/* Loop header copying on trees. Copyright (C) 2004-2020 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "tree.h" #include "gimple.h" #include "cfghooks.h" #include "tree-pass.h" #include "gimple-ssa.h" #include "gimple-iterator.h" #include "tree-cfg.h" #include "tree-into-ssa.h" #include "cfgloop.h" #include "tree-inline.h" #include "tree-ssa-scopedtables.h" #include "tree-ssa-threadedge.h" #include "tree-ssa-sccvn.h" #include "tree-phinodes.h" #include "ssa-iterators.h" /* Duplicates headers of loops if they are small enough, so that the statements in the loop body are always executed when the loop is entered. This increases effectiveness of code motion optimizations, and reduces the need for loop preconditioning. */ /* Check whether we should duplicate HEADER of LOOP. At most *LIMIT instructions should be duplicated, limit is decreased by the actual amount. */ static bool should_duplicate_loop_header_p (basic_block header, class loop *loop, int *limit) { gimple_stmt_iterator bsi; gcc_assert (!header->aux); /* Loop header copying usually increases size of the code. This used not to be true, since quite often it is possible to verify that the condition is satisfied in the first iteration and therefore to eliminate it. Jump threading handles these cases now. */ if (optimize_loop_for_size_p (loop) && !loop->force_vectorize) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " Not duplicating bb %i: optimizing for size.\n", header->index); return false; } gcc_assert (EDGE_COUNT (header->succs) > 0); if (single_succ_p (header)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " Not duplicating bb %i: it is single succ.\n", header->index); return false; } if (flow_bb_inside_loop_p (loop, EDGE_SUCC (header, 0)->dest) && flow_bb_inside_loop_p (loop, EDGE_SUCC (header, 1)->dest)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " Not duplicating bb %i: both successors are in loop.\n", loop->num); return false; } /* If this is not the original loop header, we want it to have just one predecessor in order to match the && pattern. */ if (header != loop->header && !single_pred_p (header)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " Not duplicating bb %i: it has mutiple predecestors.\n", header->index); return false; } gcond *last = safe_dyn_cast (last_stmt (header)); if (!last) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " Not duplicating bb %i: it does not end by conditional.\n", header->index); return false; } for (gphi_iterator psi = gsi_start_phis (header); !gsi_end_p (psi); gsi_next (&psi)) { gphi *phi = psi.phi (); tree res = gimple_phi_result (phi); if (INTEGRAL_TYPE_P (TREE_TYPE (res)) || POINTER_TYPE_P (TREE_TYPE (res))) gimple_set_uid (phi, 1 /* IV */); else gimple_set_uid (phi, 0); } /* Count number of instructions and punt on calls. Populate stmts INV/IV flag to later apply heuristics to the kind of conditions we want to copy. */ for (bsi = gsi_start_bb (header); !gsi_end_p (bsi); gsi_next (&bsi)) { gimple *last = gsi_stmt (bsi); if (gimple_code (last) == GIMPLE_LABEL) continue; if (is_gimple_debug (last)) continue; if (gimple_code (last) == GIMPLE_CALL && (!gimple_inexpensive_call_p (as_a (last)) /* IFN_LOOP_DIST_ALIAS means that inner loop is distributed at current loop's header. Don't copy in this case. */ || gimple_call_internal_p (last, IFN_LOOP_DIST_ALIAS))) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " Not duplicating bb %i: it contains call.\n", header->index); return false; } *limit -= estimate_num_insns (last, &eni_size_weights); if (*limit < 0) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " Not duplicating bb %i contains too many insns.\n", header->index); return false; } /* Classify the stmt based on whether its computation is based on a IV or whether it is invariant in the loop. */ gimple_set_uid (last, 0); if (!gimple_vuse (last)) { bool inv = true; bool iv = false; ssa_op_iter i; tree op; FOR_EACH_SSA_TREE_OPERAND (op, last, i, SSA_OP_USE) if (!SSA_NAME_IS_DEFAULT_DEF (op) && flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (op)))) { if (!(gimple_uid (SSA_NAME_DEF_STMT (op)) & 2 /* INV */)) inv = false; if (gimple_uid (SSA_NAME_DEF_STMT (op)) & 1 /* IV */) iv = true; } gimple_set_uid (last, (iv ? 1 : 0) | (inv ? 2 : 0)); } } /* If the condition tests a non-IV loop variant we do not want to rotate the loop further. Unless this is the original loop header. */ tree lhs = gimple_cond_lhs (last); tree rhs = gimple_cond_rhs (last); if (header != loop->header && ((TREE_CODE (lhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (lhs) && flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (lhs))) && gimple_uid (SSA_NAME_DEF_STMT (lhs)) == 0) || (TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (rhs) && flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (rhs))) && gimple_uid (SSA_NAME_DEF_STMT (rhs)) == 0))) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " Not duplicating bb %i: condition based on non-IV loop" " variant.\n", header->index); return false; } if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " Will duplicate bb %i\n", header->index); return true; } /* Checks whether LOOP is a do-while style loop. */ static bool do_while_loop_p (class loop *loop) { gimple *stmt = last_stmt (loop->latch); /* If the latch of the loop is not empty, it is not a do-while loop. */ if (stmt && gimple_code (stmt) != GIMPLE_LABEL) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Loop %i is not do-while loop: latch is not empty.\n", loop->num); return false; } /* If the latch does not have a single predecessor, it is not a do-while loop. */ if (!single_pred_p (loop->latch)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Loop %i is not do-while loop: latch has multiple " "predecessors.\n", loop->num); return false; } /* If the latch predecessor doesn't exit the loop, it is not a do-while loop. */ if (!loop_exits_from_bb_p (loop, single_pred (loop->latch))) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Loop %i is not do-while loop: latch predecessor " "does not exit loop.\n", loop->num); return false; } if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Loop %i is do-while loop\n", loop->num); return true; } namespace { /* Common superclass for both header-copying phases. */ class ch_base : public gimple_opt_pass { protected: ch_base (pass_data data, gcc::context *ctxt) : gimple_opt_pass (data, ctxt) {} /* Copies headers of all loops in FUN for which process_loop_p is true. */ unsigned int copy_headers (function *fun); /* Return true to copy headers of LOOP or false to skip. */ virtual bool process_loop_p (class loop *loop) = 0; }; const pass_data pass_data_ch = { GIMPLE_PASS, /* type */ "ch", /* name */ OPTGROUP_LOOP, /* optinfo_flags */ TV_TREE_CH, /* tv_id */ ( PROP_cfg | PROP_ssa ), /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_ch : public ch_base { public: pass_ch (gcc::context *ctxt) : ch_base (pass_data_ch, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *) { return flag_tree_ch != 0; } /* Initialize and finalize loop structures, copying headers inbetween. */ virtual unsigned int execute (function *); opt_pass * clone () { return new pass_ch (m_ctxt); } protected: /* ch_base method: */ virtual bool process_loop_p (class loop *loop); }; // class pass_ch const pass_data pass_data_ch_vect = { GIMPLE_PASS, /* type */ "ch_vect", /* name */ OPTGROUP_LOOP, /* optinfo_flags */ TV_TREE_CH, /* tv_id */ ( PROP_cfg | PROP_ssa ), /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; /* This is a more aggressive version of the same pass, designed to run just before if-conversion and vectorization, to put more loops into the form required for those phases. */ class pass_ch_vect : public ch_base { public: pass_ch_vect (gcc::context *ctxt) : ch_base (pass_data_ch_vect, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *fun) { return flag_tree_ch != 0 && (flag_tree_loop_vectorize != 0 || fun->has_force_vectorize_loops); } /* Just copy headers, no initialization/finalization of loop structures. */ virtual unsigned int execute (function *); protected: /* ch_base method: */ virtual bool process_loop_p (class loop *loop); }; // class pass_ch_vect /* For all loops, copy the condition at the end of the loop body in front of the loop. This is beneficial since it increases efficiency of code motion optimizations. It also saves one jump on entry to the loop. */ unsigned int ch_base::copy_headers (function *fun) { class loop *loop; basic_block header; edge exit, entry; basic_block *bbs, *copied_bbs; unsigned n_bbs; unsigned bbs_size; bool changed = false; if (number_of_loops (fun) <= 1) return 0; bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (fun)); copied_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (fun)); bbs_size = n_basic_blocks_for_fn (fun); auto_vec > copied; FOR_EACH_LOOP (loop, 0) { int initial_limit = param_max_loop_header_insns; int remaining_limit = initial_limit; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Analyzing loop %i\n", loop->num); header = loop->header; /* If the loop is already a do-while style one (either because it was written as such, or because jump threading transformed it into one), we might be in fact peeling the first iteration of the loop. This in general is not a good idea. Also avoid touching infinite loops. */ if (!loop_has_exit_edges (loop) || !process_loop_p (loop)) continue; /* Iterate the header copying up to limit; this takes care of the cases like while (a && b) {...}, where we want to have both of the conditions copied. TODO -- handle while (a || b) - like cases, by not requiring the header to have just a single successor and copying up to postdominator. */ exit = NULL; n_bbs = 0; while (should_duplicate_loop_header_p (header, loop, &remaining_limit)) { /* Find a successor of header that is inside a loop; i.e. the new header after the condition is copied. */ if (flow_bb_inside_loop_p (loop, EDGE_SUCC (header, 0)->dest)) exit = EDGE_SUCC (header, 0); else exit = EDGE_SUCC (header, 1); bbs[n_bbs++] = header; gcc_assert (bbs_size > n_bbs); header = exit->dest; } if (!exit) continue; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Duplicating header of the loop %d up to edge %d->%d," " %i insns.\n", loop->num, exit->src->index, exit->dest->index, initial_limit - remaining_limit); /* Ensure that the header will have just the latch as a predecessor inside the loop. */ if (!single_pred_p (exit->dest)) exit = single_pred_edge (split_edge (exit)); entry = loop_preheader_edge (loop); propagate_threaded_block_debug_into (exit->dest, entry->dest); if (!gimple_duplicate_sese_region (entry, exit, bbs, n_bbs, copied_bbs, true)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Duplication failed.\n"); continue; } copied.safe_push (std::make_pair (entry, loop)); /* If the loop has the form "for (i = j; i < j + 10; i++)" then this copying can introduce a case where we rely on undefined signed overflow to eliminate the preheader condition, because we assume that "j < j + 10" is true. We don't want to warn about that case for -Wstrict-overflow, because in general we don't warn about overflow involving loops. Prevent the warning by setting the no_warning flag in the condition. */ if (warn_strict_overflow > 0) { unsigned int i; for (i = 0; i < n_bbs; ++i) { gimple_stmt_iterator bsi; for (bsi = gsi_start_bb (copied_bbs[i]); !gsi_end_p (bsi); gsi_next (&bsi)) { gimple *stmt = gsi_stmt (bsi); if (gimple_code (stmt) == GIMPLE_COND) { tree lhs = gimple_cond_lhs (stmt); if (gimple_cond_code (stmt) != EQ_EXPR && gimple_cond_code (stmt) != NE_EXPR && INTEGRAL_TYPE_P (TREE_TYPE (lhs)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (lhs))) gimple_set_no_warning (stmt, true); } else if (is_gimple_assign (stmt)) { enum tree_code rhs_code = gimple_assign_rhs_code (stmt); tree rhs1 = gimple_assign_rhs1 (stmt); if (TREE_CODE_CLASS (rhs_code) == tcc_comparison && rhs_code != EQ_EXPR && rhs_code != NE_EXPR && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (rhs1))) gimple_set_no_warning (stmt, true); } } } } /* Ensure that the latch and the preheader is simple (we know that they are not now, since there was the loop exit condition. */ split_edge (loop_preheader_edge (loop)); split_edge (loop_latch_edge (loop)); if (dump_file && (dump_flags & TDF_DETAILS)) { if (do_while_loop_p (loop)) fprintf (dump_file, "Loop %d is now do-while loop.\n", loop->num); else fprintf (dump_file, "Loop %d is still not do-while loop.\n", loop->num); } changed = true; } if (changed) { update_ssa (TODO_update_ssa); /* After updating SSA form perform CSE on the loop header copies. This is esp. required for the pass before vectorization since nothing cleans up copied exit tests that can now be simplified. CSE from the entry of the region we copied till all loop exit blocks but not entering the loop itself. */ for (unsigned i = 0; i < copied.length (); ++i) { edge entry = copied[i].first; loop_p loop = copied[i].second; auto_vec exit_edges = get_loop_exit_edges (loop); bitmap exit_bbs = BITMAP_ALLOC (NULL); for (unsigned j = 0; j < exit_edges.length (); ++j) bitmap_set_bit (exit_bbs, exit_edges[j]->dest->index); bitmap_set_bit (exit_bbs, loop->header->index); do_rpo_vn (cfun, entry, exit_bbs); BITMAP_FREE (exit_bbs); } } free (bbs); free (copied_bbs); return changed ? TODO_cleanup_cfg : 0; } /* Initialize the loop structures we need, and finalize after. */ unsigned int pass_ch::execute (function *fun) { loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES | LOOPS_HAVE_RECORDED_EXITS); unsigned int res = copy_headers (fun); loop_optimizer_finalize (); return res; } /* Assume an earlier phase has already initialized all the loop structures that we need here (and perhaps others too), and that these will be finalized by a later phase. */ unsigned int pass_ch_vect::execute (function *fun) { return copy_headers (fun); } /* Apply header copying according to a very simple test of do-while shape. */ bool pass_ch::process_loop_p (class loop *loop) { return !do_while_loop_p (loop); } /* Apply header-copying to loops where we might enable vectorization. */ bool pass_ch_vect::process_loop_p (class loop *loop) { if (!flag_tree_loop_vectorize && !loop->force_vectorize) return false; if (loop->dont_vectorize) return false; /* The vectorizer won't handle anything with multiple exits, so skip. */ edge exit = single_exit (loop); if (!exit) return false; if (!do_while_loop_p (loop)) return true; return false; } } // anon namespace gimple_opt_pass * make_pass_ch_vect (gcc::context *ctxt) { return new pass_ch_vect (ctxt); } gimple_opt_pass * make_pass_ch (gcc::context *ctxt) { return new pass_ch (ctxt); }