/* Calculate branch probabilities, and basic block execution counts. Copyright (C) 1990-2024 Free Software Foundation, Inc. Contributed by James E. Wilson, UC Berkeley/Cygnus Support; based on some ideas from Dain Samples of UC Berkeley. Further mangling by Bob Manson, Cygnus Support. Converted to use trees by Dale Johannesen, Apple Computer. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* Generate basic block profile instrumentation and auxiliary files. Tree-based version. See profile.cc for overview. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "memmodel.h" #include "backend.h" #include "target.h" #include "tree.h" #include "gimple.h" #include "cfghooks.h" #include "tree-pass.h" #include "ssa.h" #include "cgraph.h" #include "coverage.h" #include "diagnostic-core.h" #include "fold-const.h" #include "varasm.h" #include "tree-nested.h" #include "gimplify.h" #include "gimple-iterator.h" #include "gimplify-me.h" #include "tree-cfg.h" #include "tree-into-ssa.h" #include "value-prof.h" #include "profile.h" #include "tree-cfgcleanup.h" #include "stringpool.h" #include "attribs.h" #include "tree-pretty-print.h" #include "langhooks.h" #include "stor-layout.h" #include "xregex.h" #include "alloc-pool.h" #include "symbol-summary.h" #include "symtab-thunks.h" static GTY(()) tree gcov_type_node; static GTY(()) tree tree_interval_profiler_fn; static GTY(()) tree tree_pow2_profiler_fn; static GTY(()) tree tree_topn_values_profiler_fn; static GTY(()) tree tree_indirect_call_profiler_fn; static GTY(()) tree tree_average_profiler_fn; static GTY(()) tree tree_ior_profiler_fn; static GTY(()) tree tree_time_profiler_counter; static GTY(()) tree ic_tuple_var; static GTY(()) tree ic_tuple_counters_field; static GTY(()) tree ic_tuple_callee_field; /* Types of counter update methods. By default, the counter updates are done for a single threaded system (COUNTER_UPDATE_SINGLE_THREAD). If the user selected atomic profile counter updates (-fprofile-update=atomic), then the counter updates will be done atomically on a best-effort basis. One of three methods to do the counter updates is selected according to the target capabilities. Ideally, the counter updates are done through atomic operations in hardware (COUNTER_UPDATE_ATOMIC_BUILTIN). If the target supports only 32-bit atomic increments and gcov_type_node is a 64-bit integer type, then for the profile edge counters the increment is performed through two separate 32-bit atomic increments (COUNTER_UPDATE_ATOMIC_SPLIT or COUNTER_UPDATE_ATOMIC_PARTIAL). If the target supports libatomic (targetm.have_libatomic), then other counter updates are carried out by libatomic calls (COUNTER_UPDATE_ATOMIC_SPLIT). If the target does not support libatomic, then the other counter updates are not done atomically (COUNTER_UPDATE_ATOMIC_PARTIAL) and a warning is issued. If the target does not support atomic operations in hardware, however, it supports libatomic, then all updates are carried out by libatomic calls (COUNTER_UPDATE_ATOMIC_BUILTIN). */ enum counter_update_method { COUNTER_UPDATE_SINGLE_THREAD, COUNTER_UPDATE_ATOMIC_BUILTIN, COUNTER_UPDATE_ATOMIC_SPLIT, COUNTER_UPDATE_ATOMIC_PARTIAL }; static counter_update_method counter_update = COUNTER_UPDATE_SINGLE_THREAD; /* Do initialization work for the edge profiler. */ /* Add code: __thread gcov* __gcov_indirect_call.counters; // pointer to actual counter __thread void* __gcov_indirect_call.callee; // actual callee address __thread int __gcov_function_counter; // time profiler function counter */ static void init_ic_make_global_vars (void) { tree gcov_type_ptr; gcov_type_ptr = build_pointer_type (get_gcov_type ()); tree tuple_type = lang_hooks.types.make_type (RECORD_TYPE); /* callee */ ic_tuple_callee_field = build_decl (BUILTINS_LOCATION, FIELD_DECL, NULL_TREE, ptr_type_node); /* counters */ ic_tuple_counters_field = build_decl (BUILTINS_LOCATION, FIELD_DECL, NULL_TREE, gcov_type_ptr); DECL_CHAIN (ic_tuple_counters_field) = ic_tuple_callee_field; finish_builtin_struct (tuple_type, "indirect_call_tuple", ic_tuple_counters_field, NULL_TREE); ic_tuple_var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier ("__gcov_indirect_call"), tuple_type); TREE_PUBLIC (ic_tuple_var) = 1; DECL_ARTIFICIAL (ic_tuple_var) = 1; DECL_INITIAL (ic_tuple_var) = NULL; DECL_EXTERNAL (ic_tuple_var) = 1; if (targetm.have_tls) set_decl_tls_model (ic_tuple_var, decl_default_tls_model (ic_tuple_var)); } /* Create the type and function decls for the interface with gcov. */ void gimple_init_gcov_profiler (void) { tree interval_profiler_fn_type; tree pow2_profiler_fn_type; tree topn_values_profiler_fn_type; tree gcov_type_ptr; tree ic_profiler_fn_type; tree average_profiler_fn_type; const char *fn_name; if (!gcov_type_node) { const char *fn_suffix = flag_profile_update == PROFILE_UPDATE_ATOMIC ? "_atomic" : ""; gcov_type_node = get_gcov_type (); gcov_type_ptr = build_pointer_type (gcov_type_node); /* void (*) (gcov_type *, gcov_type, int, unsigned) */ interval_profiler_fn_type = build_function_type_list (void_type_node, gcov_type_ptr, gcov_type_node, integer_type_node, unsigned_type_node, NULL_TREE); fn_name = concat ("__gcov_interval_profiler", fn_suffix, NULL); tree_interval_profiler_fn = build_fn_decl (fn_name, interval_profiler_fn_type); free (CONST_CAST (char *, fn_name)); TREE_NOTHROW (tree_interval_profiler_fn) = 1; DECL_ATTRIBUTES (tree_interval_profiler_fn) = tree_cons (get_identifier ("leaf"), NULL, DECL_ATTRIBUTES (tree_interval_profiler_fn)); /* void (*) (gcov_type *, gcov_type) */ pow2_profiler_fn_type = build_function_type_list (void_type_node, gcov_type_ptr, gcov_type_node, NULL_TREE); fn_name = concat ("__gcov_pow2_profiler", fn_suffix, NULL); tree_pow2_profiler_fn = build_fn_decl (fn_name, pow2_profiler_fn_type); free (CONST_CAST (char *, fn_name)); TREE_NOTHROW (tree_pow2_profiler_fn) = 1; DECL_ATTRIBUTES (tree_pow2_profiler_fn) = tree_cons (get_identifier ("leaf"), NULL, DECL_ATTRIBUTES (tree_pow2_profiler_fn)); /* void (*) (gcov_type *, gcov_type) */ topn_values_profiler_fn_type = build_function_type_list (void_type_node, gcov_type_ptr, gcov_type_node, NULL_TREE); fn_name = concat ("__gcov_topn_values_profiler", fn_suffix, NULL); tree_topn_values_profiler_fn = build_fn_decl (fn_name, topn_values_profiler_fn_type); free (CONST_CAST (char *, fn_name)); TREE_NOTHROW (tree_topn_values_profiler_fn) = 1; DECL_ATTRIBUTES (tree_topn_values_profiler_fn) = tree_cons (get_identifier ("leaf"), NULL, DECL_ATTRIBUTES (tree_topn_values_profiler_fn)); init_ic_make_global_vars (); /* void (*) (gcov_type, void *) */ ic_profiler_fn_type = build_function_type_list (void_type_node, gcov_type_node, ptr_type_node, NULL_TREE); fn_name = concat ("__gcov_indirect_call_profiler_v4", fn_suffix, NULL); tree_indirect_call_profiler_fn = build_fn_decl (fn_name, ic_profiler_fn_type); free (CONST_CAST (char *, fn_name)); TREE_NOTHROW (tree_indirect_call_profiler_fn) = 1; DECL_ATTRIBUTES (tree_indirect_call_profiler_fn) = tree_cons (get_identifier ("leaf"), NULL, DECL_ATTRIBUTES (tree_indirect_call_profiler_fn)); tree_time_profiler_counter = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier ("__gcov_time_profiler_counter"), get_gcov_type ()); TREE_PUBLIC (tree_time_profiler_counter) = 1; DECL_EXTERNAL (tree_time_profiler_counter) = 1; TREE_STATIC (tree_time_profiler_counter) = 1; DECL_ARTIFICIAL (tree_time_profiler_counter) = 1; DECL_INITIAL (tree_time_profiler_counter) = NULL; /* void (*) (gcov_type *, gcov_type) */ average_profiler_fn_type = build_function_type_list (void_type_node, gcov_type_ptr, gcov_type_node, NULL_TREE); fn_name = concat ("__gcov_average_profiler", fn_suffix, NULL); tree_average_profiler_fn = build_fn_decl (fn_name, average_profiler_fn_type); free (CONST_CAST (char *, fn_name)); TREE_NOTHROW (tree_average_profiler_fn) = 1; DECL_ATTRIBUTES (tree_average_profiler_fn) = tree_cons (get_identifier ("leaf"), NULL, DECL_ATTRIBUTES (tree_average_profiler_fn)); fn_name = concat ("__gcov_ior_profiler", fn_suffix, NULL); tree_ior_profiler_fn = build_fn_decl (fn_name, average_profiler_fn_type); free (CONST_CAST (char *, fn_name)); TREE_NOTHROW (tree_ior_profiler_fn) = 1; DECL_ATTRIBUTES (tree_ior_profiler_fn) = tree_cons (get_identifier ("leaf"), NULL, DECL_ATTRIBUTES (tree_ior_profiler_fn)); /* LTO streamer needs assembler names. Because we create these decls late, we need to initialize them by hand. */ DECL_ASSEMBLER_NAME (tree_interval_profiler_fn); DECL_ASSEMBLER_NAME (tree_pow2_profiler_fn); DECL_ASSEMBLER_NAME (tree_topn_values_profiler_fn); DECL_ASSEMBLER_NAME (tree_indirect_call_profiler_fn); DECL_ASSEMBLER_NAME (tree_average_profiler_fn); DECL_ASSEMBLER_NAME (tree_ior_profiler_fn); } } /* If RESULT is not null, then output instructions as GIMPLE trees to assign the updated counter from CALL of FUNC to RESULT. Insert the CALL and the optional assignment instructions to GSI. Use NAME for temporary values. */ static inline void gen_assign_counter_update (gimple_stmt_iterator *gsi, gcall *call, tree func, tree result, const char *name) { if (result) { tree result_type = TREE_TYPE (TREE_TYPE (func)); tree tmp1 = make_temp_ssa_name (result_type, NULL, name); gimple_set_lhs (call, tmp1); gsi_insert_after (gsi, call, GSI_NEW_STMT); tree tmp2 = make_temp_ssa_name (TREE_TYPE (result), NULL, name); gassign *assign = gimple_build_assign (tmp2, NOP_EXPR, tmp1); gsi_insert_after (gsi, assign, GSI_NEW_STMT); assign = gimple_build_assign (result, tmp2); gsi_insert_after (gsi, assign, GSI_NEW_STMT); } else gsi_insert_after (gsi, call, GSI_NEW_STMT); } /* Output instructions as GIMPLE trees to increment the COUNTER. If RESULT is not null, then assign the updated counter value to RESULT. Insert the instructions to GSI. Use NAME for temporary values. */ static inline void gen_counter_update (gimple_stmt_iterator *gsi, tree counter, tree result, const char *name) { tree type = gcov_type_node; tree addr = build_fold_addr_expr (counter); tree one = build_int_cst (type, 1); tree relaxed = build_int_cst (integer_type_node, MEMMODEL_RELAXED); if (counter_update == COUNTER_UPDATE_ATOMIC_BUILTIN || (result && counter_update == COUNTER_UPDATE_ATOMIC_SPLIT)) { /* __atomic_fetch_add (&counter, 1, MEMMODEL_RELAXED); */ tree f = builtin_decl_explicit (TYPE_PRECISION (type) > 32 ? BUILT_IN_ATOMIC_ADD_FETCH_8 : BUILT_IN_ATOMIC_ADD_FETCH_4); gcall *call = gimple_build_call (f, 3, addr, one, relaxed); gen_assign_counter_update (gsi, call, f, result, name); } else if (!result && (counter_update == COUNTER_UPDATE_ATOMIC_SPLIT || counter_update == COUNTER_UPDATE_ATOMIC_PARTIAL)) { /* low = __atomic_add_fetch_4 (addr, 1, MEMMODEL_RELAXED); high_inc = low == 0 ? 1 : 0; __atomic_add_fetch_4 (addr_high, high_inc, MEMMODEL_RELAXED); */ tree zero32 = build_zero_cst (uint32_type_node); tree one32 = build_one_cst (uint32_type_node); tree addr_high = make_temp_ssa_name (TREE_TYPE (addr), NULL, name); tree four = build_int_cst (size_type_node, 4); gassign *assign1 = gimple_build_assign (addr_high, POINTER_PLUS_EXPR, addr, four); gsi_insert_after (gsi, assign1, GSI_NEW_STMT); if (WORDS_BIG_ENDIAN) std::swap (addr, addr_high); tree f = builtin_decl_explicit (BUILT_IN_ATOMIC_ADD_FETCH_4); gcall *call1 = gimple_build_call (f, 3, addr, one, relaxed); tree low = make_temp_ssa_name (uint32_type_node, NULL, name); gimple_call_set_lhs (call1, low); gsi_insert_after (gsi, call1, GSI_NEW_STMT); tree is_zero = make_temp_ssa_name (boolean_type_node, NULL, name); gassign *assign2 = gimple_build_assign (is_zero, EQ_EXPR, low, zero32); gsi_insert_after (gsi, assign2, GSI_NEW_STMT); tree high_inc = make_temp_ssa_name (uint32_type_node, NULL, name); gassign *assign3 = gimple_build_assign (high_inc, COND_EXPR, is_zero, one32, zero32); gsi_insert_after (gsi, assign3, GSI_NEW_STMT); gcall *call2 = gimple_build_call (f, 3, addr_high, high_inc, relaxed); gsi_insert_after (gsi, call2, GSI_NEW_STMT); } else { tree tmp1 = make_temp_ssa_name (type, NULL, name); gassign *assign1 = gimple_build_assign (tmp1, counter); gsi_insert_after (gsi, assign1, GSI_NEW_STMT); tree tmp2 = make_temp_ssa_name (type, NULL, name); gassign *assign2 = gimple_build_assign (tmp2, PLUS_EXPR, tmp1, one); gsi_insert_after (gsi, assign2, GSI_NEW_STMT); gassign *assign3 = gimple_build_assign (unshare_expr (counter), tmp2); gsi_insert_after (gsi, assign3, GSI_NEW_STMT); if (result) { gassign *assign4 = gimple_build_assign (result, tmp2); gsi_insert_after (gsi, assign4, GSI_NEW_STMT); } } } /* Output instructions as GIMPLE trees to increment the edge execution count, and insert them on E. */ void gimple_gen_edge_profiler (int edgeno, edge e) { gimple_stmt_iterator gsi = gsi_last (PENDING_STMT (e)); tree counter = tree_coverage_counter_ref (GCOV_COUNTER_ARCS, edgeno); gen_counter_update (&gsi, counter, NULL_TREE, "PROF_edge_counter"); } /* Emits code to get VALUE to instrument at GSI, and returns the variable containing the value. */ static tree prepare_instrumented_value (gimple_stmt_iterator *gsi, histogram_value value) { tree val = value->hvalue.value; if (POINTER_TYPE_P (TREE_TYPE (val))) val = fold_convert (build_nonstandard_integer_type (TYPE_PRECISION (TREE_TYPE (val)), 1), val); return force_gimple_operand_gsi (gsi, fold_convert (gcov_type_node, val), true, NULL_TREE, true, GSI_SAME_STMT); } /* Output instructions as GIMPLE trees to increment the interval histogram counter. VALUE is the expression whose value is profiled. TAG is the tag of the section for counters, BASE is offset of the counter position. */ void gimple_gen_interval_profiler (histogram_value value, unsigned tag) { gimple *stmt = value->hvalue.stmt; gimple_stmt_iterator gsi = gsi_for_stmt (stmt); tree ref = tree_coverage_counter_ref (tag, 0), ref_ptr; gcall *call; tree val; tree start = build_int_cst_type (integer_type_node, value->hdata.intvl.int_start); tree steps = build_int_cst_type (unsigned_type_node, value->hdata.intvl.steps); ref_ptr = force_gimple_operand_gsi (&gsi, build_addr (ref), true, NULL_TREE, true, GSI_SAME_STMT); val = prepare_instrumented_value (&gsi, value); call = gimple_build_call (tree_interval_profiler_fn, 4, ref_ptr, val, start, steps); gsi_insert_before (&gsi, call, GSI_NEW_STMT); } /* Output instructions as GIMPLE trees to increment the power of two histogram counter. VALUE is the expression whose value is profiled. TAG is the tag of the section for counters. */ void gimple_gen_pow2_profiler (histogram_value value, unsigned tag) { gimple *stmt = value->hvalue.stmt; gimple_stmt_iterator gsi = gsi_for_stmt (stmt); tree ref_ptr = tree_coverage_counter_addr (tag, 0); gcall *call; tree val; ref_ptr = force_gimple_operand_gsi (&gsi, ref_ptr, true, NULL_TREE, true, GSI_SAME_STMT); val = prepare_instrumented_value (&gsi, value); call = gimple_build_call (tree_pow2_profiler_fn, 2, ref_ptr, val); gsi_insert_before (&gsi, call, GSI_NEW_STMT); } /* Output instructions as GIMPLE trees for code to find the most N common values. VALUE is the expression whose value is profiled. TAG is the tag of the section for counters. */ void gimple_gen_topn_values_profiler (histogram_value value, unsigned tag) { gimple *stmt = value->hvalue.stmt; gimple_stmt_iterator gsi = gsi_for_stmt (stmt); tree ref_ptr = tree_coverage_counter_addr (tag, 0); gcall *call; tree val; ref_ptr = force_gimple_operand_gsi (&gsi, ref_ptr, true, NULL_TREE, true, GSI_SAME_STMT); val = prepare_instrumented_value (&gsi, value); call = gimple_build_call (tree_topn_values_profiler_fn, 2, ref_ptr, val); gsi_insert_before (&gsi, call, GSI_NEW_STMT); } /* Output instructions as GIMPLE trees for code to find the most common called function in indirect call. VALUE is the call expression whose indirect callee is profiled. TAG is the tag of the section for counters. */ void gimple_gen_ic_profiler (histogram_value value, unsigned tag) { tree tmp1; gassign *stmt1, *stmt2, *stmt3; gimple *stmt = value->hvalue.stmt; gimple_stmt_iterator gsi = gsi_for_stmt (stmt); tree ref_ptr = tree_coverage_counter_addr (tag, 0); ref_ptr = force_gimple_operand_gsi (&gsi, ref_ptr, true, NULL_TREE, true, GSI_SAME_STMT); /* Insert code: stmt1: __gcov_indirect_call.counters = get_relevant_counter_ptr (); stmt2: tmp1 = (void *) (indirect call argument value) stmt3: __gcov_indirect_call.callee = tmp1; Example: f_1 = foo; __gcov_indirect_call.counters = &__gcov4.main[0]; PROF_fn_9 = f_1; __gcov_indirect_call.callee = PROF_fn_9; _4 = f_1 (); */ tree gcov_type_ptr = build_pointer_type (get_gcov_type ()); tree counter_ref = build3 (COMPONENT_REF, gcov_type_ptr, ic_tuple_var, ic_tuple_counters_field, NULL_TREE); stmt1 = gimple_build_assign (counter_ref, ref_ptr); tmp1 = make_temp_ssa_name (ptr_type_node, NULL, "PROF_fn"); stmt2 = gimple_build_assign (tmp1, unshare_expr (value->hvalue.value)); tree callee_ref = build3 (COMPONENT_REF, ptr_type_node, ic_tuple_var, ic_tuple_callee_field, NULL_TREE); stmt3 = gimple_build_assign (callee_ref, tmp1); gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT); gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT); gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT); } /* Output instructions as GIMPLE trees for code to find the most common called function in indirect call. Insert instructions at the beginning of every possible called function. */ void gimple_gen_ic_func_profiler (void) { struct cgraph_node * c_node = cgraph_node::get (current_function_decl); gcall *stmt1; tree tree_uid, cur_func, void0; if (c_node->only_called_directly_p ()) return; gimple_init_gcov_profiler (); basic_block entry = ENTRY_BLOCK_PTR_FOR_FN (cfun); basic_block cond_bb = split_edge (single_succ_edge (entry)); basic_block update_bb = split_edge (single_succ_edge (cond_bb)); /* We need to do an extra split in order to not create an input for a possible PHI node. */ split_edge (single_succ_edge (update_bb)); edge true_edge = single_succ_edge (cond_bb); true_edge->flags = EDGE_TRUE_VALUE; profile_probability probability; if (DECL_VIRTUAL_P (current_function_decl)) probability = profile_probability::very_likely (); else probability = profile_probability::unlikely (); true_edge->probability = probability; edge e = make_edge (cond_bb, single_succ_edge (update_bb)->dest, EDGE_FALSE_VALUE); e->probability = true_edge->probability.invert (); /* Insert code: if (__gcov_indirect_call.callee != NULL) __gcov_indirect_call_profiler_v3 (profile_id, ¤t_function_decl); The function __gcov_indirect_call_profiler_v3 is responsible for resetting __gcov_indirect_call.callee to NULL. */ gimple_stmt_iterator gsi = gsi_start_bb (cond_bb); void0 = build_int_cst (ptr_type_node, 0); tree callee_ref = build3 (COMPONENT_REF, ptr_type_node, ic_tuple_var, ic_tuple_callee_field, NULL_TREE); tree ref = force_gimple_operand_gsi (&gsi, callee_ref, true, NULL_TREE, true, GSI_SAME_STMT); gcond *cond = gimple_build_cond (NE_EXPR, ref, void0, NULL, NULL); gsi_insert_before (&gsi, cond, GSI_NEW_STMT); gsi = gsi_after_labels (update_bb); cur_func = force_gimple_operand_gsi (&gsi, build_addr (current_function_decl), true, NULL_TREE, true, GSI_SAME_STMT); tree_uid = build_int_cst (gcov_type_node, cgraph_node::get (current_function_decl)->profile_id); stmt1 = gimple_build_call (tree_indirect_call_profiler_fn, 2, tree_uid, cur_func); gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT); } /* Output instructions as GIMPLE tree at the beginning for each function. TAG is the tag of the section for counters, BASE is offset of the counter position and GSI is the iterator we place the counter. */ void gimple_gen_time_profiler (unsigned tag) { tree type = get_gcov_type (); basic_block entry = ENTRY_BLOCK_PTR_FOR_FN (cfun); basic_block cond_bb = split_edge (single_succ_edge (entry)); basic_block update_bb = split_edge (single_succ_edge (cond_bb)); /* We need to do an extra split in order to not create an input for a possible PHI node. */ split_edge (single_succ_edge (update_bb)); edge true_edge = single_succ_edge (cond_bb); true_edge->flags = EDGE_TRUE_VALUE; true_edge->probability = profile_probability::unlikely (); edge e = make_edge (cond_bb, single_succ_edge (update_bb)->dest, EDGE_FALSE_VALUE); e->probability = true_edge->probability.invert (); gimple_stmt_iterator gsi = gsi_start_bb (cond_bb); tree original_ref = tree_coverage_counter_ref (tag, 0); tree ref = force_gimple_operand_gsi (&gsi, original_ref, true, NULL_TREE, true, GSI_SAME_STMT); /* Emit: if (counters[0] != 0). */ gcond *cond = gimple_build_cond (EQ_EXPR, ref, build_int_cst (type, 0), NULL, NULL); gsi_insert_before (&gsi, cond, GSI_NEW_STMT); /* Emit: counters[0] = ++__gcov_time_profiler_counter. */ gsi = gsi_start_bb (update_bb); gen_counter_update (&gsi, tree_time_profiler_counter, original_ref, "PROF_time_profile"); } /* Output instructions as GIMPLE trees to increment the average histogram counter. VALUE is the expression whose value is profiled. TAG is the tag of the section for counters, BASE is offset of the counter position. */ void gimple_gen_average_profiler (histogram_value value, unsigned tag) { gimple *stmt = value->hvalue.stmt; gimple_stmt_iterator gsi = gsi_for_stmt (stmt); tree ref_ptr = tree_coverage_counter_addr (tag, 0); gcall *call; tree val; ref_ptr = force_gimple_operand_gsi (&gsi, ref_ptr, true, NULL_TREE, true, GSI_SAME_STMT); val = prepare_instrumented_value (&gsi, value); call = gimple_build_call (tree_average_profiler_fn, 2, ref_ptr, val); gsi_insert_before (&gsi, call, GSI_NEW_STMT); } /* Output instructions as GIMPLE trees to increment the ior histogram counter. VALUE is the expression whose value is profiled. TAG is the tag of the section for counters, BASE is offset of the counter position. */ void gimple_gen_ior_profiler (histogram_value value, unsigned tag) { gimple *stmt = value->hvalue.stmt; gimple_stmt_iterator gsi = gsi_for_stmt (stmt); tree ref_ptr = tree_coverage_counter_addr (tag, 0); gcall *call; tree val; ref_ptr = force_gimple_operand_gsi (&gsi, ref_ptr, true, NULL_TREE, true, GSI_SAME_STMT); val = prepare_instrumented_value (&gsi, value); call = gimple_build_call (tree_ior_profiler_fn, 2, ref_ptr, val); gsi_insert_before (&gsi, call, GSI_NEW_STMT); } static vec profile_filter_files; static vec profile_exclude_files; /* Parse list of provided REGEX (separated with semi-collon) and create expressions (of type regex_t) and save them into V vector. If there is a regular expression parsing error, error message is printed for FLAG_NAME. */ static void parse_profile_filter (const char *regex, vec *v, const char *flag_name) { v->create (4); if (regex != NULL) { char *str = xstrdup (regex); for (char *p = strtok (str, ";"); p != NULL; p = strtok (NULL, ";")) { regex_t r; if (regcomp (&r, p, REG_EXTENDED | REG_NOSUB) != 0) { error ("invalid regular expression %qs in %qs", p, flag_name); return; } v->safe_push (r); } } } /* Parse values of -fprofile-filter-files and -fprofile-exclude-files options. */ static void parse_profile_file_filtering () { parse_profile_filter (flag_profile_filter_files, &profile_filter_files, "-fprofile-filter-files"); parse_profile_filter (flag_profile_exclude_files, &profile_exclude_files, "-fprofile-exclude-files"); } /* Parse vectors of regular expressions. */ static void release_profile_file_filtering () { profile_filter_files.release (); profile_exclude_files.release (); } /* Return true when FILENAME should be instrumented based on -fprofile-filter-files and -fprofile-exclude-files options. */ static bool include_source_file_for_profile (const char *filename) { /* First check whether file is included in flag_profile_exclude_files. */ for (unsigned i = 0; i < profile_exclude_files.length (); i++) if (regexec (&profile_exclude_files[i], filename, 0, NULL, 0) == REG_NOERROR) return false; /* For non-empty flag_profile_filter_files include only files matching a regex in the flag. */ if (profile_filter_files.is_empty ()) return true; for (unsigned i = 0; i < profile_filter_files.length (); i++) if (regexec (&profile_filter_files[i], filename, 0, NULL, 0) == REG_NOERROR) return true; return false; } #ifndef HAVE_sync_compare_and_swapsi #define HAVE_sync_compare_and_swapsi 0 #endif #ifndef HAVE_atomic_compare_and_swapsi #define HAVE_atomic_compare_and_swapsi 0 #endif #ifndef HAVE_sync_compare_and_swapdi #define HAVE_sync_compare_and_swapdi 0 #endif #ifndef HAVE_atomic_compare_and_swapdi #define HAVE_atomic_compare_and_swapdi 0 #endif /* Profile all functions in the callgraph. */ static unsigned int tree_profiling (void) { struct cgraph_node *node; /* Verify whether we can utilize atomic update operations. */ bool can_support_atomic = targetm.have_libatomic; unsigned HOST_WIDE_INT gcov_type_size = tree_to_uhwi (TYPE_SIZE_UNIT (get_gcov_type ())); bool have_atomic_4 = HAVE_sync_compare_and_swapsi || HAVE_atomic_compare_and_swapsi; bool have_atomic_8 = HAVE_sync_compare_and_swapdi || HAVE_atomic_compare_and_swapdi; bool needs_split = gcov_type_size == 8 && !have_atomic_8 && have_atomic_4; if (!can_support_atomic) { if (gcov_type_size == 4) can_support_atomic = have_atomic_4; else if (gcov_type_size == 8) can_support_atomic = have_atomic_8; } if (flag_profile_update != PROFILE_UPDATE_SINGLE && needs_split) counter_update = COUNTER_UPDATE_ATOMIC_PARTIAL; if (flag_profile_update == PROFILE_UPDATE_ATOMIC && !can_support_atomic) { warning (0, "target does not support atomic profile update, " "single mode is selected"); flag_profile_update = PROFILE_UPDATE_SINGLE; } else if (flag_profile_update == PROFILE_UPDATE_PREFER_ATOMIC) flag_profile_update = can_support_atomic ? PROFILE_UPDATE_ATOMIC : PROFILE_UPDATE_SINGLE; if (flag_profile_update == PROFILE_UPDATE_ATOMIC) { if (needs_split) counter_update = COUNTER_UPDATE_ATOMIC_SPLIT; else counter_update = COUNTER_UPDATE_ATOMIC_BUILTIN; } /* This is a small-ipa pass that gets called only once, from cgraphunit.cc:ipa_passes(). */ gcc_assert (symtab->state == IPA_SSA); init_node_map (true); parse_profile_file_filtering (); FOR_EACH_DEFINED_FUNCTION (node) { bool thunk = false; if (!gimple_has_body_p (node->decl) && !node->thunk) continue; /* Don't profile functions produced for builtin stuff. */ if (DECL_SOURCE_LOCATION (node->decl) == BUILTINS_LOCATION) continue; if (lookup_attribute ("no_profile_instrument_function", DECL_ATTRIBUTES (node->decl))) continue; /* Do not instrument extern inline functions when testing coverage. While this is not perfectly consistent (early inlined extern inlines will get acocunted), testsuite expects that. */ if (DECL_EXTERNAL (node->decl) && flag_test_coverage) continue; const char *file = LOCATION_FILE (DECL_SOURCE_LOCATION (node->decl)); if (!include_source_file_for_profile (file)) continue; if (node->thunk) { /* We cannot expand variadic thunks to Gimple. */ if (stdarg_p (TREE_TYPE (node->decl))) continue; thunk = true; /* When generate profile, expand thunk to gimple so it can be instrumented same way as other functions. */ if (profile_arc_flag) expand_thunk (node, false, true); /* Read cgraph profile but keep function as thunk at profile-use time. */ else { read_thunk_profile (node); continue; } } push_cfun (DECL_STRUCT_FUNCTION (node->decl)); if (dump_file) dump_function_header (dump_file, cfun->decl, dump_flags); /* Local pure-const may imply need to fixup the cfg. */ if (gimple_has_body_p (node->decl) && (execute_fixup_cfg () & TODO_cleanup_cfg)) cleanup_tree_cfg (); branch_prob (thunk); if (! flag_branch_probabilities && flag_profile_values) gimple_gen_ic_func_profiler (); if (flag_branch_probabilities && !thunk && flag_profile_values && flag_value_profile_transformations && profile_status_for_fn (cfun) == PROFILE_READ) gimple_value_profile_transformations (); /* The above could hose dominator info. Currently there is none coming in, this is a safety valve. It should be easy to adjust it, if and when there is some. */ free_dominance_info (CDI_DOMINATORS); free_dominance_info (CDI_POST_DOMINATORS); pop_cfun (); } release_profile_file_filtering (); /* Drop pure/const flags from instrumented functions. */ if (profile_arc_flag || flag_test_coverage) FOR_EACH_DEFINED_FUNCTION (node) { if (!gimple_has_body_p (node->decl) || !(!node->clone_of || node->decl != node->clone_of->decl)) continue; /* Don't profile functions produced for builtin stuff. */ if (DECL_SOURCE_LOCATION (node->decl) == BUILTINS_LOCATION) continue; node->set_const_flag (false, false); node->set_pure_flag (false, false); } /* Update call statements and rebuild the cgraph. */ FOR_EACH_DEFINED_FUNCTION (node) { basic_block bb; if (!gimple_has_body_p (node->decl) || !(!node->clone_of || node->decl != node->clone_of->decl)) continue; /* Don't profile functions produced for builtin stuff. */ if (DECL_SOURCE_LOCATION (node->decl) == BUILTINS_LOCATION) continue; push_cfun (DECL_STRUCT_FUNCTION (node->decl)); if (profile_arc_flag || flag_test_coverage) FOR_EACH_BB_FN (bb, cfun) { gimple_stmt_iterator gsi; for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gcall *call = dyn_cast (gsi_stmt (gsi)); if (!call || gimple_call_internal_p (call)) continue; /* We do not clear pure/const on decls without body. */ tree fndecl = gimple_call_fndecl (call); cgraph_node *callee; if (fndecl && (callee = cgraph_node::get (fndecl)) && callee->get_availability (node) == AVAIL_NOT_AVAILABLE) continue; /* Drop the const attribute from the call type (the pure attribute is not available on types). */ tree fntype = gimple_call_fntype (call); if (fntype && TYPE_READONLY (fntype)) { int quals = TYPE_QUALS (fntype) & ~TYPE_QUAL_CONST; fntype = build_qualified_type (fntype, quals); gimple_call_set_fntype (call, fntype); } /* Update virtual operands of calls to no longer const/pure functions. */ update_stmt (call); } } /* re-merge split blocks. */ cleanup_tree_cfg (); update_ssa (TODO_update_ssa); cgraph_edge::rebuild_edges (); pop_cfun (); } handle_missing_profiles (); del_node_map (); return 0; } namespace { const pass_data pass_data_ipa_tree_profile = { SIMPLE_IPA_PASS, /* type */ "profile", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_IPA_PROFILE, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_symtab, /* todo_flags_finish */ }; class pass_ipa_tree_profile : public simple_ipa_opt_pass { public: pass_ipa_tree_profile (gcc::context *ctxt) : simple_ipa_opt_pass (pass_data_ipa_tree_profile, ctxt) {} /* opt_pass methods: */ bool gate (function *) final override; unsigned int execute (function *) final override { return tree_profiling (); } }; // class pass_ipa_tree_profile bool pass_ipa_tree_profile::gate (function *) { /* When profile instrumentation, use or test coverage shall be performed. But for AutoFDO, this there is no instrumentation, thus this pass is disabled. */ return (!in_lto_p && !flag_auto_profile && (flag_branch_probabilities || flag_test_coverage || profile_arc_flag)); } } // anon namespace simple_ipa_opt_pass * make_pass_ipa_tree_profile (gcc::context *ctxt) { return new pass_ipa_tree_profile (ctxt); } #include "gt-tree-profile.h"