/* Copy propagation and SSA_NAME replacement support routines. Copyright (C) 2004-2024 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "tree.h" #include "gimple.h" #include "tree-pass.h" #include "ssa.h" #include "gimple-pretty-print.h" #include "fold-const.h" #include "gimple-iterator.h" #include "tree-cfg.h" #include "tree-ssa-propagate.h" #include "cfgloop.h" #include "tree-scalar-evolution.h" #include "tree-ssa-loop-niter.h" #include "gimple-fold.h" /* This file implements the copy propagation pass and provides a handful of interfaces for performing const/copy propagation and simple expression replacement which keep variable annotations up-to-date. We require that for any copy operation where the RHS and LHS have a non-null memory tag the memory tag be the same. It is OK for one or both of the memory tags to be NULL. We also require tracking if a variable is dereferenced in a load or store operation. We enforce these requirements by having all copy propagation and replacements of one SSA_NAME with a different SSA_NAME to use the APIs defined in this file. */ /*--------------------------------------------------------------------------- Copy propagation ---------------------------------------------------------------------------*/ /* Lattice for copy-propagation. The lattice is initialized to UNDEFINED (value == NULL) for SSA names that can become a copy of something or VARYING (value == self) if not (see get_copy_of_val and stmt_may_generate_copy). Other values make the name a COPY of that value. When visiting a statement or PHI node the lattice value for an SSA name can transition from UNDEFINED to COPY to VARYING. */ struct prop_value_t { /* Copy-of value. */ tree value; }; class copy_prop : public ssa_propagation_engine { public: enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) final override; enum ssa_prop_result visit_phi (gphi *) final override; }; static prop_value_t *copy_of; static unsigned n_copy_of; /* Return true if this statement may generate a useful copy. */ static bool stmt_may_generate_copy (gimple *stmt) { if (gimple_code (stmt) == GIMPLE_PHI) return !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)); if (gimple_code (stmt) != GIMPLE_ASSIGN) return false; /* If the statement has volatile operands, it won't generate a useful copy. */ if (gimple_has_volatile_ops (stmt)) return false; /* Statements with loads and/or stores will never generate a useful copy. */ if (gimple_vuse (stmt)) return false; /* If the assignment is from a constant it generates a useful copy. */ if (gimple_assign_single_p (stmt) && is_gimple_min_invariant (gimple_assign_rhs1 (stmt))) return true; /* Otherwise, the only statements that generate useful copies are assignments whose single SSA use doesn't flow through abnormal edges. */ tree rhs = single_ssa_tree_operand (stmt, SSA_OP_USE); return (rhs && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs)); } /* Return the copy-of value for VAR. */ static inline prop_value_t * get_copy_of_val (tree var) { prop_value_t *val = ©_of[SSA_NAME_VERSION (var)]; if (val->value == NULL_TREE && !stmt_may_generate_copy (SSA_NAME_DEF_STMT (var))) { /* If the variable will never generate a useful copy relation, make it its own copy. */ val->value = var; } return val; } /* Return the variable VAR is a copy of or VAR if VAR isn't the result of a copy. */ static inline tree valueize_val (tree var) { if (TREE_CODE (var) == SSA_NAME) { tree val = get_copy_of_val (var)->value; if (val) return val; } return var; } /* Set VAL to be the copy of VAR. If that changed return true. */ static inline bool set_copy_of_val (tree var, tree val) { unsigned int ver = SSA_NAME_VERSION (var); tree old; /* Set FIRST to be the first link in COPY_OF[DEST]. If that changed, return true. */ old = copy_of[ver].value; copy_of[ver].value = val; if (old != val && (!old || !operand_equal_p (old, val, 0))) return true; return false; } /* Dump the copy-of value for variable VAR to FILE. */ static void dump_copy_of (FILE *file, tree var) { tree val; print_generic_expr (file, var, dump_flags); if (TREE_CODE (var) != SSA_NAME) return; val = copy_of[SSA_NAME_VERSION (var)].value; fprintf (file, " copy-of chain: "); print_generic_expr (file, var); fprintf (file, " "); if (!val) fprintf (file, "[UNDEFINED]"); else if (val == var) fprintf (file, "[NOT A COPY]"); else { fprintf (file, "-> "); print_generic_expr (file, val); fprintf (file, " "); fprintf (file, "[COPY]"); } } /* Evaluate the RHS of STMT. If it produces a valid copy, set the LHS value and store the LHS into *RESULT_P. */ static enum ssa_prop_result copy_prop_visit_assignment (gimple *stmt, tree *result_p) { tree lhs = gimple_assign_lhs (stmt); tree rhs = gimple_fold_stmt_to_constant_1 (stmt, valueize_val); if (rhs && (TREE_CODE (rhs) == SSA_NAME || is_gimple_min_invariant (rhs))) { /* Straight copy between two SSA names or a constant. Make sure that we can propagate the RHS into uses of LHS. */ if (!may_propagate_copy (lhs, rhs)) rhs = lhs; } else rhs = lhs; *result_p = lhs; if (set_copy_of_val (*result_p, rhs)) return SSA_PROP_INTERESTING; return rhs != lhs ? SSA_PROP_NOT_INTERESTING : SSA_PROP_VARYING; } /* Visit the GIMPLE_COND STMT. Return SSA_PROP_INTERESTING if it can determine which edge will be taken. Otherwise, return SSA_PROP_VARYING. */ static enum ssa_prop_result copy_prop_visit_cond_stmt (gimple *stmt, edge *taken_edge_p) { enum ssa_prop_result retval = SSA_PROP_VARYING; location_t loc = gimple_location (stmt); tree op0 = valueize_val (gimple_cond_lhs (stmt)); tree op1 = valueize_val (gimple_cond_rhs (stmt)); /* See if we can determine the predicate's value. */ if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Trying to determine truth value of "); fprintf (dump_file, "predicate "); print_gimple_stmt (dump_file, stmt, 0); } /* Fold COND and see whether we get a useful result. */ tree folded_cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node, op0, op1); if (folded_cond) { basic_block bb = gimple_bb (stmt); *taken_edge_p = find_taken_edge (bb, folded_cond); if (*taken_edge_p) retval = SSA_PROP_INTERESTING; } if (dump_file && (dump_flags & TDF_DETAILS) && *taken_edge_p) fprintf (dump_file, "\nConditional will always take edge %d->%d\n", (*taken_edge_p)->src->index, (*taken_edge_p)->dest->index); return retval; } /* Evaluate statement STMT. If the statement produces a new output value, return SSA_PROP_INTERESTING and store the SSA_NAME holding the new value in *RESULT_P. If STMT is a conditional branch and we can determine its truth value, set *TAKEN_EDGE_P accordingly. If the new value produced by STMT is varying, return SSA_PROP_VARYING. */ enum ssa_prop_result copy_prop::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *result_p) { enum ssa_prop_result retval; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\nVisiting statement:\n"); print_gimple_stmt (dump_file, stmt, 0, dump_flags); fprintf (dump_file, "\n"); } if (is_gimple_assign (stmt) && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME) { /* If the statement is a copy assignment, evaluate its RHS to see if the lattice value of its output has changed. */ retval = copy_prop_visit_assignment (stmt, result_p); } else if (gimple_code (stmt) == GIMPLE_COND) { /* See if we can determine which edge goes out of a conditional jump. */ retval = copy_prop_visit_cond_stmt (stmt, taken_edge_p); } else retval = SSA_PROP_VARYING; if (retval == SSA_PROP_VARYING) { tree def; ssa_op_iter i; /* Any other kind of statement is not interesting for constant propagation and, therefore, not worth simulating. */ if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "No interesting values produced.\n"); /* The assignment is not a copy operation. Don't visit this statement again and mark all the definitions in the statement to be copies of nothing. */ FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_ALL_DEFS) set_copy_of_val (def, def); } return retval; } /* Visit PHI node PHI. If all the arguments produce the same value, set it to be the value of the LHS of PHI. */ enum ssa_prop_result copy_prop::visit_phi (gphi *phi) { enum ssa_prop_result retval; unsigned i; prop_value_t phi_val = { NULL_TREE }; tree lhs = gimple_phi_result (phi); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\nVisiting PHI node: "); print_gimple_stmt (dump_file, phi, 0, dump_flags); } for (i = 0; i < gimple_phi_num_args (phi); i++) { prop_value_t *arg_val; tree arg_value; tree arg = gimple_phi_arg_def (phi, i); edge e = gimple_phi_arg_edge (phi, i); /* We don't care about values flowing through non-executable edges. */ if (!(e->flags & EDGE_EXECUTABLE)) continue; /* Names that flow through abnormal edges cannot be used to derive copies. */ if (TREE_CODE (arg) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (arg)) { phi_val.value = lhs; break; } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\tArgument #%d: ", i); dump_copy_of (dump_file, arg); fprintf (dump_file, "\n"); } if (TREE_CODE (arg) == SSA_NAME) { arg_val = get_copy_of_val (arg); /* If we didn't visit the definition of arg yet treat it as UNDEFINED. This also handles PHI arguments that are the same as lhs. We'll come here again. */ if (!arg_val->value) continue; arg_value = arg_val->value; } else arg_value = valueize_val (arg); /* In loop-closed SSA form do not copy-propagate SSA-names across loop exit edges. */ if (loops_state_satisfies_p (LOOP_CLOSED_SSA) && TREE_CODE (arg_value) == SSA_NAME && loop_exit_edge_p (e->src->loop_father, e)) { phi_val.value = lhs; break; } /* If the LHS didn't have a value yet, make it a copy of the first argument we find. */ if (phi_val.value == NULL_TREE) { phi_val.value = arg_value; continue; } /* If PHI_VAL and ARG don't have a common copy-of chain, then this PHI node cannot be a copy operation. */ if (phi_val.value != arg_value && !operand_equal_p (phi_val.value, arg_value, 0)) { phi_val.value = lhs; break; } } if (phi_val.value && may_propagate_copy (lhs, phi_val.value) && set_copy_of_val (lhs, phi_val.value)) retval = (phi_val.value != lhs) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING; else retval = SSA_PROP_NOT_INTERESTING; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "PHI node "); dump_copy_of (dump_file, lhs); fprintf (dump_file, "\nTelling the propagator to "); if (retval == SSA_PROP_INTERESTING) fprintf (dump_file, "add SSA edges out of this PHI and continue."); else if (retval == SSA_PROP_VARYING) fprintf (dump_file, "add SSA edges out of this PHI and never visit again."); else fprintf (dump_file, "do nothing with SSA edges and keep iterating."); fprintf (dump_file, "\n\n"); } return retval; } /* Initialize structures used for copy propagation. */ static void init_copy_prop (void) { basic_block bb; n_copy_of = num_ssa_names; copy_of = XCNEWVEC (prop_value_t, n_copy_of); FOR_EACH_BB_FN (bb, cfun) { for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) { gimple *stmt = gsi_stmt (si); ssa_op_iter iter; tree def; /* The only statements that we care about are those that may generate useful copies. We also need to mark conditional jumps so that their outgoing edges are added to the work lists of the propagator. */ if (stmt_ends_bb_p (stmt)) prop_set_simulate_again (stmt, true); else if (stmt_may_generate_copy (stmt)) prop_set_simulate_again (stmt, true); else prop_set_simulate_again (stmt, false); /* Mark all the outputs of this statement as not being the copy of anything. */ FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS) if (!prop_simulate_again_p (stmt)) set_copy_of_val (def, def); } for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) { gphi *phi = si.phi (); tree def; def = gimple_phi_result (phi); if (virtual_operand_p (def)) prop_set_simulate_again (phi, false); else prop_set_simulate_again (phi, true); if (!prop_simulate_again_p (phi)) set_copy_of_val (def, def); } } } class copy_folder : public substitute_and_fold_engine { public: tree value_of_expr (tree name, gimple *) final override; }; /* Callback for substitute_and_fold to get at the final copy-of values. */ tree copy_folder::value_of_expr (tree name, gimple *) { tree val; if (SSA_NAME_VERSION (name) >= n_copy_of) return NULL_TREE; val = copy_of[SSA_NAME_VERSION (name)].value; if (val && val != name) return val; return NULL_TREE; } /* Deallocate memory used in copy propagation and do final substitution. */ static bool fini_copy_prop (void) { unsigned i; tree var; /* Set the final copy-of value for each variable by traversing the copy-of chains. */ FOR_EACH_SSA_NAME (i, var, cfun) { if (!copy_of[i].value || copy_of[i].value == var) continue; /* Duplicate points-to and range info appropriately. */ if (copy_of[i].value != var && TREE_CODE (copy_of[i].value) == SSA_NAME) maybe_duplicate_ssa_info_at_copy (var, copy_of[i].value); } class copy_folder copy_folder; bool changed = copy_folder.substitute_and_fold (); if (changed) { free_numbers_of_iterations_estimates (cfun); if (scev_initialized_p ()) scev_reset (); } free (copy_of); return changed; } /* Main entry point to the copy propagator. PHIS_ONLY is true if we should only consider PHI nodes as generating copy propagation opportunities. The algorithm propagates the value COPY-OF using ssa_propagate. For every variable X_i, COPY-OF(X_i) indicates which variable is X_i created from. The following example shows how the algorithm proceeds at a high level: 1 a_24 = x_1 2 a_2 = PHI 3 a_5 = PHI 4 x_1 = PHI The end result should be that a_2, a_5, a_24 and x_1 are a copy of x_298. Propagation proceeds as follows. Visit #1: a_24 is copy-of x_1. Value changed. Visit #2: a_2 is copy-of x_1. Value changed. Visit #3: a_5 is copy-of x_1. Value changed. Visit #4: x_1 is copy-of x_298. Value changed. Visit #1: a_24 is copy-of x_298. Value changed. Visit #2: a_2 is copy-of x_298. Value changed. Visit #3: a_5 is copy-of x_298. Value changed. Visit #4: x_1 is copy-of x_298. Stable state reached. When visiting PHI nodes, we only consider arguments that flow through edges marked executable by the propagation engine. So, when visiting statement #2 for the first time, we will only look at the first argument (a_24) and optimistically assume that its value is the copy of a_24 (x_1). */ static unsigned int execute_copy_prop (void) { init_copy_prop (); class copy_prop copy_prop; copy_prop.ssa_propagate (); if (fini_copy_prop ()) return TODO_cleanup_cfg; return 0; } namespace { const pass_data pass_data_copy_prop = { GIMPLE_PASS, /* type */ "copyprop", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_TREE_COPY_PROP, /* tv_id */ ( PROP_ssa | PROP_cfg ), /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_copy_prop : public gimple_opt_pass { public: pass_copy_prop (gcc::context *ctxt) : gimple_opt_pass (pass_data_copy_prop, ctxt) {} /* opt_pass methods: */ opt_pass * clone () final override { return new pass_copy_prop (m_ctxt); } bool gate (function *) final override { return flag_tree_copy_prop != 0; } unsigned int execute (function *) final override { return execute_copy_prop (); } }; // class pass_copy_prop } // anon namespace gimple_opt_pass * make_pass_copy_prop (gcc::context *ctxt) { return new pass_copy_prop (ctxt); }