/* Conditional constant propagation pass for the GNU compiler. Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Adapted from original RTL SSA-CCP by Daniel Berlin Adapted to GIMPLE trees by Diego Novillo This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* Conditional constant propagation (CCP) is based on the SSA propagation engine (tree-ssa-propagate.c). Constant assignments of the form VAR = CST are propagated from the assignments into uses of VAR, which in turn may generate new constants. The simulation uses a four level lattice to keep track of constant values associated with SSA names. Given an SSA name V_i, it may take one of the following values: UNINITIALIZED -> the initial state of the value. This value is replaced with a correct initial value the first time the value is used, so the rest of the pass does not need to care about it. Using this value simplifies initialization of the pass, and prevents us from needlessly scanning statements that are never reached. UNDEFINED -> V_i is a local variable whose definition has not been processed yet. Therefore we don't yet know if its value is a constant or not. CONSTANT -> V_i has been found to hold a constant value C. VARYING -> V_i cannot take a constant value, or if it does, it is not possible to determine it at compile time. The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node: 1- In ccp_visit_stmt, we are interested in assignments whose RHS evaluates into a constant and conditional jumps whose predicate evaluates into a boolean true or false. When an assignment of the form V_i = CONST is found, V_i's lattice value is set to CONSTANT and CONST is associated with it. This causes the propagation engine to add all the SSA edges coming out the assignment into the worklists, so that statements that use V_i can be visited. If the statement is a conditional with a constant predicate, we mark the outgoing edges as executable or not executable depending on the predicate's value. This is then used when visiting PHI nodes to know when a PHI argument can be ignored. 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the same constant C, then the LHS of the PHI is set to C. This evaluation is known as the "meet operation". Since one of the goals of this evaluation is to optimistically return constant values as often as possible, it uses two main short cuts: - If an argument is flowing in through a non-executable edge, it is ignored. This is useful in cases like this: if (PRED) a_9 = 3; else a_10 = 100; a_11 = PHI (a_9, a_10) If PRED is known to always evaluate to false, then we can assume that a_11 will always take its value from a_10, meaning that instead of consider it VARYING (a_9 and a_10 have different values), we can consider it CONSTANT 100. - If an argument has an UNDEFINED value, then it does not affect the outcome of the meet operation. If a variable V_i has an UNDEFINED value, it means that either its defining statement hasn't been visited yet or V_i has no defining statement, in which case the original symbol 'V' is being used uninitialized. Since 'V' is a local variable, the compiler may assume any initial value for it. After propagation, every variable V_i that ends up with a lattice value of CONSTANT will have the associated constant value in the array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for final substitution and folding. References: Constant propagation with conditional branches, Wegman and Zadeck, ACM TOPLAS 13(2):181-210. Building an Optimizing Compiler, Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9. Advanced Compiler Design and Implementation, Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "flags.h" #include "tm_p.h" #include "basic-block.h" #include "output.h" #include "function.h" #include "tree-pretty-print.h" #include "gimple-pretty-print.h" #include "timevar.h" #include "tree-dump.h" #include "tree-flow.h" #include "tree-pass.h" #include "tree-ssa-propagate.h" #include "value-prof.h" #include "langhooks.h" #include "target.h" #include "diagnostic-core.h" #include "toplev.h" #include "dbgcnt.h" /* Possible lattice values. */ typedef enum { UNINITIALIZED, UNDEFINED, CONSTANT, VARYING } ccp_lattice_t; struct prop_value_d { /* Lattice value. */ ccp_lattice_t lattice_val; /* Propagated value. */ tree value; /* Mask that applies to the propagated value during CCP. For X with a CONSTANT lattice value X & ~mask == value & ~mask. */ double_int mask; }; typedef struct prop_value_d prop_value_t; /* Array of propagated constant values. After propagation, CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If the constant is held in an SSA name representing a memory store (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual memory reference used to store (i.e., the LHS of the assignment doing the store). */ static prop_value_t *const_val; static void canonicalize_float_value (prop_value_t *); static bool ccp_fold_stmt (gimple_stmt_iterator *); static tree fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size); /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */ static void dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val) { switch (val.lattice_val) { case UNINITIALIZED: fprintf (outf, "%sUNINITIALIZED", prefix); break; case UNDEFINED: fprintf (outf, "%sUNDEFINED", prefix); break; case VARYING: fprintf (outf, "%sVARYING", prefix); break; case CONSTANT: fprintf (outf, "%sCONSTANT ", prefix); if (TREE_CODE (val.value) != INTEGER_CST || double_int_zero_p (val.mask)) print_generic_expr (outf, val.value, dump_flags); else { double_int cval = double_int_and_not (tree_to_double_int (val.value), val.mask); fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX, prefix, cval.high, cval.low); fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")", val.mask.high, val.mask.low); } break; default: gcc_unreachable (); } } /* Print lattice value VAL to stderr. */ void debug_lattice_value (prop_value_t val); DEBUG_FUNCTION void debug_lattice_value (prop_value_t val) { dump_lattice_value (stderr, "", val); fprintf (stderr, "\n"); } /* Compute a default value for variable VAR and store it in the CONST_VAL array. The following rules are used to get default values: 1- Global and static variables that are declared constant are considered CONSTANT. 2- Any other value is considered UNDEFINED. This is useful when considering PHI nodes. PHI arguments that are undefined do not change the constant value of the PHI node, which allows for more constants to be propagated. 3- Variables defined by statements other than assignments and PHI nodes are considered VARYING. 4- Initial values of variables that are not GIMPLE registers are considered VARYING. */ static prop_value_t get_default_value (tree var) { tree sym = SSA_NAME_VAR (var); prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } }; gimple stmt; stmt = SSA_NAME_DEF_STMT (var); if (gimple_nop_p (stmt)) { /* Variables defined by an empty statement are those used before being initialized. If VAR is a local variable, we can assume initially that it is UNDEFINED, otherwise we must consider it VARYING. */ if (is_gimple_reg (sym) && TREE_CODE (sym) == VAR_DECL) val.lattice_val = UNDEFINED; else { val.lattice_val = VARYING; val.mask = double_int_minus_one; } } else if (is_gimple_assign (stmt) /* Value-returning GIMPLE_CALL statements assign to a variable, and are treated similarly to GIMPLE_ASSIGN. */ || (is_gimple_call (stmt) && gimple_call_lhs (stmt) != NULL_TREE) || gimple_code (stmt) == GIMPLE_PHI) { tree cst; if (gimple_assign_single_p (stmt) && DECL_P (gimple_assign_rhs1 (stmt)) && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt)))) { val.lattice_val = CONSTANT; val.value = cst; } else /* Any other variable defined by an assignment or a PHI node is considered UNDEFINED. */ val.lattice_val = UNDEFINED; } else { /* Otherwise, VAR will never take on a constant value. */ val.lattice_val = VARYING; val.mask = double_int_minus_one; } return val; } /* Get the constant value associated with variable VAR. */ static inline prop_value_t * get_value (tree var) { prop_value_t *val; if (const_val == NULL) return NULL; val = &const_val[SSA_NAME_VERSION (var)]; if (val->lattice_val == UNINITIALIZED) *val = get_default_value (var); canonicalize_float_value (val); return val; } /* Return the constant tree value associated with VAR. */ static inline tree get_constant_value (tree var) { prop_value_t *val; if (TREE_CODE (var) != SSA_NAME) { if (is_gimple_min_invariant (var)) return var; return NULL_TREE; } val = get_value (var); if (val && val->lattice_val == CONSTANT && (TREE_CODE (val->value) != INTEGER_CST || double_int_zero_p (val->mask))) return val->value; return NULL_TREE; } /* Sets the value associated with VAR to VARYING. */ static inline void set_value_varying (tree var) { prop_value_t *val = &const_val[SSA_NAME_VERSION (var)]; val->lattice_val = VARYING; val->value = NULL_TREE; val->mask = double_int_minus_one; } /* For float types, modify the value of VAL to make ccp work correctly for non-standard values (-0, NaN): If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0. If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED. This is to fix the following problem (see PR 29921): Suppose we have x = 0.0 * y and we set value of y to NaN. This causes value of x to be set to NaN. When we later determine that y is in fact VARYING, fold uses the fact that HONOR_NANS is false, and we try to change the value of x to 0, causing an ICE. With HONOR_NANS being false, the real appearance of NaN would cause undefined behavior, though, so claiming that y (and x) are UNDEFINED initially is correct. */ static void canonicalize_float_value (prop_value_t *val) { enum machine_mode mode; tree type; REAL_VALUE_TYPE d; if (val->lattice_val != CONSTANT || TREE_CODE (val->value) != REAL_CST) return; d = TREE_REAL_CST (val->value); type = TREE_TYPE (val->value); mode = TYPE_MODE (type); if (!HONOR_SIGNED_ZEROS (mode) && REAL_VALUE_MINUS_ZERO (d)) { val->value = build_real (type, dconst0); return; } if (!HONOR_NANS (mode) && REAL_VALUE_ISNAN (d)) { val->lattice_val = UNDEFINED; val->value = NULL; return; } } /* Return whether the lattice transition is valid. */ static bool valid_lattice_transition (prop_value_t old_val, prop_value_t new_val) { /* Lattice transitions must always be monotonically increasing in value. */ if (old_val.lattice_val < new_val.lattice_val) return true; if (old_val.lattice_val != new_val.lattice_val) return false; if (!old_val.value && !new_val.value) return true; /* Now both lattice values are CONSTANT. */ /* Allow transitioning from &x to &x & ~3. */ if (TREE_CODE (old_val.value) != INTEGER_CST && TREE_CODE (new_val.value) == INTEGER_CST) return true; /* Bit-lattices have to agree in the still valid bits. */ if (TREE_CODE (old_val.value) == INTEGER_CST && TREE_CODE (new_val.value) == INTEGER_CST) return double_int_equal_p (double_int_and_not (tree_to_double_int (old_val.value), new_val.mask), double_int_and_not (tree_to_double_int (new_val.value), new_val.mask)); /* Otherwise constant values have to agree. */ return operand_equal_p (old_val.value, new_val.value, 0); } /* Set the value for variable VAR to NEW_VAL. Return true if the new value is different from VAR's previous value. */ static bool set_lattice_value (tree var, prop_value_t new_val) { /* We can deal with old UNINITIALIZED values just fine here. */ prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)]; canonicalize_float_value (&new_val); /* We have to be careful to not go up the bitwise lattice represented by the mask. ??? This doesn't seem to be the best place to enforce this. */ if (new_val.lattice_val == CONSTANT && old_val->lattice_val == CONSTANT && TREE_CODE (new_val.value) == INTEGER_CST && TREE_CODE (old_val->value) == INTEGER_CST) { double_int diff; diff = double_int_xor (tree_to_double_int (new_val.value), tree_to_double_int (old_val->value)); new_val.mask = double_int_ior (new_val.mask, double_int_ior (old_val->mask, diff)); } gcc_assert (valid_lattice_transition (*old_val, new_val)); /* If *OLD_VAL and NEW_VAL are the same, return false to inform the caller that this was a non-transition. */ if (old_val->lattice_val != new_val.lattice_val || (new_val.lattice_val == CONSTANT && TREE_CODE (new_val.value) == INTEGER_CST && (TREE_CODE (old_val->value) != INTEGER_CST || !double_int_equal_p (new_val.mask, old_val->mask)))) { /* ??? We would like to delay creation of INTEGER_CSTs from partially constants here. */ if (dump_file && (dump_flags & TDF_DETAILS)) { dump_lattice_value (dump_file, "Lattice value changed to ", new_val); fprintf (dump_file, ". Adding SSA edges to worklist.\n"); } *old_val = new_val; gcc_assert (new_val.lattice_val != UNINITIALIZED); return true; } return false; } static prop_value_t get_value_for_expr (tree, bool); static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree); static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *, tree, double_int, double_int, tree, double_int, double_int); /* Return a double_int that can be used for bitwise simplifications from VAL. */ static double_int value_to_double_int (prop_value_t val) { if (val.value && TREE_CODE (val.value) == INTEGER_CST) return tree_to_double_int (val.value); else return double_int_zero; } /* Return the value for the address expression EXPR based on alignment information. */ static prop_value_t get_value_from_alignment (tree expr) { prop_value_t val; HOST_WIDE_INT bitsize, bitpos; tree base, offset; enum machine_mode mode; int align; gcc_assert (TREE_CODE (expr) == ADDR_EXPR); base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize, &bitpos, &offset, &mode, &align, &align, false); if (TREE_CODE (base) == MEM_REF) val = bit_value_binop (PLUS_EXPR, TREE_TYPE (expr), TREE_OPERAND (base, 0), TREE_OPERAND (base, 1)); else if (base && ((align = get_object_alignment (base, BIGGEST_ALIGNMENT)) > BITS_PER_UNIT)) { val.lattice_val = CONSTANT; /* We assume pointers are zero-extended. */ val.mask = double_int_and_not (double_int_mask (TYPE_PRECISION (TREE_TYPE (expr))), uhwi_to_double_int (align / BITS_PER_UNIT - 1)); val.value = build_int_cst (TREE_TYPE (expr), 0); } else { val.lattice_val = VARYING; val.mask = double_int_minus_one; val.value = NULL_TREE; } if (bitpos != 0) { double_int value, mask; bit_value_binop_1 (PLUS_EXPR, TREE_TYPE (expr), &value, &mask, TREE_TYPE (expr), value_to_double_int (val), val.mask, TREE_TYPE (expr), shwi_to_double_int (bitpos / BITS_PER_UNIT), double_int_zero); val.lattice_val = double_int_minus_one_p (mask) ? VARYING : CONSTANT; val.mask = mask; if (val.lattice_val == CONSTANT) val.value = double_int_to_tree (TREE_TYPE (expr), value); else val.value = NULL_TREE; } /* ??? We should handle i * 4 and more complex expressions from the offset, possibly by just expanding get_value_for_expr. */ if (offset != NULL_TREE) { double_int value, mask; prop_value_t oval = get_value_for_expr (offset, true); bit_value_binop_1 (PLUS_EXPR, TREE_TYPE (expr), &value, &mask, TREE_TYPE (expr), value_to_double_int (val), val.mask, TREE_TYPE (expr), value_to_double_int (oval), oval.mask); val.mask = mask; if (double_int_minus_one_p (mask)) { val.lattice_val = VARYING; val.value = NULL_TREE; } else { val.lattice_val = CONSTANT; val.value = double_int_to_tree (TREE_TYPE (expr), value); } } return val; } /* Return the value for the tree operand EXPR. If FOR_BITS_P is true return constant bits extracted from alignment information for invariant addresses. */ static prop_value_t get_value_for_expr (tree expr, bool for_bits_p) { prop_value_t val; if (TREE_CODE (expr) == SSA_NAME) { val = *get_value (expr); if (for_bits_p && val.lattice_val == CONSTANT && TREE_CODE (val.value) == ADDR_EXPR) val = get_value_from_alignment (val.value); } else if (is_gimple_min_invariant (expr) && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR)) { val.lattice_val = CONSTANT; val.value = expr; val.mask = double_int_zero; canonicalize_float_value (&val); } else if (TREE_CODE (expr) == ADDR_EXPR) val = get_value_from_alignment (expr); else { val.lattice_val = VARYING; val.mask = double_int_minus_one; val.value = NULL_TREE; } return val; } /* Return the likely CCP lattice value for STMT. If STMT has no operands, then return CONSTANT. Else if undefinedness of operands of STMT cause its value to be undefined, then return UNDEFINED. Else if any operands of STMT are constants, then return CONSTANT. Else return VARYING. */ static ccp_lattice_t likely_value (gimple stmt) { bool has_constant_operand, has_undefined_operand, all_undefined_operands; tree use; ssa_op_iter iter; unsigned i; enum gimple_code code = gimple_code (stmt); /* This function appears to be called only for assignments, calls, conditionals, and switches, due to the logic in visit_stmt. */ gcc_assert (code == GIMPLE_ASSIGN || code == GIMPLE_CALL || code == GIMPLE_COND || code == GIMPLE_SWITCH); /* If the statement has volatile operands, it won't fold to a constant value. */ if (gimple_has_volatile_ops (stmt)) return VARYING; /* Arrive here for more complex cases. */ has_constant_operand = false; has_undefined_operand = false; all_undefined_operands = true; FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE) { prop_value_t *val = get_value (use); if (val->lattice_val == UNDEFINED) has_undefined_operand = true; else all_undefined_operands = false; if (val->lattice_val == CONSTANT) has_constant_operand = true; } /* There may be constants in regular rhs operands. For calls we have to ignore lhs, fndecl and static chain, otherwise only the lhs. */ for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt); i < gimple_num_ops (stmt); ++i) { tree op = gimple_op (stmt, i); if (!op || TREE_CODE (op) == SSA_NAME) continue; if (is_gimple_min_invariant (op)) has_constant_operand = true; } if (has_constant_operand) all_undefined_operands = false; /* If the operation combines operands like COMPLEX_EXPR make sure to not mark the result UNDEFINED if only one part of the result is undefined. */ if (has_undefined_operand && all_undefined_operands) return UNDEFINED; else if (code == GIMPLE_ASSIGN && has_undefined_operand) { switch (gimple_assign_rhs_code (stmt)) { /* Unary operators are handled with all_undefined_operands. */ case PLUS_EXPR: case MINUS_EXPR: case POINTER_PLUS_EXPR: /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected. Not bitwise operators, one VARYING operand may specify the result completely. Not logical operators for the same reason. Not COMPLEX_EXPR as one VARYING operand makes the result partly not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because the undefined operand may be promoted. */ return UNDEFINED; default: ; } } /* If there was an UNDEFINED operand but the result may be not UNDEFINED fall back to VARYING even if there were CONSTANT operands. */ if (has_undefined_operand) return VARYING; /* We do not consider virtual operands here -- load from read-only memory may have only VARYING virtual operands, but still be constant. */ if (has_constant_operand || gimple_references_memory_p (stmt)) return CONSTANT; return VARYING; } /* Returns true if STMT cannot be constant. */ static bool surely_varying_stmt_p (gimple stmt) { /* If the statement has operands that we cannot handle, it cannot be constant. */ if (gimple_has_volatile_ops (stmt)) return true; /* If it is a call and does not return a value or is not a builtin and not an indirect call, it is varying. */ if (is_gimple_call (stmt)) { tree fndecl; if (!gimple_call_lhs (stmt) || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE && !DECL_BUILT_IN (fndecl))) return true; } /* Any other store operation is not interesting. */ else if (gimple_vdef (stmt)) return true; /* Anything other than assignments and conditional jumps are not interesting for CCP. */ if (gimple_code (stmt) != GIMPLE_ASSIGN && gimple_code (stmt) != GIMPLE_COND && gimple_code (stmt) != GIMPLE_SWITCH && gimple_code (stmt) != GIMPLE_CALL) return true; return false; } /* Initialize local data structures for CCP. */ static void ccp_initialize (void) { basic_block bb; const_val = XCNEWVEC (prop_value_t, num_ssa_names); /* Initialize simulation flags for PHI nodes and statements. */ FOR_EACH_BB (bb) { gimple_stmt_iterator i; for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i)) { gimple stmt = gsi_stmt (i); bool is_varying; /* If the statement is a control insn, then we do not want to avoid simulating the statement once. Failure to do so means that those edges will never get added. */ if (stmt_ends_bb_p (stmt)) is_varying = false; else is_varying = surely_varying_stmt_p (stmt); if (is_varying) { tree def; ssa_op_iter iter; /* If the statement will not produce a constant, mark all its outputs VARYING. */ FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS) set_value_varying (def); } prop_set_simulate_again (stmt, !is_varying); } } /* Now process PHI nodes. We never clear the simulate_again flag on phi nodes, since we do not know which edges are executable yet, except for phi nodes for virtual operands when we do not do store ccp. */ FOR_EACH_BB (bb) { gimple_stmt_iterator i; for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i)) { gimple phi = gsi_stmt (i); if (!is_gimple_reg (gimple_phi_result (phi))) prop_set_simulate_again (phi, false); else prop_set_simulate_again (phi, true); } } } /* Debug count support. Reset the values of ssa names VARYING when the total number ssa names analyzed is beyond the debug count specified. */ static void do_dbg_cnt (void) { unsigned i; for (i = 0; i < num_ssa_names; i++) { if (!dbg_cnt (ccp)) { const_val[i].lattice_val = VARYING; const_val[i].mask = double_int_minus_one; const_val[i].value = NULL_TREE; } } } /* Do final substitution of propagated values, cleanup the flowgraph and free allocated storage. Return TRUE when something was optimized. */ static bool ccp_finalize (void) { bool something_changed; unsigned i; do_dbg_cnt (); /* Derive alignment and misalignment information from partially constant pointers in the lattice. */ for (i = 1; i < num_ssa_names; ++i) { tree name = ssa_name (i); prop_value_t *val; struct ptr_info_def *pi; unsigned int tem, align; if (!name || !POINTER_TYPE_P (TREE_TYPE (name))) continue; val = get_value (name); if (val->lattice_val != CONSTANT || TREE_CODE (val->value) != INTEGER_CST) continue; /* Trailing constant bits specify the alignment, trailing value bits the misalignment. */ tem = val->mask.low; align = (tem & -tem); if (align == 1) continue; pi = get_ptr_info (name); pi->align = align; pi->misalign = TREE_INT_CST_LOW (val->value) & (align - 1); } /* Perform substitutions based on the known constant values. */ something_changed = substitute_and_fold (get_constant_value, ccp_fold_stmt, true); free (const_val); const_val = NULL; return something_changed;; } /* Compute the meet operator between *VAL1 and *VAL2. Store the result in VAL1. any M UNDEFINED = any any M VARYING = VARYING Ci M Cj = Ci if (i == j) Ci M Cj = VARYING if (i != j) */ static void ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2) { if (val1->lattice_val == UNDEFINED) { /* UNDEFINED M any = any */ *val1 = *val2; } else if (val2->lattice_val == UNDEFINED) { /* any M UNDEFINED = any Nothing to do. VAL1 already contains the value we want. */ ; } else if (val1->lattice_val == VARYING || val2->lattice_val == VARYING) { /* any M VARYING = VARYING. */ val1->lattice_val = VARYING; val1->mask = double_int_minus_one; val1->value = NULL_TREE; } else if (val1->lattice_val == CONSTANT && val2->lattice_val == CONSTANT && TREE_CODE (val1->value) == INTEGER_CST && TREE_CODE (val2->value) == INTEGER_CST) { /* Ci M Cj = Ci if (i == j) Ci M Cj = VARYING if (i != j) For INTEGER_CSTs mask unequal bits. If no equal bits remain, drop to varying. */ val1->mask = double_int_ior (double_int_ior (val1->mask, val2->mask), double_int_xor (tree_to_double_int (val1->value), tree_to_double_int (val2->value))); if (double_int_minus_one_p (val1->mask)) { val1->lattice_val = VARYING; val1->value = NULL_TREE; } } else if (val1->lattice_val == CONSTANT && val2->lattice_val == CONSTANT && simple_cst_equal (val1->value, val2->value) == 1) { /* Ci M Cj = Ci if (i == j) Ci M Cj = VARYING if (i != j) VAL1 already contains the value we want for equivalent values. */ } else if (val1->lattice_val == CONSTANT && val2->lattice_val == CONSTANT && (TREE_CODE (val1->value) == ADDR_EXPR || TREE_CODE (val2->value) == ADDR_EXPR)) { /* When not equal addresses are involved try meeting for alignment. */ prop_value_t tem = *val2; if (TREE_CODE (val1->value) == ADDR_EXPR) *val1 = get_value_for_expr (val1->value, true); if (TREE_CODE (val2->value) == ADDR_EXPR) tem = get_value_for_expr (val2->value, true); ccp_lattice_meet (val1, &tem); } else { /* Any other combination is VARYING. */ val1->lattice_val = VARYING; val1->mask = double_int_minus_one; val1->value = NULL_TREE; } } /* Loop through the PHI_NODE's parameters for BLOCK and compare their lattice values to determine PHI_NODE's lattice value. The value of a PHI node is determined calling ccp_lattice_meet with all the arguments of the PHI node that are incoming via executable edges. */ static enum ssa_prop_result ccp_visit_phi_node (gimple phi) { unsigned i; prop_value_t *old_val, new_val; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\nVisiting PHI node: "); print_gimple_stmt (dump_file, phi, 0, dump_flags); } old_val = get_value (gimple_phi_result (phi)); switch (old_val->lattice_val) { case VARYING: return SSA_PROP_VARYING; case CONSTANT: new_val = *old_val; break; case UNDEFINED: new_val.lattice_val = UNDEFINED; new_val.value = NULL_TREE; break; default: gcc_unreachable (); } for (i = 0; i < gimple_phi_num_args (phi); i++) { /* Compute the meet operator over all the PHI arguments flowing through executable edges. */ edge e = gimple_phi_arg_edge (phi, i); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\n Argument #%d (%d -> %d %sexecutable)\n", i, e->src->index, e->dest->index, (e->flags & EDGE_EXECUTABLE) ? "" : "not "); } /* If the incoming edge is executable, Compute the meet operator for the existing value of the PHI node and the current PHI argument. */ if (e->flags & EDGE_EXECUTABLE) { tree arg = gimple_phi_arg (phi, i)->def; prop_value_t arg_val = get_value_for_expr (arg, false); ccp_lattice_meet (&new_val, &arg_val); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\t"); print_generic_expr (dump_file, arg, dump_flags); dump_lattice_value (dump_file, "\tValue: ", arg_val); fprintf (dump_file, "\n"); } if (new_val.lattice_val == VARYING) break; } } if (dump_file && (dump_flags & TDF_DETAILS)) { dump_lattice_value (dump_file, "\n PHI node value: ", new_val); fprintf (dump_file, "\n\n"); } /* Make the transition to the new value. */ if (set_lattice_value (gimple_phi_result (phi), new_val)) { if (new_val.lattice_val == VARYING) return SSA_PROP_VARYING; else return SSA_PROP_INTERESTING; } else return SSA_PROP_NOT_INTERESTING; } /* Return the constant value for OP or OP otherwise. */ static tree valueize_op (tree op) { if (TREE_CODE (op) == SSA_NAME) { tree tem = get_constant_value (op); if (tem) return tem; } return op; } /* CCP specific front-end to the non-destructive constant folding routines. Attempt to simplify the RHS of STMT knowing that one or more operands are constants. If simplification is possible, return the simplified RHS, otherwise return the original RHS or NULL_TREE. */ static tree ccp_fold (gimple stmt) { location_t loc = gimple_location (stmt); switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: { enum tree_code subcode = gimple_assign_rhs_code (stmt); switch (get_gimple_rhs_class (subcode)) { case GIMPLE_SINGLE_RHS: { tree rhs = gimple_assign_rhs1 (stmt); enum tree_code_class kind = TREE_CODE_CLASS (subcode); if (TREE_CODE (rhs) == SSA_NAME) { /* If the RHS is an SSA_NAME, return its known constant value, if any. */ return get_constant_value (rhs); } /* Handle propagating invariant addresses into address operations. The folding we do here matches that in tree-ssa-forwprop.c. */ else if (TREE_CODE (rhs) == ADDR_EXPR) { tree *base; base = &TREE_OPERAND (rhs, 0); while (handled_component_p (*base)) base = &TREE_OPERAND (*base, 0); if (TREE_CODE (*base) == MEM_REF && TREE_CODE (TREE_OPERAND (*base, 0)) == SSA_NAME) { tree val = get_constant_value (TREE_OPERAND (*base, 0)); if (val && TREE_CODE (val) == ADDR_EXPR) { tree ret, save = *base; tree new_base; new_base = fold_build2 (MEM_REF, TREE_TYPE (*base), unshare_expr (val), TREE_OPERAND (*base, 1)); /* We need to return a new tree, not modify the IL or share parts of it. So play some tricks to avoid manually building it. */ *base = new_base; ret = unshare_expr (rhs); recompute_tree_invariant_for_addr_expr (ret); *base = save; return ret; } } } else if (TREE_CODE (rhs) == CONSTRUCTOR && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE && (CONSTRUCTOR_NELTS (rhs) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs)))) { unsigned i; tree val, list; list = NULL_TREE; FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val) { val = valueize_op (val); if (TREE_CODE (val) == INTEGER_CST || TREE_CODE (val) == REAL_CST || TREE_CODE (val) == FIXED_CST) list = tree_cons (NULL_TREE, val, list); else return NULL_TREE; } return build_vector (TREE_TYPE (rhs), nreverse (list)); } if (kind == tcc_reference) { if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR || TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (rhs) == IMAGPART_EXPR) && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME) { tree val = get_constant_value (TREE_OPERAND (rhs, 0)); if (val) return fold_unary_loc (EXPR_LOCATION (rhs), TREE_CODE (rhs), TREE_TYPE (rhs), val); } else if (TREE_CODE (rhs) == MEM_REF && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME) { tree val = get_constant_value (TREE_OPERAND (rhs, 0)); if (val && TREE_CODE (val) == ADDR_EXPR) { tree tem = fold_build2 (MEM_REF, TREE_TYPE (rhs), unshare_expr (val), TREE_OPERAND (rhs, 1)); if (tem) rhs = tem; } } return fold_const_aggregate_ref (rhs); } else if (kind == tcc_declaration) return get_symbol_constant_value (rhs); return rhs; } case GIMPLE_UNARY_RHS: { /* Handle unary operators that can appear in GIMPLE form. Note that we know the single operand must be a constant, so this should almost always return a simplified RHS. */ tree lhs = gimple_assign_lhs (stmt); tree op0 = valueize_op (gimple_assign_rhs1 (stmt)); /* Conversions are useless for CCP purposes if they are value-preserving. Thus the restrictions that useless_type_conversion_p places for pointer type conversions do not apply here. Substitution later will only substitute to allowed places. */ if (CONVERT_EXPR_CODE_P (subcode) && POINTER_TYPE_P (TREE_TYPE (lhs)) && POINTER_TYPE_P (TREE_TYPE (op0))) { tree tem; /* Try to re-construct array references on-the-fly. */ if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0)) && ((tem = maybe_fold_offset_to_address (loc, op0, integer_zero_node, TREE_TYPE (lhs))) != NULL_TREE)) return tem; return op0; } return fold_unary_ignore_overflow_loc (loc, subcode, gimple_expr_type (stmt), op0); } case GIMPLE_BINARY_RHS: { /* Handle binary operators that can appear in GIMPLE form. */ tree op0 = valueize_op (gimple_assign_rhs1 (stmt)); tree op1 = valueize_op (gimple_assign_rhs2 (stmt)); /* Translate &x + CST into an invariant form suitable for further propagation. */ if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR && TREE_CODE (op0) == ADDR_EXPR && TREE_CODE (op1) == INTEGER_CST) { tree off = fold_convert (ptr_type_node, op1); return build_fold_addr_expr (fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (op0)), unshare_expr (op0), off)); } return fold_binary_loc (loc, subcode, gimple_expr_type (stmt), op0, op1); } case GIMPLE_TERNARY_RHS: { /* Handle ternary operators that can appear in GIMPLE form. */ tree op0 = valueize_op (gimple_assign_rhs1 (stmt)); tree op1 = valueize_op (gimple_assign_rhs2 (stmt)); tree op2 = valueize_op (gimple_assign_rhs3 (stmt)); return fold_ternary_loc (loc, subcode, gimple_expr_type (stmt), op0, op1, op2); } default: gcc_unreachable (); } } break; case GIMPLE_CALL: { tree fn = valueize_op (gimple_call_fn (stmt)); if (TREE_CODE (fn) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL && DECL_BUILT_IN (TREE_OPERAND (fn, 0))) { tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt)); tree call, retval; unsigned i; for (i = 0; i < gimple_call_num_args (stmt); ++i) args[i] = valueize_op (gimple_call_arg (stmt, i)); call = build_call_array_loc (loc, gimple_call_return_type (stmt), fn, gimple_call_num_args (stmt), args); retval = fold_call_expr (EXPR_LOCATION (call), call, false); if (retval) /* fold_call_expr wraps the result inside a NOP_EXPR. */ STRIP_NOPS (retval); return retval; } return NULL_TREE; } case GIMPLE_COND: { /* Handle comparison operators that can appear in GIMPLE form. */ tree op0 = valueize_op (gimple_cond_lhs (stmt)); tree op1 = valueize_op (gimple_cond_rhs (stmt)); enum tree_code code = gimple_cond_code (stmt); return fold_binary_loc (loc, code, boolean_type_node, op0, op1); } case GIMPLE_SWITCH: { /* Return the constant switch index. */ return valueize_op (gimple_switch_index (stmt)); } default: gcc_unreachable (); } } /* See if we can find constructor defining value of BASE. As a special case, return error_mark_node when constructor is not explicitly available, but it is known to be zero such as 'static const int a;'. */ static tree get_base_constructor (tree base, tree *offset) { *offset = NULL; if (TREE_CODE (base) == MEM_REF) { if (!integer_zerop (TREE_OPERAND (base, 1))) *offset = TREE_OPERAND (base, 1); base = get_constant_value (TREE_OPERAND (base, 0)); if (!base || TREE_CODE (base) != ADDR_EXPR) return NULL_TREE; base = TREE_OPERAND (base, 0); } /* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its DECL_INITIAL. If BASE is a nested reference into another ARRAY_REF or COMPONENT_REF, make a recursive call to resolve the inner reference. */ switch (TREE_CODE (base)) { case VAR_DECL: if (!const_value_known_p (base)) return NULL_TREE; /* Fallthru. */ case CONST_DECL: if (!DECL_INITIAL (base) && (TREE_STATIC (base) || DECL_EXTERNAL (base))) return error_mark_node; return DECL_INITIAL (base); break; case ARRAY_REF: case COMPONENT_REF: return fold_const_aggregate_ref (base); break; case STRING_CST: case CONSTRUCTOR: return base; break; default: return NULL_TREE; } } /* CTOR is STRING_CST. Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. We do only simple job of folding byte accesses. */ static tree fold_string_cst_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size) { if (INTEGRAL_TYPE_P (type) && (TYPE_MODE (type) == TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor)))) && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor)))) == MODE_INT) && GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor)))) == 1 && size == BITS_PER_UNIT && !(offset % BITS_PER_UNIT)) { offset /= BITS_PER_UNIT; if (offset < (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (ctor)) return build_int_cst_type (type, (TREE_STRING_POINTER (ctor) [offset])); /* Folding const char a[20]="hello"; return a[10]; might lead to offset greater than string length. In this case we know value is either initialized to 0 or out of bounds. Return 0 in both cases. */ return build_zero_cst (type); } return NULL_TREE; } /* CTOR is CONSTRUCTOR of an array type. Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */ static tree fold_array_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size) { unsigned HOST_WIDE_INT cnt; tree cfield, cval; double_int low_bound, elt_size; double_int index, max_index; double_int access_index; tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor)); HOST_WIDE_INT inner_offset; /* Compute low bound and elt size. */ if (domain_type && TYPE_MIN_VALUE (domain_type)) { /* Static constructors for variably sized objects makes no sense. */ gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST); low_bound = tree_to_double_int (TYPE_MIN_VALUE (domain_type)); } else low_bound = double_int_zero; /* Static constructors for variably sized objects makes no sense. */ gcc_assert (TREE_CODE(TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor)))) == INTEGER_CST); elt_size = tree_to_double_int (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor)))); /* We can handle only constantly sized accesses that are known to not be larger than size of array element. */ if (!TYPE_SIZE_UNIT (type) || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST || double_int_cmp (elt_size, tree_to_double_int (TYPE_SIZE_UNIT (type)), 0) < 0) return NULL_TREE; /* Compute the array index we look for. */ access_index = double_int_udiv (uhwi_to_double_int (offset / BITS_PER_UNIT), elt_size, TRUNC_DIV_EXPR); access_index = double_int_add (access_index, low_bound); /* And offset within the access. */ inner_offset = offset % (double_int_to_uhwi (elt_size) * BITS_PER_UNIT); /* See if the array field is large enough to span whole access. We do not care to fold accesses spanning multiple array indexes. */ if (inner_offset + size > double_int_to_uhwi (elt_size) * BITS_PER_UNIT) return NULL_TREE; index = double_int_sub (low_bound, double_int_one); FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval) { /* Array constructor might explicitely set index, or specify range or leave index NULL meaning that it is next index after previous one. */ if (cfield) { if (TREE_CODE (cfield) == INTEGER_CST) max_index = index = tree_to_double_int (cfield); else { gcc_assert (TREE_CODE (cfield) == RANGE_EXPR); index = tree_to_double_int (TREE_OPERAND (cfield, 0)); max_index = tree_to_double_int (TREE_OPERAND (cfield, 1)); } } else max_index = index = double_int_add (index, double_int_one); /* Do we have match? */ if (double_int_cmp (access_index, index, 1) >= 0 && double_int_cmp (access_index, max_index, 1) <= 0) return fold_ctor_reference (type, cval, inner_offset, size); } /* When memory is not explicitely mentioned in constructor, it is 0 (or out of range). */ return build_zero_cst (type); } /* CTOR is CONSTRUCTOR of an aggregate or vector. Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */ static tree fold_nonarray_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size) { unsigned HOST_WIDE_INT cnt; tree cfield, cval; FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval) { tree byte_offset = DECL_FIELD_OFFSET (cfield); tree field_offset = DECL_FIELD_BIT_OFFSET (cfield); tree field_size = DECL_SIZE (cfield); double_int bitoffset; double_int byte_offset_cst = tree_to_double_int (byte_offset); double_int bits_per_unit_cst = uhwi_to_double_int (BITS_PER_UNIT); double_int bitoffset_end; /* Variable sized objects in static constructors makes no sense. */ gcc_assert (TREE_CODE (field_offset) == INTEGER_CST && TREE_CODE (byte_offset) == INTEGER_CST && TREE_CODE (field_size) == INTEGER_CST); /* Compute bit offset of the field. */ bitoffset = double_int_add (tree_to_double_int (field_offset), double_int_mul (byte_offset_cst, bits_per_unit_cst)); /* Compute bit offset where the field ends. */ bitoffset_end = double_int_add (bitoffset, tree_to_double_int (field_size)); /* Is OFFSET in the range (BITOFFSET, BITOFFSET_END)? */ if (double_int_cmp (uhwi_to_double_int (offset), bitoffset, 0) >= 0 && double_int_cmp (uhwi_to_double_int (offset), bitoffset_end, 0) < 0) { double_int access_end = double_int_add (uhwi_to_double_int (offset), uhwi_to_double_int (size)); double_int inner_offset = double_int_sub (uhwi_to_double_int (offset), bitoffset); /* We do have overlap. Now see if field is large enough to cover the access. Give up for accesses spanning multiple fields. */ if (double_int_cmp (access_end, bitoffset_end, 0) > 0) return NULL_TREE; return fold_ctor_reference (type, cval, double_int_to_uhwi (inner_offset), size); } } /* When memory is not explicitely mentioned in constructor, it is 0. */ return build_zero_cst (type); } /* CTOR is value initializing memory, fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */ static tree fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size) { tree ret; /* We found the field with exact match. */ if (useless_type_conversion_p (type, TREE_TYPE (ctor)) && !offset) return canonicalize_constructor_val (ctor); /* We are at the end of walk, see if we can view convert the result. */ if (!AGGREGATE_TYPE_P (TREE_TYPE (ctor)) && !offset /* VIEW_CONVERT_EXPR is defined only for matching sizes. */ && operand_equal_p (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (ctor)), 0)) { ret = canonicalize_constructor_val (ctor); ret = fold_unary (VIEW_CONVERT_EXPR, type, ret); if (ret) STRIP_NOPS (ret); return ret; } if (TREE_CODE (ctor) == STRING_CST) return fold_string_cst_ctor_reference (type, ctor, offset, size); if (TREE_CODE (ctor) == CONSTRUCTOR) { if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE) return fold_array_ctor_reference (type, ctor, offset, size); else return fold_nonarray_ctor_reference (type, ctor, offset, size); } return NULL_TREE; } /* Return the tree representing the element referenced by T if T is an ARRAY_REF or COMPONENT_REF into constant aggregates. Return NULL_TREE otherwise. */ tree fold_const_aggregate_ref (tree t) { tree ctor, idx, base; HOST_WIDE_INT offset, size, max_size; tree tem; tree ctr_offset; if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_declaration) return get_symbol_constant_value (t); tem = fold_read_from_constant_string (t); if (tem) return tem; switch (TREE_CODE (t)) { case ARRAY_REF: case ARRAY_RANGE_REF: /* Constant indexes are handled well by get_base_constructor. Only special case variable offsets. FIXME: This code can't handle nested references with variable indexes (they will be handled only by iteration of ccp). Perhaps we can bring get_ref_base_and_extent here and make it use get_constant_value. */ if (TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME && (idx = get_constant_value (TREE_OPERAND (t, 1))) && host_integerp (idx, 0)) { tree low_bound, unit_size; /* If the resulting bit-offset is constant, track it. */ if ((low_bound = array_ref_low_bound (t), host_integerp (low_bound, 0)) && (unit_size = array_ref_element_size (t), host_integerp (unit_size, 1))) { offset = TREE_INT_CST_LOW (idx); offset -= TREE_INT_CST_LOW (low_bound); offset *= TREE_INT_CST_LOW (unit_size); offset *= BITS_PER_UNIT; base = TREE_OPERAND (t, 0); ctor = get_base_constructor (base, &ctr_offset); if (ctr_offset) { if (!host_integerp (ctr_offset, 1)) return NULL_TREE; offset += TREE_INT_CST_LOW (ctr_offset) * BITS_PER_UNIT; } /* Empty constructor. Always fold to 0. */ if (ctor == error_mark_node) return build_zero_cst (TREE_TYPE (t)); /* Out of bound array access. Value is undefined, but don't fold. */ if (offset < 0) return NULL_TREE; /* We can not determine ctor. */ if (!ctor) return NULL_TREE; return fold_ctor_reference (TREE_TYPE (t), ctor, offset, TREE_INT_CST_LOW (unit_size) * BITS_PER_UNIT); } } /* Fallthru. */ case COMPONENT_REF: case BIT_FIELD_REF: case TARGET_MEM_REF: case MEM_REF: base = get_ref_base_and_extent (t, &offset, &size, &max_size); ctor = get_base_constructor (base, &ctr_offset); /* Empty constructor. Always fold to 0. */ if (ctor == error_mark_node) return build_zero_cst (TREE_TYPE (t)); /* We do not know precise address. */ if (max_size == -1 || max_size != size) return NULL_TREE; /* We can not determine ctor. */ if (!ctor) return NULL_TREE; if (ctr_offset) { if (!host_integerp (ctr_offset, 1)) return NULL_TREE; offset += TREE_INT_CST_LOW (ctr_offset) * BITS_PER_UNIT; } /* Out of bound array access. Value is undefined, but don't fold. */ if (offset < 0) return NULL_TREE; return fold_ctor_reference (TREE_TYPE (t), ctor, offset, size); case REALPART_EXPR: case IMAGPART_EXPR: { tree c = fold_const_aggregate_ref (TREE_OPERAND (t, 0)); if (c && TREE_CODE (c) == COMPLEX_CST) return fold_build1_loc (EXPR_LOCATION (t), TREE_CODE (t), TREE_TYPE (t), c); break; } default: break; } return NULL_TREE; } /* Apply the operation CODE in type TYPE to the value, mask pair RVAL and RMASK representing a value of type RTYPE and set the value, mask pair *VAL and *MASK to the result. */ static void bit_value_unop_1 (enum tree_code code, tree type, double_int *val, double_int *mask, tree rtype, double_int rval, double_int rmask) { switch (code) { case BIT_NOT_EXPR: *mask = rmask; *val = double_int_not (rval); break; case NEGATE_EXPR: { double_int temv, temm; /* Return ~rval + 1. */ bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask); bit_value_binop_1 (PLUS_EXPR, type, val, mask, type, temv, temm, type, double_int_one, double_int_zero); break; } CASE_CONVERT: { bool uns; /* First extend mask and value according to the original type. */ uns = (TREE_CODE (rtype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (rtype) ? 0 : TYPE_UNSIGNED (rtype)); *mask = double_int_ext (rmask, TYPE_PRECISION (rtype), uns); *val = double_int_ext (rval, TYPE_PRECISION (rtype), uns); /* Then extend mask and value according to the target type. */ uns = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type) ? 0 : TYPE_UNSIGNED (type)); *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns); *val = double_int_ext (*val, TYPE_PRECISION (type), uns); break; } default: *mask = double_int_minus_one; break; } } /* Apply the operation CODE in type TYPE to the value, mask pairs R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */ static void bit_value_binop_1 (enum tree_code code, tree type, double_int *val, double_int *mask, tree r1type, double_int r1val, double_int r1mask, tree r2type, double_int r2val, double_int r2mask) { bool uns = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type) ? 0 : TYPE_UNSIGNED (type)); /* Assume we'll get a constant result. Use an initial varying value, we fall back to varying in the end if necessary. */ *mask = double_int_minus_one; switch (code) { case BIT_AND_EXPR: /* The mask is constant where there is a known not set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */ *mask = double_int_and (double_int_ior (r1mask, r2mask), double_int_and (double_int_ior (r1val, r1mask), double_int_ior (r2val, r2mask))); *val = double_int_and (r1val, r2val); break; case BIT_IOR_EXPR: /* The mask is constant where there is a known set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */ *mask = double_int_and_not (double_int_ior (r1mask, r2mask), double_int_ior (double_int_and_not (r1val, r1mask), double_int_and_not (r2val, r2mask))); *val = double_int_ior (r1val, r2val); break; case BIT_XOR_EXPR: /* m1 | m2 */ *mask = double_int_ior (r1mask, r2mask); *val = double_int_xor (r1val, r2val); break; case LROTATE_EXPR: case RROTATE_EXPR: if (double_int_zero_p (r2mask)) { HOST_WIDE_INT shift = r2val.low; if (code == RROTATE_EXPR) shift = -shift; *mask = double_int_lrotate (r1mask, shift, TYPE_PRECISION (type)); *val = double_int_lrotate (r1val, shift, TYPE_PRECISION (type)); } break; case LSHIFT_EXPR: case RSHIFT_EXPR: /* ??? We can handle partially known shift counts if we know its sign. That way we can tell that (x << (y | 8)) & 255 is zero. */ if (double_int_zero_p (r2mask)) { HOST_WIDE_INT shift = r2val.low; if (code == RSHIFT_EXPR) shift = -shift; /* We need to know if we are doing a left or a right shift to properly shift in zeros for left shift and unsigned right shifts and the sign bit for signed right shifts. For signed right shifts we shift in varying in case the sign bit was varying. */ if (shift > 0) { *mask = double_int_lshift (r1mask, shift, TYPE_PRECISION (type), false); *val = double_int_lshift (r1val, shift, TYPE_PRECISION (type), false); } else if (shift < 0) { shift = -shift; *mask = double_int_rshift (r1mask, shift, TYPE_PRECISION (type), !uns); *val = double_int_rshift (r1val, shift, TYPE_PRECISION (type), !uns); } else { *mask = r1mask; *val = r1val; } } break; case PLUS_EXPR: case POINTER_PLUS_EXPR: { double_int lo, hi; /* Do the addition with unknown bits set to zero, to give carry-ins of zero wherever possible. */ lo = double_int_add (double_int_and_not (r1val, r1mask), double_int_and_not (r2val, r2mask)); lo = double_int_ext (lo, TYPE_PRECISION (type), uns); /* Do the addition with unknown bits set to one, to give carry-ins of one wherever possible. */ hi = double_int_add (double_int_ior (r1val, r1mask), double_int_ior (r2val, r2mask)); hi = double_int_ext (hi, TYPE_PRECISION (type), uns); /* Each bit in the result is known if (a) the corresponding bits in both inputs are known, and (b) the carry-in to that bit position is known. We can check condition (b) by seeing if we got the same result with minimised carries as with maximised carries. */ *mask = double_int_ior (double_int_ior (r1mask, r2mask), double_int_xor (lo, hi)); *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns); /* It shouldn't matter whether we choose lo or hi here. */ *val = lo; break; } case MINUS_EXPR: { double_int temv, temm; bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm, r2type, r2val, r2mask); bit_value_binop_1 (PLUS_EXPR, type, val, mask, r1type, r1val, r1mask, r2type, temv, temm); break; } case MULT_EXPR: { /* Just track trailing zeros in both operands and transfer them to the other. */ int r1tz = double_int_ctz (double_int_ior (r1val, r1mask)); int r2tz = double_int_ctz (double_int_ior (r2val, r2mask)); if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT) { *mask = double_int_zero; *val = double_int_zero; } else if (r1tz + r2tz > 0) { *mask = double_int_not (double_int_mask (r1tz + r2tz)); *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns); *val = double_int_zero; } break; } case EQ_EXPR: case NE_EXPR: { double_int m = double_int_ior (r1mask, r2mask); if (!double_int_equal_p (double_int_and_not (r1val, m), double_int_and_not (r2val, m))) { *mask = double_int_zero; *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one); } else { /* We know the result of a comparison is always one or zero. */ *mask = double_int_one; *val = double_int_zero; } break; } case GE_EXPR: case GT_EXPR: { double_int tem = r1val; r1val = r2val; r2val = tem; tem = r1mask; r1mask = r2mask; r2mask = tem; code = swap_tree_comparison (code); } /* Fallthru. */ case LT_EXPR: case LE_EXPR: { int minmax, maxmin; /* If the most significant bits are not known we know nothing. */ if (double_int_negative_p (r1mask) || double_int_negative_p (r2mask)) break; /* If we know the most significant bits we know the values value ranges by means of treating varying bits as zero or one. Do a cross comparison of the max/min pairs. */ maxmin = double_int_cmp (double_int_ior (r1val, r1mask), double_int_and_not (r2val, r2mask), uns); minmax = double_int_cmp (double_int_and_not (r1val, r1mask), double_int_ior (r2val, r2mask), uns); if (maxmin < 0) /* r1 is less than r2. */ { *mask = double_int_zero; *val = double_int_one; } else if (minmax > 0) /* r1 is not less or equal to r2. */ { *mask = double_int_zero; *val = double_int_zero; } else if (maxmin == minmax) /* r1 and r2 are equal. */ { /* This probably should never happen as we'd have folded the thing during fully constant value folding. */ *mask = double_int_zero; *val = (code == LE_EXPR ? double_int_one : double_int_zero); } else { /* We know the result of a comparison is always one or zero. */ *mask = double_int_one; *val = double_int_zero; } break; } default:; } } /* Return the propagation value when applying the operation CODE to the value RHS yielding type TYPE. */ static prop_value_t bit_value_unop (enum tree_code code, tree type, tree rhs) { prop_value_t rval = get_value_for_expr (rhs, true); double_int value, mask; prop_value_t val; gcc_assert ((rval.lattice_val == CONSTANT && TREE_CODE (rval.value) == INTEGER_CST) || double_int_minus_one_p (rval.mask)); bit_value_unop_1 (code, type, &value, &mask, TREE_TYPE (rhs), value_to_double_int (rval), rval.mask); if (!double_int_minus_one_p (mask)) { val.lattice_val = CONSTANT; val.mask = mask; /* ??? Delay building trees here. */ val.value = double_int_to_tree (type, value); } else { val.lattice_val = VARYING; val.value = NULL_TREE; val.mask = double_int_minus_one; } return val; } /* Return the propagation value when applying the operation CODE to the values RHS1 and RHS2 yielding type TYPE. */ static prop_value_t bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2) { prop_value_t r1val = get_value_for_expr (rhs1, true); prop_value_t r2val = get_value_for_expr (rhs2, true); double_int value, mask; prop_value_t val; gcc_assert ((r1val.lattice_val == CONSTANT && TREE_CODE (r1val.value) == INTEGER_CST) || double_int_minus_one_p (r1val.mask)); gcc_assert ((r2val.lattice_val == CONSTANT && TREE_CODE (r2val.value) == INTEGER_CST) || double_int_minus_one_p (r2val.mask)); bit_value_binop_1 (code, type, &value, &mask, TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask, TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask); if (!double_int_minus_one_p (mask)) { val.lattice_val = CONSTANT; val.mask = mask; /* ??? Delay building trees here. */ val.value = double_int_to_tree (type, value); } else { val.lattice_val = VARYING; val.value = NULL_TREE; val.mask = double_int_minus_one; } return val; } /* Evaluate statement STMT. Valid only for assignments, calls, conditionals, and switches. */ static prop_value_t evaluate_stmt (gimple stmt) { prop_value_t val; tree simplified = NULL_TREE; ccp_lattice_t likelyvalue = likely_value (stmt); bool is_constant = false; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "which is likely "); switch (likelyvalue) { case CONSTANT: fprintf (dump_file, "CONSTANT"); break; case UNDEFINED: fprintf (dump_file, "UNDEFINED"); break; case VARYING: fprintf (dump_file, "VARYING"); break; default:; } fprintf (dump_file, "\n"); } /* If the statement is likely to have a CONSTANT result, then try to fold the statement to determine the constant value. */ /* FIXME. This is the only place that we call ccp_fold. Since likely_value never returns CONSTANT for calls, we will not attempt to fold them, including builtins that may profit. */ if (likelyvalue == CONSTANT) { fold_defer_overflow_warnings (); simplified = ccp_fold (stmt); is_constant = simplified && is_gimple_min_invariant (simplified); fold_undefer_overflow_warnings (is_constant, stmt, 0); if (is_constant) { /* The statement produced a constant value. */ val.lattice_val = CONSTANT; val.value = simplified; val.mask = double_int_zero; } } /* If the statement is likely to have a VARYING result, then do not bother folding the statement. */ else if (likelyvalue == VARYING) { enum gimple_code code = gimple_code (stmt); if (code == GIMPLE_ASSIGN) { enum tree_code subcode = gimple_assign_rhs_code (stmt); /* Other cases cannot satisfy is_gimple_min_invariant without folding. */ if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS) simplified = gimple_assign_rhs1 (stmt); } else if (code == GIMPLE_SWITCH) simplified = gimple_switch_index (stmt); else /* These cannot satisfy is_gimple_min_invariant without folding. */ gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND); is_constant = simplified && is_gimple_min_invariant (simplified); if (is_constant) { /* The statement produced a constant value. */ val.lattice_val = CONSTANT; val.value = simplified; val.mask = double_int_zero; } } /* Resort to simplification for bitwise tracking. */ if (flag_tree_bit_ccp && likelyvalue == CONSTANT && !is_constant) { enum gimple_code code = gimple_code (stmt); tree fndecl; val.lattice_val = VARYING; val.value = NULL_TREE; val.mask = double_int_minus_one; if (code == GIMPLE_ASSIGN) { enum tree_code subcode = gimple_assign_rhs_code (stmt); tree rhs1 = gimple_assign_rhs1 (stmt); switch (get_gimple_rhs_class (subcode)) { case GIMPLE_SINGLE_RHS: if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) || POINTER_TYPE_P (TREE_TYPE (rhs1))) val = get_value_for_expr (rhs1, true); break; case GIMPLE_UNARY_RHS: if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) || POINTER_TYPE_P (TREE_TYPE (rhs1))) && (INTEGRAL_TYPE_P (gimple_expr_type (stmt)) || POINTER_TYPE_P (gimple_expr_type (stmt)))) val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1); break; case GIMPLE_BINARY_RHS: if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) || POINTER_TYPE_P (TREE_TYPE (rhs1))) { tree rhs2 = gimple_assign_rhs2 (stmt); val = bit_value_binop (subcode, TREE_TYPE (rhs1), rhs1, rhs2); } break; default:; } } else if (code == GIMPLE_COND) { enum tree_code code = gimple_cond_code (stmt); tree rhs1 = gimple_cond_lhs (stmt); tree rhs2 = gimple_cond_rhs (stmt); if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) || POINTER_TYPE_P (TREE_TYPE (rhs1))) val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2); } else if (code == GIMPLE_CALL && (fndecl = gimple_call_fndecl (stmt)) && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) { switch (DECL_FUNCTION_CODE (fndecl)) { case BUILT_IN_MALLOC: case BUILT_IN_REALLOC: case BUILT_IN_CALLOC: val.lattice_val = CONSTANT; val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0); val.mask = shwi_to_double_int (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT) / BITS_PER_UNIT - 1)); break; case BUILT_IN_ALLOCA: val.lattice_val = CONSTANT; val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0); val.mask = shwi_to_double_int (~(((HOST_WIDE_INT) BIGGEST_ALIGNMENT) / BITS_PER_UNIT - 1)); break; default:; } } is_constant = (val.lattice_val == CONSTANT); } if (!is_constant) { /* The statement produced a nonconstant value. If the statement had UNDEFINED operands, then the result of the statement should be UNDEFINED. Otherwise, the statement is VARYING. */ if (likelyvalue == UNDEFINED) { val.lattice_val = likelyvalue; val.mask = double_int_zero; } else { val.lattice_val = VARYING; val.mask = double_int_minus_one; } val.value = NULL_TREE; } return val; } /* Fold the stmt at *GSI with CCP specific information that propagating and regular folding does not catch. */ static bool ccp_fold_stmt (gimple_stmt_iterator *gsi) { gimple stmt = gsi_stmt (*gsi); switch (gimple_code (stmt)) { case GIMPLE_COND: { prop_value_t val; /* Statement evaluation will handle type mismatches in constants more gracefully than the final propagation. This allows us to fold more conditionals here. */ val = evaluate_stmt (stmt); if (val.lattice_val != CONSTANT || !double_int_zero_p (val.mask)) return false; if (dump_file) { fprintf (dump_file, "Folding predicate "); print_gimple_expr (dump_file, stmt, 0, 0); fprintf (dump_file, " to "); print_generic_expr (dump_file, val.value, 0); fprintf (dump_file, "\n"); } if (integer_zerop (val.value)) gimple_cond_make_false (stmt); else gimple_cond_make_true (stmt); return true; } case GIMPLE_CALL: { tree lhs = gimple_call_lhs (stmt); tree val; tree argt; bool changed = false; unsigned i; /* If the call was folded into a constant make sure it goes away even if we cannot propagate into all uses because of type issues. */ if (lhs && TREE_CODE (lhs) == SSA_NAME && (val = get_constant_value (lhs))) { tree new_rhs = unshare_expr (val); bool res; if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (new_rhs))) new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs); res = update_call_from_tree (gsi, new_rhs); gcc_assert (res); return true; } /* Propagate into the call arguments. Compared to replace_uses_in this can use the argument slot types for type verification instead of the current argument type. We also can safely drop qualifiers here as we are dealing with constants anyway. */ argt = TYPE_ARG_TYPES (TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)))); for (i = 0; i < gimple_call_num_args (stmt) && argt; ++i, argt = TREE_CHAIN (argt)) { tree arg = gimple_call_arg (stmt, i); if (TREE_CODE (arg) == SSA_NAME && (val = get_constant_value (arg)) && useless_type_conversion_p (TYPE_MAIN_VARIANT (TREE_VALUE (argt)), TYPE_MAIN_VARIANT (TREE_TYPE (val)))) { gimple_call_set_arg (stmt, i, unshare_expr (val)); changed = true; } } return changed; } case GIMPLE_ASSIGN: { tree lhs = gimple_assign_lhs (stmt); tree val; /* If we have a load that turned out to be constant replace it as we cannot propagate into all uses in all cases. */ if (gimple_assign_single_p (stmt) && TREE_CODE (lhs) == SSA_NAME && (val = get_constant_value (lhs))) { tree rhs = unshare_expr (val); if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs))) rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs); gimple_assign_set_rhs_from_tree (gsi, rhs); return true; } return false; } default: return false; } } /* Visit the assignment statement STMT. Set the value of its LHS to the value computed by the RHS and store LHS in *OUTPUT_P. If STMT creates virtual definitions, set the value of each new name to that of the RHS (if we can derive a constant out of the RHS). Value-returning call statements also perform an assignment, and are handled here. */ static enum ssa_prop_result visit_assignment (gimple stmt, tree *output_p) { prop_value_t val; enum ssa_prop_result retval; tree lhs = gimple_get_lhs (stmt); gcc_assert (gimple_code (stmt) != GIMPLE_CALL || gimple_call_lhs (stmt) != NULL_TREE); if (gimple_assign_single_p (stmt) && gimple_assign_rhs_code (stmt) == SSA_NAME) /* For a simple copy operation, we copy the lattice values. */ val = *get_value (gimple_assign_rhs1 (stmt)); else /* Evaluate the statement, which could be either a GIMPLE_ASSIGN or a GIMPLE_CALL. */ val = evaluate_stmt (stmt); retval = SSA_PROP_NOT_INTERESTING; /* Set the lattice value of the statement's output. */ if (TREE_CODE (lhs) == SSA_NAME) { /* If STMT is an assignment to an SSA_NAME, we only have one value to set. */ if (set_lattice_value (lhs, val)) { *output_p = lhs; if (val.lattice_val == VARYING) retval = SSA_PROP_VARYING; else retval = SSA_PROP_INTERESTING; } } return retval; } /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING if it can determine which edge will be taken. Otherwise, return SSA_PROP_VARYING. */ static enum ssa_prop_result visit_cond_stmt (gimple stmt, edge *taken_edge_p) { prop_value_t val; basic_block block; block = gimple_bb (stmt); val = evaluate_stmt (stmt); if (val.lattice_val != CONSTANT || !double_int_zero_p (val.mask)) return SSA_PROP_VARYING; /* Find which edge out of the conditional block will be taken and add it to the worklist. If no single edge can be determined statically, return SSA_PROP_VARYING to feed all the outgoing edges to the propagation engine. */ *taken_edge_p = find_taken_edge (block, val.value); if (*taken_edge_p) return SSA_PROP_INTERESTING; else return SSA_PROP_VARYING; } /* Evaluate statement STMT. If the statement produces an output value and its evaluation changes the lattice value of its output, return SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the output value. If STMT is a conditional branch and we can determine its truth value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying value, return SSA_PROP_VARYING. */ static enum ssa_prop_result ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p) { tree def; ssa_op_iter iter; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\nVisiting statement:\n"); print_gimple_stmt (dump_file, stmt, 0, dump_flags); } switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: /* If the statement is an assignment that produces a single output value, evaluate its RHS to see if the lattice value of its output has changed. */ return visit_assignment (stmt, output_p); case GIMPLE_CALL: /* A value-returning call also performs an assignment. */ if (gimple_call_lhs (stmt) != NULL_TREE) return visit_assignment (stmt, output_p); break; case GIMPLE_COND: case GIMPLE_SWITCH: /* If STMT is a conditional branch, see if we can determine which branch will be taken. */ /* FIXME. It appears that we should be able to optimize computed GOTOs here as well. */ return visit_cond_stmt (stmt, taken_edge_p); default: break; } /* Any other kind of statement is not interesting for constant propagation and, therefore, not worth simulating. */ if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "No interesting values produced. Marked VARYING.\n"); /* Definitions made by statements other than assignments to SSA_NAMEs represent unknown modifications to their outputs. Mark them VARYING. */ FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS) { prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } }; set_lattice_value (def, v); } return SSA_PROP_VARYING; } /* Main entry point for SSA Conditional Constant Propagation. */ static unsigned int do_ssa_ccp (void) { ccp_initialize (); ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node); if (ccp_finalize ()) return (TODO_cleanup_cfg | TODO_update_ssa | TODO_remove_unused_locals); else return 0; } static bool gate_ccp (void) { return flag_tree_ccp != 0; } struct gimple_opt_pass pass_ccp = { { GIMPLE_PASS, "ccp", /* name */ gate_ccp, /* gate */ do_ssa_ccp, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_TREE_CCP, /* tv_id */ PROP_cfg | PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func | TODO_verify_ssa | TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */ } }; /* Try to optimize out __builtin_stack_restore. Optimize it out if there is another __builtin_stack_restore in the same basic block and no calls or ASM_EXPRs are in between, or if this block's only outgoing edge is to EXIT_BLOCK and there are no calls or ASM_EXPRs after this __builtin_stack_restore. */ static tree optimize_stack_restore (gimple_stmt_iterator i) { tree callee; gimple stmt; basic_block bb = gsi_bb (i); gimple call = gsi_stmt (i); if (gimple_code (call) != GIMPLE_CALL || gimple_call_num_args (call) != 1 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0)))) return NULL_TREE; for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i)) { stmt = gsi_stmt (i); if (gimple_code (stmt) == GIMPLE_ASM) return NULL_TREE; if (gimple_code (stmt) != GIMPLE_CALL) continue; callee = gimple_call_fndecl (stmt); if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL /* All regular builtins are ok, just obviously not alloca. */ || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA) return NULL_TREE; if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE) goto second_stack_restore; } if (!gsi_end_p (i)) return NULL_TREE; /* Allow one successor of the exit block, or zero successors. */ switch (EDGE_COUNT (bb->succs)) { case 0: break; case 1: if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR) return NULL_TREE; break; default: return NULL_TREE; } second_stack_restore: /* If there's exactly one use, then zap the call to __builtin_stack_save. If there are multiple uses, then the last one should remove the call. In any case, whether the call to __builtin_stack_save can be removed or not is irrelevant to removing the call to __builtin_stack_restore. */ if (has_single_use (gimple_call_arg (call, 0))) { gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0)); if (is_gimple_call (stack_save)) { callee = gimple_call_fndecl (stack_save); if (callee && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE) { gimple_stmt_iterator stack_save_gsi; tree rhs; stack_save_gsi = gsi_for_stmt (stack_save); rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0); update_call_from_tree (&stack_save_gsi, rhs); } } } /* No effect, so the statement will be deleted. */ return integer_zero_node; } /* If va_list type is a simple pointer and nothing special is needed, optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0), __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple pointer assignment. */ static tree optimize_stdarg_builtin (gimple call) { tree callee, lhs, rhs, cfun_va_list; bool va_list_simple_ptr; location_t loc = gimple_location (call); if (gimple_code (call) != GIMPLE_CALL) return NULL_TREE; callee = gimple_call_fndecl (call); cfun_va_list = targetm.fn_abi_va_list (callee); va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list) && (TREE_TYPE (cfun_va_list) == void_type_node || TREE_TYPE (cfun_va_list) == char_type_node); switch (DECL_FUNCTION_CODE (callee)) { case BUILT_IN_VA_START: if (!va_list_simple_ptr || targetm.expand_builtin_va_start != NULL || built_in_decls[BUILT_IN_NEXT_ARG] == NULL) return NULL_TREE; if (gimple_call_num_args (call) != 2) return NULL_TREE; lhs = gimple_call_arg (call, 0); if (!POINTER_TYPE_P (TREE_TYPE (lhs)) || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs))) != TYPE_MAIN_VARIANT (cfun_va_list)) return NULL_TREE; lhs = build_fold_indirect_ref_loc (loc, lhs); rhs = build_call_expr_loc (loc, built_in_decls[BUILT_IN_NEXT_ARG], 1, integer_zero_node); rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs); return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs); case BUILT_IN_VA_COPY: if (!va_list_simple_ptr) return NULL_TREE; if (gimple_call_num_args (call) != 2) return NULL_TREE; lhs = gimple_call_arg (call, 0); if (!POINTER_TYPE_P (TREE_TYPE (lhs)) || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs))) != TYPE_MAIN_VARIANT (cfun_va_list)) return NULL_TREE; lhs = build_fold_indirect_ref_loc (loc, lhs); rhs = gimple_call_arg (call, 1); if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs)) != TYPE_MAIN_VARIANT (cfun_va_list)) return NULL_TREE; rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs); return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs); case BUILT_IN_VA_END: /* No effect, so the statement will be deleted. */ return integer_zero_node; default: gcc_unreachable (); } } /* A simple pass that attempts to fold all builtin functions. This pass is run after we've propagated as many constants as we can. */ static unsigned int execute_fold_all_builtins (void) { bool cfg_changed = false; basic_block bb; unsigned int todoflags = 0; FOR_EACH_BB (bb) { gimple_stmt_iterator i; for (i = gsi_start_bb (bb); !gsi_end_p (i); ) { gimple stmt, old_stmt; tree callee, result; enum built_in_function fcode; stmt = gsi_stmt (i); if (gimple_code (stmt) != GIMPLE_CALL) { gsi_next (&i); continue; } callee = gimple_call_fndecl (stmt); if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL) { gsi_next (&i); continue; } fcode = DECL_FUNCTION_CODE (callee); result = gimple_fold_builtin (stmt); if (result) gimple_remove_stmt_histograms (cfun, stmt); if (!result) switch (DECL_FUNCTION_CODE (callee)) { case BUILT_IN_CONSTANT_P: /* Resolve __builtin_constant_p. If it hasn't been folded to integer_one_node by now, it's fairly certain that the value simply isn't constant. */ result = integer_zero_node; break; case BUILT_IN_STACK_RESTORE: result = optimize_stack_restore (i); if (result) break; gsi_next (&i); continue; case BUILT_IN_VA_START: case BUILT_IN_VA_END: case BUILT_IN_VA_COPY: /* These shouldn't be folded before pass_stdarg. */ result = optimize_stdarg_builtin (stmt); if (result) break; /* FALLTHRU */ default: gsi_next (&i); continue; } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Simplified\n "); print_gimple_stmt (dump_file, stmt, 0, dump_flags); } old_stmt = stmt; if (!update_call_from_tree (&i, result)) { gimplify_and_update_call_from_tree (&i, result); todoflags |= TODO_update_address_taken; } stmt = gsi_stmt (i); update_stmt (stmt); if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt) && gimple_purge_dead_eh_edges (bb)) cfg_changed = true; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "to\n "); print_gimple_stmt (dump_file, stmt, 0, dump_flags); fprintf (dump_file, "\n"); } /* Retry the same statement if it changed into another builtin, there might be new opportunities now. */ if (gimple_code (stmt) != GIMPLE_CALL) { gsi_next (&i); continue; } callee = gimple_call_fndecl (stmt); if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL || DECL_FUNCTION_CODE (callee) == fcode) gsi_next (&i); } } /* Delete unreachable blocks. */ if (cfg_changed) todoflags |= TODO_cleanup_cfg; return todoflags; } struct gimple_opt_pass pass_fold_builtins = { { GIMPLE_PASS, "fab", /* name */ NULL, /* gate */ execute_fold_all_builtins, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_NONE, /* tv_id */ PROP_cfg | PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func | TODO_verify_ssa | TODO_update_ssa /* todo_flags_finish */ } };