/* Generic routines for manipulating PHIs Copyright (C) 2003-2023 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "tree.h" #include "gimple.h" #include "ssa.h" #include "fold-const.h" #include "gimple-iterator.h" #include "tree-ssa.h" /* Rewriting a function into SSA form can create a huge number of PHIs many of which may be thrown away shortly after their creation if jumps were threaded through PHI nodes. While our garbage collection mechanisms will handle this situation, it is extremely wasteful to create nodes and throw them away, especially when the nodes can be reused. For PR 8361, we can significantly reduce the number of nodes allocated and thus the total amount of memory allocated by managing PHIs a little. This additionally helps reduce the amount of work done by the garbage collector. Similar results have been seen on a wider variety of tests (such as the compiler itself). PHI nodes have different sizes, so we can't have a single list of all the PHI nodes as it would be too expensive to walk down that list to find a PHI of a suitable size. Instead we have an array of lists of free PHI nodes. The array is indexed by the number of PHI alternatives that PHI node can hold. Except for the last array member, which holds all remaining PHI nodes. So to find a free PHI node, we compute its index into the free PHI node array and see if there are any elements with an exact match. If so, then we are done. Otherwise, we test the next larger size up and continue until we are in the last array element. We do not actually walk members of the last array element. While it might allow us to pick up a few reusable PHI nodes, it could potentially be very expensive if the program has released a bunch of large PHI nodes, but keeps asking for even larger PHI nodes. Experiments have shown that walking the elements of the last array entry would result in finding less than .1% additional reusable PHI nodes. Note that we can never have less than two PHI argument slots. Thus, the -2 on all the calculations below. */ #define NUM_BUCKETS 10 static GTY ((deletable (""))) vec *free_phinodes[NUM_BUCKETS - 2]; static unsigned long free_phinode_count; static int ideal_phi_node_len (int); unsigned int phi_nodes_reused; unsigned int phi_nodes_created; /* Dump some simple statistics regarding the re-use of PHI nodes. */ void phinodes_print_statistics (void) { fprintf (stderr, "%-32s" PRsa (11) "\n", "PHI nodes allocated:", SIZE_AMOUNT (phi_nodes_created)); fprintf (stderr, "%-32s" PRsa (11) "\n", "PHI nodes reused:", SIZE_AMOUNT (phi_nodes_reused)); } /* Allocate a PHI node with at least LEN arguments. If the free list happens to contain a PHI node with LEN arguments or more, return that one. */ static inline gphi * allocate_phi_node (size_t len) { gphi *phi; size_t bucket = NUM_BUCKETS - 2; size_t size = sizeof (struct gphi) + (len - 1) * sizeof (struct phi_arg_d); if (free_phinode_count) for (bucket = len - 2; bucket < NUM_BUCKETS - 2; bucket++) if (free_phinodes[bucket]) break; /* If our free list has an element, then use it. */ if (bucket < NUM_BUCKETS - 2 && gimple_phi_capacity ((*free_phinodes[bucket])[0]) >= len) { free_phinode_count--; phi = as_a (free_phinodes[bucket]->pop ()); if (free_phinodes[bucket]->is_empty ()) vec_free (free_phinodes[bucket]); if (GATHER_STATISTICS) phi_nodes_reused++; } else { phi = static_cast (ggc_internal_alloc (size)); if (GATHER_STATISTICS) { enum gimple_alloc_kind kind = gimple_alloc_kind (GIMPLE_PHI); phi_nodes_created++; gimple_alloc_counts[(int) kind]++; gimple_alloc_sizes[(int) kind] += size; } } return phi; } /* Given LEN, the original number of requested PHI arguments, return a new, "ideal" length for the PHI node. The "ideal" length rounds the total size of the PHI node up to the next power of two bytes. Rounding up will not result in wasting any memory since the size request will be rounded up by the GC system anyway. [ Note this is not entirely true since the original length might have fit on one of the special GC pages. ] By rounding up, we may avoid the need to reallocate the PHI node later if we increase the number of arguments for the PHI. */ static int ideal_phi_node_len (int len) { size_t size, new_size; int log2, new_len; /* We do not support allocations of less than two PHI argument slots. */ if (len < 2) len = 2; /* Compute the number of bytes of the original request. */ size = sizeof (struct gphi) + (len - 1) * sizeof (struct phi_arg_d); /* Round it up to the next power of two. */ log2 = ceil_log2 (size); new_size = 1 << log2; /* Now compute and return the number of PHI argument slots given an ideal size allocation. */ new_len = len + (new_size - size) / sizeof (struct phi_arg_d); return new_len; } /* Return a PHI node with LEN argument slots for variable VAR. */ static gphi * make_phi_node (tree var, int len) { gphi *phi; int capacity, i; capacity = ideal_phi_node_len (len); phi = allocate_phi_node (capacity); /* We need to clear the entire PHI node, including the argument portion, because we represent a "missing PHI argument" by placing NULL_TREE in PHI_ARG_DEF. */ memset (phi, 0, (sizeof (struct gphi) - sizeof (struct phi_arg_d) + sizeof (struct phi_arg_d) * len)); phi->code = GIMPLE_PHI; gimple_init_singleton (phi); phi->nargs = len; phi->capacity = capacity; if (!var) ; else if (TREE_CODE (var) == SSA_NAME) gimple_phi_set_result (phi, var); else gimple_phi_set_result (phi, make_ssa_name (var, phi)); for (i = 0; i < len; i++) { use_operand_p imm; gimple_phi_arg_set_location (phi, i, UNKNOWN_LOCATION); imm = gimple_phi_arg_imm_use_ptr (phi, i); imm->use = gimple_phi_arg_def_ptr (phi, i); imm->prev = NULL; imm->next = NULL; imm->loc.stmt = phi; } return phi; } /* We no longer need PHI, release it so that it may be reused. */ static void release_phi_node (gimple *phi) { size_t bucket; size_t len = gimple_phi_capacity (phi); size_t x; for (x = 0; x < gimple_phi_num_args (phi); x++) { use_operand_p imm; imm = gimple_phi_arg_imm_use_ptr (phi, x); delink_imm_use (imm); } bucket = len > NUM_BUCKETS - 1 ? NUM_BUCKETS - 1 : len; bucket -= 2; vec_safe_push (free_phinodes[bucket], phi); free_phinode_count++; } /* Resize an existing PHI node. The only way is up. Return the possibly relocated phi. */ static gphi * resize_phi_node (gphi *phi, size_t len) { size_t old_size, i; gphi *new_phi; gcc_assert (len > gimple_phi_capacity (phi)); /* The garbage collector will not look at the PHI node beyond the first PHI_NUM_ARGS elements. Therefore, all we have to copy is a portion of the PHI node currently in use. */ old_size = sizeof (struct gphi) + (gimple_phi_num_args (phi) - 1) * sizeof (struct phi_arg_d); new_phi = allocate_phi_node (len); memcpy (new_phi, phi, old_size); memset ((char *)new_phi + old_size, 0, (sizeof (struct gphi) - sizeof (struct phi_arg_d) + sizeof (struct phi_arg_d) * len) - old_size); for (i = 0; i < gimple_phi_num_args (new_phi); i++) { use_operand_p imm, old_imm; imm = gimple_phi_arg_imm_use_ptr (new_phi, i); old_imm = gimple_phi_arg_imm_use_ptr (phi, i); imm->use = gimple_phi_arg_def_ptr (new_phi, i); relink_imm_use_stmt (imm, old_imm, new_phi); } new_phi->capacity = len; return new_phi; } /* Reserve PHI arguments for a new edge to basic block BB. */ void reserve_phi_args_for_new_edge (basic_block bb) { size_t len = EDGE_COUNT (bb->preds); size_t cap = ideal_phi_node_len (len + 4); gphi_iterator gsi; for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gphi *stmt = gsi.phi (); if (len > gimple_phi_capacity (stmt)) { gphi *new_phi = resize_phi_node (stmt, cap); /* The result of the PHI is defined by this PHI node. */ SSA_NAME_DEF_STMT (gimple_phi_result (new_phi)) = new_phi; gsi_set_stmt (&gsi, new_phi); release_phi_node (stmt); stmt = new_phi; } stmt->nargs++; /* We represent a "missing PHI argument" by placing NULL_TREE in the corresponding slot. If PHI arguments were added immediately after an edge is created, this zeroing would not be necessary, but unfortunately this is not the case. For example, the loop optimizer duplicates several basic blocks, redirects edges, and then fixes up PHI arguments later in batch. */ use_operand_p imm = gimple_phi_arg_imm_use_ptr (stmt, len - 1); imm->use = gimple_phi_arg_def_ptr (stmt, len - 1); imm->prev = NULL; imm->next = NULL; imm->loc.stmt = stmt; SET_PHI_ARG_DEF (stmt, len - 1, NULL_TREE); gimple_phi_arg_set_location (stmt, len - 1, UNKNOWN_LOCATION); } } /* Adds PHI to BB. */ static void add_phi_node_to_bb (gphi *phi, basic_block bb) { gimple_seq seq = phi_nodes (bb); /* Add the new PHI node to the list of PHI nodes for block BB. */ if (seq == NULL) set_phi_nodes (bb, gimple_seq_alloc_with_stmt (phi)); else { gimple_seq_add_stmt (&seq, phi); gcc_assert (seq == phi_nodes (bb)); } /* Associate BB to the PHI node. */ gimple_set_bb (phi, bb); } /* Create a new PHI node for variable VAR at basic block BB. */ gphi * create_phi_node (tree var, basic_block bb) { gphi *phi = make_phi_node (var, EDGE_COUNT (bb->preds)); add_phi_node_to_bb (phi, bb); return phi; } /* Add a new argument to PHI node PHI. DEF is the incoming reaching definition and E is the edge through which DEF reaches PHI. The new argument is added at the end of the argument list. If PHI has reached its maximum capacity, add a few slots. In this case, PHI points to the reallocated phi node when we return. */ void add_phi_arg (gphi *phi, tree def, edge e, location_t locus) { basic_block bb = e->dest; gcc_assert (bb == gimple_bb (phi)); /* We resize PHI nodes upon edge creation. We should always have enough room at this point. */ gcc_assert (gimple_phi_num_args (phi) <= gimple_phi_capacity (phi)); /* We resize PHI nodes upon edge creation. We should always have enough room at this point. */ gcc_assert (e->dest_idx < gimple_phi_num_args (phi)); /* Copy propagation needs to know what object occur in abnormal PHI nodes. This is a convenient place to record such information. */ if (e->flags & EDGE_ABNORMAL) { SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def) = 1; SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)) = 1; } SET_PHI_ARG_DEF (phi, e->dest_idx, def); gimple_phi_arg_set_location (phi, e->dest_idx, locus); } /* Remove the Ith argument from PHI's argument list. This routine implements removal by swapping the last alternative with the alternative we want to delete and then shrinking the vector, which is consistent with how we remove an edge from the edge vector. */ static void remove_phi_arg_num (gphi *phi, int i) { int num_elem = gimple_phi_num_args (phi); gcc_assert (i < num_elem); /* Delink the item which is being removed. */ delink_imm_use (gimple_phi_arg_imm_use_ptr (phi, i)); /* If it is not the last element, move the last element to the element we want to delete, resetting all the links. */ if (i != num_elem - 1) { use_operand_p old_p, new_p; old_p = gimple_phi_arg_imm_use_ptr (phi, num_elem - 1); new_p = gimple_phi_arg_imm_use_ptr (phi, i); /* Set use on new node, and link into last element's place. */ *(new_p->use) = *(old_p->use); relink_imm_use (new_p, old_p); /* Move the location as well. */ gimple_phi_arg_set_location (phi, i, gimple_phi_arg_location (phi, num_elem - 1)); } /* Shrink the vector and return. Note that we do not have to clear PHI_ARG_DEF because the garbage collector will not look at those elements beyond the first PHI_NUM_ARGS elements of the array. */ phi->nargs--; } /* Remove all PHI arguments associated with edge E. */ void remove_phi_args (edge e) { gphi_iterator gsi; for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi)) remove_phi_arg_num (gsi.phi (), e->dest_idx); } /* Remove the PHI node pointed-to by iterator GSI from basic block BB. After removal, iterator GSI is updated to point to the next PHI node in the sequence. If RELEASE_LHS_P is true, the LHS of this PHI node is released into the free pool of SSA names. */ void remove_phi_node (gimple_stmt_iterator *gsi, bool release_lhs_p) { gimple *phi = gsi_stmt (*gsi); if (release_lhs_p) insert_debug_temps_for_defs (gsi); gsi_remove (gsi, false); /* If we are deleting the PHI node, then we should release the SSA_NAME node so that it can be reused. */ release_phi_node (phi); if (release_lhs_p) release_ssa_name (gimple_phi_result (phi)); } /* Remove all the phi nodes from BB. */ void remove_phi_nodes (basic_block bb) { gphi_iterator gsi; for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); ) remove_phi_node (&gsi, true); set_phi_nodes (bb, NULL); } /* Given PHI, return its RHS if the PHI is a degenerate, otherwise return NULL. */ tree degenerate_phi_result (gphi *phi) { tree lhs = gimple_phi_result (phi); tree val = NULL; size_t i; /* Ignoring arguments which are the same as LHS, if all the remaining arguments are the same, then the PHI is a degenerate and has the value of that common argument. */ for (i = 0; i < gimple_phi_num_args (phi); i++) { tree arg = gimple_phi_arg_def (phi, i); if (arg == lhs) continue; else if (!arg) break; else if (!val) val = arg; else if (arg == val) continue; /* We bring in some of operand_equal_p not only to speed things up, but also to avoid crashing when dereferencing the type of a released SSA name. */ else if (TREE_CODE (val) != TREE_CODE (arg) || TREE_CODE (val) == SSA_NAME || !operand_equal_p (arg, val, 0)) break; } return (i == gimple_phi_num_args (phi) ? val : NULL); } /* Set PHI nodes of a basic block BB to SEQ. */ void set_phi_nodes (basic_block bb, gimple_seq seq) { gimple_stmt_iterator i; gcc_checking_assert (!(bb->flags & BB_RTL)); bb->il.gimple.phi_nodes = seq; if (seq) for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i)) gimple_set_bb (gsi_stmt (i), bb); } #include "gt-tree-phinodes.h"