/* Dead and redundant store elimination Copyright (C) 2004-2024 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "tree-pass.h" #include "ssa.h" #include "gimple-pretty-print.h" #include "fold-const.h" #include "gimple-iterator.h" #include "tree-cfg.h" #include "tree-dfa.h" #include "tree-cfgcleanup.h" #include "alias.h" #include "tree-ssa-loop.h" #include "tree-ssa-dse.h" #include "builtins.h" #include "gimple-fold.h" #include "gimplify.h" #include "tree-eh.h" #include "cfganal.h" #include "cgraph.h" #include "ipa-modref-tree.h" #include "ipa-modref.h" #include "target.h" #include "tree-ssa-loop-niter.h" #include "cfgloop.h" #include "tree-data-ref.h" #include "internal-fn.h" #include "tree-ssa.h" /* This file implements dead store elimination. A dead store is a store into a memory location which will later be overwritten by another store without any intervening loads. In this case the earlier store can be deleted or trimmed if the store was partially dead. A redundant store is a store into a memory location which stores the exact same value as a prior store to the same memory location. While this can often be handled by dead store elimination, removing the redundant store is often better than removing or trimming the dead store. In our SSA + virtual operand world we use immediate uses of virtual operands to detect these cases. If a store's virtual definition is used precisely once by a later store to the same location which post dominates the first store, then the first store is dead. If the data stored is the same, then the second store is redundant. The single use of the store's virtual definition ensures that there are no intervening aliased loads and the requirement that the second load post dominate the first ensures that if the earlier store executes, then the later stores will execute before the function exits. It may help to think of this as first moving the earlier store to the point immediately before the later store. Again, the single use of the virtual definition and the post-dominance relationship ensure that such movement would be safe. Clearly if there are back to back stores, then the second is makes the first dead. If the second store stores the same value, then the second store is redundant. Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler" may also help in understanding this code since it discusses the relationship between dead store and redundant load elimination. In fact, they are the same transformation applied to different views of the CFG. */ static void delete_dead_or_redundant_call (gimple_stmt_iterator *, const char *); /* Bitmap of blocks that have had EH statements cleaned. We should remove their dead edges eventually. */ static bitmap need_eh_cleanup; static bitmap need_ab_cleanup; /* STMT is a statement that may write into memory. Analyze it and initialize WRITE to describe how STMT affects memory. When MAY_DEF_OK is true then the function initializes WRITE to what the stmt may define. Return TRUE if the statement was analyzed, FALSE otherwise. It is always safe to return FALSE. But typically better optimziation can be achieved by analyzing more statements. */ static bool initialize_ao_ref_for_dse (gimple *stmt, ao_ref *write, bool may_def_ok = false) { /* It's advantageous to handle certain mem* functions. */ if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)) { switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt))) { case BUILT_IN_MEMCPY: case BUILT_IN_MEMMOVE: case BUILT_IN_MEMSET: case BUILT_IN_MEMCPY_CHK: case BUILT_IN_MEMMOVE_CHK: case BUILT_IN_MEMSET_CHK: case BUILT_IN_STRNCPY: case BUILT_IN_STRNCPY_CHK: { tree size = gimple_call_arg (stmt, 2); tree ptr = gimple_call_arg (stmt, 0); ao_ref_init_from_ptr_and_size (write, ptr, size); return true; } /* A calloc call can never be dead, but it can make subsequent stores redundant if they store 0 into the same memory locations. */ case BUILT_IN_CALLOC: { tree nelem = gimple_call_arg (stmt, 0); tree selem = gimple_call_arg (stmt, 1); tree lhs; if (TREE_CODE (nelem) == INTEGER_CST && TREE_CODE (selem) == INTEGER_CST && (lhs = gimple_call_lhs (stmt)) != NULL_TREE) { tree size = fold_build2 (MULT_EXPR, TREE_TYPE (nelem), nelem, selem); ao_ref_init_from_ptr_and_size (write, lhs, size); return true; } } default: break; } } else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt)) { switch (gimple_call_internal_fn (stmt)) { case IFN_LEN_STORE: case IFN_MASK_STORE: case IFN_MASK_LEN_STORE: { internal_fn ifn = gimple_call_internal_fn (stmt); int stored_value_index = internal_fn_stored_value_index (ifn); int len_index = internal_fn_len_index (ifn); if (ifn == IFN_LEN_STORE) { tree len = gimple_call_arg (stmt, len_index); tree bias = gimple_call_arg (stmt, len_index + 1); if (tree_fits_uhwi_p (len)) { ao_ref_init_from_ptr_and_size (write, gimple_call_arg (stmt, 0), int_const_binop (MINUS_EXPR, len, bias)); return true; } } /* We cannot initialize a must-def ao_ref (in all cases) but we can provide a may-def variant. */ if (may_def_ok) { ao_ref_init_from_ptr_and_size ( write, gimple_call_arg (stmt, 0), TYPE_SIZE_UNIT ( TREE_TYPE (gimple_call_arg (stmt, stored_value_index)))); return true; } break; } default:; } } if (tree lhs = gimple_get_lhs (stmt)) { if (TREE_CODE (lhs) != SSA_NAME && (may_def_ok || !stmt_could_throw_p (cfun, stmt))) { ao_ref_init (write, lhs); return true; } } return false; } /* Given REF from the alias oracle, return TRUE if it is a valid kill memory reference for dead store elimination, false otherwise. In particular, the reference must have a known base, known maximum size, start at a byte offset and have a size that is one or more bytes. */ static bool valid_ao_ref_kill_for_dse (ao_ref *ref) { return (ao_ref_base (ref) && known_size_p (ref->max_size) && maybe_ne (ref->size, 0) && known_eq (ref->max_size, ref->size) && known_ge (ref->offset, 0)); } /* Given REF from the alias oracle, return TRUE if it is a valid load or store memory reference for dead store elimination, false otherwise. Unlike for valid_ao_ref_kill_for_dse we can accept writes where max_size is not same as size since we can handle conservatively the larger range. */ static bool valid_ao_ref_for_dse (ao_ref *ref) { return (ao_ref_base (ref) && known_size_p (ref->max_size) && known_ge (ref->offset, 0)); } /* Initialize OFFSET and SIZE to a range known to contain REF where the boundaries are divisible by BITS_PER_UNIT (bit still in bits). Return false if this is impossible. */ static bool get_byte_aligned_range_containing_ref (ao_ref *ref, poly_int64 *offset, HOST_WIDE_INT *size) { if (!known_size_p (ref->max_size)) return false; *offset = aligned_lower_bound (ref->offset, BITS_PER_UNIT); poly_int64 end = aligned_upper_bound (ref->offset + ref->max_size, BITS_PER_UNIT); return (end - *offset).is_constant (size); } /* Initialize OFFSET and SIZE to a range known to be contained REF where the boundaries are divisible by BITS_PER_UNIT (but still in bits). Return false if this is impossible. */ static bool get_byte_aligned_range_contained_in_ref (ao_ref *ref, poly_int64 *offset, HOST_WIDE_INT *size) { if (!known_size_p (ref->size) || !known_eq (ref->size, ref->max_size)) return false; *offset = aligned_upper_bound (ref->offset, BITS_PER_UNIT); poly_int64 end = aligned_lower_bound (ref->offset + ref->max_size, BITS_PER_UNIT); /* For bit accesses we can get -1 here, but also 0 sized kill is not useful. */ if (!known_gt (end, *offset)) return false; return (end - *offset).is_constant (size); } /* Compute byte range (returned iN REF_OFFSET and RET_SIZE) for access COPY inside REF. If KILL is true, then COPY represent a kill and the byte range needs to be fully contained in bit range given by COPY. If KILL is false then the byte range returned must contain the range of COPY. */ static bool get_byte_range (ao_ref *copy, ao_ref *ref, bool kill, HOST_WIDE_INT *ret_offset, HOST_WIDE_INT *ret_size) { HOST_WIDE_INT copy_size, ref_size; poly_int64 copy_offset, ref_offset; HOST_WIDE_INT diff; /* First translate from bits to bytes, rounding to bigger or smaller ranges as needed. Kills needs to be always rounded to smaller ranges while uses and stores to larger ranges. */ if (kill) { if (!get_byte_aligned_range_contained_in_ref (copy, ©_offset, ©_size)) return false; } else { if (!get_byte_aligned_range_containing_ref (copy, ©_offset, ©_size)) return false; } if (!get_byte_aligned_range_containing_ref (ref, &ref_offset, &ref_size) || !ordered_p (copy_offset, ref_offset)) return false; /* Switch sizes from bits to bytes so we do not need to care about overflows. Offset calculation needs to stay in bits until we compute the difference and can switch to HOST_WIDE_INT. */ copy_size /= BITS_PER_UNIT; ref_size /= BITS_PER_UNIT; /* If COPY starts before REF, then reset the beginning of COPY to match REF and decrease the size of COPY by the number of bytes removed from COPY. */ if (maybe_lt (copy_offset, ref_offset)) { if (!(ref_offset - copy_offset).is_constant (&diff) || copy_size < diff / BITS_PER_UNIT) return false; copy_size -= diff / BITS_PER_UNIT; copy_offset = ref_offset; } if (!(copy_offset - ref_offset).is_constant (&diff) || ref_size <= diff / BITS_PER_UNIT) return false; /* If COPY extends beyond REF, chop off its size appropriately. */ HOST_WIDE_INT limit = ref_size - diff / BITS_PER_UNIT; if (copy_size > limit) copy_size = limit; *ret_size = copy_size; if (!(copy_offset - ref_offset).is_constant (ret_offset)) return false; *ret_offset /= BITS_PER_UNIT; return true; } /* Update LIVE_BYTES tracking REF for write to WRITE: Verify we have the same base memory address, the write has a known size and overlaps with REF. */ static void clear_live_bytes_for_ref (sbitmap live_bytes, ao_ref *ref, ao_ref *write) { HOST_WIDE_INT start, size; if (valid_ao_ref_kill_for_dse (write) && operand_equal_p (write->base, ref->base, OEP_ADDRESS_OF) && get_byte_range (write, ref, true, &start, &size)) bitmap_clear_range (live_bytes, start, size); } /* Clear any bytes written by STMT from the bitmap LIVE_BYTES. The base address written by STMT must match the one found in REF, which must have its base address previously initialized. This routine must be conservative. If we don't know the offset or actual size written, assume nothing was written. */ static void clear_bytes_written_by (sbitmap live_bytes, gimple *stmt, ao_ref *ref) { ao_ref write; if (gcall *call = dyn_cast (stmt)) { bool interposed; modref_summary *summary = get_modref_function_summary (call, &interposed); if (summary && !interposed) for (auto kill : summary->kills) if (kill.get_ao_ref (as_a (stmt), &write)) clear_live_bytes_for_ref (live_bytes, ref, &write); } if (!initialize_ao_ref_for_dse (stmt, &write)) return; clear_live_bytes_for_ref (live_bytes, ref, &write); } /* REF is a memory write. Extract relevant information from it and initialize the LIVE_BYTES bitmap. If successful, return TRUE. Otherwise return FALSE. */ static bool setup_live_bytes_from_ref (ao_ref *ref, sbitmap live_bytes) { HOST_WIDE_INT const_size; if (valid_ao_ref_for_dse (ref) && ((aligned_upper_bound (ref->offset + ref->max_size, BITS_PER_UNIT) - aligned_lower_bound (ref->offset, BITS_PER_UNIT)).is_constant (&const_size)) && (const_size / BITS_PER_UNIT <= param_dse_max_object_size) && const_size > 1) { bitmap_clear (live_bytes); bitmap_set_range (live_bytes, 0, const_size / BITS_PER_UNIT); return true; } return false; } /* Compute the number of stored bytes that we can trim from the head and tail of REF. LIVE is the bitmap of stores to REF that are still live. Store the number of bytes trimmed from the head and tail in TRIM_HEAD and TRIM_TAIL respectively. STMT is the statement being trimmed and is used for debugging dump output only. */ static void compute_trims (ao_ref *ref, sbitmap live, int *trim_head, int *trim_tail, gimple *stmt) { *trim_head = 0; *trim_tail = 0; /* We use bitmaps biased such that ref->offset is contained in bit zero and the bitmap extends through ref->max_size, so we know that in the original bitmap bits 0 .. ref->max_size were true. But we need to check that this covers the bytes of REF exactly. */ const unsigned int align = known_alignment (ref->offset); if ((align > 0 && align < BITS_PER_UNIT) || !known_eq (ref->size, ref->max_size)) return; /* Now identify how much, if any of the tail we can chop off. */ HOST_WIDE_INT const_size; int last_live = bitmap_last_set_bit (live); if (ref->size.is_constant (&const_size)) { int last_orig = (const_size / BITS_PER_UNIT) - 1; /* We can leave inconvenient amounts on the tail as residual handling in mem* and str* functions is usually reasonably efficient. */ *trim_tail = last_orig - last_live; /* But don't trim away out of bounds accesses, as this defeats proper warnings. We could have a type with no TYPE_SIZE_UNIT or we could have a VLA where TYPE_SIZE_UNIT is not a constant. */ if (*trim_tail && TYPE_SIZE_UNIT (TREE_TYPE (ref->base)) && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (ref->base))) == INTEGER_CST && compare_tree_int (TYPE_SIZE_UNIT (TREE_TYPE (ref->base)), last_orig) <= 0) *trim_tail = 0; } /* Identify how much, if any of the head we can chop off. */ int first_orig = 0; int first_live = bitmap_first_set_bit (live); *trim_head = first_live - first_orig; /* If REF is aligned, try to maintain this alignment if it reduces the number of (power-of-two sized aligned) writes to memory. */ unsigned int align_bits; unsigned HOST_WIDE_INT bitpos; if ((*trim_head || *trim_tail) && last_live - first_live >= 2 && ao_ref_alignment (ref, &align_bits, &bitpos) && align_bits >= 32 && bitpos == 0 && align_bits % BITS_PER_UNIT == 0) { unsigned int align_units = align_bits / BITS_PER_UNIT; if (align_units > 16) align_units = 16; while ((first_live | (align_units - 1)) > (unsigned int)last_live) align_units >>= 1; if (*trim_head) { unsigned int pos = first_live & (align_units - 1); for (unsigned int i = 1; i <= align_units; i <<= 1) { unsigned int mask = ~(i - 1); unsigned int bytes = align_units - (pos & mask); if (wi::popcount (bytes) <= 1) { *trim_head &= mask; break; } } } if (*trim_tail) { unsigned int pos = last_live & (align_units - 1); for (unsigned int i = 1; i <= align_units; i <<= 1) { int mask = i - 1; unsigned int bytes = (pos | mask) + 1; if ((last_live | mask) > (last_live + *trim_tail)) break; if (wi::popcount (bytes) <= 1) { unsigned int extra = (last_live | mask) - last_live; *trim_tail -= extra; break; } } } } if ((*trim_head || *trim_tail) && dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " Trimming statement (head = %d, tail = %d): ", *trim_head, *trim_tail); print_gimple_stmt (dump_file, stmt, 0, dump_flags); fprintf (dump_file, "\n"); } } /* STMT initializes an object from COMPLEX_CST where one or more of the bytes written may be dead stores. REF is a representation of the memory written. LIVE is the bitmap of stores to REF that are still live. Attempt to rewrite STMT so that only the real or the imaginary part of the object is actually stored. */ static void maybe_trim_complex_store (ao_ref *ref, sbitmap live, gimple *stmt) { int trim_head, trim_tail; compute_trims (ref, live, &trim_head, &trim_tail, stmt); /* The amount of data trimmed from the head or tail must be at least half the size of the object to ensure we're trimming the entire real or imaginary half. By writing things this way we avoid more O(n) bitmap operations. */ if (known_ge (trim_tail * 2 * BITS_PER_UNIT, ref->size)) { /* TREE_REALPART is live */ tree x = TREE_REALPART (gimple_assign_rhs1 (stmt)); tree y = gimple_assign_lhs (stmt); y = build1 (REALPART_EXPR, TREE_TYPE (x), y); gimple_assign_set_lhs (stmt, y); gimple_assign_set_rhs1 (stmt, x); } else if (known_ge (trim_head * 2 * BITS_PER_UNIT, ref->size)) { /* TREE_IMAGPART is live */ tree x = TREE_IMAGPART (gimple_assign_rhs1 (stmt)); tree y = gimple_assign_lhs (stmt); y = build1 (IMAGPART_EXPR, TREE_TYPE (x), y); gimple_assign_set_lhs (stmt, y); gimple_assign_set_rhs1 (stmt, x); } /* Other cases indicate parts of both the real and imag subobjects are live. We do not try to optimize those cases. */ } /* STMT initializes an object using a CONSTRUCTOR where one or more of the bytes written are dead stores. REF is a representation of the memory written. LIVE is the bitmap of stores to REF that are still live. Attempt to rewrite STMT so that it writes fewer memory locations. The most common case for getting here is a CONSTRUCTOR with no elements being used to zero initialize an object. We do not try to handle other cases as those would force us to fully cover the object with the CONSTRUCTOR node except for the components that are dead. */ static void maybe_trim_constructor_store (ao_ref *ref, sbitmap live, gimple *stmt) { tree ctor = gimple_assign_rhs1 (stmt); /* This is the only case we currently handle. It actually seems to catch most cases of actual interest. */ gcc_assert (CONSTRUCTOR_NELTS (ctor) == 0); int head_trim = 0; int tail_trim = 0; compute_trims (ref, live, &head_trim, &tail_trim, stmt); /* Now we want to replace the constructor initializer with memset (object + head_trim, 0, size - head_trim - tail_trim). */ if (head_trim || tail_trim) { /* We want &lhs for the MEM_REF expression. */ tree lhs_addr = build_fold_addr_expr (gimple_assign_lhs (stmt)); if (! is_gimple_min_invariant (lhs_addr)) return; /* The number of bytes for the new constructor. */ poly_int64 ref_bytes = exact_div (ref->size, BITS_PER_UNIT); poly_int64 count = ref_bytes - head_trim - tail_trim; /* And the new type for the CONSTRUCTOR. Essentially it's just a char array large enough to cover the non-trimmed parts of the original CONSTRUCTOR. Note we want explicit bounds here so that we know how many bytes to clear when expanding the CONSTRUCTOR. */ tree type = build_array_type_nelts (char_type_node, count); /* Build a suitable alias type rather than using alias set zero to avoid pessimizing. */ tree alias_type = reference_alias_ptr_type (gimple_assign_lhs (stmt)); /* Build a MEM_REF representing the whole accessed area, starting at the first byte not trimmed. */ tree exp = fold_build2 (MEM_REF, type, lhs_addr, build_int_cst (alias_type, head_trim)); /* Now update STMT with a new RHS and LHS. */ gimple_assign_set_lhs (stmt, exp); gimple_assign_set_rhs1 (stmt, build_constructor (type, NULL)); } } /* STMT is a memcpy, memmove or memset. Decrement the number of bytes copied/set by DECREMENT. */ static void decrement_count (gimple *stmt, int decrement) { tree *countp = gimple_call_arg_ptr (stmt, 2); gcc_assert (TREE_CODE (*countp) == INTEGER_CST); *countp = wide_int_to_tree (TREE_TYPE (*countp), (TREE_INT_CST_LOW (*countp) - decrement)); } static void increment_start_addr (gimple *stmt, tree *where, int increment) { if (tree lhs = gimple_call_lhs (stmt)) if (where == gimple_call_arg_ptr (stmt, 0)) { gassign *newop = gimple_build_assign (lhs, unshare_expr (*where)); gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gsi_insert_after (&gsi, newop, GSI_SAME_STMT); gimple_call_set_lhs (stmt, NULL_TREE); update_stmt (stmt); } if (TREE_CODE (*where) == SSA_NAME) { tree tem = make_ssa_name (TREE_TYPE (*where)); gassign *newop = gimple_build_assign (tem, POINTER_PLUS_EXPR, *where, build_int_cst (sizetype, increment)); gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gsi_insert_before (&gsi, newop, GSI_SAME_STMT); *where = tem; update_stmt (stmt); return; } *where = build_fold_addr_expr (fold_build2 (MEM_REF, char_type_node, *where, build_int_cst (ptr_type_node, increment))); STRIP_USELESS_TYPE_CONVERSION (*where); } /* STMT is builtin call that writes bytes in bitmap ORIG, some bytes are dead (ORIG & ~NEW) and need not be stored. Try to rewrite STMT to reduce the amount of data it actually writes. Right now we only support trimming from the head or the tail of the memory region. In theory we could split the mem* call, but it's likely of marginal value. */ static void maybe_trim_memstar_call (ao_ref *ref, sbitmap live, gimple *stmt) { int head_trim, tail_trim; switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt))) { case BUILT_IN_STRNCPY: case BUILT_IN_STRNCPY_CHK: compute_trims (ref, live, &head_trim, &tail_trim, stmt); if (head_trim) { /* Head trimming of strncpy is only possible if we can prove all bytes we would trim are non-zero (or we could turn the strncpy into memset if there must be zero among the head trimmed bytes). If we don't know anything about those bytes, the presence or absence of '\0' bytes in there will affect whether it acts for the non-trimmed bytes as memset or memcpy/strncpy. */ c_strlen_data lendata = { }; int orig_head_trim = head_trim; tree srcstr = gimple_call_arg (stmt, 1); if (!get_range_strlen (srcstr, &lendata, /*eltsize=*/1) || !tree_fits_uhwi_p (lendata.minlen)) head_trim = 0; else if (tree_to_uhwi (lendata.minlen) < (unsigned) head_trim) { head_trim = tree_to_uhwi (lendata.minlen); if ((orig_head_trim & (UNITS_PER_WORD - 1)) == 0) head_trim &= ~(UNITS_PER_WORD - 1); } if (orig_head_trim != head_trim && dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " Adjusting strncpy trimming to (head = %d," " tail = %d)\n", head_trim, tail_trim); } goto do_memcpy; case BUILT_IN_MEMCPY: case BUILT_IN_MEMMOVE: case BUILT_IN_MEMCPY_CHK: case BUILT_IN_MEMMOVE_CHK: compute_trims (ref, live, &head_trim, &tail_trim, stmt); do_memcpy: /* Tail trimming is easy, we can just reduce the count. */ if (tail_trim) decrement_count (stmt, tail_trim); /* Head trimming requires adjusting all the arguments. */ if (head_trim) { /* For __*_chk need to adjust also the last argument. */ if (gimple_call_num_args (stmt) == 4) { tree size = gimple_call_arg (stmt, 3); if (!tree_fits_uhwi_p (size)) break; if (!integer_all_onesp (size)) { unsigned HOST_WIDE_INT sz = tree_to_uhwi (size); if (sz < (unsigned) head_trim) break; tree arg = wide_int_to_tree (TREE_TYPE (size), sz - head_trim); gimple_call_set_arg (stmt, 3, arg); } } tree *dst = gimple_call_arg_ptr (stmt, 0); increment_start_addr (stmt, dst, head_trim); tree *src = gimple_call_arg_ptr (stmt, 1); increment_start_addr (stmt, src, head_trim); decrement_count (stmt, head_trim); } break; case BUILT_IN_MEMSET: case BUILT_IN_MEMSET_CHK: compute_trims (ref, live, &head_trim, &tail_trim, stmt); /* Tail trimming is easy, we can just reduce the count. */ if (tail_trim) decrement_count (stmt, tail_trim); /* Head trimming requires adjusting all the arguments. */ if (head_trim) { /* For __*_chk need to adjust also the last argument. */ if (gimple_call_num_args (stmt) == 4) { tree size = gimple_call_arg (stmt, 3); if (!tree_fits_uhwi_p (size)) break; if (!integer_all_onesp (size)) { unsigned HOST_WIDE_INT sz = tree_to_uhwi (size); if (sz < (unsigned) head_trim) break; tree arg = wide_int_to_tree (TREE_TYPE (size), sz - head_trim); gimple_call_set_arg (stmt, 3, arg); } } tree *dst = gimple_call_arg_ptr (stmt, 0); increment_start_addr (stmt, dst, head_trim); decrement_count (stmt, head_trim); } break; default: break; } } /* STMT is a memory write where one or more bytes written are dead stores. REF is a representation of the memory written. LIVE is the bitmap of stores to REF that are still live. Attempt to rewrite STMT so that it writes fewer memory locations. Right now we only support trimming at the start or end of the memory region. It's not clear how much there is to be gained by trimming from the middle of the region. */ static void maybe_trim_partially_dead_store (ao_ref *ref, sbitmap live, gimple *stmt) { if (is_gimple_assign (stmt) && TREE_CODE (gimple_assign_lhs (stmt)) != TARGET_MEM_REF) { switch (gimple_assign_rhs_code (stmt)) { case CONSTRUCTOR: maybe_trim_constructor_store (ref, live, stmt); break; case COMPLEX_CST: maybe_trim_complex_store (ref, live, stmt); break; default: break; } } } /* Return TRUE if USE_REF reads bytes from LIVE where live is derived from REF, a write reference. While this routine may modify USE_REF, it's passed by value, not location. So callers do not see those modifications. */ static bool live_bytes_read (ao_ref *use_ref, ao_ref *ref, sbitmap live) { /* We have already verified that USE_REF and REF hit the same object. Now verify that there's actually an overlap between USE_REF and REF. */ HOST_WIDE_INT start, size; if (get_byte_range (use_ref, ref, false, &start, &size)) { /* If USE_REF covers all of REF, then it will hit one or more live bytes. This avoids useless iteration over the bitmap below. */ if (start == 0 && known_eq (size * 8, ref->size)) return true; /* Now check if any of the remaining bits in use_ref are set in LIVE. */ return bitmap_bit_in_range_p (live, start, (start + size - 1)); } return true; } /* Callback for dse_classify_store calling for_each_index. Verify that indices are invariant in the loop with backedge PHI in basic-block DATA. */ static bool check_name (tree, tree *idx, void *data) { basic_block phi_bb = (basic_block) data; if (TREE_CODE (*idx) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (*idx) && dominated_by_p (CDI_DOMINATORS, gimple_bb (SSA_NAME_DEF_STMT (*idx)), phi_bb)) return false; return true; } /* STMT stores the value 0 into one or more memory locations (via memset, empty constructor, calloc call, etc). See if there is a subsequent store of the value 0 to one or more of the same memory location(s). If so, the subsequent store is redundant and can be removed. The subsequent stores could be via memset, empty constructors, simple MEM stores, etc. */ static void dse_optimize_redundant_stores (gimple *stmt) { int cnt = 0; /* TBAA state of STMT, if it is a call it is effectively alias-set zero. */ alias_set_type earlier_set = 0; alias_set_type earlier_base_set = 0; if (is_gimple_assign (stmt)) { ao_ref lhs_ref; ao_ref_init (&lhs_ref, gimple_assign_lhs (stmt)); earlier_set = ao_ref_alias_set (&lhs_ref); earlier_base_set = ao_ref_base_alias_set (&lhs_ref); } /* We could do something fairly complex and look through PHIs like DSE_CLASSIFY_STORE, but it doesn't seem to be worth the effort. Look at all the immediate uses of the VDEF (which are obviously dominated by STMT). See if one or more stores 0 into the same memory locations a STMT, if so remove the immediate use statements. */ tree defvar = gimple_vdef (stmt); imm_use_iterator ui; gimple *use_stmt; FOR_EACH_IMM_USE_STMT (use_stmt, ui, defvar) { /* Limit stmt walking. */ if (++cnt > param_dse_max_alias_queries_per_store) break; /* If USE_STMT stores 0 into one or more of the same locations as STMT and STMT would kill USE_STMT, then we can just remove USE_STMT. */ tree fndecl; if ((is_gimple_assign (use_stmt) && gimple_vdef (use_stmt) && (gimple_assign_single_p (use_stmt) && initializer_zerop (gimple_assign_rhs1 (use_stmt)))) || (gimple_call_builtin_p (use_stmt, BUILT_IN_NORMAL) && (fndecl = gimple_call_fndecl (use_stmt)) != NULL && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET_CHK) && integer_zerop (gimple_call_arg (use_stmt, 1)))) { ao_ref write; if (!initialize_ao_ref_for_dse (use_stmt, &write)) break; if (valid_ao_ref_for_dse (&write) && stmt_kills_ref_p (stmt, &write)) { gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt); if (is_gimple_assign (use_stmt)) { ao_ref lhs_ref; ao_ref_init (&lhs_ref, gimple_assign_lhs (use_stmt)); if ((earlier_set == ao_ref_alias_set (&lhs_ref) || alias_set_subset_of (ao_ref_alias_set (&lhs_ref), earlier_set)) && (earlier_base_set == ao_ref_base_alias_set (&lhs_ref) || alias_set_subset_of (ao_ref_base_alias_set (&lhs_ref), earlier_base_set))) delete_dead_or_redundant_assignment (&gsi, "redundant", need_eh_cleanup, need_ab_cleanup); } else if (is_gimple_call (use_stmt)) { if ((earlier_set == 0 || alias_set_subset_of (0, earlier_set)) && (earlier_base_set == 0 || alias_set_subset_of (0, earlier_base_set))) delete_dead_or_redundant_call (&gsi, "redundant"); } else gcc_unreachable (); } } } } /* Return whether PHI contains ARG as an argument. */ static bool contains_phi_arg (gphi *phi, tree arg) { for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i) if (gimple_phi_arg_def (phi, i) == arg) return true; return false; } /* Hash map of the memory use in a GIMPLE assignment to its data reference. If NULL data-ref analysis isn't used. */ static hash_map *dse_stmt_to_dr_map; /* A helper of dse_optimize_stmt. Given a GIMPLE_ASSIGN in STMT that writes to REF, classify it according to downstream uses and defs. Sets *BY_CLOBBER_P to true if only clobber statements influenced the classification result. Returns the classification. */ static dse_store_status dse_classify_store (ao_ref *ref, gimple *stmt, bool byte_tracking_enabled, sbitmap live_bytes, bool *by_clobber_p, tree stop_at_vuse, int &cnt, bitmap visited) { gimple *temp; std::unique_ptr dra (nullptr, free_data_ref); if (by_clobber_p) *by_clobber_p = true; /* Find the first dominated statement that clobbers (part of) the memory stmt stores to with no intermediate statement that may use part of the memory stmt stores. That is, find a store that may prove stmt to be a dead store. */ temp = stmt; do { gimple *use_stmt; imm_use_iterator ui; bool fail = false; tree defvar; if (gimple_code (temp) == GIMPLE_PHI) { defvar = PHI_RESULT (temp); bitmap_set_bit (visited, SSA_NAME_VERSION (defvar)); } else defvar = gimple_vdef (temp); auto_vec defs; gphi *first_phi_def = NULL; gphi *last_phi_def = NULL; auto_vec worklist; worklist.quick_push (defvar); do { defvar = worklist.pop (); /* If we're instructed to stop walking at region boundary, do so. */ if (defvar == stop_at_vuse) return DSE_STORE_LIVE; use_operand_p usep; FOR_EACH_IMM_USE_FAST (usep, ui, defvar) { use_stmt = USE_STMT (usep); /* Limit stmt walking. */ if (++cnt > param_dse_max_alias_queries_per_store) { fail = true; break; } /* In simple cases we can look through PHI nodes, but we have to be careful with loops and with memory references containing operands that are also operands of PHI nodes. See gcc.c-torture/execute/20051110-*.c. */ if (gphi *phi = dyn_cast (use_stmt)) { /* Look through single-argument PHIs. */ if (gimple_phi_num_args (phi) == 1) worklist.safe_push (gimple_phi_result (phi)); else { /* If we visit this PHI by following a backedge then we have to make sure ref->ref only refers to SSA names that are invariant with respect to the loop represented by this PHI node. We handle irreducible regions by relying on backedge marking and identifying the head of the (sub-)region. */ edge e = gimple_phi_arg_edge (phi, PHI_ARG_INDEX_FROM_USE (usep)); if (e->flags & EDGE_DFS_BACK) { basic_block rgn_head = nearest_common_dominator (CDI_DOMINATORS, gimple_bb (phi), e->src); if (!for_each_index (ref->ref ? &ref->ref : &ref->base, check_name, rgn_head)) return DSE_STORE_LIVE; } /* If we already visited this PHI ignore it for further processing. But note we have to check each incoming edge above. */ if (!bitmap_bit_p (visited, SSA_NAME_VERSION (PHI_RESULT (phi)))) { defs.safe_push (phi); if (!first_phi_def) first_phi_def = phi;; last_phi_def = phi; } } } /* If the statement is a use the store is not dead. */ else if (ref_maybe_used_by_stmt_p (use_stmt, ref)) { if (dse_stmt_to_dr_map && ref->ref && is_gimple_assign (use_stmt)) { if (!dra) dra.reset (create_data_ref (NULL, NULL, ref->ref, stmt, false, false)); bool existed_p; data_reference_p &drb = dse_stmt_to_dr_map->get_or_insert (use_stmt, &existed_p); if (!existed_p) drb = create_data_ref (NULL, NULL, gimple_assign_rhs1 (use_stmt), use_stmt, false, false); if (!dr_may_alias_p (dra.get (), drb, NULL)) { if (gimple_vdef (use_stmt)) defs.safe_push (use_stmt); continue; } } /* Handle common cases where we can easily build an ao_ref structure for USE_STMT and in doing so we find that the references hit non-live bytes and thus can be ignored. TODO: We can also use modref summary to handle calls. */ if (byte_tracking_enabled && is_gimple_assign (use_stmt)) { ao_ref use_ref; ao_ref_init (&use_ref, gimple_assign_rhs1 (use_stmt)); if (valid_ao_ref_for_dse (&use_ref) && operand_equal_p (use_ref.base, ref->base, OEP_ADDRESS_OF) && !live_bytes_read (&use_ref, ref, live_bytes)) { /* If this is a store, remember it as we possibly need to walk the defs uses. */ if (gimple_vdef (use_stmt)) defs.safe_push (use_stmt); continue; } } fail = true; break; } /* We have visited ourselves already so ignore STMT for the purpose of chaining. */ else if (use_stmt == stmt) ; /* If this is a store, remember it as we possibly need to walk the defs uses. */ else if (gimple_vdef (use_stmt)) defs.safe_push (use_stmt); } } while (!fail && !worklist.is_empty ()); if (fail) { /* STMT might be partially dead and we may be able to reduce how many memory locations it stores into. */ if (byte_tracking_enabled && !gimple_clobber_p (stmt)) return DSE_STORE_MAYBE_PARTIAL_DEAD; return DSE_STORE_LIVE; } /* If we didn't find any definition this means the store is dead if it isn't a store to global reachable memory. In this case just pretend the stmt makes itself dead. Otherwise fail. */ if (defs.is_empty ()) { if (ref_may_alias_global_p (ref, false)) { basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (defvar)); /* Assume that BUILT_IN_UNREACHABLE and BUILT_IN_UNREACHABLE_TRAP do not need to keep (global) memory side-effects live. We do not have virtual operands on BUILT_IN_UNREACHABLE but we can do poor mans reachability when the last definition we want to elide is in the block that ends in such a call. */ if (EDGE_COUNT (def_bb->succs) == 0) if (gcall *last = dyn_cast (*gsi_last_bb (def_bb))) if (gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE) || gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE_TRAP)) { if (by_clobber_p) *by_clobber_p = false; return DSE_STORE_DEAD; } return DSE_STORE_LIVE; } if (by_clobber_p) *by_clobber_p = false; return DSE_STORE_DEAD; } /* Process defs and remove those we need not process further. */ for (unsigned i = 0; i < defs.length ();) { gimple *def = defs[i]; gimple *use_stmt; use_operand_p use_p; tree vdef = (gimple_code (def) == GIMPLE_PHI ? gimple_phi_result (def) : gimple_vdef (def)); gphi *phi_def; /* If the path to check starts with a kill we do not need to process it further. ??? With byte tracking we need only kill the bytes currently live. */ if (stmt_kills_ref_p (def, ref)) { if (by_clobber_p && !gimple_clobber_p (def)) *by_clobber_p = false; defs.unordered_remove (i); } /* If the path ends here we do not need to process it further. This for example happens with calls to noreturn functions. */ else if (has_zero_uses (vdef)) { /* But if the store is to global memory it is definitely not dead. */ if (ref_may_alias_global_p (ref, false)) return DSE_STORE_LIVE; defs.unordered_remove (i); } /* In addition to kills we can remove defs whose only use is another def in defs. That can only ever be PHIs of which we track two for simplicity reasons, the first and last in {first,last}_phi_def (we fail for multiple PHIs anyways). We can also ignore defs that feed only into already visited PHIs. */ else if (single_imm_use (vdef, &use_p, &use_stmt) && (use_stmt == first_phi_def || use_stmt == last_phi_def || (gimple_code (use_stmt) == GIMPLE_PHI && bitmap_bit_p (visited, SSA_NAME_VERSION (PHI_RESULT (use_stmt)))))) { defs.unordered_remove (i); if (def == first_phi_def) first_phi_def = NULL; else if (def == last_phi_def) last_phi_def = NULL; } /* If def is a PHI and one of its arguments is another PHI node still in consideration we can defer processing it. */ else if ((phi_def = dyn_cast (def)) && ((last_phi_def && phi_def != last_phi_def && contains_phi_arg (phi_def, gimple_phi_result (last_phi_def))) || (first_phi_def && phi_def != first_phi_def && contains_phi_arg (phi_def, gimple_phi_result (first_phi_def))))) { defs.unordered_remove (i); if (phi_def == first_phi_def) first_phi_def = NULL; else if (phi_def == last_phi_def) last_phi_def = NULL; } else ++i; } /* If all defs kill the ref we are done. */ if (defs.is_empty ()) return DSE_STORE_DEAD; /* If more than one def survives we have to analyze multiple paths. We can handle this by recursing, sharing 'visited' to avoid redundant work and limiting it by shared 'cnt'. For now do not bother with byte-tracking in this case. */ while (defs.length () > 1) { if (dse_classify_store (ref, defs.last (), false, NULL, by_clobber_p, stop_at_vuse, cnt, visited) != DSE_STORE_DEAD) break; byte_tracking_enabled = false; defs.pop (); } /* If more than one def survives fail. */ if (defs.length () > 1) { /* STMT might be partially dead and we may be able to reduce how many memory locations it stores into. */ if (byte_tracking_enabled && !gimple_clobber_p (stmt)) return DSE_STORE_MAYBE_PARTIAL_DEAD; return DSE_STORE_LIVE; } temp = defs[0]; /* Track partial kills. */ if (byte_tracking_enabled) { clear_bytes_written_by (live_bytes, temp, ref); if (bitmap_empty_p (live_bytes)) { if (by_clobber_p && !gimple_clobber_p (temp)) *by_clobber_p = false; return DSE_STORE_DEAD; } } } /* Continue walking until there are no more live bytes. */ while (1); } dse_store_status dse_classify_store (ao_ref *ref, gimple *stmt, bool byte_tracking_enabled, sbitmap live_bytes, bool *by_clobber_p, tree stop_at_vuse) { int cnt = 0; auto_bitmap visited; return dse_classify_store (ref, stmt, byte_tracking_enabled, live_bytes, by_clobber_p, stop_at_vuse, cnt, visited); } /* Delete a dead call at GSI, which is mem* call of some kind. */ static void delete_dead_or_redundant_call (gimple_stmt_iterator *gsi, const char *type) { gimple *stmt = gsi_stmt (*gsi); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " Deleted %s call: ", type); print_gimple_stmt (dump_file, stmt, 0, dump_flags); fprintf (dump_file, "\n"); } basic_block bb = gimple_bb (stmt); tree lhs = gimple_call_lhs (stmt); if (lhs) { tree ptr = gimple_call_arg (stmt, 0); gimple *new_stmt = gimple_build_assign (lhs, ptr); unlink_stmt_vdef (stmt); if (gsi_replace (gsi, new_stmt, true)) bitmap_set_bit (need_eh_cleanup, bb->index); } else { /* Then we need to fix the operand of the consuming stmt. */ unlink_stmt_vdef (stmt); /* Remove the dead store. */ if (gsi_remove (gsi, true)) bitmap_set_bit (need_eh_cleanup, bb->index); release_defs (stmt); } } /* Delete a dead store at GSI, which is a gimple assignment. */ void delete_dead_or_redundant_assignment (gimple_stmt_iterator *gsi, const char *type, bitmap need_eh_cleanup, bitmap need_ab_cleanup) { gimple *stmt = gsi_stmt (*gsi); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " Deleted %s store: ", type); print_gimple_stmt (dump_file, stmt, 0, dump_flags); fprintf (dump_file, "\n"); } /* Then we need to fix the operand of the consuming stmt. */ unlink_stmt_vdef (stmt); /* Remove the dead store. */ basic_block bb = gimple_bb (stmt); if (need_ab_cleanup && stmt_can_make_abnormal_goto (stmt)) bitmap_set_bit (need_ab_cleanup, bb->index); if (gsi_remove (gsi, true) && need_eh_cleanup) bitmap_set_bit (need_eh_cleanup, bb->index); /* And release any SSA_NAMEs set in this statement back to the SSA_NAME manager. */ release_defs (stmt); } /* Try to prove, using modref summary, that all memory written to by a call is dead and remove it. Assume that if return value is written to memory it is already proved to be dead. */ static bool dse_optimize_call (gimple_stmt_iterator *gsi, sbitmap live_bytes) { gcall *stmt = dyn_cast (gsi_stmt (*gsi)); if (!stmt) return false; tree callee = gimple_call_fndecl (stmt); if (!callee) return false; /* Pure/const functions are optimized by normal DCE or handled as store above. */ int flags = gimple_call_flags (stmt); if ((flags & (ECF_PURE|ECF_CONST|ECF_NOVOPS)) && !(flags & (ECF_LOOPING_CONST_OR_PURE))) return false; cgraph_node *node = cgraph_node::get (callee); if (!node) return false; if (stmt_could_throw_p (cfun, stmt) && !cfun->can_delete_dead_exceptions) return false; /* If return value is used the call is not dead. */ tree lhs = gimple_call_lhs (stmt); if (lhs && TREE_CODE (lhs) == SSA_NAME) { imm_use_iterator ui; gimple *use_stmt; FOR_EACH_IMM_USE_STMT (use_stmt, ui, lhs) if (!is_gimple_debug (use_stmt)) return false; } /* Verify that there are no side-effects except for return value and memory writes tracked by modref. */ modref_summary *summary = get_modref_function_summary (node); if (!summary || !summary->try_dse) return false; bool by_clobber_p = false; /* Walk all memory writes and verify that they are dead. */ for (auto base_node : summary->stores->bases) for (auto ref_node : base_node->refs) for (auto access_node : ref_node->accesses) { tree arg = access_node.get_call_arg (stmt); if (!arg || !POINTER_TYPE_P (TREE_TYPE (arg))) return false; if (integer_zerop (arg) && !targetm.addr_space.zero_address_valid (TYPE_ADDR_SPACE (TREE_TYPE (arg)))) continue; ao_ref ref; if (!access_node.get_ao_ref (stmt, &ref)) return false; ref.ref_alias_set = ref_node->ref; ref.base_alias_set = base_node->base; bool byte_tracking_enabled = setup_live_bytes_from_ref (&ref, live_bytes); enum dse_store_status store_status; store_status = dse_classify_store (&ref, stmt, byte_tracking_enabled, live_bytes, &by_clobber_p); if (store_status != DSE_STORE_DEAD) return false; } delete_dead_or_redundant_assignment (gsi, "dead", need_eh_cleanup, need_ab_cleanup); return true; } /* Attempt to eliminate dead stores in the statement referenced by BSI. A dead store is a store into a memory location which will later be overwritten by another store without any intervening loads. In this case the earlier store can be deleted. In our SSA + virtual operand world we use immediate uses of virtual operands to detect dead stores. If a store's virtual definition is used precisely once by a later store to the same location which post dominates the first store, then the first store is dead. */ static void dse_optimize_stmt (function *fun, gimple_stmt_iterator *gsi, sbitmap live_bytes) { gimple *stmt = gsi_stmt (*gsi); /* Don't return early on *this_2(D) ={v} {CLOBBER}. */ if (gimple_has_volatile_ops (stmt) && (!gimple_clobber_p (stmt) || TREE_CODE (gimple_assign_lhs (stmt)) != MEM_REF)) return; ao_ref ref; /* If this is not a store we can still remove dead call using modref summary. Note we specifically allow ref to be initialized to a conservative may-def since we are looking for followup stores to kill all of it. */ if (!initialize_ao_ref_for_dse (stmt, &ref, true)) { dse_optimize_call (gsi, live_bytes); return; } /* We know we have virtual definitions. We can handle assignments and some builtin calls. */ if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)) { tree fndecl = gimple_call_fndecl (stmt); switch (DECL_FUNCTION_CODE (fndecl)) { case BUILT_IN_MEMCPY: case BUILT_IN_MEMMOVE: case BUILT_IN_STRNCPY: case BUILT_IN_MEMSET: case BUILT_IN_MEMCPY_CHK: case BUILT_IN_MEMMOVE_CHK: case BUILT_IN_STRNCPY_CHK: case BUILT_IN_MEMSET_CHK: { /* Occasionally calls with an explicit length of zero show up in the IL. It's pointless to do analysis on them, they're trivially dead. */ tree size = gimple_call_arg (stmt, 2); if (integer_zerop (size)) { delete_dead_or_redundant_call (gsi, "dead"); return; } /* If this is a memset call that initializes an object to zero, it may be redundant with an earlier memset or empty CONSTRUCTOR of a larger object. */ if ((DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET_CHK) && integer_zerop (gimple_call_arg (stmt, 1))) dse_optimize_redundant_stores (stmt); enum dse_store_status store_status; bool byte_tracking_enabled = setup_live_bytes_from_ref (&ref, live_bytes); store_status = dse_classify_store (&ref, stmt, byte_tracking_enabled, live_bytes); if (store_status == DSE_STORE_LIVE) return; if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD) { maybe_trim_memstar_call (&ref, live_bytes, stmt); return; } if (store_status == DSE_STORE_DEAD) delete_dead_or_redundant_call (gsi, "dead"); return; } case BUILT_IN_CALLOC: /* We already know the arguments are integer constants. */ dse_optimize_redundant_stores (stmt); return; default: return; } } else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt)) { switch (gimple_call_internal_fn (stmt)) { case IFN_LEN_STORE: case IFN_MASK_STORE: case IFN_MASK_LEN_STORE: { enum dse_store_status store_status; store_status = dse_classify_store (&ref, stmt, false, live_bytes); if (store_status == DSE_STORE_DEAD) delete_dead_or_redundant_call (gsi, "dead"); return; } default:; } } bool by_clobber_p = false; /* Check if this statement stores zero to a memory location, and if there is a subsequent store of zero to the same memory location. If so, remove the subsequent store. */ if (gimple_assign_single_p (stmt) && initializer_zerop (gimple_assign_rhs1 (stmt))) dse_optimize_redundant_stores (stmt); /* Self-assignments are zombies. */ if (is_gimple_assign (stmt) && operand_equal_p (gimple_assign_rhs1 (stmt), gimple_assign_lhs (stmt), 0)) ; else { bool byte_tracking_enabled = setup_live_bytes_from_ref (&ref, live_bytes); enum dse_store_status store_status; store_status = dse_classify_store (&ref, stmt, byte_tracking_enabled, live_bytes, &by_clobber_p); if (store_status == DSE_STORE_LIVE) return; if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD) { maybe_trim_partially_dead_store (&ref, live_bytes, stmt); return; } } /* Now we know that use_stmt kills the LHS of stmt. */ /* But only remove *this_2(D) ={v} {CLOBBER} if killed by another clobber stmt. */ if (gimple_clobber_p (stmt) && !by_clobber_p) return; if (is_gimple_call (stmt) && (gimple_has_side_effects (stmt) || (stmt_could_throw_p (fun, stmt) && !fun->can_delete_dead_exceptions))) { /* See if we can remove complete call. */ if (dse_optimize_call (gsi, live_bytes)) return; /* Make sure we do not remove a return slot we cannot reconstruct later. */ if (gimple_call_return_slot_opt_p (as_a (stmt)) && (TREE_ADDRESSABLE (TREE_TYPE (gimple_call_fntype (stmt))) || !poly_int_tree_p (TYPE_SIZE (TREE_TYPE (gimple_call_fntype (stmt)))))) return; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " Deleted dead store in call LHS: "); print_gimple_stmt (dump_file, stmt, 0, dump_flags); fprintf (dump_file, "\n"); } gimple_call_set_lhs (stmt, NULL_TREE); update_stmt (stmt); } else if (!stmt_could_throw_p (fun, stmt) || fun->can_delete_dead_exceptions) delete_dead_or_redundant_assignment (gsi, "dead", need_eh_cleanup, need_ab_cleanup); } namespace { const pass_data pass_data_dse = { GIMPLE_PASS, /* type */ "dse", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_TREE_DSE, /* tv_id */ ( PROP_cfg | PROP_ssa ), /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_dse : public gimple_opt_pass { public: pass_dse (gcc::context *ctxt) : gimple_opt_pass (pass_data_dse, ctxt), use_dr_analysis_p (false) {} /* opt_pass methods: */ opt_pass * clone () final override { return new pass_dse (m_ctxt); } void set_pass_param (unsigned n, bool param) final override { gcc_assert (n == 0); use_dr_analysis_p = param; } bool gate (function *) final override { return flag_tree_dse != 0; } unsigned int execute (function *) final override; private: bool use_dr_analysis_p; }; // class pass_dse unsigned int pass_dse::execute (function *fun) { unsigned todo = 0; bool released_def = false; need_eh_cleanup = BITMAP_ALLOC (NULL); need_ab_cleanup = BITMAP_ALLOC (NULL); auto_sbitmap live_bytes (param_dse_max_object_size); if (flag_expensive_optimizations && use_dr_analysis_p) dse_stmt_to_dr_map = new hash_map; renumber_gimple_stmt_uids (fun); calculate_dominance_info (CDI_DOMINATORS); /* Dead store elimination is fundamentally a reverse program order walk. */ int *rpo = XNEWVEC (int, n_basic_blocks_for_fn (fun) - NUM_FIXED_BLOCKS); auto_bitmap exit_bbs; bitmap_set_bit (exit_bbs, EXIT_BLOCK); edge entry = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (fun)); int n = rev_post_order_and_mark_dfs_back_seme (fun, entry, exit_bbs, false, rpo, NULL); for (int i = n; i != 0; --i) { basic_block bb = BASIC_BLOCK_FOR_FN (fun, rpo[i-1]); gimple_stmt_iterator gsi; for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);) { gimple *stmt = gsi_stmt (gsi); if (gimple_vdef (stmt)) dse_optimize_stmt (fun, &gsi, live_bytes); else if (def_operand_p def_p = single_ssa_def_operand (stmt, SSA_OP_DEF)) { /* When we remove dead stores make sure to also delete trivially dead SSA defs. */ if (has_zero_uses (DEF_FROM_PTR (def_p)) && !gimple_has_side_effects (stmt) && !is_ctrl_altering_stmt (stmt) && (!stmt_could_throw_p (fun, stmt) || fun->can_delete_dead_exceptions)) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " Deleted trivially dead stmt: "); print_gimple_stmt (dump_file, stmt, 0, dump_flags); fprintf (dump_file, "\n"); } if (gsi_remove (&gsi, true) && need_eh_cleanup) bitmap_set_bit (need_eh_cleanup, bb->index); release_defs (stmt); released_def = true; } } if (gsi_end_p (gsi)) gsi = gsi_last_bb (bb); else gsi_prev (&gsi); } bool removed_phi = false; for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);) { gphi *phi = si.phi (); if (has_zero_uses (gimple_phi_result (phi))) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " Deleted trivially dead PHI: "); print_gimple_stmt (dump_file, phi, 0, dump_flags); fprintf (dump_file, "\n"); } remove_phi_node (&si, true); removed_phi = true; released_def = true; } else gsi_next (&si); } if (removed_phi && gimple_seq_empty_p (phi_nodes (bb))) todo |= TODO_cleanup_cfg; } free (rpo); /* Removal of stores may make some EH edges dead. Purge such edges from the CFG as needed. */ if (!bitmap_empty_p (need_eh_cleanup)) { gimple_purge_all_dead_eh_edges (need_eh_cleanup); todo |= TODO_cleanup_cfg; } if (!bitmap_empty_p (need_ab_cleanup)) { gimple_purge_all_dead_abnormal_call_edges (need_ab_cleanup); todo |= TODO_cleanup_cfg; } BITMAP_FREE (need_eh_cleanup); BITMAP_FREE (need_ab_cleanup); if (released_def) free_numbers_of_iterations_estimates (fun); if (flag_expensive_optimizations && use_dr_analysis_p) { for (auto i = dse_stmt_to_dr_map->begin (); i != dse_stmt_to_dr_map->end (); ++i) free_data_ref ((*i).second); delete dse_stmt_to_dr_map; dse_stmt_to_dr_map = NULL; } return todo; } } // anon namespace gimple_opt_pass * make_pass_dse (gcc::context *ctxt) { return new pass_dse (ctxt); }