/* Scalar Replacement of Aggregates (SRA) converts some structure references into scalar references, exposing them to the scalar optimizers. Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc. Contributed by Martin Jambor This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run twice, once in the early stages of compilation (early SRA) and once in the late stages (late SRA). The aim of both is to turn references to scalar parts of aggregates into uses of independent scalar variables. The two passes are nearly identical, the only difference is that early SRA does not scalarize unions which are used as the result in a GIMPLE_RETURN statement because together with inlining this can lead to weird type conversions. Both passes operate in four stages: 1. The declarations that have properties which make them candidates for scalarization are identified in function find_var_candidates(). The candidates are stored in candidate_bitmap. 2. The function body is scanned. In the process, declarations which are used in a manner that prevent their scalarization are removed from the candidate bitmap. More importantly, for every access into an aggregate, an access structure (struct access) is created by create_access() and stored in a vector associated with the aggregate. Among other information, the aggregate declaration, the offset and size of the access and its type are stored in the structure. On a related note, assign_link structures are created for every assign statement between candidate aggregates and attached to the related accesses. 3. The vectors of accesses are analyzed. They are first sorted according to their offset and size and then scanned for partially overlapping accesses (i.e. those which overlap but one is not entirely within another). Such an access disqualifies the whole aggregate from being scalarized. If there is no such inhibiting overlap, a representative access structure is chosen for every unique combination of offset and size. Afterwards, the pass builds a set of trees from these structures, in which children of an access are within their parent (in terms of offset and size). Then accesses are propagated whenever possible (i.e. in cases when it does not create a partially overlapping access) across assign_links from the right hand side to the left hand side. Then the set of trees for each declaration is traversed again and those accesses which should be replaced by a scalar are identified. 4. The function is traversed again, and for every reference into an aggregate that has some component which is about to be scalarized, statements are amended and new statements are created as necessary. Finally, if a parameter got scalarized, the scalar replacements are initialized with values from respective parameter aggregates. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "alloc-pool.h" #include "tm.h" #include "tree.h" #include "gimple.h" #include "cgraph.h" #include "tree-flow.h" #include "ipa-prop.h" #include "tree-pretty-print.h" #include "statistics.h" #include "tree-dump.h" #include "timevar.h" #include "params.h" #include "target.h" #include "flags.h" #include "dbgcnt.h" #include "tree-inline.h" #include "gimple-pretty-print.h" #include "ipa-inline.h" /* Enumeration of all aggregate reductions we can do. */ enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */ SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */ SRA_MODE_INTRA }; /* late intraprocedural SRA */ /* Global variable describing which aggregate reduction we are performing at the moment. */ static enum sra_mode sra_mode; struct assign_link; /* ACCESS represents each access to an aggregate variable (as a whole or a part). It can also represent a group of accesses that refer to exactly the same fragment of an aggregate (i.e. those that have exactly the same offset and size). Such representatives for a single aggregate, once determined, are linked in a linked list and have the group fields set. Moreover, when doing intraprocedural SRA, a tree is built from those representatives (by the means of first_child and next_sibling pointers), in which all items in a subtree are "within" the root, i.e. their offset is greater or equal to offset of the root and offset+size is smaller or equal to offset+size of the root. Children of an access are sorted by offset. Note that accesses to parts of vector and complex number types always represented by an access to the whole complex number or a vector. It is a duty of the modifying functions to replace them appropriately. */ struct access { /* Values returned by `get_ref_base_and_extent' for each component reference If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0', `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */ HOST_WIDE_INT offset; HOST_WIDE_INT size; tree base; /* Expression. It is context dependent so do not use it to create new expressions to access the original aggregate. See PR 42154 for a testcase. */ tree expr; /* Type. */ tree type; /* The statement this access belongs to. */ gimple stmt; /* Next group representative for this aggregate. */ struct access *next_grp; /* Pointer to the group representative. Pointer to itself if the struct is the representative. */ struct access *group_representative; /* If this access has any children (in terms of the definition above), this points to the first one. */ struct access *first_child; /* In intraprocedural SRA, pointer to the next sibling in the access tree as described above. In IPA-SRA this is a pointer to the next access belonging to the same group (having the same representative). */ struct access *next_sibling; /* Pointers to the first and last element in the linked list of assign links. */ struct assign_link *first_link, *last_link; /* Pointer to the next access in the work queue. */ struct access *next_queued; /* Replacement variable for this access "region." Never to be accessed directly, always only by the means of get_access_replacement() and only when grp_to_be_replaced flag is set. */ tree replacement_decl; /* Is this particular access write access? */ unsigned write : 1; /* Is this access an access to a non-addressable field? */ unsigned non_addressable : 1; /* Is this access currently in the work queue? */ unsigned grp_queued : 1; /* Does this group contain a write access? This flag is propagated down the access tree. */ unsigned grp_write : 1; /* Does this group contain a read access? This flag is propagated down the access tree. */ unsigned grp_read : 1; /* Does this group contain a read access that comes from an assignment statement? This flag is propagated down the access tree. */ unsigned grp_assignment_read : 1; /* Does this group contain a write access that comes from an assignment statement? This flag is propagated down the access tree. */ unsigned grp_assignment_write : 1; /* Does this group contain a read access through a scalar type? This flag is not propagated in the access tree in any direction. */ unsigned grp_scalar_read : 1; /* Does this group contain a write access through a scalar type? This flag is not propagated in the access tree in any direction. */ unsigned grp_scalar_write : 1; /* Is this access an artificial one created to scalarize some record entirely? */ unsigned grp_total_scalarization : 1; /* Other passes of the analysis use this bit to make function analyze_access_subtree create scalar replacements for this group if possible. */ unsigned grp_hint : 1; /* Is the subtree rooted in this access fully covered by scalar replacements? */ unsigned grp_covered : 1; /* If set to true, this access and all below it in an access tree must not be scalarized. */ unsigned grp_unscalarizable_region : 1; /* Whether data have been written to parts of the aggregate covered by this access which is not to be scalarized. This flag is propagated up in the access tree. */ unsigned grp_unscalarized_data : 1; /* Does this access and/or group contain a write access through a BIT_FIELD_REF? */ unsigned grp_partial_lhs : 1; /* Set when a scalar replacement should be created for this variable. We do the decision and creation at different places because create_tmp_var cannot be called from within FOR_EACH_REFERENCED_VAR. */ unsigned grp_to_be_replaced : 1; /* Should TREE_NO_WARNING of a replacement be set? */ unsigned grp_no_warning : 1; /* Is it possible that the group refers to data which might be (directly or otherwise) modified? */ unsigned grp_maybe_modified : 1; /* Set when this is a representative of a pointer to scalar (i.e. by reference) parameter which we consider for turning into a plain scalar (i.e. a by value parameter). */ unsigned grp_scalar_ptr : 1; /* Set when we discover that this pointer is not safe to dereference in the caller. */ unsigned grp_not_necessarilly_dereferenced : 1; }; typedef struct access *access_p; DEF_VEC_P (access_p); DEF_VEC_ALLOC_P (access_p, heap); /* Alloc pool for allocating access structures. */ static alloc_pool access_pool; /* A structure linking lhs and rhs accesses from an aggregate assignment. They are used to propagate subaccesses from rhs to lhs as long as they don't conflict with what is already there. */ struct assign_link { struct access *lacc, *racc; struct assign_link *next; }; /* Alloc pool for allocating assign link structures. */ static alloc_pool link_pool; /* Base (tree) -> Vector (VEC(access_p,heap) *) map. */ static struct pointer_map_t *base_access_vec; /* Bitmap of candidates. */ static bitmap candidate_bitmap; /* Bitmap of candidates which we should try to entirely scalarize away and those which cannot be (because they are and need be used as a whole). */ static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap; /* Obstack for creation of fancy names. */ static struct obstack name_obstack; /* Head of a linked list of accesses that need to have its subaccesses propagated to their assignment counterparts. */ static struct access *work_queue_head; /* Number of parameters of the analyzed function when doing early ipa SRA. */ static int func_param_count; /* scan_function sets the following to true if it encounters a call to __builtin_apply_args. */ static bool encountered_apply_args; /* Set by scan_function when it finds a recursive call. */ static bool encountered_recursive_call; /* Set by scan_function when it finds a recursive call with less actual arguments than formal parameters.. */ static bool encountered_unchangable_recursive_call; /* This is a table in which for each basic block and parameter there is a distance (offset + size) in that parameter which is dereferenced and accessed in that BB. */ static HOST_WIDE_INT *bb_dereferences; /* Bitmap of BBs that can cause the function to "stop" progressing by returning, throwing externally, looping infinitely or calling a function which might abort etc.. */ static bitmap final_bbs; /* Representative of no accesses at all. */ static struct access no_accesses_representant; /* Predicate to test the special value. */ static inline bool no_accesses_p (struct access *access) { return access == &no_accesses_representant; } /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true, representative fields are dumped, otherwise those which only describe the individual access are. */ static struct { /* Number of processed aggregates is readily available in analyze_all_variable_accesses and so is not stored here. */ /* Number of created scalar replacements. */ int replacements; /* Number of times sra_modify_expr or sra_modify_assign themselves changed an expression. */ int exprs; /* Number of statements created by generate_subtree_copies. */ int subtree_copies; /* Number of statements created by load_assign_lhs_subreplacements. */ int subreplacements; /* Number of times sra_modify_assign has deleted a statement. */ int deleted; /* Number of times sra_modify_assign has to deal with subaccesses of LHS and RHS reparately due to type conversions or nonexistent matching references. */ int separate_lhs_rhs_handling; /* Number of parameters that were removed because they were unused. */ int deleted_unused_parameters; /* Number of scalars passed as parameters by reference that have been converted to be passed by value. */ int scalar_by_ref_to_by_val; /* Number of aggregate parameters that were replaced by one or more of their components. */ int aggregate_params_reduced; /* Numbber of components created when splitting aggregate parameters. */ int param_reductions_created; } sra_stats; static void dump_access (FILE *f, struct access *access, bool grp) { fprintf (f, "access { "); fprintf (f, "base = (%d)'", DECL_UID (access->base)); print_generic_expr (f, access->base, 0); fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset); fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size); fprintf (f, ", expr = "); print_generic_expr (f, access->expr, 0); fprintf (f, ", type = "); print_generic_expr (f, access->type, 0); if (grp) fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, " "grp_assignment_write = %d, grp_scalar_read = %d, " "grp_scalar_write = %d, grp_total_scalarization = %d, " "grp_hint = %d, grp_covered = %d, " "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, " "grp_partial_lhs = %d, grp_to_be_replaced = %d, " "grp_maybe_modified = %d, " "grp_not_necessarilly_dereferenced = %d\n", access->grp_read, access->grp_write, access->grp_assignment_read, access->grp_assignment_write, access->grp_scalar_read, access->grp_scalar_write, access->grp_total_scalarization, access->grp_hint, access->grp_covered, access->grp_unscalarizable_region, access->grp_unscalarized_data, access->grp_partial_lhs, access->grp_to_be_replaced, access->grp_maybe_modified, access->grp_not_necessarilly_dereferenced); else fprintf (f, ", write = %d, grp_total_scalarization = %d, " "grp_partial_lhs = %d\n", access->write, access->grp_total_scalarization, access->grp_partial_lhs); } /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */ static void dump_access_tree_1 (FILE *f, struct access *access, int level) { do { int i; for (i = 0; i < level; i++) fputs ("* ", dump_file); dump_access (f, access, true); if (access->first_child) dump_access_tree_1 (f, access->first_child, level + 1); access = access->next_sibling; } while (access); } /* Dump all access trees for a variable, given the pointer to the first root in ACCESS. */ static void dump_access_tree (FILE *f, struct access *access) { for (; access; access = access->next_grp) dump_access_tree_1 (f, access, 0); } /* Return true iff ACC is non-NULL and has subaccesses. */ static inline bool access_has_children_p (struct access *acc) { return acc && acc->first_child; } /* Return a vector of pointers to accesses for the variable given in BASE or NULL if there is none. */ static VEC (access_p, heap) * get_base_access_vector (tree base) { void **slot; slot = pointer_map_contains (base_access_vec, base); if (!slot) return NULL; else return *(VEC (access_p, heap) **) slot; } /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted in ACCESS. Return NULL if it cannot be found. */ static struct access * find_access_in_subtree (struct access *access, HOST_WIDE_INT offset, HOST_WIDE_INT size) { while (access && (access->offset != offset || access->size != size)) { struct access *child = access->first_child; while (child && (child->offset + child->size <= offset)) child = child->next_sibling; access = child; } return access; } /* Return the first group representative for DECL or NULL if none exists. */ static struct access * get_first_repr_for_decl (tree base) { VEC (access_p, heap) *access_vec; access_vec = get_base_access_vector (base); if (!access_vec) return NULL; return VEC_index (access_p, access_vec, 0); } /* Find an access representative for the variable BASE and given OFFSET and SIZE. Requires that access trees have already been built. Return NULL if it cannot be found. */ static struct access * get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size) { struct access *access; access = get_first_repr_for_decl (base); while (access && (access->offset + access->size <= offset)) access = access->next_grp; if (!access) return NULL; return find_access_in_subtree (access, offset, size); } /* Add LINK to the linked list of assign links of RACC. */ static void add_link_to_rhs (struct access *racc, struct assign_link *link) { gcc_assert (link->racc == racc); if (!racc->first_link) { gcc_assert (!racc->last_link); racc->first_link = link; } else racc->last_link->next = link; racc->last_link = link; link->next = NULL; } /* Move all link structures in their linked list in OLD_RACC to the linked list in NEW_RACC. */ static void relink_to_new_repr (struct access *new_racc, struct access *old_racc) { if (!old_racc->first_link) { gcc_assert (!old_racc->last_link); return; } if (new_racc->first_link) { gcc_assert (!new_racc->last_link->next); gcc_assert (!old_racc->last_link || !old_racc->last_link->next); new_racc->last_link->next = old_racc->first_link; new_racc->last_link = old_racc->last_link; } else { gcc_assert (!new_racc->last_link); new_racc->first_link = old_racc->first_link; new_racc->last_link = old_racc->last_link; } old_racc->first_link = old_racc->last_link = NULL; } /* Add ACCESS to the work queue (which is actually a stack). */ static void add_access_to_work_queue (struct access *access) { if (!access->grp_queued) { gcc_assert (!access->next_queued); access->next_queued = work_queue_head; access->grp_queued = 1; work_queue_head = access; } } /* Pop an access from the work queue, and return it, assuming there is one. */ static struct access * pop_access_from_work_queue (void) { struct access *access = work_queue_head; work_queue_head = access->next_queued; access->next_queued = NULL; access->grp_queued = 0; return access; } /* Allocate necessary structures. */ static void sra_initialize (void) { candidate_bitmap = BITMAP_ALLOC (NULL); should_scalarize_away_bitmap = BITMAP_ALLOC (NULL); cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL); gcc_obstack_init (&name_obstack); access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16); link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16); base_access_vec = pointer_map_create (); memset (&sra_stats, 0, sizeof (sra_stats)); encountered_apply_args = false; encountered_recursive_call = false; encountered_unchangable_recursive_call = false; } /* Hook fed to pointer_map_traverse, deallocate stored vectors. */ static bool delete_base_accesses (const void *key ATTRIBUTE_UNUSED, void **value, void *data ATTRIBUTE_UNUSED) { VEC (access_p, heap) *access_vec; access_vec = (VEC (access_p, heap) *) *value; VEC_free (access_p, heap, access_vec); return true; } /* Deallocate all general structures. */ static void sra_deinitialize (void) { BITMAP_FREE (candidate_bitmap); BITMAP_FREE (should_scalarize_away_bitmap); BITMAP_FREE (cannot_scalarize_away_bitmap); free_alloc_pool (access_pool); free_alloc_pool (link_pool); obstack_free (&name_obstack, NULL); pointer_map_traverse (base_access_vec, delete_base_accesses, NULL); pointer_map_destroy (base_access_vec); } /* Remove DECL from candidates for SRA and write REASON to the dump file if there is one. */ static void disqualify_candidate (tree decl, const char *reason) { bitmap_clear_bit (candidate_bitmap, DECL_UID (decl)); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "! Disqualifying "); print_generic_expr (dump_file, decl, 0); fprintf (dump_file, " - %s\n", reason); } } /* Return true iff the type contains a field or an element which does not allow scalarization. */ static bool type_internals_preclude_sra_p (tree type, const char **msg) { tree fld; tree et; switch (TREE_CODE (type)) { case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld)) if (TREE_CODE (fld) == FIELD_DECL) { tree ft = TREE_TYPE (fld); if (TREE_THIS_VOLATILE (fld)) { *msg = "volatile structure field"; return true; } if (!DECL_FIELD_OFFSET (fld)) { *msg = "no structure field offset"; return true; } if (!DECL_SIZE (fld)) { *msg = "zero structure field size"; return true; } if (!host_integerp (DECL_FIELD_OFFSET (fld), 1)) { *msg = "structure field offset not fixed"; return true; } if (!host_integerp (DECL_SIZE (fld), 1)) { *msg = "structure field size not fixed"; return true; } if (AGGREGATE_TYPE_P (ft) && int_bit_position (fld) % BITS_PER_UNIT != 0) { *msg = "structure field is bit field"; return true; } if (AGGREGATE_TYPE_P (ft) && type_internals_preclude_sra_p (ft, msg)) return true; } return false; case ARRAY_TYPE: et = TREE_TYPE (type); if (TYPE_VOLATILE (et)) { *msg = "element type is volatile"; return true; } if (AGGREGATE_TYPE_P (et) && type_internals_preclude_sra_p (et, msg)) return true; return false; default: return false; } } /* If T is an SSA_NAME, return NULL if it is not a default def or return its base variable if it is. Return T if it is not an SSA_NAME. */ static tree get_ssa_base_param (tree t) { if (TREE_CODE (t) == SSA_NAME) { if (SSA_NAME_IS_DEFAULT_DEF (t)) return SSA_NAME_VAR (t); else return NULL_TREE; } return t; } /* Mark a dereference of BASE of distance DIST in a basic block tht STMT belongs to, unless the BB has already been marked as a potentially final. */ static void mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt) { basic_block bb = gimple_bb (stmt); int idx, parm_index = 0; tree parm; if (bitmap_bit_p (final_bbs, bb->index)) return; for (parm = DECL_ARGUMENTS (current_function_decl); parm && parm != base; parm = DECL_CHAIN (parm)) parm_index++; gcc_assert (parm_index < func_param_count); idx = bb->index * func_param_count + parm_index; if (bb_dereferences[idx] < dist) bb_dereferences[idx] = dist; } /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in the three fields. Also add it to the vector of accesses corresponding to the base. Finally, return the new access. */ static struct access * create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size) { VEC (access_p, heap) *vec; struct access *access; void **slot; access = (struct access *) pool_alloc (access_pool); memset (access, 0, sizeof (struct access)); access->base = base; access->offset = offset; access->size = size; slot = pointer_map_contains (base_access_vec, base); if (slot) vec = (VEC (access_p, heap) *) *slot; else vec = VEC_alloc (access_p, heap, 32); VEC_safe_push (access_p, heap, vec, access); *((struct VEC (access_p,heap) **) pointer_map_insert (base_access_vec, base)) = vec; return access; } /* Create and insert access for EXPR. Return created access, or NULL if it is not possible. */ static struct access * create_access (tree expr, gimple stmt, bool write) { struct access *access; HOST_WIDE_INT offset, size, max_size; tree base = expr; bool ptr, unscalarizable_region = false; base = get_ref_base_and_extent (expr, &offset, &size, &max_size); if (sra_mode == SRA_MODE_EARLY_IPA && TREE_CODE (base) == MEM_REF) { base = get_ssa_base_param (TREE_OPERAND (base, 0)); if (!base) return NULL; ptr = true; } else ptr = false; if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base))) return NULL; if (sra_mode == SRA_MODE_EARLY_IPA) { if (size < 0 || size != max_size) { disqualify_candidate (base, "Encountered a variable sized access."); return NULL; } if (TREE_CODE (expr) == COMPONENT_REF && DECL_BIT_FIELD (TREE_OPERAND (expr, 1))) { disqualify_candidate (base, "Encountered a bit-field access."); return NULL; } gcc_checking_assert ((offset % BITS_PER_UNIT) == 0); if (ptr) mark_parm_dereference (base, offset + size, stmt); } else { if (size != max_size) { size = max_size; unscalarizable_region = true; } if (size < 0) { disqualify_candidate (base, "Encountered an unconstrained access."); return NULL; } } access = create_access_1 (base, offset, size); access->expr = expr; access->type = TREE_TYPE (expr); access->write = write; access->grp_unscalarizable_region = unscalarizable_region; access->stmt = stmt; if (TREE_CODE (expr) == COMPONENT_REF && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1))) access->non_addressable = 1; return access; } /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple register types or (recursively) records with only these two kinds of fields. It also returns false if any of these records contains a bit-field. */ static bool type_consists_of_records_p (tree type) { tree fld; if (TREE_CODE (type) != RECORD_TYPE) return false; for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld)) if (TREE_CODE (fld) == FIELD_DECL) { tree ft = TREE_TYPE (fld); if (DECL_BIT_FIELD (fld)) return false; if (!is_gimple_reg_type (ft) && !type_consists_of_records_p (ft)) return false; } return true; } /* Create total_scalarization accesses for all scalar type fields in DECL that must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE must be the top-most VAR_DECL representing the variable, OFFSET must be the offset of DECL within BASE. REF must be the memory reference expression for the given decl. */ static void completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset, tree ref) { tree fld, decl_type = TREE_TYPE (decl); for (fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld)) if (TREE_CODE (fld) == FIELD_DECL) { HOST_WIDE_INT pos = offset + int_bit_position (fld); tree ft = TREE_TYPE (fld); tree nref = build3 (COMPONENT_REF, TREE_TYPE (fld), ref, fld, NULL_TREE); if (is_gimple_reg_type (ft)) { struct access *access; HOST_WIDE_INT size; size = tree_low_cst (DECL_SIZE (fld), 1); access = create_access_1 (base, pos, size); access->expr = nref; access->type = ft; access->grp_total_scalarization = 1; /* Accesses for intraprocedural SRA can have their stmt NULL. */ } else completely_scalarize_record (base, fld, pos, nref); } } /* Create total_scalarization accesses for all scalar type fields in VAR and for VAR a a whole. VAR must be of a RECORD_TYPE conforming to type_consists_of_records_p. */ static void completely_scalarize_var (tree var) { HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (var), 1); struct access *access; access = create_access_1 (var, 0, size); access->expr = var; access->type = TREE_TYPE (var); access->grp_total_scalarization = 1; completely_scalarize_record (var, var, 0, var); } /* Search the given tree for a declaration by skipping handled components and exclude it from the candidates. */ static void disqualify_base_of_expr (tree t, const char *reason) { t = get_base_address (t); if (sra_mode == SRA_MODE_EARLY_IPA && TREE_CODE (t) == MEM_REF) t = get_ssa_base_param (TREE_OPERAND (t, 0)); if (t && DECL_P (t)) disqualify_candidate (t, reason); } /* Scan expression EXPR and create access structures for all accesses to candidates for scalarization. Return the created access or NULL if none is created. */ static struct access * build_access_from_expr_1 (tree expr, gimple stmt, bool write) { struct access *ret = NULL; bool partial_ref; if (TREE_CODE (expr) == BIT_FIELD_REF || TREE_CODE (expr) == IMAGPART_EXPR || TREE_CODE (expr) == REALPART_EXPR) { expr = TREE_OPERAND (expr, 0); partial_ref = true; } else partial_ref = false; /* We need to dive through V_C_Es in order to get the size of its parameter and not the result type. Ada produces such statements. We are also capable of handling the topmost V_C_E but not any of those buried in other handled components. */ if (TREE_CODE (expr) == VIEW_CONVERT_EXPR) expr = TREE_OPERAND (expr, 0); if (contains_view_convert_expr_p (expr)) { disqualify_base_of_expr (expr, "V_C_E under a different handled " "component."); return NULL; } switch (TREE_CODE (expr)) { case MEM_REF: if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR && sra_mode != SRA_MODE_EARLY_IPA) return NULL; /* fall through */ case VAR_DECL: case PARM_DECL: case RESULT_DECL: case COMPONENT_REF: case ARRAY_REF: case ARRAY_RANGE_REF: ret = create_access (expr, stmt, write); break; default: break; } if (write && partial_ref && ret) ret->grp_partial_lhs = 1; return ret; } /* Scan expression EXPR and create access structures for all accesses to candidates for scalarization. Return true if any access has been inserted. STMT must be the statement from which the expression is taken, WRITE must be true if the expression is a store and false otherwise. */ static bool build_access_from_expr (tree expr, gimple stmt, bool write) { struct access *access; access = build_access_from_expr_1 (expr, stmt, write); if (access) { /* This means the aggregate is accesses as a whole in a way other than an assign statement and thus cannot be removed even if we had a scalar replacement for everything. */ if (cannot_scalarize_away_bitmap) bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base)); return true; } return false; } /* Disqualify LHS and RHS for scalarization if STMT must end its basic block in modes in which it matters, return true iff they have been disqualified. RHS may be NULL, in that case ignore it. If we scalarize an aggregate in intra-SRA we may need to add statements after each statement. This is not possible if a statement unconditionally has to end the basic block. */ static bool disqualify_ops_if_throwing_stmt (gimple stmt, tree lhs, tree rhs) { if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA) && (stmt_can_throw_internal (stmt) || stmt_ends_bb_p (stmt))) { disqualify_base_of_expr (lhs, "LHS of a throwing stmt."); if (rhs) disqualify_base_of_expr (rhs, "RHS of a throwing stmt."); return true; } return false; } /* Return true if EXP is a memory reference less aligned than ALIGN. This is invoked only on strict-alignment targets. */ static bool tree_non_aligned_mem_p (tree exp, unsigned int align) { unsigned int exp_align; if (TREE_CODE (exp) == VIEW_CONVERT_EXPR) exp = TREE_OPERAND (exp, 0); if (TREE_CODE (exp) == SSA_NAME || is_gimple_min_invariant (exp)) return false; /* get_object_alignment will fall back to BITS_PER_UNIT if it cannot compute an explicit alignment. Pretend that dereferenced pointers are always aligned on strict-alignment targets. */ if (TREE_CODE (exp) == MEM_REF || TREE_CODE (exp) == TARGET_MEM_REF) exp_align = get_object_or_type_alignment (exp); else exp_align = get_object_alignment (exp); if (exp_align < align) return true; return false; } /* Return true if EXP is a memory reference less aligned than what the access ACC would require. This is invoked only on strict-alignment targets. */ static bool tree_non_aligned_mem_for_access_p (tree exp, struct access *acc) { unsigned int acc_align; /* The alignment of the access is that of its expression. However, it may have been artificially increased, e.g. by a local alignment promotion, so we cap it to the alignment of the type of the base, on the grounds that valid sub-accesses cannot be more aligned than that. */ acc_align = get_object_alignment (acc->expr); if (acc->base && acc_align > TYPE_ALIGN (TREE_TYPE (acc->base))) acc_align = TYPE_ALIGN (TREE_TYPE (acc->base)); return tree_non_aligned_mem_p (exp, acc_align); } /* Scan expressions occuring in STMT, create access structures for all accesses to candidates for scalarization and remove those candidates which occur in statements or expressions that prevent them from being split apart. Return true if any access has been inserted. */ static bool build_accesses_from_assign (gimple stmt) { tree lhs, rhs; struct access *lacc, *racc; if (!gimple_assign_single_p (stmt) /* Scope clobbers don't influence scalarization. */ || gimple_clobber_p (stmt)) return false; lhs = gimple_assign_lhs (stmt); rhs = gimple_assign_rhs1 (stmt); if (disqualify_ops_if_throwing_stmt (stmt, lhs, rhs)) return false; racc = build_access_from_expr_1 (rhs, stmt, false); lacc = build_access_from_expr_1 (lhs, stmt, true); if (lacc) { lacc->grp_assignment_write = 1; if (STRICT_ALIGNMENT && tree_non_aligned_mem_for_access_p (rhs, lacc)) lacc->grp_unscalarizable_region = 1; } if (racc) { racc->grp_assignment_read = 1; if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt) && !is_gimple_reg_type (racc->type)) bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base)); if (STRICT_ALIGNMENT && tree_non_aligned_mem_for_access_p (lhs, racc)) racc->grp_unscalarizable_region = 1; } if (lacc && racc && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA) && !lacc->grp_unscalarizable_region && !racc->grp_unscalarizable_region && AGGREGATE_TYPE_P (TREE_TYPE (lhs)) /* FIXME: Turn the following line into an assert after PR 40058 is fixed. */ && lacc->size == racc->size && useless_type_conversion_p (lacc->type, racc->type)) { struct assign_link *link; link = (struct assign_link *) pool_alloc (link_pool); memset (link, 0, sizeof (struct assign_link)); link->lacc = lacc; link->racc = racc; add_link_to_rhs (racc, link); } return lacc || racc; } /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine GIMPLE_ASM operands with memory constrains which cannot be scalarized. */ static bool asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED, tree op, void *data ATTRIBUTE_UNUSED) { op = get_base_address (op); if (op && DECL_P (op)) disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand."); return false; } /* Return true iff callsite CALL has at least as many actual arguments as there are formal parameters of the function currently processed by IPA-SRA. */ static inline bool callsite_has_enough_arguments_p (gimple call) { return gimple_call_num_args (call) >= (unsigned) func_param_count; } /* Scan function and look for interesting expressions and create access structures for them. Return true iff any access is created. */ static bool scan_function (void) { basic_block bb; bool ret = false; FOR_EACH_BB (bb) { gimple_stmt_iterator gsi; for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple stmt = gsi_stmt (gsi); tree t; unsigned i; if (final_bbs && stmt_can_throw_external (stmt)) bitmap_set_bit (final_bbs, bb->index); switch (gimple_code (stmt)) { case GIMPLE_RETURN: t = gimple_return_retval (stmt); if (t != NULL_TREE) ret |= build_access_from_expr (t, stmt, false); if (final_bbs) bitmap_set_bit (final_bbs, bb->index); break; case GIMPLE_ASSIGN: ret |= build_accesses_from_assign (stmt); break; case GIMPLE_CALL: for (i = 0; i < gimple_call_num_args (stmt); i++) ret |= build_access_from_expr (gimple_call_arg (stmt, i), stmt, false); if (sra_mode == SRA_MODE_EARLY_IPA) { tree dest = gimple_call_fndecl (stmt); int flags = gimple_call_flags (stmt); if (dest) { if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS) encountered_apply_args = true; if (cgraph_get_node (dest) == cgraph_get_node (current_function_decl)) { encountered_recursive_call = true; if (!callsite_has_enough_arguments_p (stmt)) encountered_unchangable_recursive_call = true; } } if (final_bbs && (flags & (ECF_CONST | ECF_PURE)) == 0) bitmap_set_bit (final_bbs, bb->index); } t = gimple_call_lhs (stmt); if (t && !disqualify_ops_if_throwing_stmt (stmt, t, NULL)) ret |= build_access_from_expr (t, stmt, true); break; case GIMPLE_ASM: walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL, asm_visit_addr); if (final_bbs) bitmap_set_bit (final_bbs, bb->index); for (i = 0; i < gimple_asm_ninputs (stmt); i++) { t = TREE_VALUE (gimple_asm_input_op (stmt, i)); ret |= build_access_from_expr (t, stmt, false); } for (i = 0; i < gimple_asm_noutputs (stmt); i++) { t = TREE_VALUE (gimple_asm_output_op (stmt, i)); ret |= build_access_from_expr (t, stmt, true); } break; default: break; } } } return ret; } /* Helper of QSORT function. There are pointers to accesses in the array. An access is considered smaller than another if it has smaller offset or if the offsets are the same but is size is bigger. */ static int compare_access_positions (const void *a, const void *b) { const access_p *fp1 = (const access_p *) a; const access_p *fp2 = (const access_p *) b; const access_p f1 = *fp1; const access_p f2 = *fp2; if (f1->offset != f2->offset) return f1->offset < f2->offset ? -1 : 1; if (f1->size == f2->size) { if (f1->type == f2->type) return 0; /* Put any non-aggregate type before any aggregate type. */ else if (!is_gimple_reg_type (f1->type) && is_gimple_reg_type (f2->type)) return 1; else if (is_gimple_reg_type (f1->type) && !is_gimple_reg_type (f2->type)) return -1; /* Put any complex or vector type before any other scalar type. */ else if (TREE_CODE (f1->type) != COMPLEX_TYPE && TREE_CODE (f1->type) != VECTOR_TYPE && (TREE_CODE (f2->type) == COMPLEX_TYPE || TREE_CODE (f2->type) == VECTOR_TYPE)) return 1; else if ((TREE_CODE (f1->type) == COMPLEX_TYPE || TREE_CODE (f1->type) == VECTOR_TYPE) && TREE_CODE (f2->type) != COMPLEX_TYPE && TREE_CODE (f2->type) != VECTOR_TYPE) return -1; /* Put the integral type with the bigger precision first. */ else if (INTEGRAL_TYPE_P (f1->type) && INTEGRAL_TYPE_P (f2->type)) return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type); /* Put any integral type with non-full precision last. */ else if (INTEGRAL_TYPE_P (f1->type) && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type)) != TYPE_PRECISION (f1->type))) return 1; else if (INTEGRAL_TYPE_P (f2->type) && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type)) != TYPE_PRECISION (f2->type))) return -1; /* Stabilize the sort. */ return TYPE_UID (f1->type) - TYPE_UID (f2->type); } /* We want the bigger accesses first, thus the opposite operator in the next line: */ return f1->size > f2->size ? -1 : 1; } /* Append a name of the declaration to the name obstack. A helper function for make_fancy_name. */ static void make_fancy_decl_name (tree decl) { char buffer[32]; tree name = DECL_NAME (decl); if (name) obstack_grow (&name_obstack, IDENTIFIER_POINTER (name), IDENTIFIER_LENGTH (name)); else { sprintf (buffer, "D%u", DECL_UID (decl)); obstack_grow (&name_obstack, buffer, strlen (buffer)); } } /* Helper for make_fancy_name. */ static void make_fancy_name_1 (tree expr) { char buffer[32]; tree index; if (DECL_P (expr)) { make_fancy_decl_name (expr); return; } switch (TREE_CODE (expr)) { case COMPONENT_REF: make_fancy_name_1 (TREE_OPERAND (expr, 0)); obstack_1grow (&name_obstack, '$'); make_fancy_decl_name (TREE_OPERAND (expr, 1)); break; case ARRAY_REF: make_fancy_name_1 (TREE_OPERAND (expr, 0)); obstack_1grow (&name_obstack, '$'); /* Arrays with only one element may not have a constant as their index. */ index = TREE_OPERAND (expr, 1); if (TREE_CODE (index) != INTEGER_CST) break; sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index)); obstack_grow (&name_obstack, buffer, strlen (buffer)); break; case ADDR_EXPR: make_fancy_name_1 (TREE_OPERAND (expr, 0)); break; case MEM_REF: make_fancy_name_1 (TREE_OPERAND (expr, 0)); if (!integer_zerop (TREE_OPERAND (expr, 1))) { obstack_1grow (&name_obstack, '$'); sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (TREE_OPERAND (expr, 1))); obstack_grow (&name_obstack, buffer, strlen (buffer)); } break; case BIT_FIELD_REF: case REALPART_EXPR: case IMAGPART_EXPR: gcc_unreachable (); /* we treat these as scalars. */ break; default: break; } } /* Create a human readable name for replacement variable of ACCESS. */ static char * make_fancy_name (tree expr) { make_fancy_name_1 (expr); obstack_1grow (&name_obstack, '\0'); return XOBFINISH (&name_obstack, char *); } /* Construct a MEM_REF that would reference a part of aggregate BASE of type EXP_TYPE at the given OFFSET. If BASE is something for which get_addr_base_and_unit_offset returns NULL, gsi must be non-NULL and is used to insert new statements either before or below the current one as specified by INSERT_AFTER. This function is not capable of handling bitfields. */ tree build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset, tree exp_type, gimple_stmt_iterator *gsi, bool insert_after) { tree prev_base = base; tree off; HOST_WIDE_INT base_offset; gcc_checking_assert (offset % BITS_PER_UNIT == 0); base = get_addr_base_and_unit_offset (base, &base_offset); /* get_addr_base_and_unit_offset returns NULL for references with a variable offset such as array[var_index]. */ if (!base) { gimple stmt; tree tmp, addr; gcc_checking_assert (gsi); tmp = create_tmp_reg (build_pointer_type (TREE_TYPE (prev_base)), NULL); add_referenced_var (tmp); tmp = make_ssa_name (tmp, NULL); addr = build_fold_addr_expr (unshare_expr (prev_base)); STRIP_USELESS_TYPE_CONVERSION (addr); stmt = gimple_build_assign (tmp, addr); gimple_set_location (stmt, loc); SSA_NAME_DEF_STMT (tmp) = stmt; if (insert_after) gsi_insert_after (gsi, stmt, GSI_NEW_STMT); else gsi_insert_before (gsi, stmt, GSI_SAME_STMT); update_stmt (stmt); off = build_int_cst (reference_alias_ptr_type (prev_base), offset / BITS_PER_UNIT); base = tmp; } else if (TREE_CODE (base) == MEM_REF) { off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)), base_offset + offset / BITS_PER_UNIT); off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off); base = unshare_expr (TREE_OPERAND (base, 0)); } else { off = build_int_cst (reference_alias_ptr_type (base), base_offset + offset / BITS_PER_UNIT); base = build_fold_addr_expr (unshare_expr (base)); } return fold_build2_loc (loc, MEM_REF, exp_type, base, off); } DEF_VEC_ALLOC_P_STACK (tree); #define VEC_tree_stack_alloc(alloc) VEC_stack_alloc (tree, alloc) /* Construct a memory reference to a part of an aggregate BASE at the given OFFSET and of the type of MODEL. In case this is a chain of references to component, the function will replicate the chain of COMPONENT_REFs of the expression of MODEL to access it. GSI and INSERT_AFTER have the same meaning as in build_ref_for_offset. */ static tree build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset, struct access *model, gimple_stmt_iterator *gsi, bool insert_after) { tree type = model->type, t; VEC(tree,stack) *cr_stack = NULL; if (TREE_CODE (model->expr) == COMPONENT_REF) { tree expr = model->expr; /* Create a stack of the COMPONENT_REFs so later we can walk them in order from inner to outer. */ cr_stack = VEC_alloc (tree, stack, 6); do { tree field = TREE_OPERAND (expr, 1); tree cr_offset = component_ref_field_offset (expr); HOST_WIDE_INT bit_pos = tree_low_cst (cr_offset, 1) * BITS_PER_UNIT + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field)); /* We can be called with a model different from the one associated with BASE so we need to avoid going up the chain too far. */ if (offset - bit_pos < 0) break; offset -= bit_pos; VEC_safe_push (tree, stack, cr_stack, expr); expr = TREE_OPERAND (expr, 0); type = TREE_TYPE (expr); } while (TREE_CODE (expr) == COMPONENT_REF); } t = build_ref_for_offset (loc, base, offset, type, gsi, insert_after); if (TREE_CODE (model->expr) == COMPONENT_REF) { unsigned i; tree expr; /* Now replicate the chain of COMPONENT_REFs from inner to outer. */ FOR_EACH_VEC_ELT_REVERSE (tree, cr_stack, i, expr) { tree field = TREE_OPERAND (expr, 1); t = fold_build3_loc (loc, COMPONENT_REF, TREE_TYPE (field), t, field, TREE_OPERAND (expr, 2)); } VEC_free (tree, stack, cr_stack); } return t; } /* Construct a memory reference consisting of component_refs and array_refs to a part of an aggregate *RES (which is of type TYPE). The requested part should have type EXP_TYPE at be the given OFFSET. This function might not succeed, it returns true when it does and only then *RES points to something meaningful. This function should be used only to build expressions that we might need to present to user (e.g. in warnings). In all other situations, build_ref_for_model or build_ref_for_offset should be used instead. */ static bool build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset, tree exp_type) { while (1) { tree fld; tree tr_size, index, minidx; HOST_WIDE_INT el_size; if (offset == 0 && exp_type && types_compatible_p (exp_type, type)) return true; switch (TREE_CODE (type)) { case UNION_TYPE: case QUAL_UNION_TYPE: case RECORD_TYPE: for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld)) { HOST_WIDE_INT pos, size; tree expr, *expr_ptr; if (TREE_CODE (fld) != FIELD_DECL) continue; pos = int_bit_position (fld); gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0); tr_size = DECL_SIZE (fld); if (!tr_size || !host_integerp (tr_size, 1)) continue; size = tree_low_cst (tr_size, 1); if (size == 0) { if (pos != offset) continue; } else if (pos > offset || (pos + size) <= offset) continue; expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld, NULL_TREE); expr_ptr = &expr; if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld), offset - pos, exp_type)) { *res = expr; return true; } } return false; case ARRAY_TYPE: tr_size = TYPE_SIZE (TREE_TYPE (type)); if (!tr_size || !host_integerp (tr_size, 1)) return false; el_size = tree_low_cst (tr_size, 1); minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type)); if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0) return false; index = build_int_cst (TYPE_DOMAIN (type), offset / el_size); if (!integer_zerop (minidx)) index = int_const_binop (PLUS_EXPR, index, minidx); *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index, NULL_TREE, NULL_TREE); offset = offset % el_size; type = TREE_TYPE (type); break; default: if (offset != 0) return false; if (exp_type) return false; else return true; } } } /* Return true iff TYPE is stdarg va_list type. */ static inline bool is_va_list_type (tree type) { return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node); } /* Print message to dump file why a variable was rejected. */ static void reject (tree var, const char *msg) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg); print_generic_expr (dump_file, var, 0); fprintf (dump_file, "\n"); } } /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap those with type which is suitable for scalarization. */ static bool find_var_candidates (void) { tree var, type; referenced_var_iterator rvi; bool ret = false; const char *msg; FOR_EACH_REFERENCED_VAR (cfun, var, rvi) { if (TREE_CODE (var) != VAR_DECL && TREE_CODE (var) != PARM_DECL) continue; type = TREE_TYPE (var); if (!AGGREGATE_TYPE_P (type)) { reject (var, "not aggregate"); continue; } if (needs_to_live_in_memory (var)) { reject (var, "needs to live in memory"); continue; } if (TREE_THIS_VOLATILE (var)) { reject (var, "is volatile"); continue; } if (!COMPLETE_TYPE_P (type)) { reject (var, "has incomplete type"); continue; } if (!host_integerp (TYPE_SIZE (type), 1)) { reject (var, "type size not fixed"); continue; } if (tree_low_cst (TYPE_SIZE (type), 1) == 0) { reject (var, "type size is zero"); continue; } if (type_internals_preclude_sra_p (type, &msg)) { reject (var, msg); continue; } if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but we also want to schedule it rather late. Thus we ignore it in the early pass. */ (sra_mode == SRA_MODE_EARLY_INTRA && is_va_list_type (type))) { reject (var, "is va_list"); continue; } bitmap_set_bit (candidate_bitmap, DECL_UID (var)); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Candidate (%d): ", DECL_UID (var)); print_generic_expr (dump_file, var, 0); fprintf (dump_file, "\n"); } ret = true; } return ret; } /* Sort all accesses for the given variable, check for partial overlaps and return NULL if there are any. If there are none, pick a representative for each combination of offset and size and create a linked list out of them. Return the pointer to the first representative and make sure it is the first one in the vector of accesses. */ static struct access * sort_and_splice_var_accesses (tree var) { int i, j, access_count; struct access *res, **prev_acc_ptr = &res; VEC (access_p, heap) *access_vec; bool first = true; HOST_WIDE_INT low = -1, high = 0; access_vec = get_base_access_vector (var); if (!access_vec) return NULL; access_count = VEC_length (access_p, access_vec); /* Sort by . */ VEC_qsort (access_p, access_vec, compare_access_positions); i = 0; while (i < access_count) { struct access *access = VEC_index (access_p, access_vec, i); bool grp_write = access->write; bool grp_read = !access->write; bool grp_scalar_write = access->write && is_gimple_reg_type (access->type); bool grp_scalar_read = !access->write && is_gimple_reg_type (access->type); bool grp_assignment_read = access->grp_assignment_read; bool grp_assignment_write = access->grp_assignment_write; bool multiple_scalar_reads = false; bool total_scalarization = access->grp_total_scalarization; bool grp_partial_lhs = access->grp_partial_lhs; bool first_scalar = is_gimple_reg_type (access->type); bool unscalarizable_region = access->grp_unscalarizable_region; if (first || access->offset >= high) { first = false; low = access->offset; high = access->offset + access->size; } else if (access->offset > low && access->offset + access->size > high) return NULL; else gcc_assert (access->offset >= low && access->offset + access->size <= high); j = i + 1; while (j < access_count) { struct access *ac2 = VEC_index (access_p, access_vec, j); if (ac2->offset != access->offset || ac2->size != access->size) break; if (ac2->write) { grp_write = true; grp_scalar_write = (grp_scalar_write || is_gimple_reg_type (ac2->type)); } else { grp_read = true; if (is_gimple_reg_type (ac2->type)) { if (grp_scalar_read) multiple_scalar_reads = true; else grp_scalar_read = true; } } grp_assignment_read |= ac2->grp_assignment_read; grp_assignment_write |= ac2->grp_assignment_write; grp_partial_lhs |= ac2->grp_partial_lhs; unscalarizable_region |= ac2->grp_unscalarizable_region; total_scalarization |= ac2->grp_total_scalarization; relink_to_new_repr (access, ac2); /* If there are both aggregate-type and scalar-type accesses with this combination of size and offset, the comparison function should have put the scalars first. */ gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type)); ac2->group_representative = access; j++; } i = j; access->group_representative = access; access->grp_write = grp_write; access->grp_read = grp_read; access->grp_scalar_read = grp_scalar_read; access->grp_scalar_write = grp_scalar_write; access->grp_assignment_read = grp_assignment_read; access->grp_assignment_write = grp_assignment_write; access->grp_hint = multiple_scalar_reads || total_scalarization; access->grp_total_scalarization = total_scalarization; access->grp_partial_lhs = grp_partial_lhs; access->grp_unscalarizable_region = unscalarizable_region; if (access->first_link) add_access_to_work_queue (access); *prev_acc_ptr = access; prev_acc_ptr = &access->next_grp; } gcc_assert (res == VEC_index (access_p, access_vec, 0)); return res; } /* Create a variable for the given ACCESS which determines the type, name and a few other properties. Return the variable declaration and store it also to ACCESS->replacement. */ static tree create_access_replacement (struct access *access, bool rename) { tree repl; repl = create_tmp_var (access->type, "SR"); add_referenced_var (repl); if (rename) mark_sym_for_renaming (repl); if (!access->grp_partial_lhs && (TREE_CODE (access->type) == COMPLEX_TYPE || TREE_CODE (access->type) == VECTOR_TYPE)) DECL_GIMPLE_REG_P (repl) = 1; DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base); DECL_ARTIFICIAL (repl) = 1; DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base); if (DECL_NAME (access->base) && !DECL_IGNORED_P (access->base) && !DECL_ARTIFICIAL (access->base)) { char *pretty_name = make_fancy_name (access->expr); tree debug_expr = unshare_expr (access->expr), d; DECL_NAME (repl) = get_identifier (pretty_name); obstack_free (&name_obstack, pretty_name); /* Get rid of any SSA_NAMEs embedded in debug_expr, as DECL_DEBUG_EXPR isn't considered when looking for still used SSA_NAMEs and thus they could be freed. All debug info generation cares is whether something is constant or variable and that get_ref_base_and_extent works properly on the expression. */ for (d = debug_expr; handled_component_p (d); d = TREE_OPERAND (d, 0)) switch (TREE_CODE (d)) { case ARRAY_REF: case ARRAY_RANGE_REF: if (TREE_OPERAND (d, 1) && TREE_CODE (TREE_OPERAND (d, 1)) == SSA_NAME) TREE_OPERAND (d, 1) = SSA_NAME_VAR (TREE_OPERAND (d, 1)); if (TREE_OPERAND (d, 3) && TREE_CODE (TREE_OPERAND (d, 3)) == SSA_NAME) TREE_OPERAND (d, 3) = SSA_NAME_VAR (TREE_OPERAND (d, 3)); /* FALLTHRU */ case COMPONENT_REF: if (TREE_OPERAND (d, 2) && TREE_CODE (TREE_OPERAND (d, 2)) == SSA_NAME) TREE_OPERAND (d, 2) = SSA_NAME_VAR (TREE_OPERAND (d, 2)); break; default: break; } SET_DECL_DEBUG_EXPR (repl, debug_expr); DECL_DEBUG_EXPR_IS_FROM (repl) = 1; if (access->grp_no_warning) TREE_NO_WARNING (repl) = 1; else TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base); } else TREE_NO_WARNING (repl) = 1; if (dump_file) { fprintf (dump_file, "Created a replacement for "); print_generic_expr (dump_file, access->base, 0); fprintf (dump_file, " offset: %u, size: %u: ", (unsigned) access->offset, (unsigned) access->size); print_generic_expr (dump_file, repl, 0); fprintf (dump_file, "\n"); } sra_stats.replacements++; return repl; } /* Return ACCESS scalar replacement, create it if it does not exist yet. */ static inline tree get_access_replacement (struct access *access) { gcc_assert (access->grp_to_be_replaced); if (!access->replacement_decl) access->replacement_decl = create_access_replacement (access, true); return access->replacement_decl; } /* Return ACCESS scalar replacement, create it if it does not exist yet but do not mark it for renaming. */ static inline tree get_unrenamed_access_replacement (struct access *access) { gcc_assert (!access->grp_to_be_replaced); if (!access->replacement_decl) access->replacement_decl = create_access_replacement (access, false); return access->replacement_decl; } /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the linked list along the way. Stop when *ACCESS is NULL or the access pointed to it is not "within" the root. Return false iff some accesses partially overlap. */ static bool build_access_subtree (struct access **access) { struct access *root = *access, *last_child = NULL; HOST_WIDE_INT limit = root->offset + root->size; *access = (*access)->next_grp; while (*access && (*access)->offset + (*access)->size <= limit) { if (!last_child) root->first_child = *access; else last_child->next_sibling = *access; last_child = *access; if (!build_access_subtree (access)) return false; } if (*access && (*access)->offset < limit) return false; return true; } /* Build a tree of access representatives, ACCESS is the pointer to the first one, others are linked in a list by the next_grp field. Return false iff some accesses partially overlap. */ static bool build_access_trees (struct access *access) { while (access) { struct access *root = access; if (!build_access_subtree (&access)) return false; root->next_grp = access; } return true; } /* Return true if expr contains some ARRAY_REFs into a variable bounded array. */ static bool expr_with_var_bounded_array_refs_p (tree expr) { while (handled_component_p (expr)) { if (TREE_CODE (expr) == ARRAY_REF && !host_integerp (array_ref_low_bound (expr), 0)) return true; expr = TREE_OPERAND (expr, 0); } return false; } /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all sorts of access flags appropriately along the way, notably always set grp_read and grp_assign_read according to MARK_READ and grp_write when MARK_WRITE is true. Creating a replacement for a scalar access is considered beneficial if its grp_hint is set (this means we are either attempting total scalarization or there is more than one direct read access) or according to the following table: Access written to through a scalar type (once or more times) | | Written to in an assignment statement | | | | Access read as scalar _once_ | | | | | | Read in an assignment statement | | | | | | | | Scalarize Comment ----------------------------------------------------------------------------- 0 0 0 0 No access for the scalar 0 0 0 1 No access for the scalar 0 0 1 0 No Single read - won't help 0 0 1 1 No The same case 0 1 0 0 No access for the scalar 0 1 0 1 No access for the scalar 0 1 1 0 Yes s = *g; return s.i; 0 1 1 1 Yes The same case as above 1 0 0 0 No Won't help 1 0 0 1 Yes s.i = 1; *g = s; 1 0 1 0 Yes s.i = 5; g = s.i; 1 0 1 1 Yes The same case as above 1 1 0 0 No Won't help. 1 1 0 1 Yes s.i = 1; *g = s; 1 1 1 0 Yes s = *g; return s.i; 1 1 1 1 Yes Any of the above yeses */ static bool analyze_access_subtree (struct access *root, struct access *parent, bool allow_replacements) { struct access *child; HOST_WIDE_INT limit = root->offset + root->size; HOST_WIDE_INT covered_to = root->offset; bool scalar = is_gimple_reg_type (root->type); bool hole = false, sth_created = false; if (parent) { if (parent->grp_read) root->grp_read = 1; if (parent->grp_assignment_read) root->grp_assignment_read = 1; if (parent->grp_write) root->grp_write = 1; if (parent->grp_assignment_write) root->grp_assignment_write = 1; if (parent->grp_total_scalarization) root->grp_total_scalarization = 1; } if (root->grp_unscalarizable_region) allow_replacements = false; if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr)) allow_replacements = false; for (child = root->first_child; child; child = child->next_sibling) { hole |= covered_to < child->offset; sth_created |= analyze_access_subtree (child, root, allow_replacements && !scalar); root->grp_unscalarized_data |= child->grp_unscalarized_data; root->grp_total_scalarization &= child->grp_total_scalarization; if (child->grp_covered) covered_to += child->size; else hole = true; } if (allow_replacements && scalar && !root->first_child && (root->grp_hint || ((root->grp_scalar_read || root->grp_assignment_read) && (root->grp_scalar_write || root->grp_assignment_write)))) { bool new_integer_type; if (TREE_CODE (root->type) == ENUMERAL_TYPE) { tree rt = root->type; root->type = build_nonstandard_integer_type (TYPE_PRECISION (rt), TYPE_UNSIGNED (rt)); new_integer_type = true; } else new_integer_type = false; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Marking "); print_generic_expr (dump_file, root->base, 0); fprintf (dump_file, " offset: %u, size: %u ", (unsigned) root->offset, (unsigned) root->size); fprintf (dump_file, " to be replaced%s.\n", new_integer_type ? " with an integer": ""); } root->grp_to_be_replaced = 1; sth_created = true; hole = false; } else { if (covered_to < limit) hole = true; if (scalar) root->grp_total_scalarization = 0; } if (sth_created && (!hole || root->grp_total_scalarization)) { root->grp_covered = 1; return true; } if (root->grp_write || TREE_CODE (root->base) == PARM_DECL) root->grp_unscalarized_data = 1; /* not covered and written to */ if (sth_created) return true; return false; } /* Analyze all access trees linked by next_grp by the means of analyze_access_subtree. */ static bool analyze_access_trees (struct access *access) { bool ret = false; while (access) { if (analyze_access_subtree (access, NULL, true)) ret = true; access = access->next_grp; } return ret; } /* Return true iff a potential new child of LACC at offset OFFSET and with size SIZE would conflict with an already existing one. If exactly such a child already exists in LACC, store a pointer to it in EXACT_MATCH. */ static bool child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset, HOST_WIDE_INT size, struct access **exact_match) { struct access *child; for (child = lacc->first_child; child; child = child->next_sibling) { if (child->offset == norm_offset && child->size == size) { *exact_match = child; return true; } if (child->offset < norm_offset + size && child->offset + child->size > norm_offset) return true; } return false; } /* Create a new child access of PARENT, with all properties just like MODEL except for its offset and with its grp_write false and grp_read true. Return the new access or NULL if it cannot be created. Note that this access is created long after all splicing and sorting, it's not located in any access vector and is automatically a representative of its group. */ static struct access * create_artificial_child_access (struct access *parent, struct access *model, HOST_WIDE_INT new_offset) { struct access *access; struct access **child; tree expr = parent->base; gcc_assert (!model->grp_unscalarizable_region); access = (struct access *) pool_alloc (access_pool); memset (access, 0, sizeof (struct access)); if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset, model->type)) { access->grp_no_warning = true; expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base, new_offset, model, NULL, false); } access->base = parent->base; access->expr = expr; access->offset = new_offset; access->size = model->size; access->type = model->type; access->grp_write = true; access->grp_read = false; child = &parent->first_child; while (*child && (*child)->offset < new_offset) child = &(*child)->next_sibling; access->next_sibling = *child; *child = access; return access; } /* Propagate all subaccesses of RACC across an assignment link to LACC. Return true if any new subaccess was created. Additionally, if RACC is a scalar access but LACC is not, change the type of the latter, if possible. */ static bool propagate_subaccesses_across_link (struct access *lacc, struct access *racc) { struct access *rchild; HOST_WIDE_INT norm_delta = lacc->offset - racc->offset; bool ret = false; if (is_gimple_reg_type (lacc->type) || lacc->grp_unscalarizable_region || racc->grp_unscalarizable_region) return false; if (is_gimple_reg_type (racc->type)) { if (!lacc->first_child && !racc->first_child) { tree t = lacc->base; lacc->type = racc->type; if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t), lacc->offset, racc->type)) lacc->expr = t; else { lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base), lacc->base, lacc->offset, racc, NULL, false); lacc->grp_no_warning = true; } } return false; } for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling) { struct access *new_acc = NULL; HOST_WIDE_INT norm_offset = rchild->offset + norm_delta; if (rchild->grp_unscalarizable_region) continue; if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size, &new_acc)) { if (new_acc) { rchild->grp_hint = 1; new_acc->grp_hint |= new_acc->grp_read; if (rchild->first_child) ret |= propagate_subaccesses_across_link (new_acc, rchild); } continue; } rchild->grp_hint = 1; new_acc = create_artificial_child_access (lacc, rchild, norm_offset); if (new_acc) { ret = true; if (racc->first_child) propagate_subaccesses_across_link (new_acc, rchild); } } return ret; } /* Propagate all subaccesses across assignment links. */ static void propagate_all_subaccesses (void) { while (work_queue_head) { struct access *racc = pop_access_from_work_queue (); struct assign_link *link; gcc_assert (racc->first_link); for (link = racc->first_link; link; link = link->next) { struct access *lacc = link->lacc; if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base))) continue; lacc = lacc->group_representative; if (propagate_subaccesses_across_link (lacc, racc) && lacc->first_link) add_access_to_work_queue (lacc); } } } /* Go through all accesses collected throughout the (intraprocedural) analysis stage, exclude overlapping ones, identify representatives and build trees out of them, making decisions about scalarization on the way. Return true iff there are any to-be-scalarized variables after this stage. */ static bool analyze_all_variable_accesses (void) { int res = 0; bitmap tmp = BITMAP_ALLOC (NULL); bitmap_iterator bi; unsigned i, max_total_scalarization_size; max_total_scalarization_size = UNITS_PER_WORD * BITS_PER_UNIT * MOVE_RATIO (optimize_function_for_speed_p (cfun)); EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi) if (bitmap_bit_p (should_scalarize_away_bitmap, i) && !bitmap_bit_p (cannot_scalarize_away_bitmap, i)) { tree var = referenced_var (i); if (TREE_CODE (var) == VAR_DECL && type_consists_of_records_p (TREE_TYPE (var))) { if ((unsigned) tree_low_cst (TYPE_SIZE (TREE_TYPE (var)), 1) <= max_total_scalarization_size) { completely_scalarize_var (var); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Will attempt to totally scalarize "); print_generic_expr (dump_file, var, 0); fprintf (dump_file, " (UID: %u): \n", DECL_UID (var)); } } else if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Too big to totally scalarize: "); print_generic_expr (dump_file, var, 0); fprintf (dump_file, " (UID: %u)\n", DECL_UID (var)); } } } bitmap_copy (tmp, candidate_bitmap); EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi) { tree var = referenced_var (i); struct access *access; access = sort_and_splice_var_accesses (var); if (!access || !build_access_trees (access)) disqualify_candidate (var, "No or inhibitingly overlapping accesses."); } propagate_all_subaccesses (); bitmap_copy (tmp, candidate_bitmap); EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi) { tree var = referenced_var (i); struct access *access = get_first_repr_for_decl (var); if (analyze_access_trees (access)) { res++; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\nAccess trees for "); print_generic_expr (dump_file, var, 0); fprintf (dump_file, " (UID: %u): \n", DECL_UID (var)); dump_access_tree (dump_file, access); fprintf (dump_file, "\n"); } } else disqualify_candidate (var, "No scalar replacements to be created."); } BITMAP_FREE (tmp); if (res) { statistics_counter_event (cfun, "Scalarized aggregates", res); return true; } else return false; } /* Generate statements copying scalar replacements of accesses within a subtree into or out of AGG. ACCESS, all its children, siblings and their children are to be processed. AGG is an aggregate type expression (can be a declaration but does not have to be, it can for example also be a mem_ref or a series of handled components). TOP_OFFSET is the offset of the processed subtree which has to be subtracted from offsets of individual accesses to get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only replacements in the interval , otherwise copy all. GSI is a statement iterator used to place the new statements. WRITE should be true when the statements should write from AGG to the replacement and false if vice versa. if INSERT_AFTER is true, new statements will be added after the current statement in GSI, they will be added before the statement otherwise. */ static void generate_subtree_copies (struct access *access, tree agg, HOST_WIDE_INT top_offset, HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size, gimple_stmt_iterator *gsi, bool write, bool insert_after, location_t loc) { do { if (chunk_size && access->offset >= start_offset + chunk_size) return; if (access->grp_to_be_replaced && (chunk_size == 0 || access->offset + access->size > start_offset)) { tree expr, repl = get_access_replacement (access); gimple stmt; expr = build_ref_for_model (loc, agg, access->offset - top_offset, access, gsi, insert_after); if (write) { if (access->grp_partial_lhs) expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE, !insert_after, insert_after ? GSI_NEW_STMT : GSI_SAME_STMT); stmt = gimple_build_assign (repl, expr); } else { TREE_NO_WARNING (repl) = 1; if (access->grp_partial_lhs) repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE, !insert_after, insert_after ? GSI_NEW_STMT : GSI_SAME_STMT); stmt = gimple_build_assign (expr, repl); } gimple_set_location (stmt, loc); if (insert_after) gsi_insert_after (gsi, stmt, GSI_NEW_STMT); else gsi_insert_before (gsi, stmt, GSI_SAME_STMT); update_stmt (stmt); sra_stats.subtree_copies++; } if (access->first_child) generate_subtree_copies (access->first_child, agg, top_offset, start_offset, chunk_size, gsi, write, insert_after, loc); access = access->next_sibling; } while (access); } /* Assign zero to all scalar replacements in an access subtree. ACCESS is the the root of the subtree to be processed. GSI is the statement iterator used for inserting statements which are added after the current statement if INSERT_AFTER is true or before it otherwise. */ static void init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi, bool insert_after, location_t loc) { struct access *child; if (access->grp_to_be_replaced) { gimple stmt; stmt = gimple_build_assign (get_access_replacement (access), build_zero_cst (access->type)); if (insert_after) gsi_insert_after (gsi, stmt, GSI_NEW_STMT); else gsi_insert_before (gsi, stmt, GSI_SAME_STMT); update_stmt (stmt); gimple_set_location (stmt, loc); } for (child = access->first_child; child; child = child->next_sibling) init_subtree_with_zero (child, gsi, insert_after, loc); } /* Search for an access representative for the given expression EXPR and return it or NULL if it cannot be found. */ static struct access * get_access_for_expr (tree expr) { HOST_WIDE_INT offset, size, max_size; tree base; /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of a different size than the size of its argument and we need the latter one. */ if (TREE_CODE (expr) == VIEW_CONVERT_EXPR) expr = TREE_OPERAND (expr, 0); base = get_ref_base_and_extent (expr, &offset, &size, &max_size); if (max_size == -1 || !DECL_P (base)) return NULL; if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base))) return NULL; return get_var_base_offset_size_access (base, offset, max_size); } /* Replace the expression EXPR with a scalar replacement if there is one and generate other statements to do type conversion or subtree copying if necessary. GSI is used to place newly created statements, WRITE is true if the expression is being written to (it is on a LHS of a statement or output in an assembly statement). */ static bool sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write) { location_t loc; struct access *access; tree type, bfr; if (TREE_CODE (*expr) == BIT_FIELD_REF) { bfr = *expr; expr = &TREE_OPERAND (*expr, 0); } else bfr = NULL_TREE; if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR) expr = &TREE_OPERAND (*expr, 0); access = get_access_for_expr (*expr); if (!access) return false; type = TREE_TYPE (*expr); loc = gimple_location (gsi_stmt (*gsi)); if (access->grp_to_be_replaced) { tree repl = get_access_replacement (access); /* If we replace a non-register typed access simply use the original access expression to extract the scalar component afterwards. This happens if scalarizing a function return value or parameter like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and gcc.c-torture/compile/20011217-1.c. We also want to use this when accessing a complex or vector which can be accessed as a different type too, potentially creating a need for type conversion (see PR42196) and when scalarized unions are involved in assembler statements (see PR42398). */ if (!useless_type_conversion_p (type, access->type)) { tree ref; ref = build_ref_for_model (loc, access->base, access->offset, access, NULL, false); if (write) { gimple stmt; if (access->grp_partial_lhs) ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE, false, GSI_NEW_STMT); stmt = gimple_build_assign (repl, ref); gimple_set_location (stmt, loc); gsi_insert_after (gsi, stmt, GSI_NEW_STMT); } else { gimple stmt; if (access->grp_partial_lhs) repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE, true, GSI_SAME_STMT); stmt = gimple_build_assign (ref, repl); gimple_set_location (stmt, loc); gsi_insert_before (gsi, stmt, GSI_SAME_STMT); } } else *expr = repl; sra_stats.exprs++; } if (access->first_child) { HOST_WIDE_INT start_offset, chunk_size; if (bfr && host_integerp (TREE_OPERAND (bfr, 1), 1) && host_integerp (TREE_OPERAND (bfr, 2), 1)) { chunk_size = tree_low_cst (TREE_OPERAND (bfr, 1), 1); start_offset = access->offset + tree_low_cst (TREE_OPERAND (bfr, 2), 1); } else start_offset = chunk_size = 0; generate_subtree_copies (access->first_child, access->base, 0, start_offset, chunk_size, gsi, write, write, loc); } return true; } /* Where scalar replacements of the RHS have been written to when a replacement of a LHS of an assigments cannot be direclty loaded from a replacement of the RHS. */ enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */ SRA_UDH_RIGHT, /* Data flushed to the RHS. */ SRA_UDH_LEFT }; /* Data flushed to the LHS. */ /* Store all replacements in the access tree rooted in TOP_RACC either to their base aggregate if there are unscalarized data or directly to LHS of the statement that is pointed to by GSI otherwise. */ static enum unscalarized_data_handling handle_unscalarized_data_in_subtree (struct access *top_racc, gimple_stmt_iterator *gsi) { if (top_racc->grp_unscalarized_data) { generate_subtree_copies (top_racc->first_child, top_racc->base, 0, 0, 0, gsi, false, false, gimple_location (gsi_stmt (*gsi))); return SRA_UDH_RIGHT; } else { tree lhs = gimple_assign_lhs (gsi_stmt (*gsi)); generate_subtree_copies (top_racc->first_child, lhs, top_racc->offset, 0, 0, gsi, false, false, gimple_location (gsi_stmt (*gsi))); return SRA_UDH_LEFT; } } /* Try to generate statements to load all sub-replacements in an access subtree formed by children of LACC from scalar replacements in the TOP_RACC subtree. If that is not possible, refresh the TOP_RACC base aggregate and load the accesses from it. LEFT_OFFSET is the offset of the left whole subtree being copied. NEW_GSI is stmt iterator used for statement insertions after the original assignment, OLD_GSI is used to insert statements before the assignment. *REFRESHED keeps the information whether we have needed to refresh replacements of the LHS and from which side of the assignments this takes place. */ static void load_assign_lhs_subreplacements (struct access *lacc, struct access *top_racc, HOST_WIDE_INT left_offset, gimple_stmt_iterator *old_gsi, gimple_stmt_iterator *new_gsi, enum unscalarized_data_handling *refreshed) { location_t loc = gimple_location (gsi_stmt (*old_gsi)); for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling) { if (lacc->grp_to_be_replaced) { struct access *racc; HOST_WIDE_INT offset = lacc->offset - left_offset + top_racc->offset; gimple stmt; tree rhs; racc = find_access_in_subtree (top_racc, offset, lacc->size); if (racc && racc->grp_to_be_replaced) { rhs = get_access_replacement (racc); if (!useless_type_conversion_p (lacc->type, racc->type)) rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, lacc->type, rhs); if (racc->grp_partial_lhs && lacc->grp_partial_lhs) rhs = force_gimple_operand_gsi (old_gsi, rhs, true, NULL_TREE, true, GSI_SAME_STMT); } else { /* No suitable access on the right hand side, need to load from the aggregate. See if we have to update it first... */ if (*refreshed == SRA_UDH_NONE) *refreshed = handle_unscalarized_data_in_subtree (top_racc, old_gsi); if (*refreshed == SRA_UDH_LEFT) rhs = build_ref_for_model (loc, lacc->base, lacc->offset, lacc, new_gsi, true); else rhs = build_ref_for_model (loc, top_racc->base, offset, lacc, new_gsi, true); if (lacc->grp_partial_lhs) rhs = force_gimple_operand_gsi (new_gsi, rhs, true, NULL_TREE, false, GSI_NEW_STMT); } stmt = gimple_build_assign (get_access_replacement (lacc), rhs); gsi_insert_after (new_gsi, stmt, GSI_NEW_STMT); gimple_set_location (stmt, loc); update_stmt (stmt); sra_stats.subreplacements++; } else if (*refreshed == SRA_UDH_NONE && lacc->grp_read && !lacc->grp_covered) *refreshed = handle_unscalarized_data_in_subtree (top_racc, old_gsi); if (lacc->first_child) load_assign_lhs_subreplacements (lacc, top_racc, left_offset, old_gsi, new_gsi, refreshed); } } /* Result code for SRA assignment modification. */ enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */ SRA_AM_MODIFIED, /* stmt changed but not removed */ SRA_AM_REMOVED }; /* stmt eliminated */ /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer to the assignment and GSI is the statement iterator pointing at it. Returns the same values as sra_modify_assign. */ static enum assignment_mod_result sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi) { tree lhs = gimple_assign_lhs (*stmt); struct access *acc; location_t loc; acc = get_access_for_expr (lhs); if (!acc) return SRA_AM_NONE; loc = gimple_location (*stmt); if (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt))) > 0) { /* I have never seen this code path trigger but if it can happen the following should handle it gracefully. */ if (access_has_children_p (acc)) generate_subtree_copies (acc->first_child, acc->base, 0, 0, 0, gsi, true, true, loc); return SRA_AM_MODIFIED; } if (acc->grp_covered) { init_subtree_with_zero (acc, gsi, false, loc); unlink_stmt_vdef (*stmt); gsi_remove (gsi, true); return SRA_AM_REMOVED; } else { init_subtree_with_zero (acc, gsi, true, loc); return SRA_AM_MODIFIED; } } /* Create and return a new suitable default definition SSA_NAME for RACC which is an access describing an uninitialized part of an aggregate that is being loaded. */ static tree get_repl_default_def_ssa_name (struct access *racc) { tree repl, decl; decl = get_unrenamed_access_replacement (racc); repl = gimple_default_def (cfun, decl); if (!repl) { repl = make_ssa_name (decl, gimple_build_nop ()); set_default_def (decl, repl); } return repl; } /* Return true if REF has a COMPONENT_REF with a bit-field field declaration somewhere in it. */ static inline bool contains_bitfld_comp_ref_p (const_tree ref) { while (handled_component_p (ref)) { if (TREE_CODE (ref) == COMPONENT_REF && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))) return true; ref = TREE_OPERAND (ref, 0); } return false; } /* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a bit-field field declaration somewhere in it. */ static inline bool contains_vce_or_bfcref_p (const_tree ref) { while (handled_component_p (ref)) { if (TREE_CODE (ref) == VIEW_CONVERT_EXPR || (TREE_CODE (ref) == COMPONENT_REF && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))) return true; ref = TREE_OPERAND (ref, 0); } return false; } /* Examine both sides of the assignment statement pointed to by STMT, replace them with a scalare replacement if there is one and generate copying of replacements if scalarized aggregates have been used in the assignment. GSI is used to hold generated statements for type conversions and subtree copying. */ static enum assignment_mod_result sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi) { struct access *lacc, *racc; tree lhs, rhs; bool modify_this_stmt = false; bool force_gimple_rhs = false; location_t loc; gimple_stmt_iterator orig_gsi = *gsi; if (!gimple_assign_single_p (*stmt)) return SRA_AM_NONE; lhs = gimple_assign_lhs (*stmt); rhs = gimple_assign_rhs1 (*stmt); if (TREE_CODE (rhs) == CONSTRUCTOR) return sra_modify_constructor_assign (stmt, gsi); if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF) { modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (*stmt), gsi, false); modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (*stmt), gsi, true); return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE; } lacc = get_access_for_expr (lhs); racc = get_access_for_expr (rhs); if (!lacc && !racc) return SRA_AM_NONE; loc = gimple_location (*stmt); if (lacc && lacc->grp_to_be_replaced) { lhs = get_access_replacement (lacc); gimple_assign_set_lhs (*stmt, lhs); modify_this_stmt = true; if (lacc->grp_partial_lhs) force_gimple_rhs = true; sra_stats.exprs++; } if (racc && racc->grp_to_be_replaced) { rhs = get_access_replacement (racc); modify_this_stmt = true; if (racc->grp_partial_lhs) force_gimple_rhs = true; sra_stats.exprs++; } if (modify_this_stmt) { if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs))) { /* If we can avoid creating a VIEW_CONVERT_EXPR do so. ??? This should move to fold_stmt which we simply should call after building a VIEW_CONVERT_EXPR here. */ if (AGGREGATE_TYPE_P (TREE_TYPE (lhs)) && !contains_bitfld_comp_ref_p (lhs) && !access_has_children_p (lacc)) { lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false); gimple_assign_set_lhs (*stmt, lhs); } else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs)) && !contains_vce_or_bfcref_p (rhs) && !access_has_children_p (racc)) rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false); if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs))) { rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs); if (is_gimple_reg_type (TREE_TYPE (lhs)) && TREE_CODE (lhs) != SSA_NAME) force_gimple_rhs = true; } } } /* From this point on, the function deals with assignments in between aggregates when at least one has scalar reductions of some of its components. There are three possible scenarios: Both the LHS and RHS have to-be-scalarized components, 2) only the RHS has or 3) only the LHS has. In the first case, we would like to load the LHS components from RHS components whenever possible. If that is not possible, we would like to read it directly from the RHS (after updating it by storing in it its own components). If there are some necessary unscalarized data in the LHS, those will be loaded by the original assignment too. If neither of these cases happen, the original statement can be removed. Most of this is done by load_assign_lhs_subreplacements. In the second case, we would like to store all RHS scalarized components directly into LHS and if they cover the aggregate completely, remove the statement too. In the third case, we want the LHS components to be loaded directly from the RHS (DSE will remove the original statement if it becomes redundant). This is a bit complex but manageable when types match and when unions do not cause confusion in a way that we cannot really load a component of LHS from the RHS or vice versa (the access representing this level can have subaccesses that are accessible only through a different union field at a higher level - different from the one used in the examined expression). Unions are fun. Therefore, I specially handle a fourth case, happening when there is a specific type cast or it is impossible to locate a scalarized subaccess on the other side of the expression. If that happens, I simply "refresh" the RHS by storing in it is scalarized components leave the original statement there to do the copying and then load the scalar replacements of the LHS. This is what the first branch does. */ if (modify_this_stmt || gimple_has_volatile_ops (*stmt) || contains_vce_or_bfcref_p (rhs) || contains_vce_or_bfcref_p (lhs)) { if (access_has_children_p (racc)) generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0, gsi, false, false, loc); if (access_has_children_p (lacc)) generate_subtree_copies (lacc->first_child, lacc->base, 0, 0, 0, gsi, true, true, loc); sra_stats.separate_lhs_rhs_handling++; } else { if (access_has_children_p (lacc) && access_has_children_p (racc)) { gimple_stmt_iterator orig_gsi = *gsi; enum unscalarized_data_handling refreshed; if (lacc->grp_read && !lacc->grp_covered) refreshed = handle_unscalarized_data_in_subtree (racc, gsi); else refreshed = SRA_UDH_NONE; load_assign_lhs_subreplacements (lacc, racc, lacc->offset, &orig_gsi, gsi, &refreshed); if (refreshed != SRA_UDH_RIGHT) { gsi_next (gsi); unlink_stmt_vdef (*stmt); gsi_remove (&orig_gsi, true); sra_stats.deleted++; return SRA_AM_REMOVED; } } else { if (racc) { if (!racc->grp_to_be_replaced && !racc->grp_unscalarized_data) { if (dump_file) { fprintf (dump_file, "Removing load: "); print_gimple_stmt (dump_file, *stmt, 0, 0); } if (TREE_CODE (lhs) == SSA_NAME) { rhs = get_repl_default_def_ssa_name (racc); if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs))) rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs); } else { if (racc->first_child) generate_subtree_copies (racc->first_child, lhs, racc->offset, 0, 0, gsi, false, false, loc); gcc_assert (*stmt == gsi_stmt (*gsi)); unlink_stmt_vdef (*stmt); gsi_remove (gsi, true); sra_stats.deleted++; return SRA_AM_REMOVED; } } else if (racc->first_child) generate_subtree_copies (racc->first_child, lhs, racc->offset, 0, 0, gsi, false, true, loc); } if (access_has_children_p (lacc)) generate_subtree_copies (lacc->first_child, rhs, lacc->offset, 0, 0, gsi, true, true, loc); } } /* This gimplification must be done after generate_subtree_copies, lest we insert the subtree copies in the middle of the gimplified sequence. */ if (force_gimple_rhs) rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE, true, GSI_SAME_STMT); if (gimple_assign_rhs1 (*stmt) != rhs) { modify_this_stmt = true; gimple_assign_set_rhs_from_tree (&orig_gsi, rhs); gcc_assert (*stmt == gsi_stmt (orig_gsi)); } return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE; } /* Traverse the function body and all modifications as decided in analyze_all_variable_accesses. Return true iff the CFG has been changed. */ static bool sra_modify_function_body (void) { bool cfg_changed = false; basic_block bb; FOR_EACH_BB (bb) { gimple_stmt_iterator gsi = gsi_start_bb (bb); while (!gsi_end_p (gsi)) { gimple stmt = gsi_stmt (gsi); enum assignment_mod_result assign_result; bool modified = false, deleted = false; tree *t; unsigned i; switch (gimple_code (stmt)) { case GIMPLE_RETURN: t = gimple_return_retval_ptr (stmt); if (*t != NULL_TREE) modified |= sra_modify_expr (t, &gsi, false); break; case GIMPLE_ASSIGN: assign_result = sra_modify_assign (&stmt, &gsi); modified |= assign_result == SRA_AM_MODIFIED; deleted = assign_result == SRA_AM_REMOVED; break; case GIMPLE_CALL: /* Operands must be processed before the lhs. */ for (i = 0; i < gimple_call_num_args (stmt); i++) { t = gimple_call_arg_ptr (stmt, i); modified |= sra_modify_expr (t, &gsi, false); } if (gimple_call_lhs (stmt)) { t = gimple_call_lhs_ptr (stmt); modified |= sra_modify_expr (t, &gsi, true); } break; case GIMPLE_ASM: for (i = 0; i < gimple_asm_ninputs (stmt); i++) { t = &TREE_VALUE (gimple_asm_input_op (stmt, i)); modified |= sra_modify_expr (t, &gsi, false); } for (i = 0; i < gimple_asm_noutputs (stmt); i++) { t = &TREE_VALUE (gimple_asm_output_op (stmt, i)); modified |= sra_modify_expr (t, &gsi, true); } break; default: break; } if (modified) { update_stmt (stmt); if (maybe_clean_eh_stmt (stmt) && gimple_purge_dead_eh_edges (gimple_bb (stmt))) cfg_changed = true; } if (!deleted) gsi_next (&gsi); } } return cfg_changed; } /* Generate statements initializing scalar replacements of parts of function parameters. */ static void initialize_parameter_reductions (void) { gimple_stmt_iterator gsi; gimple_seq seq = NULL; tree parm; for (parm = DECL_ARGUMENTS (current_function_decl); parm; parm = DECL_CHAIN (parm)) { VEC (access_p, heap) *access_vec; struct access *access; if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm))) continue; access_vec = get_base_access_vector (parm); if (!access_vec) continue; if (!seq) { seq = gimple_seq_alloc (); gsi = gsi_start (seq); } for (access = VEC_index (access_p, access_vec, 0); access; access = access->next_grp) generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true, EXPR_LOCATION (parm)); } if (seq) gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR), seq); } /* The "main" function of intraprocedural SRA passes. Runs the analysis and if it reveals there are components of some aggregates to be scalarized, it runs the required transformations. */ static unsigned int perform_intra_sra (void) { int ret = 0; sra_initialize (); if (!find_var_candidates ()) goto out; if (!scan_function ()) goto out; if (!analyze_all_variable_accesses ()) goto out; if (sra_modify_function_body ()) ret = TODO_update_ssa | TODO_cleanup_cfg; else ret = TODO_update_ssa; initialize_parameter_reductions (); statistics_counter_event (cfun, "Scalar replacements created", sra_stats.replacements); statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs); statistics_counter_event (cfun, "Subtree copy stmts", sra_stats.subtree_copies); statistics_counter_event (cfun, "Subreplacement stmts", sra_stats.subreplacements); statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted); statistics_counter_event (cfun, "Separate LHS and RHS handling", sra_stats.separate_lhs_rhs_handling); out: sra_deinitialize (); return ret; } /* Perform early intraprocedural SRA. */ static unsigned int early_intra_sra (void) { sra_mode = SRA_MODE_EARLY_INTRA; return perform_intra_sra (); } /* Perform "late" intraprocedural SRA. */ static unsigned int late_intra_sra (void) { sra_mode = SRA_MODE_INTRA; return perform_intra_sra (); } static bool gate_intra_sra (void) { return flag_tree_sra != 0 && dbg_cnt (tree_sra); } struct gimple_opt_pass pass_sra_early = { { GIMPLE_PASS, "esra", /* name */ gate_intra_sra, /* gate */ early_intra_sra, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_TREE_SRA, /* tv_id */ PROP_cfg | PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_update_ssa | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */ } }; struct gimple_opt_pass pass_sra = { { GIMPLE_PASS, "sra", /* name */ gate_intra_sra, /* gate */ late_intra_sra, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_TREE_SRA, /* tv_id */ PROP_cfg | PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ TODO_update_address_taken, /* todo_flags_start */ TODO_update_ssa | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */ } }; /* Return true iff PARM (which must be a parm_decl) is an unused scalar parameter. */ static bool is_unused_scalar_param (tree parm) { tree name; return (is_gimple_reg (parm) && (!(name = gimple_default_def (cfun, parm)) || has_zero_uses (name))); } /* Scan immediate uses of a default definition SSA name of a parameter PARM and examine whether there are any direct or otherwise infeasible ones. If so, return true, otherwise return false. PARM must be a gimple register with a non-NULL default definition. */ static bool ptr_parm_has_direct_uses (tree parm) { imm_use_iterator ui; gimple stmt; tree name = gimple_default_def (cfun, parm); bool ret = false; FOR_EACH_IMM_USE_STMT (stmt, ui, name) { int uses_ok = 0; use_operand_p use_p; if (is_gimple_debug (stmt)) continue; /* Valid uses include dereferences on the lhs and the rhs. */ if (gimple_has_lhs (stmt)) { tree lhs = gimple_get_lhs (stmt); while (handled_component_p (lhs)) lhs = TREE_OPERAND (lhs, 0); if (TREE_CODE (lhs) == MEM_REF && TREE_OPERAND (lhs, 0) == name && integer_zerop (TREE_OPERAND (lhs, 1)) && types_compatible_p (TREE_TYPE (lhs), TREE_TYPE (TREE_TYPE (name))) && !TREE_THIS_VOLATILE (lhs)) uses_ok++; } if (gimple_assign_single_p (stmt)) { tree rhs = gimple_assign_rhs1 (stmt); while (handled_component_p (rhs)) rhs = TREE_OPERAND (rhs, 0); if (TREE_CODE (rhs) == MEM_REF && TREE_OPERAND (rhs, 0) == name && integer_zerop (TREE_OPERAND (rhs, 1)) && types_compatible_p (TREE_TYPE (rhs), TREE_TYPE (TREE_TYPE (name))) && !TREE_THIS_VOLATILE (rhs)) uses_ok++; } else if (is_gimple_call (stmt)) { unsigned i; for (i = 0; i < gimple_call_num_args (stmt); ++i) { tree arg = gimple_call_arg (stmt, i); while (handled_component_p (arg)) arg = TREE_OPERAND (arg, 0); if (TREE_CODE (arg) == MEM_REF && TREE_OPERAND (arg, 0) == name && integer_zerop (TREE_OPERAND (arg, 1)) && types_compatible_p (TREE_TYPE (arg), TREE_TYPE (TREE_TYPE (name))) && !TREE_THIS_VOLATILE (arg)) uses_ok++; } } /* If the number of valid uses does not match the number of uses in this stmt there is an unhandled use. */ FOR_EACH_IMM_USE_ON_STMT (use_p, ui) --uses_ok; if (uses_ok != 0) ret = true; if (ret) BREAK_FROM_IMM_USE_STMT (ui); } return ret; } /* Identify candidates for reduction for IPA-SRA based on their type and mark them in candidate_bitmap. Note that these do not necessarily include parameter which are unused and thus can be removed. Return true iff any such candidate has been found. */ static bool find_param_candidates (void) { tree parm; int count = 0; bool ret = false; const char *msg; for (parm = DECL_ARGUMENTS (current_function_decl); parm; parm = DECL_CHAIN (parm)) { tree type = TREE_TYPE (parm); count++; if (TREE_THIS_VOLATILE (parm) || TREE_ADDRESSABLE (parm) || (!is_gimple_reg_type (type) && is_va_list_type (type))) continue; if (is_unused_scalar_param (parm)) { ret = true; continue; } if (POINTER_TYPE_P (type)) { type = TREE_TYPE (type); if (TREE_CODE (type) == FUNCTION_TYPE || TYPE_VOLATILE (type) || (TREE_CODE (type) == ARRAY_TYPE && TYPE_NONALIASED_COMPONENT (type)) || !is_gimple_reg (parm) || is_va_list_type (type) || ptr_parm_has_direct_uses (parm)) continue; } else if (!AGGREGATE_TYPE_P (type)) continue; if (!COMPLETE_TYPE_P (type) || !host_integerp (TYPE_SIZE (type), 1) || tree_low_cst (TYPE_SIZE (type), 1) == 0 || (AGGREGATE_TYPE_P (type) && type_internals_preclude_sra_p (type, &msg))) continue; bitmap_set_bit (candidate_bitmap, DECL_UID (parm)); ret = true; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm)); print_generic_expr (dump_file, parm, 0); fprintf (dump_file, "\n"); } } func_param_count = count; return ret; } /* Callback of walk_aliased_vdefs, marks the access passed as DATA as maybe_modified. */ static bool mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED, void *data) { struct access *repr = (struct access *) data; repr->grp_maybe_modified = 1; return true; } /* Analyze what representatives (in linked lists accessible from REPRESENTATIVES) can be modified by side effects of statements in the current function. */ static void analyze_modified_params (VEC (access_p, heap) *representatives) { int i; for (i = 0; i < func_param_count; i++) { struct access *repr; for (repr = VEC_index (access_p, representatives, i); repr; repr = repr->next_grp) { struct access *access; bitmap visited; ao_ref ar; if (no_accesses_p (repr)) continue; if (!POINTER_TYPE_P (TREE_TYPE (repr->base)) || repr->grp_maybe_modified) continue; ao_ref_init (&ar, repr->expr); visited = BITMAP_ALLOC (NULL); for (access = repr; access; access = access->next_sibling) { /* All accesses are read ones, otherwise grp_maybe_modified would be trivially set. */ walk_aliased_vdefs (&ar, gimple_vuse (access->stmt), mark_maybe_modified, repr, &visited); if (repr->grp_maybe_modified) break; } BITMAP_FREE (visited); } } } /* Propagate distances in bb_dereferences in the opposite direction than the control flow edges, in each step storing the maximum of the current value and the minimum of all successors. These steps are repeated until the table stabilizes. Note that BBs which might terminate the functions (according to final_bbs bitmap) never updated in this way. */ static void propagate_dereference_distances (void) { VEC (basic_block, heap) *queue; basic_block bb; queue = VEC_alloc (basic_block, heap, last_basic_block_for_function (cfun)); VEC_quick_push (basic_block, queue, ENTRY_BLOCK_PTR); FOR_EACH_BB (bb) { VEC_quick_push (basic_block, queue, bb); bb->aux = bb; } while (!VEC_empty (basic_block, queue)) { edge_iterator ei; edge e; bool change = false; int i; bb = VEC_pop (basic_block, queue); bb->aux = NULL; if (bitmap_bit_p (final_bbs, bb->index)) continue; for (i = 0; i < func_param_count; i++) { int idx = bb->index * func_param_count + i; bool first = true; HOST_WIDE_INT inh = 0; FOR_EACH_EDGE (e, ei, bb->succs) { int succ_idx = e->dest->index * func_param_count + i; if (e->src == EXIT_BLOCK_PTR) continue; if (first) { first = false; inh = bb_dereferences [succ_idx]; } else if (bb_dereferences [succ_idx] < inh) inh = bb_dereferences [succ_idx]; } if (!first && bb_dereferences[idx] < inh) { bb_dereferences[idx] = inh; change = true; } } if (change && !bitmap_bit_p (final_bbs, bb->index)) FOR_EACH_EDGE (e, ei, bb->preds) { if (e->src->aux) continue; e->src->aux = e->src; VEC_quick_push (basic_block, queue, e->src); } } VEC_free (basic_block, heap, queue); } /* Dump a dereferences TABLE with heading STR to file F. */ static void dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table) { basic_block bb; fprintf (dump_file, str); FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) { fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index)); if (bb != EXIT_BLOCK_PTR) { int i; for (i = 0; i < func_param_count; i++) { int idx = bb->index * func_param_count + i; fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]); } } fprintf (f, "\n"); } fprintf (dump_file, "\n"); } /* Determine what (parts of) parameters passed by reference that are not assigned to are not certainly dereferenced in this function and thus the dereferencing cannot be safely moved to the caller without potentially introducing a segfault. Mark such REPRESENTATIVES as grp_not_necessarilly_dereferenced. The dereferenced maximum "distance," i.e. the offset + size of the accessed part is calculated rather than simple booleans are calculated for each pointer parameter to handle cases when only a fraction of the whole aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for an example). The maximum dereference distances for each pointer parameter and BB are already stored in bb_dereference. This routine simply propagates these values upwards by propagate_dereference_distances and then compares the distances of individual parameters in the ENTRY BB to the equivalent distances of each representative of a (fraction of a) parameter. */ static void analyze_caller_dereference_legality (VEC (access_p, heap) *representatives) { int i; if (dump_file && (dump_flags & TDF_DETAILS)) dump_dereferences_table (dump_file, "Dereference table before propagation:\n", bb_dereferences); propagate_dereference_distances (); if (dump_file && (dump_flags & TDF_DETAILS)) dump_dereferences_table (dump_file, "Dereference table after propagation:\n", bb_dereferences); for (i = 0; i < func_param_count; i++) { struct access *repr = VEC_index (access_p, representatives, i); int idx = ENTRY_BLOCK_PTR->index * func_param_count + i; if (!repr || no_accesses_p (repr)) continue; do { if ((repr->offset + repr->size) > bb_dereferences[idx]) repr->grp_not_necessarilly_dereferenced = 1; repr = repr->next_grp; } while (repr); } } /* Return the representative access for the parameter declaration PARM if it is a scalar passed by reference which is not written to and the pointer value is not used directly. Thus, if it is legal to dereference it in the caller and we can rule out modifications through aliases, such parameter should be turned into one passed by value. Return NULL otherwise. */ static struct access * unmodified_by_ref_scalar_representative (tree parm) { int i, access_count; struct access *repr; VEC (access_p, heap) *access_vec; access_vec = get_base_access_vector (parm); gcc_assert (access_vec); repr = VEC_index (access_p, access_vec, 0); if (repr->write) return NULL; repr->group_representative = repr; access_count = VEC_length (access_p, access_vec); for (i = 1; i < access_count; i++) { struct access *access = VEC_index (access_p, access_vec, i); if (access->write) return NULL; access->group_representative = repr; access->next_sibling = repr->next_sibling; repr->next_sibling = access; } repr->grp_read = 1; repr->grp_scalar_ptr = 1; return repr; } /* Return true iff this access precludes IPA-SRA of the parameter it is associated with. */ static bool access_precludes_ipa_sra_p (struct access *access) { /* Avoid issues such as the second simple testcase in PR 42025. The problem is incompatible assign in a call statement (and possibly even in asm statements). This can be relaxed by using a new temporary but only for non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In intraprocedural SRA we deal with this by keeping the old aggregate around, something we cannot do in IPA-SRA.) */ if (access->write && (is_gimple_call (access->stmt) || gimple_code (access->stmt) == GIMPLE_ASM)) return true; if (STRICT_ALIGNMENT && tree_non_aligned_mem_p (access->expr, TYPE_ALIGN (access->type))) return true; return false; } /* Sort collected accesses for parameter PARM, identify representatives for each accessed region and link them together. Return NULL if there are different but overlapping accesses, return the special ptr value meaning there are no accesses for this parameter if that is the case and return the first representative otherwise. Set *RO_GRP if there is a group of accesses with only read (i.e. no write) accesses. */ static struct access * splice_param_accesses (tree parm, bool *ro_grp) { int i, j, access_count, group_count; int agg_size, total_size = 0; struct access *access, *res, **prev_acc_ptr = &res; VEC (access_p, heap) *access_vec; access_vec = get_base_access_vector (parm); if (!access_vec) return &no_accesses_representant; access_count = VEC_length (access_p, access_vec); VEC_qsort (access_p, access_vec, compare_access_positions); i = 0; total_size = 0; group_count = 0; while (i < access_count) { bool modification; tree a1_alias_type; access = VEC_index (access_p, access_vec, i); modification = access->write; if (access_precludes_ipa_sra_p (access)) return NULL; a1_alias_type = reference_alias_ptr_type (access->expr); /* Access is about to become group representative unless we find some nasty overlap which would preclude us from breaking this parameter apart. */ j = i + 1; while (j < access_count) { struct access *ac2 = VEC_index (access_p, access_vec, j); if (ac2->offset != access->offset) { /* All or nothing law for parameters. */ if (access->offset + access->size > ac2->offset) return NULL; else break; } else if (ac2->size != access->size) return NULL; if (access_precludes_ipa_sra_p (ac2) || (ac2->type != access->type && (TREE_ADDRESSABLE (ac2->type) || TREE_ADDRESSABLE (access->type))) || (reference_alias_ptr_type (ac2->expr) != a1_alias_type)) return NULL; modification |= ac2->write; ac2->group_representative = access; ac2->next_sibling = access->next_sibling; access->next_sibling = ac2; j++; } group_count++; access->grp_maybe_modified = modification; if (!modification) *ro_grp = true; *prev_acc_ptr = access; prev_acc_ptr = &access->next_grp; total_size += access->size; i = j; } if (POINTER_TYPE_P (TREE_TYPE (parm))) agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1); else agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1); if (total_size >= agg_size) return NULL; gcc_assert (group_count > 0); return res; } /* Decide whether parameters with representative accesses given by REPR should be reduced into components. */ static int decide_one_param_reduction (struct access *repr) { int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit; bool by_ref; tree parm; parm = repr->base; cur_parm_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1); gcc_assert (cur_parm_size > 0); if (POINTER_TYPE_P (TREE_TYPE (parm))) { by_ref = true; agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1); } else { by_ref = false; agg_size = cur_parm_size; } if (dump_file) { struct access *acc; fprintf (dump_file, "Evaluating PARAM group sizes for "); print_generic_expr (dump_file, parm, 0); fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm)); for (acc = repr; acc; acc = acc->next_grp) dump_access (dump_file, acc, true); } total_size = 0; new_param_count = 0; for (; repr; repr = repr->next_grp) { gcc_assert (parm == repr->base); /* Taking the address of a non-addressable field is verboten. */ if (by_ref && repr->non_addressable) return 0; /* Do not decompose a non-BLKmode param in a way that would create BLKmode params. Especially for by-reference passing (thus, pointer-type param) this is hardly worthwhile. */ if (DECL_MODE (parm) != BLKmode && TYPE_MODE (repr->type) == BLKmode) return 0; if (!by_ref || (!repr->grp_maybe_modified && !repr->grp_not_necessarilly_dereferenced)) total_size += repr->size; else total_size += cur_parm_size; new_param_count++; } gcc_assert (new_param_count > 0); if (optimize_function_for_size_p (cfun)) parm_size_limit = cur_parm_size; else parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR) * cur_parm_size); if (total_size < agg_size && total_size <= parm_size_limit) { if (dump_file) fprintf (dump_file, " ....will be split into %i components\n", new_param_count); return new_param_count; } else return 0; } /* The order of the following enums is important, we need to do extra work for UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */ enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES, MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES }; /* Identify representatives of all accesses to all candidate parameters for IPA-SRA. Return result based on what representatives have been found. */ static enum ipa_splicing_result splice_all_param_accesses (VEC (access_p, heap) **representatives) { enum ipa_splicing_result result = NO_GOOD_ACCESS; tree parm; struct access *repr; *representatives = VEC_alloc (access_p, heap, func_param_count); for (parm = DECL_ARGUMENTS (current_function_decl); parm; parm = DECL_CHAIN (parm)) { if (is_unused_scalar_param (parm)) { VEC_quick_push (access_p, *representatives, &no_accesses_representant); if (result == NO_GOOD_ACCESS) result = UNUSED_PARAMS; } else if (POINTER_TYPE_P (TREE_TYPE (parm)) && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm))) && bitmap_bit_p (candidate_bitmap, DECL_UID (parm))) { repr = unmodified_by_ref_scalar_representative (parm); VEC_quick_push (access_p, *representatives, repr); if (repr) result = UNMODIF_BY_REF_ACCESSES; } else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm))) { bool ro_grp = false; repr = splice_param_accesses (parm, &ro_grp); VEC_quick_push (access_p, *representatives, repr); if (repr && !no_accesses_p (repr)) { if (POINTER_TYPE_P (TREE_TYPE (parm))) { if (ro_grp) result = UNMODIF_BY_REF_ACCESSES; else if (result < MODIF_BY_REF_ACCESSES) result = MODIF_BY_REF_ACCESSES; } else if (result < BY_VAL_ACCESSES) result = BY_VAL_ACCESSES; } else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS)) result = UNUSED_PARAMS; } else VEC_quick_push (access_p, *representatives, NULL); } if (result == NO_GOOD_ACCESS) { VEC_free (access_p, heap, *representatives); *representatives = NULL; return NO_GOOD_ACCESS; } return result; } /* Return the index of BASE in PARMS. Abort if it is not found. */ static inline int get_param_index (tree base, VEC(tree, heap) *parms) { int i, len; len = VEC_length (tree, parms); for (i = 0; i < len; i++) if (VEC_index (tree, parms, i) == base) return i; gcc_unreachable (); } /* Convert the decisions made at the representative level into compact parameter adjustments. REPRESENTATIVES are pointers to first representatives of each param accesses, ADJUSTMENTS_COUNT is the expected final number of adjustments. */ static ipa_parm_adjustment_vec turn_representatives_into_adjustments (VEC (access_p, heap) *representatives, int adjustments_count) { VEC (tree, heap) *parms; ipa_parm_adjustment_vec adjustments; tree parm; int i; gcc_assert (adjustments_count > 0); parms = ipa_get_vector_of_formal_parms (current_function_decl); adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, adjustments_count); parm = DECL_ARGUMENTS (current_function_decl); for (i = 0; i < func_param_count; i++, parm = DECL_CHAIN (parm)) { struct access *repr = VEC_index (access_p, representatives, i); if (!repr || no_accesses_p (repr)) { struct ipa_parm_adjustment *adj; adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL); memset (adj, 0, sizeof (*adj)); adj->base_index = get_param_index (parm, parms); adj->base = parm; if (!repr) adj->copy_param = 1; else adj->remove_param = 1; } else { struct ipa_parm_adjustment *adj; int index = get_param_index (parm, parms); for (; repr; repr = repr->next_grp) { adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL); memset (adj, 0, sizeof (*adj)); gcc_assert (repr->base == parm); adj->base_index = index; adj->base = repr->base; adj->type = repr->type; adj->alias_ptr_type = reference_alias_ptr_type (repr->expr); adj->offset = repr->offset; adj->by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base)) && (repr->grp_maybe_modified || repr->grp_not_necessarilly_dereferenced)); } } } VEC_free (tree, heap, parms); return adjustments; } /* Analyze the collected accesses and produce a plan what to do with the parameters in the form of adjustments, NULL meaning nothing. */ static ipa_parm_adjustment_vec analyze_all_param_acesses (void) { enum ipa_splicing_result repr_state; bool proceed = false; int i, adjustments_count = 0; VEC (access_p, heap) *representatives; ipa_parm_adjustment_vec adjustments; repr_state = splice_all_param_accesses (&representatives); if (repr_state == NO_GOOD_ACCESS) return NULL; /* If there are any parameters passed by reference which are not modified directly, we need to check whether they can be modified indirectly. */ if (repr_state == UNMODIF_BY_REF_ACCESSES) { analyze_caller_dereference_legality (representatives); analyze_modified_params (representatives); } for (i = 0; i < func_param_count; i++) { struct access *repr = VEC_index (access_p, representatives, i); if (repr && !no_accesses_p (repr)) { if (repr->grp_scalar_ptr) { adjustments_count++; if (repr->grp_not_necessarilly_dereferenced || repr->grp_maybe_modified) VEC_replace (access_p, representatives, i, NULL); else { proceed = true; sra_stats.scalar_by_ref_to_by_val++; } } else { int new_components = decide_one_param_reduction (repr); if (new_components == 0) { VEC_replace (access_p, representatives, i, NULL); adjustments_count++; } else { adjustments_count += new_components; sra_stats.aggregate_params_reduced++; sra_stats.param_reductions_created += new_components; proceed = true; } } } else { if (no_accesses_p (repr)) { proceed = true; sra_stats.deleted_unused_parameters++; } adjustments_count++; } } if (!proceed && dump_file) fprintf (dump_file, "NOT proceeding to change params.\n"); if (proceed) adjustments = turn_representatives_into_adjustments (representatives, adjustments_count); else adjustments = NULL; VEC_free (access_p, heap, representatives); return adjustments; } /* If a parameter replacement identified by ADJ does not yet exist in the form of declaration, create it and record it, otherwise return the previously created one. */ static tree get_replaced_param_substitute (struct ipa_parm_adjustment *adj) { tree repl; if (!adj->new_ssa_base) { char *pretty_name = make_fancy_name (adj->base); repl = create_tmp_reg (TREE_TYPE (adj->base), "ISR"); DECL_NAME (repl) = get_identifier (pretty_name); obstack_free (&name_obstack, pretty_name); add_referenced_var (repl); adj->new_ssa_base = repl; } else repl = adj->new_ssa_base; return repl; } /* Find the first adjustment for a particular parameter BASE in a vector of ADJUSTMENTS which is not a copy_param. Return NULL if there is no such adjustment. */ static struct ipa_parm_adjustment * get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base) { int i, len; len = VEC_length (ipa_parm_adjustment_t, adjustments); for (i = 0; i < len; i++) { struct ipa_parm_adjustment *adj; adj = VEC_index (ipa_parm_adjustment_t, adjustments, i); if (!adj->copy_param && adj->base == base) return adj; } return NULL; } /* If the statement STMT defines an SSA_NAME of a parameter which is to be removed because its value is not used, replace the SSA_NAME with a one relating to a created VAR_DECL together all of its uses and return true. ADJUSTMENTS is a pointer to an adjustments vector. */ static bool replace_removed_params_ssa_names (gimple stmt, ipa_parm_adjustment_vec adjustments) { struct ipa_parm_adjustment *adj; tree lhs, decl, repl, name; if (gimple_code (stmt) == GIMPLE_PHI) lhs = gimple_phi_result (stmt); else if (is_gimple_assign (stmt)) lhs = gimple_assign_lhs (stmt); else if (is_gimple_call (stmt)) lhs = gimple_call_lhs (stmt); else gcc_unreachable (); if (TREE_CODE (lhs) != SSA_NAME) return false; decl = SSA_NAME_VAR (lhs); if (TREE_CODE (decl) != PARM_DECL) return false; adj = get_adjustment_for_base (adjustments, decl); if (!adj) return false; repl = get_replaced_param_substitute (adj); name = make_ssa_name (repl, stmt); if (dump_file) { fprintf (dump_file, "replacing an SSA name of a removed param "); print_generic_expr (dump_file, lhs, 0); fprintf (dump_file, " with "); print_generic_expr (dump_file, name, 0); fprintf (dump_file, "\n"); } if (is_gimple_assign (stmt)) gimple_assign_set_lhs (stmt, name); else if (is_gimple_call (stmt)) gimple_call_set_lhs (stmt, name); else gimple_phi_set_result (stmt, name); replace_uses_by (lhs, name); release_ssa_name (lhs); return true; } /* If the expression *EXPR should be replaced by a reduction of a parameter, do so. ADJUSTMENTS is a pointer to a vector of adjustments. CONVERT specifies whether the function should care about type incompatibility the current and new expressions. If it is false, the function will leave incompatibility issues to the caller. Return true iff the expression was modified. */ static bool sra_ipa_modify_expr (tree *expr, bool convert, ipa_parm_adjustment_vec adjustments) { int i, len; struct ipa_parm_adjustment *adj, *cand = NULL; HOST_WIDE_INT offset, size, max_size; tree base, src; len = VEC_length (ipa_parm_adjustment_t, adjustments); if (TREE_CODE (*expr) == BIT_FIELD_REF || TREE_CODE (*expr) == IMAGPART_EXPR || TREE_CODE (*expr) == REALPART_EXPR) { expr = &TREE_OPERAND (*expr, 0); convert = true; } base = get_ref_base_and_extent (*expr, &offset, &size, &max_size); if (!base || size == -1 || max_size == -1) return false; if (TREE_CODE (base) == MEM_REF) { offset += mem_ref_offset (base).low * BITS_PER_UNIT; base = TREE_OPERAND (base, 0); } base = get_ssa_base_param (base); if (!base || TREE_CODE (base) != PARM_DECL) return false; for (i = 0; i < len; i++) { adj = VEC_index (ipa_parm_adjustment_t, adjustments, i); if (adj->base == base && (adj->offset == offset || adj->remove_param)) { cand = adj; break; } } if (!cand || cand->copy_param || cand->remove_param) return false; if (cand->by_ref) src = build_simple_mem_ref (cand->reduction); else src = cand->reduction; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "About to replace expr "); print_generic_expr (dump_file, *expr, 0); fprintf (dump_file, " with "); print_generic_expr (dump_file, src, 0); fprintf (dump_file, "\n"); } if (convert && !useless_type_conversion_p (TREE_TYPE (*expr), cand->type)) { tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*expr), src); *expr = vce; } else *expr = src; return true; } /* If the statement pointed to by STMT_PTR contains any expressions that need to replaced with a different one as noted by ADJUSTMENTS, do so. Handle any potential type incompatibilities (GSI is used to accommodate conversion statements and must point to the statement). Return true iff the statement was modified. */ static bool sra_ipa_modify_assign (gimple *stmt_ptr, gimple_stmt_iterator *gsi, ipa_parm_adjustment_vec adjustments) { gimple stmt = *stmt_ptr; tree *lhs_p, *rhs_p; bool any; if (!gimple_assign_single_p (stmt)) return false; rhs_p = gimple_assign_rhs1_ptr (stmt); lhs_p = gimple_assign_lhs_ptr (stmt); any = sra_ipa_modify_expr (rhs_p, false, adjustments); any |= sra_ipa_modify_expr (lhs_p, false, adjustments); if (any) { tree new_rhs = NULL_TREE; if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p))) { if (TREE_CODE (*rhs_p) == CONSTRUCTOR) { /* V_C_Es of constructors can cause trouble (PR 42714). */ if (is_gimple_reg_type (TREE_TYPE (*lhs_p))) *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p)); else *rhs_p = build_constructor (TREE_TYPE (*lhs_p), 0); } else new_rhs = fold_build1_loc (gimple_location (stmt), VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p), *rhs_p); } else if (REFERENCE_CLASS_P (*rhs_p) && is_gimple_reg_type (TREE_TYPE (*lhs_p)) && !is_gimple_reg (*lhs_p)) /* This can happen when an assignment in between two single field structures is turned into an assignment in between two pointers to scalars (PR 42237). */ new_rhs = *rhs_p; if (new_rhs) { tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE, true, GSI_SAME_STMT); gimple_assign_set_rhs_from_tree (gsi, tmp); } return true; } return false; } /* Traverse the function body and all modifications as described in ADJUSTMENTS. Return true iff the CFG has been changed. */ static bool ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments) { bool cfg_changed = false; basic_block bb; FOR_EACH_BB (bb) { gimple_stmt_iterator gsi; for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) replace_removed_params_ssa_names (gsi_stmt (gsi), adjustments); gsi = gsi_start_bb (bb); while (!gsi_end_p (gsi)) { gimple stmt = gsi_stmt (gsi); bool modified = false; tree *t; unsigned i; switch (gimple_code (stmt)) { case GIMPLE_RETURN: t = gimple_return_retval_ptr (stmt); if (*t != NULL_TREE) modified |= sra_ipa_modify_expr (t, true, adjustments); break; case GIMPLE_ASSIGN: modified |= sra_ipa_modify_assign (&stmt, &gsi, adjustments); modified |= replace_removed_params_ssa_names (stmt, adjustments); break; case GIMPLE_CALL: /* Operands must be processed before the lhs. */ for (i = 0; i < gimple_call_num_args (stmt); i++) { t = gimple_call_arg_ptr (stmt, i); modified |= sra_ipa_modify_expr (t, true, adjustments); } if (gimple_call_lhs (stmt)) { t = gimple_call_lhs_ptr (stmt); modified |= sra_ipa_modify_expr (t, false, adjustments); modified |= replace_removed_params_ssa_names (stmt, adjustments); } break; case GIMPLE_ASM: for (i = 0; i < gimple_asm_ninputs (stmt); i++) { t = &TREE_VALUE (gimple_asm_input_op (stmt, i)); modified |= sra_ipa_modify_expr (t, true, adjustments); } for (i = 0; i < gimple_asm_noutputs (stmt); i++) { t = &TREE_VALUE (gimple_asm_output_op (stmt, i)); modified |= sra_ipa_modify_expr (t, false, adjustments); } break; default: break; } if (modified) { update_stmt (stmt); if (maybe_clean_eh_stmt (stmt) && gimple_purge_dead_eh_edges (gimple_bb (stmt))) cfg_changed = true; } gsi_next (&gsi); } } return cfg_changed; } /* Call gimple_debug_bind_reset_value on all debug statements describing gimple register parameters that are being removed or replaced. */ static void sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments) { int i, len; gimple_stmt_iterator *gsip = NULL, gsi; if (MAY_HAVE_DEBUG_STMTS && single_succ_p (ENTRY_BLOCK_PTR)) { gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR)); gsip = &gsi; } len = VEC_length (ipa_parm_adjustment_t, adjustments); for (i = 0; i < len; i++) { struct ipa_parm_adjustment *adj; imm_use_iterator ui; gimple stmt, def_temp; tree name, vexpr, copy = NULL_TREE; use_operand_p use_p; adj = VEC_index (ipa_parm_adjustment_t, adjustments, i); if (adj->copy_param || !is_gimple_reg (adj->base)) continue; name = gimple_default_def (cfun, adj->base); vexpr = NULL; if (name) FOR_EACH_IMM_USE_STMT (stmt, ui, name) { /* All other users must have been removed by ipa_sra_modify_function_body. */ gcc_assert (is_gimple_debug (stmt)); if (vexpr == NULL && gsip != NULL) { gcc_assert (TREE_CODE (adj->base) == PARM_DECL); vexpr = make_node (DEBUG_EXPR_DECL); def_temp = gimple_build_debug_source_bind (vexpr, adj->base, NULL); DECL_ARTIFICIAL (vexpr) = 1; TREE_TYPE (vexpr) = TREE_TYPE (name); DECL_MODE (vexpr) = DECL_MODE (adj->base); gsi_insert_before (gsip, def_temp, GSI_SAME_STMT); } if (vexpr) { FOR_EACH_IMM_USE_ON_STMT (use_p, ui) SET_USE (use_p, vexpr); } else gimple_debug_bind_reset_value (stmt); update_stmt (stmt); } /* Create a VAR_DECL for debug info purposes. */ if (!DECL_IGNORED_P (adj->base)) { copy = build_decl (DECL_SOURCE_LOCATION (current_function_decl), VAR_DECL, DECL_NAME (adj->base), TREE_TYPE (adj->base)); if (DECL_PT_UID_SET_P (adj->base)) SET_DECL_PT_UID (copy, DECL_PT_UID (adj->base)); TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (adj->base); TREE_READONLY (copy) = TREE_READONLY (adj->base); TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (adj->base); DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (adj->base); DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (adj->base); DECL_IGNORED_P (copy) = DECL_IGNORED_P (adj->base); DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (adj->base); DECL_SEEN_IN_BIND_EXPR_P (copy) = 1; SET_DECL_RTL (copy, 0); TREE_USED (copy) = 1; DECL_CONTEXT (copy) = current_function_decl; add_referenced_var (copy); add_local_decl (cfun, copy); DECL_CHAIN (copy) = BLOCK_VARS (DECL_INITIAL (current_function_decl)); BLOCK_VARS (DECL_INITIAL (current_function_decl)) = copy; } if (gsip != NULL && copy && target_for_debug_bind (adj->base)) { gcc_assert (TREE_CODE (adj->base) == PARM_DECL); if (vexpr) def_temp = gimple_build_debug_bind (copy, vexpr, NULL); else def_temp = gimple_build_debug_source_bind (copy, adj->base, NULL); gsi_insert_before (gsip, def_temp, GSI_SAME_STMT); } } } /* Return false iff all callers have at least as many actual arguments as there are formal parameters in the current function. */ static bool not_all_callers_have_enough_arguments_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED) { struct cgraph_edge *cs; for (cs = node->callers; cs; cs = cs->next_caller) if (!callsite_has_enough_arguments_p (cs->call_stmt)) return true; return false; } /* Convert all callers of NODE. */ static bool convert_callers_for_node (struct cgraph_node *node, void *data) { ipa_parm_adjustment_vec adjustments = (ipa_parm_adjustment_vec)data; bitmap recomputed_callers = BITMAP_ALLOC (NULL); struct cgraph_edge *cs; for (cs = node->callers; cs; cs = cs->next_caller) { current_function_decl = cs->caller->decl; push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl)); if (dump_file) fprintf (dump_file, "Adjusting call (%i -> %i) %s -> %s\n", cs->caller->uid, cs->callee->uid, cgraph_node_name (cs->caller), cgraph_node_name (cs->callee)); ipa_modify_call_arguments (cs, cs->call_stmt, adjustments); pop_cfun (); } for (cs = node->callers; cs; cs = cs->next_caller) if (bitmap_set_bit (recomputed_callers, cs->caller->uid) && gimple_in_ssa_p (DECL_STRUCT_FUNCTION (cs->caller->decl))) compute_inline_parameters (cs->caller, true); BITMAP_FREE (recomputed_callers); return true; } /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */ static void convert_callers (struct cgraph_node *node, tree old_decl, ipa_parm_adjustment_vec adjustments) { tree old_cur_fndecl = current_function_decl; basic_block this_block; cgraph_for_node_and_aliases (node, convert_callers_for_node, adjustments, false); current_function_decl = old_cur_fndecl; if (!encountered_recursive_call) return; FOR_EACH_BB (this_block) { gimple_stmt_iterator gsi; for (gsi = gsi_start_bb (this_block); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple stmt = gsi_stmt (gsi); tree call_fndecl; if (gimple_code (stmt) != GIMPLE_CALL) continue; call_fndecl = gimple_call_fndecl (stmt); if (call_fndecl == old_decl) { if (dump_file) fprintf (dump_file, "Adjusting recursive call"); gimple_call_set_fndecl (stmt, node->decl); ipa_modify_call_arguments (NULL, stmt, adjustments); } } } return; } /* Perform all the modification required in IPA-SRA for NODE to have parameters as given in ADJUSTMENTS. Return true iff the CFG has been changed. */ static bool modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments) { struct cgraph_node *new_node; bool cfg_changed; VEC (cgraph_edge_p, heap) * redirect_callers = collect_callers_of_node (node); rebuild_cgraph_edges (); free_dominance_info (CDI_DOMINATORS); pop_cfun (); current_function_decl = NULL_TREE; new_node = cgraph_function_versioning (node, redirect_callers, NULL, NULL, false, NULL, NULL, "isra"); current_function_decl = new_node->decl; push_cfun (DECL_STRUCT_FUNCTION (new_node->decl)); ipa_modify_formal_parameters (current_function_decl, adjustments, "ISRA"); cfg_changed = ipa_sra_modify_function_body (adjustments); sra_ipa_reset_debug_stmts (adjustments); convert_callers (new_node, node->decl, adjustments); cgraph_make_node_local (new_node); return cfg_changed; } /* Return false the function is apparently unsuitable for IPA-SRA based on it's attributes, return true otherwise. NODE is the cgraph node of the current function. */ static bool ipa_sra_preliminary_function_checks (struct cgraph_node *node) { if (!cgraph_node_can_be_local_p (node)) { if (dump_file) fprintf (dump_file, "Function not local to this compilation unit.\n"); return false; } if (!node->local.can_change_signature) { if (dump_file) fprintf (dump_file, "Function can not change signature.\n"); return false; } if (!tree_versionable_function_p (node->decl)) { if (dump_file) fprintf (dump_file, "Function is not versionable.\n"); return false; } if (DECL_VIRTUAL_P (current_function_decl)) { if (dump_file) fprintf (dump_file, "Function is a virtual method.\n"); return false; } if ((DECL_COMDAT (node->decl) || DECL_EXTERNAL (node->decl)) && inline_summary(node)->size >= MAX_INLINE_INSNS_AUTO) { if (dump_file) fprintf (dump_file, "Function too big to be made truly local.\n"); return false; } if (!node->callers) { if (dump_file) fprintf (dump_file, "Function has no callers in this compilation unit.\n"); return false; } if (cfun->stdarg) { if (dump_file) fprintf (dump_file, "Function uses stdarg. \n"); return false; } if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl))) return false; return true; } /* Perform early interprocedural SRA. */ static unsigned int ipa_early_sra (void) { struct cgraph_node *node = cgraph_get_node (current_function_decl); ipa_parm_adjustment_vec adjustments; int ret = 0; if (!ipa_sra_preliminary_function_checks (node)) return 0; sra_initialize (); sra_mode = SRA_MODE_EARLY_IPA; if (!find_param_candidates ()) { if (dump_file) fprintf (dump_file, "Function has no IPA-SRA candidates.\n"); goto simple_out; } if (cgraph_for_node_and_aliases (node, not_all_callers_have_enough_arguments_p, NULL, true)) { if (dump_file) fprintf (dump_file, "There are callers with insufficient number of " "arguments.\n"); goto simple_out; } bb_dereferences = XCNEWVEC (HOST_WIDE_INT, func_param_count * last_basic_block_for_function (cfun)); final_bbs = BITMAP_ALLOC (NULL); scan_function (); if (encountered_apply_args) { if (dump_file) fprintf (dump_file, "Function calls __builtin_apply_args().\n"); goto out; } if (encountered_unchangable_recursive_call) { if (dump_file) fprintf (dump_file, "Function calls itself with insufficient " "number of arguments.\n"); goto out; } adjustments = analyze_all_param_acesses (); if (!adjustments) goto out; if (dump_file) ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl); if (modify_function (node, adjustments)) ret = TODO_update_ssa | TODO_cleanup_cfg; else ret = TODO_update_ssa; VEC_free (ipa_parm_adjustment_t, heap, adjustments); statistics_counter_event (cfun, "Unused parameters deleted", sra_stats.deleted_unused_parameters); statistics_counter_event (cfun, "Scalar parameters converted to by-value", sra_stats.scalar_by_ref_to_by_val); statistics_counter_event (cfun, "Aggregate parameters broken up", sra_stats.aggregate_params_reduced); statistics_counter_event (cfun, "Aggregate parameter components created", sra_stats.param_reductions_created); out: BITMAP_FREE (final_bbs); free (bb_dereferences); simple_out: sra_deinitialize (); return ret; } /* Return if early ipa sra shall be performed. */ static bool ipa_early_sra_gate (void) { return flag_ipa_sra && dbg_cnt (eipa_sra); } struct gimple_opt_pass pass_early_ipa_sra = { { GIMPLE_PASS, "eipa_sra", /* name */ ipa_early_sra_gate, /* gate */ ipa_early_sra, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_IPA_SRA, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_cgraph /* todo_flags_finish */ } };