-and-accumulate. The should be a single mode change which does not change the value. */ if (conv_stmt) { /* We use the original, unmodified data types for this. */ tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt)); tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt)); int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2); bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2); if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type)) { /* Conversion is a truncate. */ if (TYPE_PRECISION (to_type) < data_size) return false; } else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type)) { /* Conversion is an extend. Check it's the right sort. */ if (TYPE_UNSIGNED (from_type) != is_unsigned && !(is_unsigned && TYPE_PRECISION (from_type) > data_size)) return false; } /* else convert is a no-op for our purposes. */ } /* Verify that the machine can perform a widening multiply accumulate in this mode/signedness combination, otherwise this transformation is likely to pessimize code. */ this_optab = optab_for_tree_code (wmult_code, optype, optab_default); handler = find_widening_optab_handler_and_mode (this_optab, to_mode, from_mode, &actual_mode); if (handler == CODE_FOR_nothing) return false; /* Ensure that the inputs to the handler are in the correct precison for the opcode. This will be the full mode size. */ actual_precision = GET_MODE_PRECISION (actual_mode); if (actual_precision != TYPE_PRECISION (type1) || from_unsigned1 != TYPE_UNSIGNED (type1)) mult_rhs1 = build_and_insert_cast (gsi, loc, build_nonstandard_integer_type (actual_precision, from_unsigned1), mult_rhs1); if (actual_precision != TYPE_PRECISION (type2) || from_unsigned2 != TYPE_UNSIGNED (type2)) mult_rhs2 = build_and_insert_cast (gsi, loc, build_nonstandard_integer_type (actual_precision, from_unsigned2), mult_rhs2); if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs))) add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs); /* Handle constants. */ if (TREE_CODE (mult_rhs1) == INTEGER_CST) mult_rhs1 = fold_convert (type1, mult_rhs1); if (TREE_CODE (mult_rhs2) == INTEGER_CST) mult_rhs2 = fold_convert (type2, mult_rhs2); gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2, add_rhs); update_stmt (gsi_stmt (*gsi)); widen_mul_stats.maccs_inserted++; return true; } /* Given a result MUL_RESULT which is a result of a multiplication of OP1 and OP2 and which we know is used in statements that can be, together with the multiplication, converted to FMAs, perform the transformation. */ static void convert_mult_to_fma_1 (tree mul_result, tree op1, tree op2) { tree type = TREE_TYPE (mul_result); gimple *use_stmt; imm_use_iterator imm_iter; gcall *fma_stmt; FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result) { gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt); tree addop, mulop1 = op1, result = mul_result; bool negate_p = false; gimple_seq seq = NULL; if (is_gimple_debug (use_stmt)) continue; if (is_gimple_assign (use_stmt) && gimple_assign_rhs_code (use_stmt) == NEGATE_EXPR) { result = gimple_assign_lhs (use_stmt); use_operand_p use_p; gimple *neguse_stmt; single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt); gsi_remove (&gsi, true); release_defs (use_stmt); use_stmt = neguse_stmt; gsi = gsi_for_stmt (use_stmt); negate_p = true; } tree cond, else_value, ops[3], len, bias; tree_code code; if (!can_interpret_as_conditional_op_p (use_stmt, &cond, &code, ops, &else_value, &len, &bias)) gcc_unreachable (); addop = ops[0] == result ? ops[1] : ops[0]; if (code == MINUS_EXPR) { if (ops[0] == result) /* a * b - c -> a * b + (-c) */ addop = gimple_build (&seq, NEGATE_EXPR, type, addop); else /* a - b * c -> (-b) * c + a */ negate_p = !negate_p; } if (negate_p) mulop1 = gimple_build (&seq, NEGATE_EXPR, type, mulop1); if (seq) gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT); if (len) fma_stmt = gimple_build_call_internal (IFN_COND_LEN_FMA, 7, cond, mulop1, op2, addop, else_value, len, bias); else if (cond) fma_stmt = gimple_build_call_internal (IFN_COND_FMA, 5, cond, mulop1, op2, addop, else_value); else fma_stmt = gimple_build_call_internal (IFN_FMA, 3, mulop1, op2, addop); gimple_set_lhs (fma_stmt, gimple_get_lhs (use_stmt)); gimple_call_set_nothrow (fma_stmt, !stmt_can_throw_internal (cfun, use_stmt)); gsi_replace (&gsi, fma_stmt, true); /* Follow all SSA edges so that we generate FMS, FNMA and FNMS regardless of where the negation occurs. */ gimple *orig_stmt = gsi_stmt (gsi); if (fold_stmt (&gsi, follow_all_ssa_edges)) { if (maybe_clean_or_replace_eh_stmt (orig_stmt, gsi_stmt (gsi))) gcc_unreachable (); update_stmt (gsi_stmt (gsi)); } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Generated FMA "); print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, TDF_NONE); fprintf (dump_file, "\n"); } /* If the FMA result is negated in a single use, fold the negation too. */ orig_stmt = gsi_stmt (gsi); use_operand_p use_p; gimple *neg_stmt; if (is_gimple_call (orig_stmt) && gimple_call_internal_p (orig_stmt) && gimple_call_lhs (orig_stmt) && TREE_CODE (gimple_call_lhs (orig_stmt)) == SSA_NAME && single_imm_use (gimple_call_lhs (orig_stmt), &use_p, &neg_stmt) && is_gimple_assign (neg_stmt) && gimple_assign_rhs_code (neg_stmt) == NEGATE_EXPR && !stmt_could_throw_p (cfun, neg_stmt)) { gsi = gsi_for_stmt (neg_stmt); if (fold_stmt (&gsi, follow_all_ssa_edges)) { if (maybe_clean_or_replace_eh_stmt (neg_stmt, gsi_stmt (gsi))) gcc_unreachable (); update_stmt (gsi_stmt (gsi)); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Folded FMA negation "); print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, TDF_NONE); fprintf (dump_file, "\n"); } } } widen_mul_stats.fmas_inserted++; } } /* Data necessary to perform the actual transformation from a multiplication and an addition to an FMA after decision is taken it should be done and to then delete the multiplication statement from the function IL. */ struct fma_transformation_info { gimple *mul_stmt; tree mul_result; tree op1; tree op2; }; /* Structure containing the current state of FMA deferring, i.e. whether we are deferring, whether to continue deferring, and all data necessary to come back and perform all deferred transformations. */ class fma_deferring_state { public: /* Class constructor. Pass true as PERFORM_DEFERRING in order to actually do any deferring. */ fma_deferring_state (bool perform_deferring) : m_candidates (), m_mul_result_set (), m_initial_phi (NULL), m_last_result (NULL_TREE), m_deferring_p (perform_deferring) {} /* List of FMA candidates for which we the transformation has been determined possible but we at this point in BB analysis we do not consider them beneficial. */ auto_vec m_candidates; /* Set of results of multiplication that are part of an already deferred FMA candidates. */ hash_set m_mul_result_set; /* The PHI that supposedly feeds back result of a FMA to another over loop boundary. */ gphi *m_initial_phi; /* Result of the last produced FMA candidate or NULL if there has not been one. */ tree m_last_result; /* If true, deferring might still be profitable. If false, transform all candidates and no longer defer. */ bool m_deferring_p; }; /* Transform all deferred FMA candidates and mark STATE as no longer deferring. */ static void cancel_fma_deferring (fma_deferring_state *state) { if (!state->m_deferring_p) return; for (unsigned i = 0; i < state->m_candidates.length (); i++) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Generating deferred FMA\n"); const fma_transformation_info &fti = state->m_candidates[i]; convert_mult_to_fma_1 (fti.mul_result, fti.op1, fti.op2); gimple_stmt_iterator gsi = gsi_for_stmt (fti.mul_stmt); gsi_remove (&gsi, true); release_defs (fti.mul_stmt); } state->m_deferring_p = false; } /* If OP is an SSA name defined by a PHI node, return the PHI statement. Otherwise return NULL. */ static gphi * result_of_phi (tree op) { if (TREE_CODE (op) != SSA_NAME) return NULL; return dyn_cast (SSA_NAME_DEF_STMT (op)); } /* After processing statements of a BB and recording STATE, return true if the initial phi is fed by the last FMA candidate result ore one such result from previously processed BBs marked in LAST_RESULT_SET. */ static bool last_fma_candidate_feeds_initial_phi (fma_deferring_state *state, hash_set *last_result_set) { ssa_op_iter iter; use_operand_p use; FOR_EACH_PHI_ARG (use, state->m_initial_phi, iter, SSA_OP_USE) { tree t = USE_FROM_PTR (use); if (t == state->m_last_result || last_result_set->contains (t)) return true; } return false; } /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2 with uses in additions and subtractions to form fused multiply-add operations. Returns true if successful and MUL_STMT should be removed. If MUL_COND is nonnull, the multiplication in MUL_STMT is conditional on MUL_COND, otherwise it is unconditional. If STATE indicates that we are deferring FMA transformation, that means that we do not produce FMAs for basic blocks which look like: # accumulator_111 = PHI <0.0(5), accumulator_66(6)> _65 = _14 * _16; accumulator_66 = _65 + accumulator_111; or its unrolled version, i.e. with several FMA candidates that feed result of one into the addend of another. Instead, we add them to a list in STATE and if we later discover an FMA candidate that is not part of such a chain, we go back and perform all deferred past candidates. */ static bool convert_mult_to_fma (gimple *mul_stmt, tree op1, tree op2, fma_deferring_state *state, tree mul_cond = NULL_TREE, tree mul_len = NULL_TREE, tree mul_bias = NULL_TREE) { tree mul_result = gimple_get_lhs (mul_stmt); /* If there isn't a LHS then this can't be an FMA. There can be no LHS if the statement was left just for the side-effects. */ if (!mul_result) return false; tree type = TREE_TYPE (mul_result); gimple *use_stmt, *neguse_stmt; use_operand_p use_p; imm_use_iterator imm_iter; if (FLOAT_TYPE_P (type) && flag_fp_contract_mode != FP_CONTRACT_FAST) return false; /* We don't want to do bitfield reduction ops. */ if (INTEGRAL_TYPE_P (type) && (!type_has_mode_precision_p (type) || TYPE_OVERFLOW_TRAPS (type))) return false; /* If the target doesn't support it, don't generate it. We assume that if fma isn't available then fms, fnma or fnms are not either. */ optimization_type opt_type = bb_optimization_type (gimple_bb (mul_stmt)); if (!direct_internal_fn_supported_p (IFN_FMA, type, opt_type)) return false; /* If the multiplication has zero uses, it is kept around probably because of -fnon-call-exceptions. Don't optimize it away in that case, it is DCE job. */ if (has_zero_uses (mul_result)) return false; bool check_defer = (state->m_deferring_p && maybe_le (tree_to_poly_int64 (TYPE_SIZE (type)), param_avoid_fma_max_bits)); bool defer = check_defer; bool seen_negate_p = false; /* There is no numerical difference between fused and unfused integer FMAs, and the assumption below that FMA is as cheap as addition is unlikely to be true, especially if the multiplication occurs multiple times on the same chain. E.g., for something like: (((a * b) + c) >> 1) + (a * b) we do not want to duplicate the a * b into two additions, not least because the result is not a natural FMA chain. */ if (ANY_INTEGRAL_TYPE_P (type) && !has_single_use (mul_result)) return false; if (!dbg_cnt (form_fma)) return false; /* Make sure that the multiplication statement becomes dead after the transformation, thus that all uses are transformed to FMAs. This means we assume that an FMA operation has the same cost as an addition. */ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result) { tree result = mul_result; bool negate_p = false; use_stmt = USE_STMT (use_p); if (is_gimple_debug (use_stmt)) continue; /* For now restrict this operations to single basic blocks. In theory we would want to support sinking the multiplication in m = a*b; if () ma = m + c; else d = m; to form a fma in the then block and sink the multiplication to the else block. */ if (gimple_bb (use_stmt) != gimple_bb (mul_stmt)) return false; /* A negate on the multiplication leads to FNMA. */ if (is_gimple_assign (use_stmt) && gimple_assign_rhs_code (use_stmt) == NEGATE_EXPR) { ssa_op_iter iter; use_operand_p usep; /* If (due to earlier missed optimizations) we have two negates of the same value, treat them as equivalent to a single negate with multiple uses. */ if (seen_negate_p) return false; result = gimple_assign_lhs (use_stmt); /* Make sure the negate statement becomes dead with this single transformation. */ if (!single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt)) return false; /* Make sure the multiplication isn't also used on that stmt. */ FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE) if (USE_FROM_PTR (usep) == mul_result) return false; /* Re-validate. */ use_stmt = neguse_stmt; if (gimple_bb (use_stmt) != gimple_bb (mul_stmt)) return false; negate_p = seen_negate_p = true; } tree cond, else_value, ops[3], len, bias; tree_code code; if (!can_interpret_as_conditional_op_p (use_stmt, &cond, &code, ops, &else_value, &len, &bias)) return false; switch (code) { case MINUS_EXPR: if (ops[1] == result) negate_p = !negate_p; break; case PLUS_EXPR: break; default: /* FMA can only be formed from PLUS and MINUS. */ return false; } if (len) { /* For COND_LEN_* operations, we may have dummpy mask which is the all true mask. Such TREE type may be mul_cond != cond but we still consider they are equal. */ if (mul_cond && cond != mul_cond && !(integer_truep (mul_cond) && integer_truep (cond))) return false; if (else_value == result) return false; if (!direct_internal_fn_supported_p (IFN_COND_LEN_FMA, type, opt_type)) return false; if (mul_len) { poly_int64 mul_value, value; if (poly_int_tree_p (mul_len, &mul_value) && poly_int_tree_p (len, &value) && maybe_ne (mul_value, value)) return false; else if (mul_len != len) return false; if (wi::to_widest (mul_bias) != wi::to_widest (bias)) return false; } } else { if (mul_cond && cond != mul_cond) return false; if (cond) { if (cond == result || else_value == result) return false; if (!direct_internal_fn_supported_p (IFN_COND_FMA, type, opt_type)) return false; } } /* If the subtrahend (OPS[1]) is computed by a MULT_EXPR that we'll visit later, we might be able to get a more profitable match with fnma. OTOH, if we don't, a negate / fma pair has likely lower latency that a mult / subtract pair. */ if (code == MINUS_EXPR && !negate_p && ops[0] == result && !direct_internal_fn_supported_p (IFN_FMS, type, opt_type) && direct_internal_fn_supported_p (IFN_FNMA, type, opt_type) && TREE_CODE (ops[1]) == SSA_NAME && has_single_use (ops[1])) { gimple *stmt2 = SSA_NAME_DEF_STMT (ops[1]); if (is_gimple_assign (stmt2) && gimple_assign_rhs_code (stmt2) == MULT_EXPR) return false; } /* We can't handle a * b + a * b. */ if (ops[0] == ops[1]) return false; /* If deferring, make sure we are not looking at an instruction that wouldn't have existed if we were not. */ if (state->m_deferring_p && (state->m_mul_result_set.contains (ops[0]) || state->m_mul_result_set.contains (ops[1]))) return false; if (check_defer) { tree use_lhs = gimple_get_lhs (use_stmt); if (state->m_last_result) { if (ops[1] == state->m_last_result || ops[0] == state->m_last_result) defer = true; else defer = false; } else { gcc_checking_assert (!state->m_initial_phi); gphi *phi; if (ops[0] == result) phi = result_of_phi (ops[1]); else { gcc_assert (ops[1] == result); phi = result_of_phi (ops[0]); } if (phi) { state->m_initial_phi = phi; defer = true; } else defer = false; } state->m_last_result = use_lhs; check_defer = false; } else defer = false; /* While it is possible to validate whether or not the exact form that we've recognized is available in the backend, the assumption is that if the deferring logic above did not trigger, the transformation is never a loss. For instance, suppose the target only has the plain FMA pattern available. Consider a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we still have 3 operations, but in the FMA form the two NEGs are independent and could be run in parallel. */ } if (defer) { fma_transformation_info fti; fti.mul_stmt = mul_stmt; fti.mul_result = mul_result; fti.op1 = op1; fti.op2 = op2; state->m_candidates.safe_push (fti); state->m_mul_result_set.add (mul_result); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Deferred generating FMA for multiplication "); print_gimple_stmt (dump_file, mul_stmt, 0, TDF_NONE); fprintf (dump_file, "\n"); } return false; } else { if (state->m_deferring_p) cancel_fma_deferring (state); convert_mult_to_fma_1 (mul_result, op1, op2); return true; } } /* Helper function of match_arith_overflow. For MUL_OVERFLOW, if we have a check for non-zero like: _1 = x_4(D) * y_5(D); *res_7(D) = _1; if (x_4(D) != 0) goto ; [50.00%] else goto ; [50.00%] [local count: 536870913]: _2 = _1 / x_4(D); _9 = _2 != y_5(D); _10 = (int) _9; [local count: 1073741824]: # iftmp.0_3 = PHI <_10(3), 0(2)> then in addition to using .MUL_OVERFLOW (x_4(D), y_5(D)) we can also optimize the x_4(D) != 0 condition to 1. */ static void maybe_optimize_guarding_check (vec &mul_stmts, gimple *cond_stmt, gimple *div_stmt, bool *cfg_changed) { basic_block bb = gimple_bb (cond_stmt); if (gimple_bb (div_stmt) != bb || !single_pred_p (bb)) return; edge pred_edge = single_pred_edge (bb); basic_block pred_bb = pred_edge->src; if (EDGE_COUNT (pred_bb->succs) != 2) return; edge other_edge = EDGE_SUCC (pred_bb, EDGE_SUCC (pred_bb, 0) == pred_edge); edge other_succ_edge = NULL; if (gimple_code (cond_stmt) == GIMPLE_COND) { if (EDGE_COUNT (bb->succs) != 2) return; other_succ_edge = EDGE_SUCC (bb, 0); if (gimple_cond_code (cond_stmt) == NE_EXPR) { if (other_succ_edge->flags & EDGE_TRUE_VALUE) other_succ_edge = EDGE_SUCC (bb, 1); } else if (other_succ_edge->flags & EDGE_FALSE_VALUE) other_succ_edge = EDGE_SUCC (bb, 0); if (other_edge->dest != other_succ_edge->dest) return; } else if (!single_succ_p (bb) || other_edge->dest != single_succ (bb)) return; gcond *zero_cond = safe_dyn_cast (*gsi_last_bb (pred_bb)); if (zero_cond == NULL || (gimple_cond_code (zero_cond) != ((pred_edge->flags & EDGE_TRUE_VALUE) ? NE_EXPR : EQ_EXPR)) || !integer_zerop (gimple_cond_rhs (zero_cond))) return; tree zero_cond_lhs = gimple_cond_lhs (zero_cond); if (TREE_CODE (zero_cond_lhs) != SSA_NAME) return; if (gimple_assign_rhs2 (div_stmt) != zero_cond_lhs) { /* Allow the divisor to be result of a same precision cast from zero_cond_lhs. */ tree rhs2 = gimple_assign_rhs2 (div_stmt); if (TREE_CODE (rhs2) != SSA_NAME) return; gimple *g = SSA_NAME_DEF_STMT (rhs2); if (!gimple_assign_cast_p (g) || gimple_assign_rhs1 (g) != gimple_cond_lhs (zero_cond) || !INTEGRAL_TYPE_P (TREE_TYPE (zero_cond_lhs)) || (TYPE_PRECISION (TREE_TYPE (zero_cond_lhs)) != TYPE_PRECISION (TREE_TYPE (rhs2)))) return; } gimple_stmt_iterator gsi = gsi_after_labels (bb); mul_stmts.quick_push (div_stmt); if (is_gimple_debug (gsi_stmt (gsi))) gsi_next_nondebug (&gsi); unsigned cast_count = 0; while (gsi_stmt (gsi) != cond_stmt) { /* If original mul_stmt has a single use, allow it in the same bb, we are looking then just at __builtin_mul_overflow_p. Though, in that case the original mul_stmt will be replaced by .MUL_OVERFLOW, REALPART_EXPR and IMAGPART_EXPR stmts. */ gimple *mul_stmt; unsigned int i; bool ok = false; FOR_EACH_VEC_ELT (mul_stmts, i, mul_stmt) { if (gsi_stmt (gsi) == mul_stmt) { ok = true; break; } } if (!ok && gimple_assign_cast_p (gsi_stmt (gsi)) && ++cast_count < 4) ok = true; if (!ok) return; gsi_next_nondebug (&gsi); } if (gimple_code (cond_stmt) == GIMPLE_COND) { basic_block succ_bb = other_edge->dest; for (gphi_iterator gpi = gsi_start_phis (succ_bb); !gsi_end_p (gpi); gsi_next (&gpi)) { gphi *phi = gpi.phi (); tree v1 = gimple_phi_arg_def (phi, other_edge->dest_idx); tree v2 = gimple_phi_arg_def (phi, other_succ_edge->dest_idx); if (!operand_equal_p (v1, v2, 0)) return; } } else { tree lhs = gimple_assign_lhs (cond_stmt); if (!lhs || !INTEGRAL_TYPE_P (TREE_TYPE (lhs))) return; gsi_next_nondebug (&gsi); if (!gsi_end_p (gsi)) { if (gimple_assign_rhs_code (cond_stmt) == COND_EXPR) return; gimple *cast_stmt = gsi_stmt (gsi); if (!gimple_assign_cast_p (cast_stmt)) return; tree new_lhs = gimple_assign_lhs (cast_stmt); gsi_next_nondebug (&gsi); if (!gsi_end_p (gsi) || !new_lhs || !INTEGRAL_TYPE_P (TREE_TYPE (new_lhs)) || TYPE_PRECISION (TREE_TYPE (new_lhs)) <= 1) return; lhs = new_lhs; } edge succ_edge = single_succ_edge (bb); basic_block succ_bb = succ_edge->dest; gsi = gsi_start_phis (succ_bb); if (gsi_end_p (gsi)) return; gphi *phi = as_a (gsi_stmt (gsi)); gsi_next (&gsi); if (!gsi_end_p (gsi)) return; if (gimple_phi_arg_def (phi, succ_edge->dest_idx) != lhs) return; tree other_val = gimple_phi_arg_def (phi, other_edge->dest_idx); if (gimple_assign_rhs_code (cond_stmt) == COND_EXPR) { tree cond = gimple_assign_rhs1 (cond_stmt); if (TREE_CODE (cond) == NE_EXPR) { if (!operand_equal_p (other_val, gimple_assign_rhs3 (cond_stmt), 0)) return; } else if (!operand_equal_p (other_val, gimple_assign_rhs2 (cond_stmt), 0)) return; } else if (gimple_assign_rhs_code (cond_stmt) == NE_EXPR) { if (!integer_zerop (other_val)) return; } else if (!integer_onep (other_val)) return; } if (pred_edge->flags & EDGE_TRUE_VALUE) gimple_cond_make_true (zero_cond); else gimple_cond_make_false (zero_cond); update_stmt (zero_cond); *cfg_changed = true; } /* Helper function for arith_overflow_check_p. Return true if VAL1 is equal to VAL2 cast to corresponding integral type with other signedness or vice versa. */ static bool arith_cast_equal_p (tree val1, tree val2) { if (TREE_CODE (val1) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST) return wi::eq_p (wi::to_wide (val1), wi::to_wide (val2)); else if (TREE_CODE (val1) != SSA_NAME || TREE_CODE (val2) != SSA_NAME) return false; if (gimple_assign_cast_p (SSA_NAME_DEF_STMT (val1)) && gimple_assign_rhs1 (SSA_NAME_DEF_STMT (val1)) == val2) return true; if (gimple_assign_cast_p (SSA_NAME_DEF_STMT (val2)) && gimple_assign_rhs1 (SSA_NAME_DEF_STMT (val2)) == val1) return true; return false; } /* Helper function of match_arith_overflow. Return 1 if USE_STMT is unsigned overflow check ovf != 0 for STMT, -1 if USE_STMT is unsigned overflow check ovf == 0 and 0 otherwise. */ static int arith_overflow_check_p (gimple *stmt, gimple *cast_stmt, gimple *&use_stmt, tree maxval, tree *other) { enum tree_code ccode = ERROR_MARK; tree crhs1 = NULL_TREE, crhs2 = NULL_TREE; enum tree_code code = gimple_assign_rhs_code (stmt); tree lhs = gimple_assign_lhs (cast_stmt ? cast_stmt : stmt); tree rhs1 = gimple_assign_rhs1 (stmt); tree rhs2 = gimple_assign_rhs2 (stmt); tree multop = NULL_TREE, divlhs = NULL_TREE; gimple *cur_use_stmt = use_stmt; if (code == MULT_EXPR) { if (!is_gimple_assign (use_stmt)) return 0; if (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR) return 0; if (gimple_assign_rhs1 (use_stmt) != lhs) return 0; if (cast_stmt) { if (arith_cast_equal_p (gimple_assign_rhs2 (use_stmt), rhs1)) multop = rhs2; else if (arith_cast_equal_p (gimple_assign_rhs2 (use_stmt), rhs2)) multop = rhs1; else return 0; } else if (gimple_assign_rhs2 (use_stmt) == rhs1) multop = rhs2; else if (operand_equal_p (gimple_assign_rhs2 (use_stmt), rhs2, 0)) multop = rhs1; else return 0; if (stmt_ends_bb_p (use_stmt)) return 0; divlhs = gimple_assign_lhs (use_stmt); if (!divlhs) return 0; use_operand_p use; if (!single_imm_use (divlhs, &use, &cur_use_stmt)) return 0; if (cast_stmt && gimple_assign_cast_p (cur_use_stmt)) { tree cast_lhs = gimple_assign_lhs (cur_use_stmt); if (INTEGRAL_TYPE_P (TREE_TYPE (cast_lhs)) && TYPE_UNSIGNED (TREE_TYPE (cast_lhs)) && (TYPE_PRECISION (TREE_TYPE (cast_lhs)) == TYPE_PRECISION (TREE_TYPE (divlhs))) && single_imm_use (cast_lhs, &use, &cur_use_stmt)) { cast_stmt = NULL; divlhs = cast_lhs; } else return 0; } } if (gimple_code (cur_use_stmt) == GIMPLE_COND) { ccode = gimple_cond_code (cur_use_stmt); crhs1 = gimple_cond_lhs (cur_use_stmt); crhs2 = gimple_cond_rhs (cur_use_stmt); } else if (is_gimple_assign (cur_use_stmt)) { if (gimple_assign_rhs_class (cur_use_stmt) == GIMPLE_BINARY_RHS) { ccode = gimple_assign_rhs_code (cur_use_stmt); crhs1 = gimple_assign_rhs1 (cur_use_stmt); crhs2 = gimple_assign_rhs2 (cur_use_stmt); } else if (gimple_assign_rhs_code (cur_use_stmt) == COND_EXPR) { tree cond = gimple_assign_rhs1 (cur_use_stmt); if (COMPARISON_CLASS_P (cond)) { ccode = TREE_CODE (cond); crhs1 = TREE_OPERAND (cond, 0); crhs2 = TREE_OPERAND (cond, 1); } else return 0; } else return 0; } else return 0; if (TREE_CODE_CLASS (ccode) != tcc_comparison) return 0; switch (ccode) { case GT_EXPR: case LE_EXPR: if (maxval) { /* r = a + b; r > maxval or r <= maxval */ if (crhs1 == lhs && TREE_CODE (crhs2) == INTEGER_CST && tree_int_cst_equal (crhs2, maxval)) return ccode == GT_EXPR ? 1 : -1; break; } /* r = a - b; r > a or r <= a r = a + b; a > r or a <= r or b > r or b <= r. */ if ((code == MINUS_EXPR && crhs1 == lhs && crhs2 == rhs1) || (code == PLUS_EXPR && (crhs1 == rhs1 || crhs1 == rhs2) && crhs2 == lhs)) return ccode == GT_EXPR ? 1 : -1; /* r = ~a; b > r or b <= r. */ if (code == BIT_NOT_EXPR && crhs2 == lhs) { if (other) *other = crhs1; return ccode == GT_EXPR ? 1 : -1; } break; case LT_EXPR: case GE_EXPR: if (maxval) break; /* r = a - b; a < r or a >= r r = a + b; r < a or r >= a or r < b or r >= b. */ if ((code == MINUS_EXPR && crhs1 == rhs1 && crhs2 == lhs) || (code == PLUS_EXPR && crhs1 == lhs && (crhs2 == rhs1 || crhs2 == rhs2))) return ccode == LT_EXPR ? 1 : -1; /* r = ~a; r < b or r >= b. */ if (code == BIT_NOT_EXPR && crhs1 == lhs) { if (other) *other = crhs2; return ccode == LT_EXPR ? 1 : -1; } break; case EQ_EXPR: case NE_EXPR: /* r = a * b; _1 = r / a; _1 == b r = a * b; _1 = r / b; _1 == a r = a * b; _1 = r / a; _1 != b r = a * b; _1 = r / b; _1 != a. */ if (code == MULT_EXPR) { if (cast_stmt) { if ((crhs1 == divlhs && arith_cast_equal_p (crhs2, multop)) || (crhs2 == divlhs && arith_cast_equal_p (crhs1, multop))) { use_stmt = cur_use_stmt; return ccode == NE_EXPR ? 1 : -1; } } else if ((crhs1 == divlhs && operand_equal_p (crhs2, multop, 0)) || (crhs2 == divlhs && crhs1 == multop)) { use_stmt = cur_use_stmt; return ccode == NE_EXPR ? 1 : -1; } } break; default: break; } return 0; } /* Recognize for unsigned x x = y - z; if (x > y) where there are other uses of x and replace it with _7 = .SUB_OVERFLOW (y, z); x = REALPART_EXPR <_7>; _8 = IMAGPART_EXPR <_7>; if (_8) and similarly for addition. Also recognize: yc = (type) y; zc = (type) z; x = yc + zc; if (x > max) where y and z have unsigned types with maximum max and there are other uses of x and all of those cast x back to that unsigned type and again replace it with _7 = .ADD_OVERFLOW (y, z); _9 = REALPART_EXPR <_7>; _8 = IMAGPART_EXPR <_7>; if (_8) and replace (utype) x with _9. Also recognize: x = ~z; if (y > x) and replace it with _7 = .ADD_OVERFLOW (y, z); _8 = IMAGPART_EXPR <_7>; if (_8) And also recognize: z = x * y; if (x != 0) goto ; [50.00%] else goto ; [50.00%] [local count: 536870913]: _2 = z / x; _9 = _2 != y; _10 = (int) _9; [local count: 1073741824]: # iftmp.0_3 = PHI <_10(3), 0(2)> and replace it with _7 = .MUL_OVERFLOW (x, y); z = IMAGPART_EXPR <_7>; _8 = IMAGPART_EXPR <_7>; _9 = _8 != 0; iftmp.0_3 = (int) _9; */ static bool match_arith_overflow (gimple_stmt_iterator *gsi, gimple *stmt, enum tree_code code, bool *cfg_changed) { tree lhs = gimple_assign_lhs (stmt); tree type = TREE_TYPE (lhs); use_operand_p use_p; imm_use_iterator iter; bool use_seen = false; bool ovf_use_seen = false; gimple *use_stmt; gimple *add_stmt = NULL; bool add_first = false; gimple *cond_stmt = NULL; gimple *cast_stmt = NULL; tree cast_lhs = NULL_TREE; gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR || code == MULT_EXPR || code == BIT_NOT_EXPR); if (!INTEGRAL_TYPE_P (type) || !TYPE_UNSIGNED (type) || has_zero_uses (lhs) || (code != PLUS_EXPR && code != MULT_EXPR && optab_handler (code == MINUS_EXPR ? usubv4_optab : uaddv4_optab, TYPE_MODE (type)) == CODE_FOR_nothing)) return false; tree rhs1 = gimple_assign_rhs1 (stmt); tree rhs2 = gimple_assign_rhs2 (stmt); FOR_EACH_IMM_USE_FAST (use_p, iter, lhs) { use_stmt = USE_STMT (use_p); if (is_gimple_debug (use_stmt)) continue; tree other = NULL_TREE; if (arith_overflow_check_p (stmt, NULL, use_stmt, NULL_TREE, &other)) { if (code == BIT_NOT_EXPR) { gcc_assert (other); if (TREE_CODE (other) != SSA_NAME) return false; if (rhs2 == NULL) rhs2 = other; else return false; cond_stmt = use_stmt; } ovf_use_seen = true; } else { use_seen = true; if (code == MULT_EXPR && cast_stmt == NULL && gimple_assign_cast_p (use_stmt)) { cast_lhs = gimple_assign_lhs (use_stmt); if (INTEGRAL_TYPE_P (TREE_TYPE (cast_lhs)) && !TYPE_UNSIGNED (TREE_TYPE (cast_lhs)) && (TYPE_PRECISION (TREE_TYPE (cast_lhs)) == TYPE_PRECISION (TREE_TYPE (lhs)))) cast_stmt = use_stmt; else cast_lhs = NULL_TREE; } } if (ovf_use_seen && use_seen) break; } if (!ovf_use_seen && code == MULT_EXPR && cast_stmt) { if (TREE_CODE (rhs1) != SSA_NAME || (TREE_CODE (rhs2) != SSA_NAME && TREE_CODE (rhs2) != INTEGER_CST)) return false; FOR_EACH_IMM_USE_FAST (use_p, iter, cast_lhs) { use_stmt = USE_STMT (use_p); if (is_gimple_debug (use_stmt)) continue; if (arith_overflow_check_p (stmt, cast_stmt, use_stmt, NULL_TREE, NULL)) ovf_use_seen = true; } } else { cast_stmt = NULL; cast_lhs = NULL_TREE; } tree maxval = NULL_TREE; if (!ovf_use_seen || (code != MULT_EXPR && (code == BIT_NOT_EXPR ? use_seen : !use_seen)) || (code == PLUS_EXPR && optab_handler (uaddv4_optab, TYPE_MODE (type)) == CODE_FOR_nothing) || (code == MULT_EXPR && optab_handler (cast_stmt ? mulv4_optab : umulv4_optab, TYPE_MODE (type)) == CODE_FOR_nothing && (use_seen || cast_stmt || !can_mult_highpart_p (TYPE_MODE (type), true)))) { if (code != PLUS_EXPR) return false; if (TREE_CODE (rhs1) != SSA_NAME || !gimple_assign_cast_p (SSA_NAME_DEF_STMT (rhs1))) return false; rhs1 = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (rhs1)); tree type1 = TREE_TYPE (rhs1); if (!INTEGRAL_TYPE_P (type1) || !TYPE_UNSIGNED (type1) || TYPE_PRECISION (type1) >= TYPE_PRECISION (type) || (TYPE_PRECISION (type1) != GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type1)))) return false; if (TREE_CODE (rhs2) == INTEGER_CST) { if (wi::ne_p (wi::rshift (wi::to_wide (rhs2), TYPE_PRECISION (type1), UNSIGNED), 0)) return false; rhs2 = fold_convert (type1, rhs2); } else { if (TREE_CODE (rhs2) != SSA_NAME || !gimple_assign_cast_p (SSA_NAME_DEF_STMT (rhs2))) return false; rhs2 = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (rhs2)); tree type2 = TREE_TYPE (rhs2); if (!INTEGRAL_TYPE_P (type2) || !TYPE_UNSIGNED (type2) || TYPE_PRECISION (type2) >= TYPE_PRECISION (type) || (TYPE_PRECISION (type2) != GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type2)))) return false; } if (TYPE_PRECISION (type1) >= TYPE_PRECISION (TREE_TYPE (rhs2))) type = type1; else type = TREE_TYPE (rhs2); if (TREE_CODE (type) != INTEGER_TYPE || optab_handler (uaddv4_optab, TYPE_MODE (type)) == CODE_FOR_nothing) return false; maxval = wide_int_to_tree (type, wi::max_value (TYPE_PRECISION (type), UNSIGNED)); ovf_use_seen = false; use_seen = false; basic_block use_bb = NULL; FOR_EACH_IMM_USE_FAST (use_p, iter, lhs) { use_stmt = USE_STMT (use_p); if (is_gimple_debug (use_stmt)) continue; if (arith_overflow_check_p (stmt, NULL, use_stmt, maxval, NULL)) { ovf_use_seen = true; use_bb = gimple_bb (use_stmt); } else { if (!gimple_assign_cast_p (use_stmt) || gimple_assign_rhs_code (use_stmt) == VIEW_CONVERT_EXPR) return false; tree use_lhs = gimple_assign_lhs (use_stmt); if (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs)) || (TYPE_PRECISION (TREE_TYPE (use_lhs)) > TYPE_PRECISION (type))) return false; use_seen = true; } } if (!ovf_use_seen) return false; if (!useless_type_conversion_p (type, TREE_TYPE (rhs1))) { if (!use_seen) return false; tree new_rhs1 = make_ssa_name (type); gimple *g = gimple_build_assign (new_rhs1, NOP_EXPR, rhs1); gsi_insert_before (gsi, g, GSI_SAME_STMT); rhs1 = new_rhs1; } else if (!useless_type_conversion_p (type, TREE_TYPE (rhs2))) { if (!use_seen) return false; tree new_rhs2 = make_ssa_name (type); gimple *g = gimple_build_assign (new_rhs2, NOP_EXPR, rhs2); gsi_insert_before (gsi, g, GSI_SAME_STMT); rhs2 = new_rhs2; } else if (!use_seen) { /* If there are no uses of the wider addition, check if forwprop has not created a narrower addition. Require it to be in the same bb as the overflow check. */ FOR_EACH_IMM_USE_FAST (use_p, iter, rhs1) { use_stmt = USE_STMT (use_p); if (is_gimple_debug (use_stmt)) continue; if (use_stmt == stmt) continue; if (!is_gimple_assign (use_stmt) || gimple_bb (use_stmt) != use_bb || gimple_assign_rhs_code (use_stmt) != PLUS_EXPR) continue; if (gimple_assign_rhs1 (use_stmt) == rhs1) { if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), rhs2, 0)) continue; } else if (gimple_assign_rhs2 (use_stmt) == rhs1) { if (gimple_assign_rhs1 (use_stmt) != rhs2) continue; } else continue; add_stmt = use_stmt; break; } if (add_stmt == NULL) return false; /* If stmt and add_stmt are in the same bb, we need to find out which one is earlier. If they are in different bbs, we've checked add_stmt is in the same bb as one of the uses of the stmt lhs, so stmt needs to dominate add_stmt too. */ if (gimple_bb (stmt) == gimple_bb (add_stmt)) { gimple_stmt_iterator gsif = *gsi; gimple_stmt_iterator gsib = *gsi; int i; /* Search both forward and backward from stmt and have a small upper bound. */ for (i = 0; i < 128; i++) { if (!gsi_end_p (gsib)) { gsi_prev_nondebug (&gsib); if (gsi_stmt (gsib) == add_stmt) { add_first = true; break; } } else if (gsi_end_p (gsif)) break; if (!gsi_end_p (gsif)) { gsi_next_nondebug (&gsif); if (gsi_stmt (gsif) == add_stmt) break; } } if (i == 128) return false; if (add_first) *gsi = gsi_for_stmt (add_stmt); } } } if (code == BIT_NOT_EXPR) *gsi = gsi_for_stmt (cond_stmt); auto_vec mul_stmts; if (code == MULT_EXPR && cast_stmt) { type = TREE_TYPE (cast_lhs); gimple *g = SSA_NAME_DEF_STMT (rhs1); if (gimple_assign_cast_p (g) && useless_type_conversion_p (type, TREE_TYPE (gimple_assign_rhs1 (g))) && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (g))) rhs1 = gimple_assign_rhs1 (g); else { g = gimple_build_assign (make_ssa_name (type), NOP_EXPR, rhs1); gsi_insert_before (gsi, g, GSI_SAME_STMT); rhs1 = gimple_assign_lhs (g); mul_stmts.quick_push (g); } if (TREE_CODE (rhs2) == INTEGER_CST) rhs2 = fold_convert (type, rhs2); else { g = SSA_NAME_DEF_STMT (rhs2); if (gimple_assign_cast_p (g) && useless_type_conversion_p (type, TREE_TYPE (gimple_assign_rhs1 (g))) && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (g))) rhs2 = gimple_assign_rhs1 (g); else { g = gimple_build_assign (make_ssa_name (type), NOP_EXPR, rhs2); gsi_insert_before (gsi, g, GSI_SAME_STMT); rhs2 = gimple_assign_lhs (g); mul_stmts.quick_push (g); } } } tree ctype = build_complex_type (type); gcall *g = gimple_build_call_internal (code == MULT_EXPR ? IFN_MUL_OVERFLOW : code != MINUS_EXPR ? IFN_ADD_OVERFLOW : IFN_SUB_OVERFLOW, 2, rhs1, rhs2); tree ctmp = make_ssa_name (ctype); gimple_call_set_lhs (g, ctmp); gsi_insert_before (gsi, g, GSI_SAME_STMT); tree new_lhs = (maxval || cast_stmt) ? make_ssa_name (type) : lhs; gassign *g2; if (code != BIT_NOT_EXPR) { g2 = gimple_build_assign (new_lhs, REALPART_EXPR, build1 (REALPART_EXPR, type, ctmp)); if (maxval || cast_stmt) { gsi_insert_before (gsi, g2, GSI_SAME_STMT); if (add_first) *gsi = gsi_for_stmt (stmt); } else gsi_replace (gsi, g2, true); if (code == MULT_EXPR) { mul_stmts.quick_push (g); mul_stmts.quick_push (g2); if (cast_stmt) { g2 = gimple_build_assign (lhs, NOP_EXPR, new_lhs); gsi_replace (gsi, g2, true); mul_stmts.quick_push (g2); } } } tree ovf = make_ssa_name (type); g2 = gimple_build_assign (ovf, IMAGPART_EXPR, build1 (IMAGPART_EXPR, type, ctmp)); if (code != BIT_NOT_EXPR) gsi_insert_after (gsi, g2, GSI_NEW_STMT); else gsi_insert_before (gsi, g2, GSI_SAME_STMT); if (code == MULT_EXPR) mul_stmts.quick_push (g2); FOR_EACH_IMM_USE_STMT (use_stmt, iter, cast_lhs ? cast_lhs : lhs) { if (is_gimple_debug (use_stmt)) continue; gimple *orig_use_stmt = use_stmt; int ovf_use = arith_overflow_check_p (stmt, cast_stmt, use_stmt, maxval, NULL); if (ovf_use == 0) { gcc_assert (code != BIT_NOT_EXPR); if (maxval) { tree use_lhs = gimple_assign_lhs (use_stmt); gimple_assign_set_rhs1 (use_stmt, new_lhs); if (useless_type_conversion_p (TREE_TYPE (use_lhs), TREE_TYPE (new_lhs))) gimple_assign_set_rhs_code (use_stmt, SSA_NAME); update_stmt (use_stmt); } continue; } if (gimple_code (use_stmt) == GIMPLE_COND) { gcond *cond_stmt = as_a (use_stmt); gimple_cond_set_lhs (cond_stmt, ovf); gimple_cond_set_rhs (cond_stmt, build_int_cst (type, 0)); gimple_cond_set_code (cond_stmt, ovf_use == 1 ? NE_EXPR : EQ_EXPR); } else { gcc_checking_assert (is_gimple_assign (use_stmt)); if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS) { gimple_assign_set_rhs1 (use_stmt, ovf); gimple_assign_set_rhs2 (use_stmt, build_int_cst (type, 0)); gimple_assign_set_rhs_code (use_stmt, ovf_use == 1 ? NE_EXPR : EQ_EXPR); } else { gcc_checking_assert (gimple_assign_rhs_code (use_stmt) == COND_EXPR); tree cond = build2 (ovf_use == 1 ? NE_EXPR : EQ_EXPR, boolean_type_node, ovf, build_int_cst (type, 0)); gimple_assign_set_rhs1 (use_stmt, cond); } } update_stmt (use_stmt); if (code == MULT_EXPR && use_stmt != orig_use_stmt) { gimple_stmt_iterator gsi2 = gsi_for_stmt (orig_use_stmt); maybe_optimize_guarding_check (mul_stmts, use_stmt, orig_use_stmt, cfg_changed); use_operand_p use; gimple *cast_stmt; if (single_imm_use (gimple_assign_lhs (orig_use_stmt), &use, &cast_stmt) && gimple_assign_cast_p (cast_stmt)) { gimple_stmt_iterator gsi3 = gsi_for_stmt (cast_stmt); gsi_remove (&gsi3, true); release_ssa_name (gimple_assign_lhs (cast_stmt)); } gsi_remove (&gsi2, true); release_ssa_name (gimple_assign_lhs (orig_use_stmt)); } } if (maxval) { gimple_stmt_iterator gsi2 = gsi_for_stmt (stmt); gsi_remove (&gsi2, true); if (add_stmt) { gimple *g = gimple_build_assign (gimple_assign_lhs (add_stmt), new_lhs); gsi2 = gsi_for_stmt (add_stmt); gsi_replace (&gsi2, g, true); } } else if (code == BIT_NOT_EXPR) { *gsi = gsi_for_stmt (stmt); gsi_remove (gsi, true); release_ssa_name (lhs); return true; } return false; } /* Helper of match_uaddc_usubc. Look through an integral cast which should preserve [0, 1] range value (unless source has 1-bit signed type) and the cast has single use. */ static gimple * uaddc_cast (gimple *g) { if (!gimple_assign_cast_p (g)) return g; tree op = gimple_assign_rhs1 (g); if (TREE_CODE (op) == SSA_NAME && INTEGRAL_TYPE_P (TREE_TYPE (op)) && (TYPE_PRECISION (TREE_TYPE (op)) > 1 || TYPE_UNSIGNED (TREE_TYPE (op))) && has_single_use (gimple_assign_lhs (g))) return SSA_NAME_DEF_STMT (op); return g; } /* Helper of match_uaddc_usubc. Look through a NE_EXPR comparison with 0 which also preserves [0, 1] value range. */ static gimple * uaddc_ne0 (gimple *g) { if (is_gimple_assign (g) && gimple_assign_rhs_code (g) == NE_EXPR && integer_zerop (gimple_assign_rhs2 (g)) && TREE_CODE (gimple_assign_rhs1 (g)) == SSA_NAME && has_single_use (gimple_assign_lhs (g))) return SSA_NAME_DEF_STMT (gimple_assign_rhs1 (g)); return g; } /* Return true if G is {REAL,IMAG}PART_EXPR PART with SSA_NAME operand. */ static bool uaddc_is_cplxpart (gimple *g, tree_code part) { return (is_gimple_assign (g) && gimple_assign_rhs_code (g) == part && TREE_CODE (TREE_OPERAND (gimple_assign_rhs1 (g), 0)) == SSA_NAME); } /* Try to match e.g. _29 = .ADD_OVERFLOW (_3, _4); _30 = REALPART_EXPR <_29>; _31 = IMAGPART_EXPR <_29>; _32 = .ADD_OVERFLOW (_30, _38); _33 = REALPART_EXPR <_32>; _34 = IMAGPART_EXPR <_32>; _35 = _31 + _34; as _36 = .UADDC (_3, _4, _38); _33 = REALPART_EXPR <_36>; _35 = IMAGPART_EXPR <_36>; or _22 = .SUB_OVERFLOW (_6, _5); _23 = REALPART_EXPR <_22>; _24 = IMAGPART_EXPR <_22>; _25 = .SUB_OVERFLOW (_23, _37); _26 = REALPART_EXPR <_25>; _27 = IMAGPART_EXPR <_25>; _28 = _24 | _27; as _29 = .USUBC (_6, _5, _37); _26 = REALPART_EXPR <_29>; _288 = IMAGPART_EXPR <_29>; provided _38 or _37 above have [0, 1] range and _3, _4 and _30 or _6, _5 and _23 are unsigned integral types with the same precision. Whether + or | or ^ is used on the IMAGPART_EXPR results doesn't matter, with one of added or subtracted operands in [0, 1] range at most one .ADD_OVERFLOW or .SUB_OVERFLOW will indicate overflow. */ static bool match_uaddc_usubc (gimple_stmt_iterator *gsi, gimple *stmt, tree_code code) { tree rhs[4]; rhs[0] = gimple_assign_rhs1 (stmt); rhs[1] = gimple_assign_rhs2 (stmt); rhs[2] = NULL_TREE; rhs[3] = NULL_TREE; tree type = TREE_TYPE (rhs[0]); if (!INTEGRAL_TYPE_P (type) || !TYPE_UNSIGNED (type)) return false; auto_vec temp_stmts; if (code != BIT_IOR_EXPR && code != BIT_XOR_EXPR) { /* If overflow flag is ignored on the MSB limb, we can end up with the most significant limb handled as r = op1 + op2 + ovf1 + ovf2; or r = op1 - op2 - ovf1 - ovf2; or various equivalent expressions thereof. Handle those like the ovf = ovf1 + ovf2; case to recognize the limb below the MSB, but also create another .UADDC/.USUBC call for the last limb. First look through assignments with the same rhs code as CODE, with the exception that subtraction of a constant is canonicalized into addition of its negation. rhs[0] will be minuend for subtractions and one of addends for addition, all other assigned rhs[i] operands will be subtrahends or other addends. */ while (TREE_CODE (rhs[0]) == SSA_NAME && !rhs[3]) { gimple *g = SSA_NAME_DEF_STMT (rhs[0]); if (has_single_use (rhs[0]) && is_gimple_assign (g) && (gimple_assign_rhs_code (g) == code || (code == MINUS_EXPR && gimple_assign_rhs_code (g) == PLUS_EXPR && TREE_CODE (gimple_assign_rhs2 (g)) == INTEGER_CST))) { tree r2 = gimple_assign_rhs2 (g); if (gimple_assign_rhs_code (g) != code) { r2 = const_unop (NEGATE_EXPR, TREE_TYPE (r2), r2); if (!r2) break; } rhs[0] = gimple_assign_rhs1 (g); tree &r = rhs[2] ? rhs[3] : rhs[2]; r = r2; temp_stmts.quick_push (g); } else break; } for (int i = 1; i <= 2; ++i) while (rhs[i] && TREE_CODE (rhs[i]) == SSA_NAME && !rhs[3]) { gimple *g = SSA_NAME_DEF_STMT (rhs[i]); if (has_single_use (rhs[i]) && is_gimple_assign (g) && gimple_assign_rhs_code (g) == PLUS_EXPR) { rhs[i] = gimple_assign_rhs1 (g); if (rhs[2]) rhs[3] = gimple_assign_rhs2 (g); else rhs[2] = gimple_assign_rhs2 (g); temp_stmts.quick_push (g); } else break; } /* If there are just 3 addends or one minuend and two subtrahends, check for UADDC or USUBC being pattern recognized earlier. Say r = op1 + op2 + ovf1 + ovf2; where the (ovf1 + ovf2) part got pattern matched earlier as __imag__ .UADDC (arg1, arg2, arg3) etc. */ if (rhs[2] && !rhs[3]) { for (int i = (code == MINUS_EXPR ? 1 : 0); i < 3; ++i) if (TREE_CODE (rhs[i]) == SSA_NAME) { gimple *im = uaddc_cast (SSA_NAME_DEF_STMT (rhs[i])); im = uaddc_ne0 (im); if (uaddc_is_cplxpart (im, IMAGPART_EXPR)) { /* We found one of the 3 addends or 2 subtrahends to be __imag__ of something, verify it is .UADDC/.USUBC. */ tree rhs1 = gimple_assign_rhs1 (im); gimple *ovf = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs1, 0)); tree ovf_lhs = NULL_TREE; tree ovf_arg1 = NULL_TREE, ovf_arg2 = NULL_TREE; if (gimple_call_internal_p (ovf, code == PLUS_EXPR ? IFN_ADD_OVERFLOW : IFN_SUB_OVERFLOW)) { /* Or verify it is .ADD_OVERFLOW/.SUB_OVERFLOW. This is for the case of 2 chained .UADDC/.USUBC, where the first one uses 0 carry-in and the second one ignores the carry-out. So, something like: _16 = .ADD_OVERFLOW (_1, _2); _17 = REALPART_EXPR <_16>; _18 = IMAGPART_EXPR <_16>; _15 = _3 + _4; _12 = _15 + _18; where the first 3 statements come from the lower limb addition and the last 2 from the higher limb which ignores carry-out. */ ovf_lhs = gimple_call_lhs (ovf); tree ovf_lhs_type = TREE_TYPE (TREE_TYPE (ovf_lhs)); ovf_arg1 = gimple_call_arg (ovf, 0); ovf_arg2 = gimple_call_arg (ovf, 1); /* In that case we need to punt if the types don't mismatch. */ if (!types_compatible_p (type, ovf_lhs_type) || !types_compatible_p (type, TREE_TYPE (ovf_arg1)) || !types_compatible_p (type, TREE_TYPE (ovf_arg2))) ovf_lhs = NULL_TREE; else { for (int i = (code == PLUS_EXPR ? 1 : 0); i >= 0; --i) { tree r = gimple_call_arg (ovf, i); if (TREE_CODE (r) != SSA_NAME) continue; if (uaddc_is_cplxpart (SSA_NAME_DEF_STMT (r), REALPART_EXPR)) { /* Punt if one of the args which isn't subtracted isn't __real__; that could then prevent better match later. Consider: _3 = .ADD_OVERFLOW (_1, _2); _4 = REALPART_EXPR <_3>; _5 = IMAGPART_EXPR <_3>; _7 = .ADD_OVERFLOW (_4, _6); _8 = REALPART_EXPR <_7>; _9 = IMAGPART_EXPR <_7>; _12 = _10 + _11; _13 = _12 + _9; _14 = _13 + _5; We want to match this when called on the last stmt as a pair of .UADDC calls, but without this check we could turn that prematurely on _13 = _12 + _9; stmt into .UADDC with 0 carry-in just on the second .ADD_OVERFLOW call and another replacing the _12 and _13 additions. */ ovf_lhs = NULL_TREE; break; } } } if (ovf_lhs) { use_operand_p use_p; imm_use_iterator iter; tree re_lhs = NULL_TREE; FOR_EACH_IMM_USE_FAST (use_p, iter, ovf_lhs) { gimple *use_stmt = USE_STMT (use_p); if (is_gimple_debug (use_stmt)) continue; if (use_stmt == im) continue; if (!uaddc_is_cplxpart (use_stmt, REALPART_EXPR)) { ovf_lhs = NULL_TREE; break; } re_lhs = gimple_assign_lhs (use_stmt); } if (ovf_lhs && re_lhs) { FOR_EACH_IMM_USE_FAST (use_p, iter, re_lhs) { gimple *use_stmt = USE_STMT (use_p); if (is_gimple_debug (use_stmt)) continue; internal_fn ifn = gimple_call_internal_fn (ovf); /* Punt if the __real__ of lhs is used in the same .*_OVERFLOW call. Consider: _3 = .ADD_OVERFLOW (_1, _2); _4 = REALPART_EXPR <_3>; _5 = IMAGPART_EXPR <_3>; _7 = .ADD_OVERFLOW (_4, _6); _8 = REALPART_EXPR <_7>; _9 = IMAGPART_EXPR <_7>; _12 = _10 + _11; _13 = _12 + _5; _14 = _13 + _9; We want to match this when called on the last stmt as a pair of .UADDC calls, but without this check we could turn that prematurely on _13 = _12 + _5; stmt into .UADDC with 0 carry-in just on the first .ADD_OVERFLOW call and another replacing the _12 and _13 additions. */ if (gimple_call_internal_p (use_stmt, ifn)) { ovf_lhs = NULL_TREE; break; } } } } } if ((ovf_lhs || gimple_call_internal_p (ovf, code == PLUS_EXPR ? IFN_UADDC : IFN_USUBC)) && (optab_handler (code == PLUS_EXPR ? uaddc5_optab : usubc5_optab, TYPE_MODE (type)) != CODE_FOR_nothing)) { /* And in that case build another .UADDC/.USUBC call for the most significand limb addition. Overflow bit is ignored here. */ if (i != 2) std::swap (rhs[i], rhs[2]); gimple *g = gimple_build_call_internal (code == PLUS_EXPR ? IFN_UADDC : IFN_USUBC, 3, rhs[0], rhs[1], rhs[2]); tree nlhs = make_ssa_name (build_complex_type (type)); gimple_call_set_lhs (g, nlhs); gsi_insert_before (gsi, g, GSI_SAME_STMT); tree ilhs = gimple_assign_lhs (stmt); g = gimple_build_assign (ilhs, REALPART_EXPR, build1 (REALPART_EXPR, TREE_TYPE (ilhs), nlhs)); gsi_replace (gsi, g, true); /* And if it is initialized from result of __imag__ of .{ADD,SUB}_OVERFLOW call, replace that call with .U{ADD,SUB}C call with the same arguments, just 0 added as third argument. This isn't strictly necessary, .ADD_OVERFLOW (x, y) and .UADDC (x, y, 0) produce the same result, but may result in better generated code on some targets where the backend can better prepare in how the result will be used. */ if (ovf_lhs) { tree zero = build_zero_cst (type); g = gimple_build_call_internal (code == PLUS_EXPR ? IFN_UADDC : IFN_USUBC, 3, ovf_arg1, ovf_arg2, zero); gimple_call_set_lhs (g, ovf_lhs); gimple_stmt_iterator gsi2 = gsi_for_stmt (ovf); gsi_replace (&gsi2, g, true); } return true; } } } return false; } if (code == MINUS_EXPR && !rhs[2]) return false; if (code == MINUS_EXPR) /* Code below expects rhs[0] and rhs[1] to have the IMAGPART_EXPRs. So, for MINUS_EXPR swap the single added rhs operand (others are subtracted) to rhs[3]. */ std::swap (rhs[0], rhs[3]); } /* Walk from both operands of STMT (for +/- even sometimes from all the 4 addends or 3 subtrahends), see through casts and != 0 statements which would preserve [0, 1] range of values and check which is initialized from __imag__. */ gimple *im1 = NULL, *im2 = NULL; for (int i = 0; i < (code == MINUS_EXPR ? 3 : 4); i++) if (rhs[i] && TREE_CODE (rhs[i]) == SSA_NAME) { gimple *im = uaddc_cast (SSA_NAME_DEF_STMT (rhs[i])); im = uaddc_ne0 (im); if (uaddc_is_cplxpart (im, IMAGPART_EXPR)) { if (im1 == NULL) { im1 = im; if (i != 0) std::swap (rhs[0], rhs[i]); } else { im2 = im; if (i != 1) std::swap (rhs[1], rhs[i]); break; } } } /* If we don't find at least two, punt. */ if (!im2) return false; /* Check they are __imag__ of .ADD_OVERFLOW or .SUB_OVERFLOW call results, either both .ADD_OVERFLOW or both .SUB_OVERFLOW and that we have uaddc5/usubc5 named pattern for the corresponding mode. */ gimple *ovf1 = SSA_NAME_DEF_STMT (TREE_OPERAND (gimple_assign_rhs1 (im1), 0)); gimple *ovf2 = SSA_NAME_DEF_STMT (TREE_OPERAND (gimple_assign_rhs1 (im2), 0)); internal_fn ifn; if (!is_gimple_call (ovf1) || !gimple_call_internal_p (ovf1) || ((ifn = gimple_call_internal_fn (ovf1)) != IFN_ADD_OVERFLOW && ifn != IFN_SUB_OVERFLOW) || !gimple_call_internal_p (ovf2, ifn) || optab_handler (ifn == IFN_ADD_OVERFLOW ? uaddc5_optab : usubc5_optab, TYPE_MODE (type)) == CODE_FOR_nothing || (rhs[2] && optab_handler (code == PLUS_EXPR ? uaddc5_optab : usubc5_optab, TYPE_MODE (type)) == CODE_FOR_nothing)) return false; tree arg1, arg2, arg3 = NULL_TREE; gimple *re1 = NULL, *re2 = NULL; /* On one of the two calls, one of the .ADD_OVERFLOW/.SUB_OVERFLOW arguments should be initialized from __real__ of the other of the two calls. Though, for .SUB_OVERFLOW, it has to be the first argument, not the second one. */ for (int i = (ifn == IFN_ADD_OVERFLOW ? 1 : 0); i >= 0; --i) for (gimple *ovf = ovf1; ovf; ovf = (ovf == ovf1 ? ovf2 : NULL)) { tree arg = gimple_call_arg (ovf, i); if (TREE_CODE (arg) != SSA_NAME) continue; re1 = SSA_NAME_DEF_STMT (arg); if (uaddc_is_cplxpart (re1, REALPART_EXPR) && (SSA_NAME_DEF_STMT (TREE_OPERAND (gimple_assign_rhs1 (re1), 0)) == (ovf == ovf1 ? ovf2 : ovf1))) { if (ovf == ovf1) { /* Make sure ovf2 is the .*_OVERFLOW call with argument initialized from __real__ of ovf1. */ std::swap (rhs[0], rhs[1]); std::swap (im1, im2); std::swap (ovf1, ovf2); } arg3 = gimple_call_arg (ovf, 1 - i); i = -1; break; } } if (!arg3) return false; arg1 = gimple_call_arg (ovf1, 0); arg2 = gimple_call_arg (ovf1, 1); if (!types_compatible_p (type, TREE_TYPE (arg1))) return false; int kind[2] = { 0, 0 }; tree arg_im[2] = { NULL_TREE, NULL_TREE }; /* At least one of arg2 and arg3 should have type compatible with arg1/rhs[0], and the other one should have value in [0, 1] range. If both are in [0, 1] range and type compatible with arg1/rhs[0], try harder to find after looking through casts, != 0 comparisons which one is initialized to __imag__ of .{ADD,SUB}_OVERFLOW or .U{ADD,SUB}C call results. */ for (int i = 0; i < 2; ++i) { tree arg = i == 0 ? arg2 : arg3; if (types_compatible_p (type, TREE_TYPE (arg))) kind[i] = 1; if (!INTEGRAL_TYPE_P (TREE_TYPE (arg)) || (TYPE_PRECISION (TREE_TYPE (arg)) == 1 && !TYPE_UNSIGNED (TREE_TYPE (arg)))) continue; if (tree_zero_one_valued_p (arg)) kind[i] |= 2; if (TREE_CODE (arg) == SSA_NAME) { gimple *g = SSA_NAME_DEF_STMT (arg); if (gimple_assign_cast_p (g)) { tree op = gimple_assign_rhs1 (g); if (TREE_CODE (op) == SSA_NAME && INTEGRAL_TYPE_P (TREE_TYPE (op))) g = SSA_NAME_DEF_STMT (op); } g = uaddc_ne0 (g); if (!uaddc_is_cplxpart (g, IMAGPART_EXPR)) continue; arg_im[i] = gimple_assign_lhs (g); g = SSA_NAME_DEF_STMT (TREE_OPERAND (gimple_assign_rhs1 (g), 0)); if (!is_gimple_call (g) || !gimple_call_internal_p (g)) continue; switch (gimple_call_internal_fn (g)) { case IFN_ADD_OVERFLOW: case IFN_SUB_OVERFLOW: case IFN_UADDC: case IFN_USUBC: break; default: continue; } kind[i] |= 4; } } /* Make arg2 the one with compatible type and arg3 the one with [0, 1] range. If both is true for both operands, prefer as arg3 result of __imag__ of some ifn. */ if ((kind[0] & 1) == 0 || ((kind[1] & 1) != 0 && kind[0] > kind[1])) { std::swap (arg2, arg3); std::swap (kind[0], kind[1]); std::swap (arg_im[0], arg_im[1]); } if ((kind[0] & 1) == 0 || (kind[1] & 6) == 0) return false; if (!has_single_use (gimple_assign_lhs (im1)) || !has_single_use (gimple_assign_lhs (im2)) || !has_single_use (gimple_assign_lhs (re1)) || num_imm_uses (gimple_call_lhs (ovf1)) != 2) return false; /* Check that ovf2's result is used in __real__ and set re2 to that statement. */ use_operand_p use_p; imm_use_iterator iter; tree lhs = gimple_call_lhs (ovf2); FOR_EACH_IMM_USE_FAST (use_p, iter, lhs) { gimple *use_stmt = USE_STMT (use_p); if (is_gimple_debug (use_stmt)) continue; if (use_stmt == im2) continue; if (re2) return false; if (!uaddc_is_cplxpart (use_stmt, REALPART_EXPR)) return false; re2 = use_stmt; } /* Build .UADDC/.USUBC call which will be placed before the stmt. */ gimple_stmt_iterator gsi2 = gsi_for_stmt (ovf2); gimple *g; if ((kind[1] & 4) != 0 && types_compatible_p (type, TREE_TYPE (arg_im[1]))) arg3 = arg_im[1]; if ((kind[1] & 1) == 0) { if (TREE_CODE (arg3) == INTEGER_CST) arg3 = fold_convert (type, arg3); else { g = gimple_build_assign (make_ssa_name (type), NOP_EXPR, arg3); gsi_insert_before (&gsi2, g, GSI_SAME_STMT); arg3 = gimple_assign_lhs (g); } } g = gimple_build_call_internal (ifn == IFN_ADD_OVERFLOW ? IFN_UADDC : IFN_USUBC, 3, arg1, arg2, arg3); tree nlhs = make_ssa_name (TREE_TYPE (lhs)); gimple_call_set_lhs (g, nlhs); gsi_insert_before (&gsi2, g, GSI_SAME_STMT); /* In the case where stmt is | or ^ of two overflow flags or addition of those, replace stmt with __imag__ of the above added call. In case of arg1 + arg2 + (ovf1 + ovf2) or arg1 - arg2 - (ovf1 + ovf2) just emit it before stmt. */ tree ilhs = rhs[2] ? make_ssa_name (type) : gimple_assign_lhs (stmt); g = gimple_build_assign (ilhs, IMAGPART_EXPR, build1 (IMAGPART_EXPR, TREE_TYPE (ilhs), nlhs)); if (rhs[2]) { gsi_insert_before (gsi, g, GSI_SAME_STMT); /* Remove some further statements which can't be kept in the IL because they can use SSA_NAMEs whose setter is going to be removed too. */ while (temp_stmts.length ()) { g = temp_stmts.pop (); gsi2 = gsi_for_stmt (g); gsi_remove (&gsi2, true); } } else gsi_replace (gsi, g, true); /* Remove some statements which can't be kept in the IL because they use SSA_NAME whose setter is going to be removed too. */ tree rhs1 = rhs[1]; for (int i = 0; i < 2; i++) if (rhs1 == gimple_assign_lhs (im2)) break; else { g = SSA_NAME_DEF_STMT (rhs1); rhs1 = gimple_assign_rhs1 (g); gsi2 = gsi_for_stmt (g); gsi_remove (&gsi2, true); } gcc_checking_assert (rhs1 == gimple_assign_lhs (im2)); gsi2 = gsi_for_stmt (im2); gsi_remove (&gsi2, true); /* Replace the re2 statement with __real__ of the newly added .UADDC/.USUBC call. */ if (re2) { gsi2 = gsi_for_stmt (re2); tree rlhs = gimple_assign_lhs (re2); g = gimple_build_assign (rlhs, REALPART_EXPR, build1 (REALPART_EXPR, TREE_TYPE (rlhs), nlhs)); gsi_replace (&gsi2, g, true); } if (rhs[2]) { /* If this is the arg1 + arg2 + (ovf1 + ovf2) or arg1 - arg2 - (ovf1 + ovf2) case for the most significant limb, replace stmt with __real__ of another .UADDC/.USUBC call which handles the most significant limb. Overflow flag from this is ignored. */ g = gimple_build_call_internal (code == PLUS_EXPR ? IFN_UADDC : IFN_USUBC, 3, rhs[3], rhs[2], ilhs); nlhs = make_ssa_name (TREE_TYPE (lhs)); gimple_call_set_lhs (g, nlhs); gsi_insert_before (gsi, g, GSI_SAME_STMT); ilhs = gimple_assign_lhs (stmt); g = gimple_build_assign (ilhs, REALPART_EXPR, build1 (REALPART_EXPR, TREE_TYPE (ilhs), nlhs)); gsi_replace (gsi, g, true); } if (TREE_CODE (arg3) == SSA_NAME) { /* When pattern recognizing the second least significant limb above (i.e. first pair of .{ADD,SUB}_OVERFLOW calls for one limb), check if the [0, 1] range argument (i.e. carry in) isn't the result of another .{ADD,SUB}_OVERFLOW call (one handling the least significant limb). Again look through casts and != 0. */ gimple *im3 = SSA_NAME_DEF_STMT (arg3); for (int i = 0; i < 2; ++i) { gimple *im4 = uaddc_cast (im3); if (im4 == im3) break; else im3 = im4; } im3 = uaddc_ne0 (im3); if (uaddc_is_cplxpart (im3, IMAGPART_EXPR)) { gimple *ovf3 = SSA_NAME_DEF_STMT (TREE_OPERAND (gimple_assign_rhs1 (im3), 0)); if (gimple_call_internal_p (ovf3, ifn)) { lhs = gimple_call_lhs (ovf3); arg1 = gimple_call_arg (ovf3, 0); arg2 = gimple_call_arg (ovf3, 1); if (types_compatible_p (type, TREE_TYPE (TREE_TYPE (lhs))) && types_compatible_p (type, TREE_TYPE (arg1)) && types_compatible_p (type, TREE_TYPE (arg2))) { /* And if it is initialized from result of __imag__ of .{ADD,SUB}_OVERFLOW call, replace that call with .U{ADD,SUB}C call with the same arguments, just 0 added as third argument. This isn't strictly necessary, .ADD_OVERFLOW (x, y) and .UADDC (x, y, 0) produce the same result, but may result in better generated code on some targets where the backend can better prepare in how the result will be used. */ g = gimple_build_call_internal (ifn == IFN_ADD_OVERFLOW ? IFN_UADDC : IFN_USUBC, 3, arg1, arg2, build_zero_cst (type)); gimple_call_set_lhs (g, lhs); gsi2 = gsi_for_stmt (ovf3); gsi_replace (&gsi2, g, true); } } } } return true; } /* Return true if target has support for divmod. */ static bool target_supports_divmod_p (optab divmod_optab, optab div_optab, machine_mode mode) { /* If target supports hardware divmod insn, use it for divmod. */ if (optab_handler (divmod_optab, mode) != CODE_FOR_nothing) return true; /* Check if libfunc for divmod is available. */ rtx libfunc = optab_libfunc (divmod_optab, mode); if (libfunc != NULL_RTX) { /* If optab_handler exists for div_optab, perhaps in a wider mode, we don't want to use the libfunc even if it exists for given mode. */ machine_mode div_mode; FOR_EACH_MODE_FROM (div_mode, mode) if (optab_handler (div_optab, div_mode) != CODE_FOR_nothing) return false; return targetm.expand_divmod_libfunc != NULL; } return false; } /* Check if stmt is candidate for divmod transform. */ static bool divmod_candidate_p (gassign *stmt) { tree type = TREE_TYPE (gimple_assign_lhs (stmt)); machine_mode mode = TYPE_MODE (type); optab divmod_optab, div_optab; if (TYPE_UNSIGNED (type)) { divmod_optab = udivmod_optab; div_optab = udiv_optab; } else { divmod_optab = sdivmod_optab; div_optab = sdiv_optab; } tree op1 = gimple_assign_rhs1 (stmt); tree op2 = gimple_assign_rhs2 (stmt); /* Disable the transform if either is a constant, since division-by-constant may have specialized expansion. */ if (CONSTANT_CLASS_P (op1)) return false; if (CONSTANT_CLASS_P (op2)) { if (integer_pow2p (op2)) return false; if (element_precision (type) <= HOST_BITS_PER_WIDE_INT && element_precision (type) <= BITS_PER_WORD) return false; /* If the divisor is not power of 2 and the precision wider than HWI, expand_divmod punts on that, so in that case it is better to use divmod optab or libfunc. Similarly if choose_multiplier might need pre/post shifts of BITS_PER_WORD or more. */ } /* Exclude the case where TYPE_OVERFLOW_TRAPS (type) as that should expand using the [su]divv optabs. */ if (TYPE_OVERFLOW_TRAPS (type)) return false; if (!target_supports_divmod_p (divmod_optab, div_optab, mode)) return false; return true; } /* This function looks for: t1 = a TRUNC_DIV_EXPR b; t2 = a TRUNC_MOD_EXPR b; and transforms it to the following sequence: complex_tmp = DIVMOD (a, b); t1 = REALPART_EXPR(a); t2 = IMAGPART_EXPR(b); For conditions enabling the transform see divmod_candidate_p(). The pass has three parts: 1) Find top_stmt which is trunc_div or trunc_mod stmt and dominates all other trunc_div_expr and trunc_mod_expr stmts. 2) Add top_stmt and all trunc_div and trunc_mod stmts dominated by top_stmt to stmts vector. 3) Insert DIVMOD call just before top_stmt and update entries in stmts vector to use return value of DIMOVD (REALEXPR_PART for div, IMAGPART_EXPR for mod). */ static bool convert_to_divmod (gassign *stmt) { if (stmt_can_throw_internal (cfun, stmt) || !divmod_candidate_p (stmt)) return false; tree op1 = gimple_assign_rhs1 (stmt); tree op2 = gimple_assign_rhs2 (stmt); imm_use_iterator use_iter; gimple *use_stmt; auto_vec stmts; gimple *top_stmt = stmt; basic_block top_bb = gimple_bb (stmt); /* Part 1: Try to set top_stmt to "topmost" stmt that dominates at-least stmt and possibly other trunc_div/trunc_mod stmts having same operands as stmt. */ FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, op1) { if (is_gimple_assign (use_stmt) && (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR || gimple_assign_rhs_code (use_stmt) == TRUNC_MOD_EXPR) && operand_equal_p (op1, gimple_assign_rhs1 (use_stmt), 0) && operand_equal_p (op2, gimple_assign_rhs2 (use_stmt), 0)) { if (stmt_can_throw_internal (cfun, use_stmt)) continue; basic_block bb = gimple_bb (use_stmt); if (bb == top_bb) { if (gimple_uid (use_stmt) < gimple_uid (top_stmt)) top_stmt = use_stmt; } else if (dominated_by_p (CDI_DOMINATORS, top_bb, bb)) { top_bb = bb; top_stmt = use_stmt; } } } tree top_op1 = gimple_assign_rhs1 (top_stmt); tree top_op2 = gimple_assign_rhs2 (top_stmt); stmts.safe_push (top_stmt); bool div_seen = (gimple_assign_rhs_code (top_stmt) == TRUNC_DIV_EXPR); /* Part 2: Add all trunc_div/trunc_mod statements domianted by top_bb to stmts vector. The 2nd loop will always add stmt to stmts vector, since gimple_bb (top_stmt) dominates gimple_bb (stmt), so the 2nd loop ends up adding at-least single trunc_mod_expr stmt. */ FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, top_op1) { if (is_gimple_assign (use_stmt) && (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR || gimple_assign_rhs_code (use_stmt) == TRUNC_MOD_EXPR) && operand_equal_p (top_op1, gimple_assign_rhs1 (use_stmt), 0) && operand_equal_p (top_op2, gimple_assign_rhs2 (use_stmt), 0)) { if (use_stmt == top_stmt || stmt_can_throw_internal (cfun, use_stmt) || !dominated_by_p (CDI_DOMINATORS, gimple_bb (use_stmt), top_bb)) continue; stmts.safe_push (use_stmt); if (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR) div_seen = true; } } if (!div_seen) return false; /* Part 3: Create libcall to internal fn DIVMOD: divmod_tmp = DIVMOD (op1, op2). */ gcall *call_stmt = gimple_build_call_internal (IFN_DIVMOD, 2, op1, op2); tree res = make_temp_ssa_name (build_complex_type (TREE_TYPE (op1)), call_stmt, "divmod_tmp"); gimple_call_set_lhs (call_stmt, res); /* We rejected throwing statements above. */ gimple_call_set_nothrow (call_stmt, true); /* Insert the call before top_stmt. */ gimple_stmt_iterator top_stmt_gsi = gsi_for_stmt (top_stmt); gsi_insert_before (&top_stmt_gsi, call_stmt, GSI_SAME_STMT); widen_mul_stats.divmod_calls_inserted++; /* Update all statements in stmts vector: lhs = op1 TRUNC_DIV_EXPR op2 -> lhs = REALPART_EXPR lhs = op1 TRUNC_MOD_EXPR op2 -> lhs = IMAGPART_EXPR. */ for (unsigned i = 0; stmts.iterate (i, &use_stmt); ++i) { tree new_rhs; switch (gimple_assign_rhs_code (use_stmt)) { case TRUNC_DIV_EXPR: new_rhs = fold_build1 (REALPART_EXPR, TREE_TYPE (op1), res); break; case TRUNC_MOD_EXPR: new_rhs = fold_build1 (IMAGPART_EXPR, TREE_TYPE (op1), res); break; default: gcc_unreachable (); } gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt); gimple_assign_set_rhs_from_tree (&gsi, new_rhs); update_stmt (use_stmt); } return true; } /* Process a single gimple assignment STMT, which has a RSHIFT_EXPR as its rhs, and try to convert it into a MULT_HIGHPART_EXPR. The return value is true iff we converted the statement. */ static bool convert_mult_to_highpart (gassign *stmt, gimple_stmt_iterator *gsi) { tree lhs = gimple_assign_lhs (stmt); tree stype = TREE_TYPE (lhs); tree sarg0 = gimple_assign_rhs1 (stmt); tree sarg1 = gimple_assign_rhs2 (stmt); if (TREE_CODE (stype) != INTEGER_TYPE || TREE_CODE (sarg1) != INTEGER_CST || TREE_CODE (sarg0) != SSA_NAME || !tree_fits_uhwi_p (sarg1) || !has_single_use (sarg0)) return false; gassign *def = dyn_cast (SSA_NAME_DEF_STMT (sarg0)); if (!def) return false; enum tree_code mcode = gimple_assign_rhs_code (def); if (mcode == NOP_EXPR) { tree tmp = gimple_assign_rhs1 (def); if (TREE_CODE (tmp) != SSA_NAME || !has_single_use (tmp)) return false; def = dyn_cast (SSA_NAME_DEF_STMT (tmp)); if (!def) return false; mcode = gimple_assign_rhs_code (def); } if (mcode != WIDEN_MULT_EXPR || gimple_bb (def) != gimple_bb (stmt)) return false; tree mtype = TREE_TYPE (gimple_assign_lhs (def)); if (TREE_CODE (mtype) != INTEGER_TYPE || TYPE_PRECISION (mtype) != TYPE_PRECISION (stype)) return false; tree mop1 = gimple_assign_rhs1 (def); tree mop2 = gimple_assign_rhs2 (def); tree optype = TREE_TYPE (mop1); bool unsignedp = TYPE_UNSIGNED (optype); unsigned int prec = TYPE_PRECISION (optype); if (unsignedp != TYPE_UNSIGNED (mtype) || TYPE_PRECISION (mtype) != 2 * prec) return false; unsigned HOST_WIDE_INT bits = tree_to_uhwi (sarg1); if (bits < prec || bits >= 2 * prec) return false; /* For the time being, require operands to have the same sign. */ if (unsignedp != TYPE_UNSIGNED (TREE_TYPE (mop2))) return false; machine_mode mode = TYPE_MODE (optype); optab tab = unsignedp ? umul_highpart_optab : smul_highpart_optab; if (optab_handler (tab, mode) == CODE_FOR_nothing) return false; location_t loc = gimple_location (stmt); tree highpart1 = build_and_insert_binop (gsi, loc, "highparttmp", MULT_HIGHPART_EXPR, mop1, mop2); tree highpart2 = highpart1; tree ntype = optype; if (TYPE_UNSIGNED (stype) != TYPE_UNSIGNED (optype)) { ntype = TYPE_UNSIGNED (stype) ? unsigned_type_for (optype) : signed_type_for (optype); highpart2 = build_and_insert_cast (gsi, loc, ntype, highpart1); } if (bits > prec) highpart2 = build_and_insert_binop (gsi, loc, "highparttmp", RSHIFT_EXPR, highpart2, build_int_cst (ntype, bits - prec)); gassign *new_stmt = gimple_build_assign (lhs, NOP_EXPR, highpart2); gsi_replace (gsi, new_stmt, true); widen_mul_stats.highpart_mults_inserted++; return true; } /* If target has spaceship3 expander, pattern recognize [local count: 1073741824]: if (a_2(D) == b_3(D)) goto ; [34.00%] else goto ; [66.00%] [local count: 708669601]: if (a_2(D) < b_3(D)) goto ; [1.04%] else goto ; [98.96%] [local count: 701299439]: if (a_2(D) > b_3(D)) goto ; [48.89%] else goto ; [51.11%] [local count: 342865295]: [local count: 1073741824]: and turn it into: [local count: 1073741824]: _1 = .SPACESHIP (a_2(D), b_3(D)); if (_1 == 0) goto ; [34.00%] else goto ; [66.00%] [local count: 708669601]: if (_1 == -1) goto ; [1.04%] else goto ; [98.96%] [local count: 701299439]: if (_1 == 1) goto ; [48.89%] else goto ; [51.11%] [local count: 342865295]: [local count: 1073741824]: so that the backend can emit optimal comparison and conditional jump sequence. */ static void optimize_spaceship (gcond *stmt) { enum tree_code code = gimple_cond_code (stmt); if (code != EQ_EXPR && code != NE_EXPR) return; tree arg1 = gimple_cond_lhs (stmt); tree arg2 = gimple_cond_rhs (stmt); if (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg1)) || optab_handler (spaceship_optab, TYPE_MODE (TREE_TYPE (arg1))) == CODE_FOR_nothing || operand_equal_p (arg1, arg2, 0)) return; basic_block bb0 = gimple_bb (stmt), bb1, bb2 = NULL; edge em1 = NULL, e1 = NULL, e2 = NULL; bb1 = EDGE_SUCC (bb0, 1)->dest; if (((EDGE_SUCC (bb0, 0)->flags & EDGE_TRUE_VALUE) != 0) ^ (code == EQ_EXPR)) bb1 = EDGE_SUCC (bb0, 0)->dest; gcond *g = safe_dyn_cast (*gsi_last_bb (bb1)); if (g == NULL || !single_pred_p (bb1) || (operand_equal_p (gimple_cond_lhs (g), arg1, 0) ? !operand_equal_p (gimple_cond_rhs (g), arg2, 0) : (!operand_equal_p (gimple_cond_lhs (g), arg2, 0) || !operand_equal_p (gimple_cond_rhs (g), arg1, 0))) || !cond_only_block_p (bb1)) return; enum tree_code ccode = (operand_equal_p (gimple_cond_lhs (g), arg1, 0) ? LT_EXPR : GT_EXPR); switch (gimple_cond_code (g)) { case LT_EXPR: case LE_EXPR: break; case GT_EXPR: case GE_EXPR: ccode = ccode == LT_EXPR ? GT_EXPR : LT_EXPR; break; default: return; } for (int i = 0; i < 2; ++i) { /* With NaNs, />= are false, so we need to look for the third comparison on the false edge from whatever non-equality comparison the second comparison is. */ if (HONOR_NANS (TREE_TYPE (arg1)) && (EDGE_SUCC (bb1, i)->flags & EDGE_TRUE_VALUE) != 0) continue; bb2 = EDGE_SUCC (bb1, i)->dest; g = safe_dyn_cast (*gsi_last_bb (bb2)); if (g == NULL || !single_pred_p (bb2) || (operand_equal_p (gimple_cond_lhs (g), arg1, 0) ? !operand_equal_p (gimple_cond_rhs (g), arg2, 0) : (!operand_equal_p (gimple_cond_lhs (g), arg2, 0) || !operand_equal_p (gimple_cond_rhs (g), arg1, 0))) || !cond_only_block_p (bb2) || EDGE_SUCC (bb2, 0)->dest == EDGE_SUCC (bb2, 1)->dest) continue; enum tree_code ccode2 = (operand_equal_p (gimple_cond_lhs (g), arg1, 0) ? LT_EXPR : GT_EXPR); switch (gimple_cond_code (g)) { case LT_EXPR: case LE_EXPR: break; case GT_EXPR: case GE_EXPR: ccode2 = ccode2 == LT_EXPR ? GT_EXPR : LT_EXPR; break; default: continue; } if (HONOR_NANS (TREE_TYPE (arg1)) && ccode == ccode2) continue; if ((ccode == LT_EXPR) ^ ((EDGE_SUCC (bb1, i)->flags & EDGE_TRUE_VALUE) != 0)) { em1 = EDGE_SUCC (bb1, 1 - i); e1 = EDGE_SUCC (bb2, 0); e2 = EDGE_SUCC (bb2, 1); if ((ccode2 == LT_EXPR) ^ ((e1->flags & EDGE_TRUE_VALUE) == 0)) std::swap (e1, e2); } else { e1 = EDGE_SUCC (bb1, 1 - i); em1 = EDGE_SUCC (bb2, 0); e2 = EDGE_SUCC (bb2, 1); if ((ccode2 != LT_EXPR) ^ ((em1->flags & EDGE_TRUE_VALUE) == 0)) std::swap (em1, e2); } break; } if (em1 == NULL) { if ((ccode == LT_EXPR) ^ ((EDGE_SUCC (bb1, 0)->flags & EDGE_TRUE_VALUE) != 0)) { em1 = EDGE_SUCC (bb1, 1); e1 = EDGE_SUCC (bb1, 0); e2 = (e1->flags & EDGE_TRUE_VALUE) ? em1 : e1; } else { em1 = EDGE_SUCC (bb1, 0); e1 = EDGE_SUCC (bb1, 1); e2 = (e1->flags & EDGE_TRUE_VALUE) ? em1 : e1; } } gcall *gc = gimple_build_call_internal (IFN_SPACESHIP, 2, arg1, arg2); tree lhs = make_ssa_name (integer_type_node); gimple_call_set_lhs (gc, lhs); gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gsi_insert_before (&gsi, gc, GSI_SAME_STMT); gimple_cond_set_lhs (stmt, lhs); gimple_cond_set_rhs (stmt, integer_zero_node); update_stmt (stmt); gcond *cond = as_a (*gsi_last_bb (bb1)); gimple_cond_set_lhs (cond, lhs); if (em1->src == bb1 && e2 != em1) { gimple_cond_set_rhs (cond, integer_minus_one_node); gimple_cond_set_code (cond, (em1->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR); } else { gcc_assert (e1->src == bb1 && e2 != e1); gimple_cond_set_rhs (cond, integer_one_node); gimple_cond_set_code (cond, (e1->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR); } update_stmt (cond); if (e2 != e1 && e2 != em1) { cond = as_a (*gsi_last_bb (bb2)); gimple_cond_set_lhs (cond, lhs); if (em1->src == bb2) gimple_cond_set_rhs (cond, integer_minus_one_node); else { gcc_assert (e1->src == bb2); gimple_cond_set_rhs (cond, integer_one_node); } gimple_cond_set_code (cond, (e2->flags & EDGE_TRUE_VALUE) ? NE_EXPR : EQ_EXPR); update_stmt (cond); } wide_int wm1 = wi::minus_one (TYPE_PRECISION (integer_type_node)); wide_int w2 = wi::two (TYPE_PRECISION (integer_type_node)); value_range vr (TREE_TYPE (lhs), wm1, w2); set_range_info (lhs, vr); } /* Find integer multiplications where the operands are extended from smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR or MULT_HIGHPART_EXPR where appropriate. */ namespace { const pass_data pass_data_optimize_widening_mul = { GIMPLE_PASS, /* type */ "widening_mul", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_TREE_WIDEN_MUL, /* tv_id */ PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_update_ssa, /* todo_flags_finish */ }; class pass_optimize_widening_mul : public gimple_opt_pass { public: pass_optimize_widening_mul (gcc::context *ctxt) : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt) {} /* opt_pass methods: */ bool gate (function *) final override { return flag_expensive_optimizations && optimize; } unsigned int execute (function *) final override; }; // class pass_optimize_widening_mul /* Walker class to perform the transformation in reverse dominance order. */ class math_opts_dom_walker : public dom_walker { public: /* Constructor, CFG_CHANGED is a pointer to a boolean flag that will be set if walking modidifes the CFG. */ math_opts_dom_walker (bool *cfg_changed_p) : dom_walker (CDI_DOMINATORS), m_last_result_set (), m_cfg_changed_p (cfg_changed_p) {} /* The actual actions performed in the walk. */ void after_dom_children (basic_block) final override; /* Set of results of chains of multiply and add statement combinations that were not transformed into FMAs because of active deferring. */ hash_set m_last_result_set; /* Pointer to a flag of the user that needs to be set if CFG has been modified. */ bool *m_cfg_changed_p; }; void math_opts_dom_walker::after_dom_children (basic_block bb) { gimple_stmt_iterator gsi; fma_deferring_state fma_state (param_avoid_fma_max_bits > 0); for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);) { gimple *stmt = gsi_stmt (gsi); enum tree_code code; if (is_gimple_assign (stmt)) { code = gimple_assign_rhs_code (stmt); switch (code) { case MULT_EXPR: if (!convert_mult_to_widen (stmt, &gsi) && !convert_expand_mult_copysign (stmt, &gsi) && convert_mult_to_fma (stmt, gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), &fma_state)) { gsi_remove (&gsi, true); release_defs (stmt); continue; } match_arith_overflow (&gsi, stmt, code, m_cfg_changed_p); break; case PLUS_EXPR: case MINUS_EXPR: if (!convert_plusminus_to_widen (&gsi, stmt, code)) { match_arith_overflow (&gsi, stmt, code, m_cfg_changed_p); if (gsi_stmt (gsi) == stmt) match_uaddc_usubc (&gsi, stmt, code); } break; case BIT_NOT_EXPR: if (match_arith_overflow (&gsi, stmt, code, m_cfg_changed_p)) continue; break; case TRUNC_MOD_EXPR: convert_to_divmod (as_a (stmt)); break; case RSHIFT_EXPR: convert_mult_to_highpart (as_a (stmt), &gsi); break; case BIT_IOR_EXPR: case BIT_XOR_EXPR: match_uaddc_usubc (&gsi, stmt, code); break; default:; } } else if (is_gimple_call (stmt)) { switch (gimple_call_combined_fn (stmt)) { CASE_CFN_POW: if (gimple_call_lhs (stmt) && TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST && real_equal (&TREE_REAL_CST (gimple_call_arg (stmt, 1)), &dconst2) && convert_mult_to_fma (stmt, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 0), &fma_state)) { unlink_stmt_vdef (stmt); if (gsi_remove (&gsi, true) && gimple_purge_dead_eh_edges (bb)) *m_cfg_changed_p = true; release_defs (stmt); continue; } break; case CFN_COND_MUL: if (convert_mult_to_fma (stmt, gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2), &fma_state, gimple_call_arg (stmt, 0))) { gsi_remove (&gsi, true); release_defs (stmt); continue; } break; case CFN_COND_LEN_MUL: if (convert_mult_to_fma (stmt, gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2), &fma_state, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 4), gimple_call_arg (stmt, 5))) { gsi_remove (&gsi, true); release_defs (stmt); continue; } break; case CFN_LAST: cancel_fma_deferring (&fma_state); break; default: break; } } else if (gimple_code (stmt) == GIMPLE_COND) optimize_spaceship (as_a (stmt)); gsi_next (&gsi); } if (fma_state.m_deferring_p && fma_state.m_initial_phi) { gcc_checking_assert (fma_state.m_last_result); if (!last_fma_candidate_feeds_initial_phi (&fma_state, &m_last_result_set)) cancel_fma_deferring (&fma_state); else m_last_result_set.add (fma_state.m_last_result); } } unsigned int pass_optimize_widening_mul::execute (function *fun) { bool cfg_changed = false; memset (&widen_mul_stats, 0, sizeof (widen_mul_stats)); calculate_dominance_info (CDI_DOMINATORS); renumber_gimple_stmt_uids (cfun); math_opts_dom_walker (&cfg_changed).walk (ENTRY_BLOCK_PTR_FOR_FN (cfun)); statistics_counter_event (fun, "widening multiplications inserted", widen_mul_stats.widen_mults_inserted); statistics_counter_event (fun, "widening maccs inserted", widen_mul_stats.maccs_inserted); statistics_counter_event (fun, "fused multiply-adds inserted", widen_mul_stats.fmas_inserted); statistics_counter_event (fun, "divmod calls inserted", widen_mul_stats.divmod_calls_inserted); statistics_counter_event (fun, "highpart multiplications inserted", widen_mul_stats.highpart_mults_inserted); return cfg_changed ? TODO_cleanup_cfg : 0; } } // anon namespace gimple_opt_pass * make_pass_optimize_widening_mul (gcc::context *ctxt) { return new pass_optimize_widening_mul (ctxt); }