/* __builtin_object_size (ptr, object_size_type) computation Copyright (C) 2004-2023 Free Software Foundation, Inc. Contributed by Jakub Jelinek This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "tree.h" #include "gimple.h" #include "tree-pass.h" #include "ssa.h" #include "gimple-pretty-print.h" #include "fold-const.h" #include "tree-object-size.h" #include "gimple-iterator.h" #include "gimple-fold.h" #include "tree-cfg.h" #include "tree-dfa.h" #include "stringpool.h" #include "attribs.h" #include "builtins.h" #include "gimplify-me.h" struct object_size_info { int object_size_type; unsigned char pass; bool changed; bitmap visited, reexamine, unknowns; unsigned int *depths; unsigned int *stack, *tos; }; struct GTY(()) object_size { /* Estimate of bytes till the end of the object. */ tree size; /* Estimate of the size of the whole object. */ tree wholesize; }; static tree compute_object_offset (tree, const_tree); static bool addr_object_size (struct object_size_info *, const_tree, int, tree *, tree *t = NULL); static tree alloc_object_size (const gcall *, int); static tree pass_through_call (const gcall *); static void collect_object_sizes_for (struct object_size_info *, tree); static void expr_object_size (struct object_size_info *, tree, tree); static bool merge_object_sizes (struct object_size_info *, tree, tree); static bool plus_stmt_object_size (struct object_size_info *, tree, gimple *); static bool cond_expr_object_size (struct object_size_info *, tree, gimple *); static void init_offset_limit (void); static void check_for_plus_in_loops (struct object_size_info *, tree); static void check_for_plus_in_loops_1 (struct object_size_info *, tree, unsigned int); /* object_sizes[0] is upper bound for the object size and number of bytes till the end of the object. object_sizes[1] is upper bound for the object size and number of bytes till the end of the subobject (innermost array or field with address taken). object_sizes[2] is lower bound for the object size and number of bytes till the end of the object and object_sizes[3] lower bound for subobject. For static object sizes, the object size and the bytes till the end of the object are both INTEGER_CST. In the dynamic case, they are finally either a gimple variable or an INTEGER_CST. */ static vec object_sizes[OST_END]; /* Bitmaps what object sizes have been computed already. */ static bitmap computed[OST_END]; /* Maximum value of offset we consider to be addition. */ static unsigned HOST_WIDE_INT offset_limit; /* Tell the generic SSA updater what kind of update is needed after the pass executes. */ static unsigned todo; /* Return true if VAL represents an initial size for OBJECT_SIZE_TYPE. */ static inline bool size_initval_p (tree val, int object_size_type) { return ((object_size_type & OST_MINIMUM) ? integer_all_onesp (val) : integer_zerop (val)); } /* Return true if VAL represents an unknown size for OBJECT_SIZE_TYPE. */ static inline bool size_unknown_p (tree val, int object_size_type) { return ((object_size_type & OST_MINIMUM) ? integer_zerop (val) : integer_all_onesp (val)); } /* Return true if VAL represents a valid size for OBJECT_SIZE_TYPE. */ static inline bool size_valid_p (tree val, int object_size_type) { return ((object_size_type & OST_DYNAMIC) || TREE_CODE (val) == INTEGER_CST); } /* Return true if VAL is usable as an object size in the object_sizes vectors. */ static inline bool size_usable_p (tree val) { return TREE_CODE (val) == SSA_NAME || TREE_CODE (val) == INTEGER_CST; } /* Return a tree with initial value for OBJECT_SIZE_TYPE. */ static inline tree size_initval (int object_size_type) { return ((object_size_type & OST_MINIMUM) ? TYPE_MAX_VALUE (sizetype) : size_zero_node); } /* Return a tree with unknown value for OBJECT_SIZE_TYPE. */ static inline tree size_unknown (int object_size_type) { return ((object_size_type & OST_MINIMUM) ? size_zero_node : TYPE_MAX_VALUE (sizetype)); } /* Grow object_sizes[OBJECT_SIZE_TYPE] to num_ssa_names. */ static inline void object_sizes_grow (int object_size_type) { if (num_ssa_names > object_sizes[object_size_type].length ()) object_sizes[object_size_type].safe_grow (num_ssa_names, true); } /* Release object_sizes[OBJECT_SIZE_TYPE]. */ static inline void object_sizes_release (int object_size_type) { object_sizes[object_size_type].release (); } /* Return true if object_sizes[OBJECT_SIZE_TYPE][VARNO] is unknown. */ static inline bool object_sizes_unknown_p (int object_size_type, unsigned varno) { return size_unknown_p (object_sizes[object_size_type][varno].size, object_size_type); } /* Return the raw size expression for VARNO corresponding to OSI. This returns the TREE_VEC as is and should only be used during gimplification. */ static inline object_size object_sizes_get_raw (struct object_size_info *osi, unsigned varno) { gcc_assert (osi->pass != 0); return object_sizes[osi->object_size_type][varno]; } /* Return a size tree for VARNO corresponding to OSI. If WHOLE is true, return the whole object size. Use this for building size expressions based on size of VARNO. */ static inline tree object_sizes_get (struct object_size_info *osi, unsigned varno, bool whole = false) { tree ret; int object_size_type = osi->object_size_type; if (whole) ret = object_sizes[object_size_type][varno].wholesize; else ret = object_sizes[object_size_type][varno].size; if (object_size_type & OST_DYNAMIC) { if (TREE_CODE (ret) == MODIFY_EXPR) return TREE_OPERAND (ret, 0); else if (TREE_CODE (ret) == TREE_VEC) return TREE_VEC_ELT (ret, TREE_VEC_LENGTH (ret) - 1); else gcc_checking_assert (size_usable_p (ret)); } return ret; } /* Set size for VARNO corresponding to OSI to VAL. */ static inline void object_sizes_initialize (struct object_size_info *osi, unsigned varno, tree val, tree wholeval) { int object_size_type = osi->object_size_type; object_sizes[object_size_type][varno].size = val; object_sizes[object_size_type][varno].wholesize = wholeval; } /* Return a MODIFY_EXPR for cases where SSA and EXPR have the same type. The TREE_VEC is returned only in case of PHI nodes. */ static tree bundle_sizes (tree name, tree expr) { gcc_checking_assert (TREE_TYPE (name) == sizetype); if (TREE_CODE (expr) == TREE_VEC) { TREE_VEC_ELT (expr, TREE_VEC_LENGTH (expr) - 1) = name; return expr; } gcc_checking_assert (types_compatible_p (TREE_TYPE (expr), sizetype)); return build2 (MODIFY_EXPR, sizetype, name, expr); } /* Set size for VARNO corresponding to OSI to VAL if it is the new minimum or maximum. For static sizes, each element of TREE_VEC is always INTEGER_CST throughout the computation. For dynamic sizes, each element may either be a gimple variable, a MODIFY_EXPR or a TREE_VEC. The MODIFY_EXPR is for expressions that need to be gimplified. TREE_VECs are special, they're emitted only for GIMPLE_PHI and the PHI result variable is the last element of the vector. */ static bool object_sizes_set (struct object_size_info *osi, unsigned varno, tree val, tree wholeval) { int object_size_type = osi->object_size_type; object_size osize = object_sizes[object_size_type][varno]; bool changed = true; tree oldval = osize.size; tree old_wholeval = osize.wholesize; if (object_size_type & OST_DYNAMIC) { if (bitmap_bit_p (osi->reexamine, varno)) { if (size_unknown_p (val, object_size_type)) { oldval = object_sizes_get (osi, varno); old_wholeval = object_sizes_get (osi, varno, true); bitmap_set_bit (osi->unknowns, SSA_NAME_VERSION (oldval)); bitmap_set_bit (osi->unknowns, SSA_NAME_VERSION (old_wholeval)); bitmap_clear_bit (osi->reexamine, varno); } else { val = bundle_sizes (oldval, val); wholeval = bundle_sizes (old_wholeval, wholeval); } } else { gcc_checking_assert (size_initval_p (oldval, object_size_type)); gcc_checking_assert (size_initval_p (old_wholeval, object_size_type)); /* For dynamic object sizes, all object sizes that are not gimple variables will need to be gimplified. */ if (wholeval != val && !size_usable_p (wholeval)) { bitmap_set_bit (osi->reexamine, varno); wholeval = bundle_sizes (make_ssa_name (sizetype), wholeval); } if (!size_usable_p (val)) { bitmap_set_bit (osi->reexamine, varno); tree newval = bundle_sizes (make_ssa_name (sizetype), val); if (val == wholeval) wholeval = newval; val = newval; } /* If the new value is a temporary variable, mark it for reexamination. */ else if (TREE_CODE (val) == SSA_NAME && !SSA_NAME_DEF_STMT (val)) bitmap_set_bit (osi->reexamine, varno); } } else { enum tree_code code = (object_size_type & OST_MINIMUM ? MIN_EXPR : MAX_EXPR); val = size_binop (code, val, oldval); wholeval = size_binop (code, wholeval, old_wholeval); changed = (tree_int_cst_compare (val, oldval) != 0 || tree_int_cst_compare (old_wholeval, wholeval) != 0); } object_sizes[object_size_type][varno].size = val; object_sizes[object_size_type][varno].wholesize = wholeval; return changed; } /* Set temporary SSA names for object size and whole size to resolve dependency loops in dynamic size computation. */ static inline void object_sizes_set_temp (struct object_size_info *osi, unsigned varno) { tree val = object_sizes_get (osi, varno); if (size_initval_p (val, osi->object_size_type)) object_sizes_set (osi, varno, make_ssa_name (sizetype), make_ssa_name (sizetype)); } /* Initialize OFFSET_LIMIT variable. */ static void init_offset_limit (void) { if (tree_fits_uhwi_p (TYPE_MAX_VALUE (sizetype))) offset_limit = tree_to_uhwi (TYPE_MAX_VALUE (sizetype)); else offset_limit = -1; offset_limit /= 2; } /* Bytes at end of the object with SZ from offset OFFSET. If WHOLESIZE is not NULL_TREE, use it to get the net offset of the pointer, which should always be positive and hence, be within OFFSET_LIMIT for valid offsets. */ static tree size_for_offset (tree sz, tree offset, tree wholesize = NULL_TREE) { gcc_checking_assert (types_compatible_p (TREE_TYPE (sz), sizetype)); /* For negative offsets, if we have a distinct WHOLESIZE, use it to get a net offset from the whole object. */ if (wholesize && wholesize != sz && (TREE_CODE (sz) != INTEGER_CST || TREE_CODE (wholesize) != INTEGER_CST || tree_int_cst_compare (sz, wholesize))) { gcc_checking_assert (types_compatible_p (TREE_TYPE (wholesize), sizetype)); /* Restructure SZ - OFFSET as WHOLESIZE - (WHOLESIZE + OFFSET - SZ) so that the offset part, i.e. WHOLESIZE + OFFSET - SZ is only allowed to be positive. */ tree tmp = size_binop (MAX_EXPR, wholesize, sz); offset = fold_build2 (PLUS_EXPR, sizetype, tmp, offset); offset = fold_build2 (MINUS_EXPR, sizetype, offset, sz); sz = tmp; } /* Safe to convert now, since a valid net offset should be non-negative. */ if (!useless_type_conversion_p (sizetype, TREE_TYPE (offset))) offset = fold_convert (sizetype, offset); if (TREE_CODE (offset) == INTEGER_CST) { if (integer_zerop (offset)) return sz; /* Negative or too large offset even after adjustment, cannot be within bounds of an object. */ if (compare_tree_int (offset, offset_limit) > 0) return size_zero_node; } return size_binop (MINUS_EXPR, size_binop (MAX_EXPR, sz, offset), offset); } /* Compute offset of EXPR within VAR. Return error_mark_node if unknown. */ static tree compute_object_offset (tree expr, const_tree var) { enum tree_code code = PLUS_EXPR; tree base, off, t; if (expr == var) return size_zero_node; switch (TREE_CODE (expr)) { case COMPONENT_REF: base = compute_object_offset (TREE_OPERAND (expr, 0), var); if (base == error_mark_node) return base; t = TREE_OPERAND (expr, 1); off = size_binop (PLUS_EXPR, component_ref_field_offset (expr), size_int (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (t)) / BITS_PER_UNIT)); break; case REALPART_EXPR: CASE_CONVERT: case VIEW_CONVERT_EXPR: case NON_LVALUE_EXPR: return compute_object_offset (TREE_OPERAND (expr, 0), var); case IMAGPART_EXPR: base = compute_object_offset (TREE_OPERAND (expr, 0), var); if (base == error_mark_node) return base; off = TYPE_SIZE_UNIT (TREE_TYPE (expr)); break; case ARRAY_REF: base = compute_object_offset (TREE_OPERAND (expr, 0), var); if (base == error_mark_node) return base; t = TREE_OPERAND (expr, 1); tree low_bound, unit_size; low_bound = array_ref_low_bound (CONST_CAST_TREE (expr)); unit_size = array_ref_element_size (CONST_CAST_TREE (expr)); if (! integer_zerop (low_bound)) t = fold_build2 (MINUS_EXPR, TREE_TYPE (t), t, low_bound); if (TREE_CODE (t) == INTEGER_CST && tree_int_cst_sgn (t) < 0) { code = MINUS_EXPR; t = fold_build1 (NEGATE_EXPR, TREE_TYPE (t), t); } t = fold_convert (sizetype, t); off = size_binop (MULT_EXPR, unit_size, t); break; case MEM_REF: gcc_assert (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR); return wide_int_to_tree (sizetype, mem_ref_offset (expr)); default: return error_mark_node; } return size_binop (code, base, off); } /* Returns the size of the object designated by DECL considering its initializer if it either has one or if it would not affect its size, otherwise the size of the object without the initializer when MIN is true, else null. An object's initializer affects the object's size if it's a struct type with a flexible array member. */ tree decl_init_size (tree decl, bool min) { tree size = DECL_SIZE_UNIT (decl); tree type = TREE_TYPE (decl); if (TREE_CODE (type) != RECORD_TYPE) return size; tree last = last_field (type); if (!last) return size; tree last_type = TREE_TYPE (last); if (TREE_CODE (last_type) != ARRAY_TYPE || TYPE_SIZE (last_type)) return size; /* Use TYPE_SIZE_UNIT; DECL_SIZE_UNIT sometimes reflects the size of the initializer and sometimes doesn't. */ size = TYPE_SIZE_UNIT (type); tree ref = build3 (COMPONENT_REF, type, decl, last, NULL_TREE); tree compsize = component_ref_size (ref); if (!compsize) return min ? size : NULL_TREE; /* The size includes tail padding and initializer elements. */ tree pos = byte_position (last); size = fold_build2 (PLUS_EXPR, TREE_TYPE (size), pos, compsize); return size; } /* Compute __builtin_object_size for PTR, which is a ADDR_EXPR. OBJECT_SIZE_TYPE is the second argument from __builtin_object_size. If unknown, return size_unknown (object_size_type). */ static bool addr_object_size (struct object_size_info *osi, const_tree ptr, int object_size_type, tree *psize, tree *pwholesize) { tree pt_var, pt_var_size = NULL_TREE, pt_var_wholesize = NULL_TREE; tree var_size, bytes, wholebytes; gcc_assert (TREE_CODE (ptr) == ADDR_EXPR); /* Set to unknown and overwrite just before returning if the size could be determined. */ *psize = size_unknown (object_size_type); if (pwholesize) *pwholesize = size_unknown (object_size_type); pt_var = TREE_OPERAND (ptr, 0); while (handled_component_p (pt_var)) pt_var = TREE_OPERAND (pt_var, 0); if (!pt_var) return false; if (TREE_CODE (pt_var) == MEM_REF) { tree sz, wholesize; if (!osi || (object_size_type & OST_SUBOBJECT) != 0 || TREE_CODE (TREE_OPERAND (pt_var, 0)) != SSA_NAME) { compute_builtin_object_size (TREE_OPERAND (pt_var, 0), object_size_type & ~OST_SUBOBJECT, &sz); wholesize = sz; } else { tree var = TREE_OPERAND (pt_var, 0); if (osi->pass == 0) collect_object_sizes_for (osi, var); if (bitmap_bit_p (computed[object_size_type], SSA_NAME_VERSION (var))) { sz = object_sizes_get (osi, SSA_NAME_VERSION (var)); wholesize = object_sizes_get (osi, SSA_NAME_VERSION (var), true); } else sz = wholesize = size_unknown (object_size_type); } if (!size_unknown_p (sz, object_size_type)) sz = size_for_offset (sz, TREE_OPERAND (pt_var, 1), wholesize); if (!size_unknown_p (sz, object_size_type) && (TREE_CODE (sz) != INTEGER_CST || compare_tree_int (sz, offset_limit) < 0)) { pt_var_size = sz; pt_var_wholesize = wholesize; } } else if (DECL_P (pt_var)) { pt_var_size = pt_var_wholesize = decl_init_size (pt_var, object_size_type & OST_MINIMUM); if (!pt_var_size) return false; } else if (TREE_CODE (pt_var) == STRING_CST) pt_var_size = pt_var_wholesize = TYPE_SIZE_UNIT (TREE_TYPE (pt_var)); else return false; if (pt_var_size) { /* Validate the size determined above if it is a constant. */ if (TREE_CODE (pt_var_size) == INTEGER_CST && compare_tree_int (pt_var_size, offset_limit) >= 0) return false; } if (pt_var != TREE_OPERAND (ptr, 0)) { tree var; if (object_size_type & OST_SUBOBJECT) { var = TREE_OPERAND (ptr, 0); while (var != pt_var && TREE_CODE (var) != BIT_FIELD_REF && TREE_CODE (var) != COMPONENT_REF && TREE_CODE (var) != ARRAY_REF && TREE_CODE (var) != ARRAY_RANGE_REF && TREE_CODE (var) != REALPART_EXPR && TREE_CODE (var) != IMAGPART_EXPR) var = TREE_OPERAND (var, 0); if (var != pt_var && TREE_CODE (var) == ARRAY_REF) var = TREE_OPERAND (var, 0); if (! TYPE_SIZE_UNIT (TREE_TYPE (var)) || ! tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (var))) || (pt_var_size && TREE_CODE (pt_var_size) == INTEGER_CST && tree_int_cst_lt (pt_var_size, TYPE_SIZE_UNIT (TREE_TYPE (var))))) var = pt_var; else if (var != pt_var && TREE_CODE (pt_var) == MEM_REF) { tree v = var; /* For &X->fld, compute object size if fld isn't a flexible array member. */ bool is_flexible_array_mem_ref = false; while (v && v != pt_var) switch (TREE_CODE (v)) { case ARRAY_REF: if (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (v, 0)))) { tree domain = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (v, 0))); if (domain && TYPE_MAX_VALUE (domain)) { v = NULL_TREE; break; } } v = TREE_OPERAND (v, 0); break; case REALPART_EXPR: case IMAGPART_EXPR: v = NULL_TREE; break; case COMPONENT_REF: /* When the ref is not to an aggregate type, i.e, an array, a record or a union, it will not have flexible size, compute the object size directly. */ if (!AGGREGATE_TYPE_P (TREE_TYPE (v))) { v = NULL_TREE; break; } /* if the ref is to a record or union type, but the type does not include a flexible array recursively, compute the object size directly. */ if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (v))) { if (!TYPE_INCLUDES_FLEXARRAY (TREE_TYPE (v))) { v = NULL_TREE; break; } else { v = TREE_OPERAND (v, 0); break; } } /* Now the ref is to an array type. */ gcc_assert (TREE_CODE (TREE_TYPE (v)) == ARRAY_TYPE); is_flexible_array_mem_ref = array_ref_flexible_size_p (v); while (v != pt_var && TREE_CODE (v) == COMPONENT_REF) if (TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0))) != UNION_TYPE && TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0))) != QUAL_UNION_TYPE) break; else v = TREE_OPERAND (v, 0); if (TREE_CODE (v) == COMPONENT_REF && TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0))) == RECORD_TYPE) { /* compute object size only if v is not a flexible array member. */ if (!is_flexible_array_mem_ref) { v = NULL_TREE; break; } v = TREE_OPERAND (v, 0); } while (v != pt_var && TREE_CODE (v) == COMPONENT_REF) if (TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0))) != UNION_TYPE && TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0))) != QUAL_UNION_TYPE) break; else v = TREE_OPERAND (v, 0); if (v != pt_var) v = NULL_TREE; else v = pt_var; break; default: v = pt_var; break; } if (v == pt_var) var = pt_var; } } else var = pt_var; if (var != pt_var) { var_size = TYPE_SIZE_UNIT (TREE_TYPE (var)); if (!TREE_CONSTANT (var_size)) var_size = get_or_create_ssa_default_def (cfun, var_size); if (!var_size) return false; } else if (!pt_var_size) return false; else var_size = pt_var_size; bytes = compute_object_offset (TREE_OPERAND (ptr, 0), var); if (bytes != error_mark_node) { bytes = size_for_offset (var_size, bytes); if (var != pt_var && pt_var_size && TREE_CODE (pt_var) == MEM_REF) { tree bytes2 = compute_object_offset (TREE_OPERAND (ptr, 0), pt_var); if (bytes2 != error_mark_node) { bytes2 = size_for_offset (pt_var_size, bytes2); bytes = size_binop (MIN_EXPR, bytes, bytes2); } } } else bytes = size_unknown (object_size_type); wholebytes = object_size_type & OST_SUBOBJECT ? var_size : pt_var_wholesize; } else if (!pt_var_size) return false; else { bytes = pt_var_size; wholebytes = pt_var_wholesize; } if (!size_unknown_p (bytes, object_size_type) && size_valid_p (bytes, object_size_type) && !size_unknown_p (bytes, object_size_type) && size_valid_p (wholebytes, object_size_type)) { *psize = bytes; if (pwholesize) *pwholesize = wholebytes; return true; } return false; } /* Compute __builtin_object_size for CALL, which is a GIMPLE_CALL. Handles calls to functions declared with attribute alloc_size. OBJECT_SIZE_TYPE is the second argument from __builtin_object_size. If unknown, return size_unknown (object_size_type). */ static tree alloc_object_size (const gcall *call, int object_size_type) { gcc_assert (is_gimple_call (call)); tree calltype; tree callfn = gimple_call_fndecl (call); if (callfn) calltype = TREE_TYPE (callfn); else calltype = gimple_call_fntype (call); if (!calltype) return size_unknown (object_size_type); /* Set to positions of alloc_size arguments. */ int arg1 = -1, arg2 = -1; tree alloc_size = lookup_attribute ("alloc_size", TYPE_ATTRIBUTES (calltype)); if (alloc_size && TREE_VALUE (alloc_size)) { tree p = TREE_VALUE (alloc_size); arg1 = TREE_INT_CST_LOW (TREE_VALUE (p))-1; if (TREE_CHAIN (p)) arg2 = TREE_INT_CST_LOW (TREE_VALUE (TREE_CHAIN (p)))-1; } else if (gimple_call_builtin_p (call, BUILT_IN_NORMAL) && callfn && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callfn))) arg1 = 0; /* Non-const arguments are OK here, let the caller handle constness. */ if (arg1 < 0 || arg1 >= (int) gimple_call_num_args (call) || arg2 >= (int) gimple_call_num_args (call)) return size_unknown (object_size_type); tree bytes = NULL_TREE; if (arg2 >= 0) bytes = size_binop (MULT_EXPR, fold_convert (sizetype, gimple_call_arg (call, arg1)), fold_convert (sizetype, gimple_call_arg (call, arg2))); else if (arg1 >= 0) bytes = fold_convert (sizetype, gimple_call_arg (call, arg1)); return bytes ? bytes : size_unknown (object_size_type); } /* Compute __builtin_object_size for CALL, which is a call to either BUILT_IN_STRDUP or BUILT_IN_STRNDUP; IS_STRNDUP indicates which it is. OBJECT_SIZE_TYPE is the second argument from __builtin_object_size. If unknown, return size_unknown (object_size_type). */ static tree strdup_object_size (const gcall *call, int object_size_type, bool is_strndup) { tree src = gimple_call_arg (call, 0); tree sz = size_unknown (object_size_type); tree n = NULL_TREE; if (is_strndup) n = fold_build2 (PLUS_EXPR, sizetype, size_one_node, gimple_call_arg (call, 1)); /* For strdup, simply emit strlen (SRC) + 1 and let the optimizer fold it the way it likes. */ else { tree strlen_fn = builtin_decl_implicit (BUILT_IN_STRLEN); if (strlen_fn) { sz = fold_build2 (PLUS_EXPR, sizetype, size_one_node, build_call_expr (strlen_fn, 1, src)); todo = TODO_update_ssa_only_virtuals; } } /* In all other cases, return the size of SRC since the object size cannot exceed that. We cannot do this for OST_MINIMUM unless SRC points into a string constant since otherwise the object size could go all the way down to zero. */ if (!size_valid_p (sz, object_size_type) || size_unknown_p (sz, object_size_type)) { tree wholesrc = NULL_TREE; if (TREE_CODE (src) == ADDR_EXPR) wholesrc = get_base_address (TREE_OPERAND (src, 0)); /* If the source points within a string constant, we try to get its length. */ if (wholesrc && TREE_CODE (wholesrc) == STRING_CST) { tree len = c_strlen (src, 0); if (len) sz = fold_build2 (PLUS_EXPR, sizetype, size_one_node, len); } /* For maximum estimate, our next best guess is the object size of the source. */ if (size_unknown_p (sz, object_size_type) && !(object_size_type & OST_MINIMUM)) compute_builtin_object_size (src, object_size_type, &sz); } /* String duplication allocates at least one byte, so we should never fail for OST_MINIMUM. */ if ((!size_valid_p (sz, object_size_type) || size_unknown_p (sz, object_size_type)) && (object_size_type & OST_MINIMUM)) sz = size_one_node; /* Factor in the N. */ return n ? fold_build2 (MIN_EXPR, sizetype, n, sz) : sz; } /* If object size is propagated from one of function's arguments directly to its return value, return that argument for GIMPLE_CALL statement CALL. Otherwise return NULL. */ static tree pass_through_call (const gcall *call) { unsigned rf = gimple_call_return_flags (call); if (rf & ERF_RETURNS_ARG) { unsigned argnum = rf & ERF_RETURN_ARG_MASK; if (argnum < gimple_call_num_args (call)) return gimple_call_arg (call, argnum); } /* __builtin_assume_aligned is intentionally not marked RET1. */ if (gimple_call_builtin_p (call, BUILT_IN_ASSUME_ALIGNED)) return gimple_call_arg (call, 0); return NULL_TREE; } /* Emit PHI nodes for size expressions fo. */ static void emit_phi_nodes (gimple *stmt, tree size, tree wholesize) { tree phires; gphi *wholephi = NULL; if (wholesize != size) { phires = TREE_VEC_ELT (wholesize, TREE_VEC_LENGTH (wholesize) - 1); wholephi = create_phi_node (phires, gimple_bb (stmt)); } phires = TREE_VEC_ELT (size, TREE_VEC_LENGTH (size) - 1); gphi *phi = create_phi_node (phires, gimple_bb (stmt)); gphi *obj_phi = as_a (stmt); gcc_checking_assert (TREE_CODE (wholesize) == TREE_VEC); gcc_checking_assert (TREE_CODE (size) == TREE_VEC); for (unsigned i = 0; i < gimple_phi_num_args (stmt); i++) { gimple_seq seq = NULL; tree wsz = TREE_VEC_ELT (wholesize, i); tree sz = TREE_VEC_ELT (size, i); /* If we built an expression, we will need to build statements and insert them on the edge right away. */ if (TREE_CODE (wsz) != SSA_NAME) wsz = force_gimple_operand (wsz, &seq, true, NULL); if (TREE_CODE (sz) != SSA_NAME) { gimple_seq s; sz = force_gimple_operand (sz, &s, true, NULL); gimple_seq_add_seq (&seq, s); } if (seq) gsi_insert_seq_on_edge (gimple_phi_arg_edge (obj_phi, i), seq); if (wholephi) add_phi_arg (wholephi, wsz, gimple_phi_arg_edge (obj_phi, i), gimple_phi_arg_location (obj_phi, i)); add_phi_arg (phi, sz, gimple_phi_arg_edge (obj_phi, i), gimple_phi_arg_location (obj_phi, i)); } } /* Descend through EXPR and return size_unknown if it uses any SSA variable object_size_set or object_size_set_temp generated, which turned out to be size_unknown, as noted in UNKNOWNS. */ static tree propagate_unknowns (object_size_info *osi, tree expr) { int object_size_type = osi->object_size_type; switch (TREE_CODE (expr)) { case SSA_NAME: if (bitmap_bit_p (osi->unknowns, SSA_NAME_VERSION (expr))) return size_unknown (object_size_type); return expr; case MIN_EXPR: case MAX_EXPR: { tree res = propagate_unknowns (osi, TREE_OPERAND (expr, 0)); if (size_unknown_p (res, object_size_type)) return res; res = propagate_unknowns (osi, TREE_OPERAND (expr, 1)); if (size_unknown_p (res, object_size_type)) return res; return expr; } case MODIFY_EXPR: { tree res = propagate_unknowns (osi, TREE_OPERAND (expr, 1)); if (size_unknown_p (res, object_size_type)) return res; return expr; } case TREE_VEC: for (int i = 0; i < TREE_VEC_LENGTH (expr); i++) { tree res = propagate_unknowns (osi, TREE_VEC_ELT (expr, i)); if (size_unknown_p (res, object_size_type)) return res; } return expr; case PLUS_EXPR: case MINUS_EXPR: { tree res = propagate_unknowns (osi, TREE_OPERAND (expr, 0)); if (size_unknown_p (res, object_size_type)) return res; return expr; } default: return expr; } } /* Walk through size expressions that need reexamination and generate statements for them. */ static void gimplify_size_expressions (object_size_info *osi) { int object_size_type = osi->object_size_type; bitmap_iterator bi; unsigned int i; bool changed; /* Step 1: Propagate unknowns into expressions. */ bitmap reexamine = BITMAP_ALLOC (NULL); bitmap_copy (reexamine, osi->reexamine); do { changed = false; EXECUTE_IF_SET_IN_BITMAP (reexamine, 0, i, bi) { object_size cur = object_sizes_get_raw (osi, i); if (size_unknown_p (propagate_unknowns (osi, cur.size), object_size_type) || size_unknown_p (propagate_unknowns (osi, cur.wholesize), object_size_type)) { object_sizes_set (osi, i, size_unknown (object_size_type), size_unknown (object_size_type)); changed = true; } } bitmap_copy (reexamine, osi->reexamine); } while (changed); /* Release all unknowns. */ EXECUTE_IF_SET_IN_BITMAP (osi->unknowns, 0, i, bi) release_ssa_name (ssa_name (i)); /* Expand all size expressions to put their definitions close to the objects for which size is being computed. */ EXECUTE_IF_SET_IN_BITMAP (osi->reexamine, 0, i, bi) { gimple_seq seq = NULL; object_size osize = object_sizes_get_raw (osi, i); gimple *stmt = SSA_NAME_DEF_STMT (ssa_name (i)); enum gimple_code code = gimple_code (stmt); /* PHI nodes need special attention. */ if (code == GIMPLE_PHI) emit_phi_nodes (stmt, osize.size, osize.wholesize); else { tree size_expr = NULL_TREE; /* Bundle wholesize in with the size to gimplify if needed. */ if (osize.wholesize != osize.size && !size_usable_p (osize.wholesize)) size_expr = size_binop (COMPOUND_EXPR, osize.wholesize, osize.size); else if (!size_usable_p (osize.size)) size_expr = osize.size; if (size_expr) { gimple_stmt_iterator gsi; if (code == GIMPLE_NOP) gsi = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))); else gsi = gsi_for_stmt (stmt); force_gimple_operand (size_expr, &seq, true, NULL); gsi_insert_seq_before (&gsi, seq, GSI_CONTINUE_LINKING); } } /* We're done, so replace the MODIFY_EXPRs with the SSA names. */ object_sizes_initialize (osi, i, object_sizes_get (osi, i), object_sizes_get (osi, i, true)); } } /* Compute __builtin_object_size value for PTR and set *PSIZE to the resulting value. If the declared object is known and PDECL is nonnull, sets *PDECL to the object's DECL. OBJECT_SIZE_TYPE is the second argument to __builtin_object_size. Returns true on success and false when the object size could not be determined. */ bool compute_builtin_object_size (tree ptr, int object_size_type, tree *psize) { gcc_assert (object_size_type >= 0 && object_size_type < OST_END); /* Set to unknown and overwrite just before returning if the size could be determined. */ *psize = size_unknown (object_size_type); if (! offset_limit) init_offset_limit (); if (TREE_CODE (ptr) == ADDR_EXPR) return addr_object_size (NULL, ptr, object_size_type, psize); if (TREE_CODE (ptr) != SSA_NAME || !POINTER_TYPE_P (TREE_TYPE (ptr))) return false; if (computed[object_size_type] == NULL) { if (optimize || object_size_type & OST_SUBOBJECT) return false; /* When not optimizing, rather than failing, make a small effort to determine the object size without the full benefit of the (costly) computation below. */ gimple *def = SSA_NAME_DEF_STMT (ptr); if (gimple_code (def) == GIMPLE_ASSIGN) { tree_code code = gimple_assign_rhs_code (def); if (code == POINTER_PLUS_EXPR) { tree offset = gimple_assign_rhs2 (def); ptr = gimple_assign_rhs1 (def); if (((object_size_type & OST_DYNAMIC) || (tree_fits_shwi_p (offset) && compare_tree_int (offset, offset_limit) <= 0)) && compute_builtin_object_size (ptr, object_size_type, psize)) { *psize = size_for_offset (*psize, offset); return true; } } } return false; } struct object_size_info osi; osi.object_size_type = object_size_type; if (!bitmap_bit_p (computed[object_size_type], SSA_NAME_VERSION (ptr))) { bitmap_iterator bi; unsigned int i; object_sizes_grow (object_size_type); if (dump_file) { fprintf (dump_file, "Computing %s %s%sobject size for ", (object_size_type & OST_MINIMUM) ? "minimum" : "maximum", (object_size_type & OST_DYNAMIC) ? "dynamic " : "", (object_size_type & OST_SUBOBJECT) ? "sub" : ""); print_generic_expr (dump_file, ptr, dump_flags); fprintf (dump_file, ":\n"); } osi.visited = BITMAP_ALLOC (NULL); osi.reexamine = BITMAP_ALLOC (NULL); if (object_size_type & OST_DYNAMIC) osi.unknowns = BITMAP_ALLOC (NULL); else { osi.depths = NULL; osi.stack = NULL; osi.tos = NULL; } /* First pass: walk UD chains, compute object sizes that can be computed. osi.reexamine bitmap at the end will contain what variables were found in dependency cycles and therefore need to be reexamined. */ osi.pass = 0; osi.changed = false; collect_object_sizes_for (&osi, ptr); if (object_size_type & OST_DYNAMIC) { osi.pass = 1; gimplify_size_expressions (&osi); BITMAP_FREE (osi.unknowns); bitmap_clear (osi.reexamine); } /* Second pass: keep recomputing object sizes of variables that need reexamination, until no object sizes are increased or all object sizes are computed. */ if (! bitmap_empty_p (osi.reexamine)) { bitmap reexamine = BITMAP_ALLOC (NULL); /* If looking for minimum instead of maximum object size, detect cases where a pointer is increased in a loop. Although even without this detection pass 2 would eventually terminate, it could take a long time. If a pointer is increasing this way, we need to assume 0 object size. E.g. p = &buf[0]; while (cond) p = p + 4; */ if (object_size_type & OST_MINIMUM) { osi.depths = XCNEWVEC (unsigned int, num_ssa_names); osi.stack = XNEWVEC (unsigned int, num_ssa_names); osi.tos = osi.stack; osi.pass = 1; /* collect_object_sizes_for is changing osi.reexamine bitmap, so iterate over a copy. */ bitmap_copy (reexamine, osi.reexamine); EXECUTE_IF_SET_IN_BITMAP (reexamine, 0, i, bi) if (bitmap_bit_p (osi.reexamine, i)) check_for_plus_in_loops (&osi, ssa_name (i)); free (osi.depths); osi.depths = NULL; free (osi.stack); osi.stack = NULL; osi.tos = NULL; } do { osi.pass = 2; osi.changed = false; /* collect_object_sizes_for is changing osi.reexamine bitmap, so iterate over a copy. */ bitmap_copy (reexamine, osi.reexamine); EXECUTE_IF_SET_IN_BITMAP (reexamine, 0, i, bi) if (bitmap_bit_p (osi.reexamine, i)) { collect_object_sizes_for (&osi, ssa_name (i)); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Reexamining "); print_generic_expr (dump_file, ssa_name (i), dump_flags); fprintf (dump_file, "\n"); } } } while (osi.changed); BITMAP_FREE (reexamine); } EXECUTE_IF_SET_IN_BITMAP (osi.reexamine, 0, i, bi) bitmap_set_bit (computed[object_size_type], i); /* Debugging dumps. */ if (dump_file) { EXECUTE_IF_SET_IN_BITMAP (osi.visited, 0, i, bi) if (!object_sizes_unknown_p (object_size_type, i)) { print_generic_expr (dump_file, ssa_name (i), dump_flags); fprintf (dump_file, ": %s %s%sobject size ", ((object_size_type & OST_MINIMUM) ? "minimum" : "maximum"), (object_size_type & OST_DYNAMIC) ? "dynamic " : "", (object_size_type & OST_SUBOBJECT) ? "sub" : ""); print_generic_expr (dump_file, object_sizes_get (&osi, i), dump_flags); fprintf (dump_file, "\n"); } } BITMAP_FREE (osi.reexamine); BITMAP_FREE (osi.visited); } *psize = object_sizes_get (&osi, SSA_NAME_VERSION (ptr)); return !size_unknown_p (*psize, object_size_type); } /* Compute object_sizes for PTR, defined to VALUE, which is not an SSA_NAME. */ static void expr_object_size (struct object_size_info *osi, tree ptr, tree value) { int object_size_type = osi->object_size_type; unsigned int varno = SSA_NAME_VERSION (ptr); tree bytes, wholesize; gcc_assert (!object_sizes_unknown_p (object_size_type, varno)); gcc_assert (osi->pass == 0); if (TREE_CODE (value) == WITH_SIZE_EXPR) value = TREE_OPERAND (value, 0); /* Pointer variables should have been handled by merge_object_sizes. */ gcc_assert (TREE_CODE (value) != SSA_NAME || !POINTER_TYPE_P (TREE_TYPE (value))); if (TREE_CODE (value) == ADDR_EXPR) addr_object_size (osi, value, object_size_type, &bytes, &wholesize); else bytes = wholesize = size_unknown (object_size_type); object_sizes_set (osi, varno, bytes, wholesize); } /* Compute object_sizes for PTR, defined to the result of a call. */ static void call_object_size (struct object_size_info *osi, tree ptr, gcall *call) { int object_size_type = osi->object_size_type; unsigned int varno = SSA_NAME_VERSION (ptr); tree bytes = NULL_TREE; gcc_assert (is_gimple_call (call)); gcc_assert (!object_sizes_unknown_p (object_size_type, varno)); gcc_assert (osi->pass == 0); bool is_strdup = gimple_call_builtin_p (call, BUILT_IN_STRDUP); bool is_strndup = gimple_call_builtin_p (call, BUILT_IN_STRNDUP); if (is_strdup || is_strndup) bytes = strdup_object_size (call, object_size_type, is_strndup); else bytes = alloc_object_size (call, object_size_type); if (!size_valid_p (bytes, object_size_type)) bytes = size_unknown (object_size_type); object_sizes_set (osi, varno, bytes, bytes); } /* Compute object_sizes for PTR, defined to an unknown value. */ static void unknown_object_size (struct object_size_info *osi, tree ptr) { int object_size_type = osi->object_size_type; unsigned int varno = SSA_NAME_VERSION (ptr); gcc_checking_assert (!object_sizes_unknown_p (object_size_type, varno)); gcc_checking_assert (osi->pass == 0); tree bytes = size_unknown (object_size_type); object_sizes_set (osi, varno, bytes, bytes); } /* Merge object sizes of ORIG + OFFSET into DEST. Return true if the object size might need reexamination later. */ static bool merge_object_sizes (struct object_size_info *osi, tree dest, tree orig) { int object_size_type = osi->object_size_type; unsigned int varno = SSA_NAME_VERSION (dest); tree orig_bytes, wholesize; if (object_sizes_unknown_p (object_size_type, varno)) return false; if (osi->pass == 0) collect_object_sizes_for (osi, orig); orig_bytes = object_sizes_get (osi, SSA_NAME_VERSION (orig)); wholesize = object_sizes_get (osi, SSA_NAME_VERSION (orig), true); if (object_sizes_set (osi, varno, orig_bytes, wholesize)) osi->changed = true; return bitmap_bit_p (osi->reexamine, SSA_NAME_VERSION (orig)); } /* Compute object_sizes for VAR, defined to the result of an assignment with operator POINTER_PLUS_EXPR. Return true if the object size might need reexamination later. */ static bool plus_stmt_object_size (struct object_size_info *osi, tree var, gimple *stmt) { int object_size_type = osi->object_size_type; unsigned int varno = SSA_NAME_VERSION (var); tree bytes, wholesize; tree op0, op1; bool reexamine = false; if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR) { op0 = gimple_assign_rhs1 (stmt); op1 = gimple_assign_rhs2 (stmt); } else if (gimple_assign_rhs_code (stmt) == ADDR_EXPR) { tree rhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); gcc_assert (TREE_CODE (rhs) == MEM_REF); op0 = TREE_OPERAND (rhs, 0); op1 = TREE_OPERAND (rhs, 1); } else gcc_unreachable (); if (object_sizes_unknown_p (object_size_type, varno)) return false; /* Handle PTR + OFFSET here. */ if (size_valid_p (op1, object_size_type) && (TREE_CODE (op0) == SSA_NAME || TREE_CODE (op0) == ADDR_EXPR)) { if (TREE_CODE (op0) == SSA_NAME) { if (osi->pass == 0) collect_object_sizes_for (osi, op0); bytes = object_sizes_get (osi, SSA_NAME_VERSION (op0)); wholesize = object_sizes_get (osi, SSA_NAME_VERSION (op0), true); reexamine = bitmap_bit_p (osi->reexamine, SSA_NAME_VERSION (op0)); } else { /* op0 will be ADDR_EXPR here. We should never come here during reexamination. */ gcc_checking_assert (osi->pass == 0); addr_object_size (osi, op0, object_size_type, &bytes, &wholesize); } /* size_for_offset doesn't make sense for -1 size, but it does for size 0 since the wholesize could be non-zero and a negative offset could give a non-zero size. */ if (size_unknown_p (bytes, 0)) ; else if ((object_size_type & OST_DYNAMIC) || compare_tree_int (op1, offset_limit) <= 0) bytes = size_for_offset (bytes, op1, wholesize); /* In the static case, with a negative offset, the best estimate for minimum size is size_unknown but for maximum size, the wholesize is a better estimate than size_unknown. */ else if (object_size_type & OST_MINIMUM) bytes = size_unknown (object_size_type); else bytes = wholesize; } else bytes = wholesize = size_unknown (object_size_type); if (!size_valid_p (bytes, object_size_type) || !size_valid_p (wholesize, object_size_type)) bytes = wholesize = size_unknown (object_size_type); if (object_sizes_set (osi, varno, bytes, wholesize)) osi->changed = true; return reexamine; } /* Compute the dynamic object size for VAR. Return the result in SIZE and WHOLESIZE. */ static void dynamic_object_size (struct object_size_info *osi, tree var, tree *size, tree *wholesize) { int object_size_type = osi->object_size_type; if (TREE_CODE (var) == SSA_NAME) { unsigned varno = SSA_NAME_VERSION (var); collect_object_sizes_for (osi, var); *size = object_sizes_get (osi, varno); *wholesize = object_sizes_get (osi, varno, true); } else if (TREE_CODE (var) == ADDR_EXPR) addr_object_size (osi, var, object_size_type, size, wholesize); else *size = *wholesize = size_unknown (object_size_type); } /* Compute object_sizes for VAR, defined at STMT, which is a COND_EXPR. Return true if the object size might need reexamination later. */ static bool cond_expr_object_size (struct object_size_info *osi, tree var, gimple *stmt) { tree then_, else_; int object_size_type = osi->object_size_type; unsigned int varno = SSA_NAME_VERSION (var); bool reexamine = false; gcc_assert (gimple_assign_rhs_code (stmt) == COND_EXPR); if (object_sizes_unknown_p (object_size_type, varno)) return false; then_ = gimple_assign_rhs2 (stmt); else_ = gimple_assign_rhs3 (stmt); if (object_size_type & OST_DYNAMIC) { tree then_size, then_wholesize, else_size, else_wholesize; dynamic_object_size (osi, then_, &then_size, &then_wholesize); if (!size_unknown_p (then_size, object_size_type)) dynamic_object_size (osi, else_, &else_size, &else_wholesize); tree cond_size, cond_wholesize; if (size_unknown_p (then_size, object_size_type) || size_unknown_p (else_size, object_size_type)) cond_size = cond_wholesize = size_unknown (object_size_type); else { cond_size = fold_build3 (COND_EXPR, sizetype, gimple_assign_rhs1 (stmt), then_size, else_size); cond_wholesize = fold_build3 (COND_EXPR, sizetype, gimple_assign_rhs1 (stmt), then_wholesize, else_wholesize); } object_sizes_set (osi, varno, cond_size, cond_wholesize); return false; } if (TREE_CODE (then_) == SSA_NAME) reexamine |= merge_object_sizes (osi, var, then_); else expr_object_size (osi, var, then_); if (object_sizes_unknown_p (object_size_type, varno)) return reexamine; if (TREE_CODE (else_) == SSA_NAME) reexamine |= merge_object_sizes (osi, var, else_); else expr_object_size (osi, var, else_); return reexamine; } /* Find size of an object passed as a parameter to the function. */ static void parm_object_size (struct object_size_info *osi, tree var) { int object_size_type = osi->object_size_type; tree parm = SSA_NAME_VAR (var); if (!(object_size_type & OST_DYNAMIC) || !POINTER_TYPE_P (TREE_TYPE (parm))) { expr_object_size (osi, var, parm); return; } /* Look for access attribute. */ rdwr_map rdwr_idx; tree fndecl = cfun->decl; const attr_access *access = get_parm_access (rdwr_idx, parm, fndecl); tree typesize = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (parm))); tree sz = NULL_TREE; /* If we have an explicit access attribute with a usable size argument... */ if (access && access->sizarg != UINT_MAX && !access->internal_p /* ... and either PARM is void * or has a type that is complete and has a constant size... */ && ((typesize && poly_int_tree_p (typesize)) || (!typesize && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (parm)))))) { tree fnargs = DECL_ARGUMENTS (fndecl); tree arg = NULL_TREE; unsigned argpos = 0; /* ... then walk through the parameters to pick the size parameter and safely scale it by the type size if needed. */ for (arg = fnargs; arg; arg = TREE_CHAIN (arg), ++argpos) if (argpos == access->sizarg && INTEGRAL_TYPE_P (TREE_TYPE (arg))) { sz = get_or_create_ssa_default_def (cfun, arg); if (sz != NULL_TREE) { sz = fold_convert (sizetype, sz); if (typesize) sz = size_binop (MULT_EXPR, sz, typesize); } break; } } if (!sz) sz = size_unknown (object_size_type); object_sizes_set (osi, SSA_NAME_VERSION (var), sz, sz); } /* Compute an object size expression for VAR, which is the result of a PHI node. */ static void phi_dynamic_object_size (struct object_size_info *osi, tree var) { int object_size_type = osi->object_size_type; unsigned int varno = SSA_NAME_VERSION (var); gimple *stmt = SSA_NAME_DEF_STMT (var); unsigned i, num_args = gimple_phi_num_args (stmt); bool wholesize_needed = false; /* The extra space is for the PHI result at the end, which object_sizes_set sets for us. */ tree sizes = make_tree_vec (num_args + 1); tree wholesizes = make_tree_vec (num_args + 1); /* Bail out if the size of any of the PHI arguments cannot be determined. */ for (i = 0; i < num_args; i++) { edge e = gimple_phi_arg_edge (as_a (stmt), i); if (e->flags & EDGE_COMPLEX) break; tree rhs = gimple_phi_arg_def (stmt, i); tree size, wholesize; dynamic_object_size (osi, rhs, &size, &wholesize); if (size_unknown_p (size, object_size_type)) break; if (size != wholesize) wholesize_needed = true; TREE_VEC_ELT (sizes, i) = size; TREE_VEC_ELT (wholesizes, i) = wholesize; } if (i < num_args) { ggc_free (sizes); ggc_free (wholesizes); sizes = wholesizes = size_unknown (object_size_type); } /* Point to the same TREE_VEC so that we can avoid emitting two PHI nodes. */ else if (!wholesize_needed) { ggc_free (wholesizes); wholesizes = sizes; } object_sizes_set (osi, varno, sizes, wholesizes); } /* Compute object sizes for VAR. For ADDR_EXPR an object size is the number of remaining bytes to the end of the object (where what is considered an object depends on OSI->object_size_type). For allocation GIMPLE_CALL like malloc or calloc object size is the size of the allocation. For POINTER_PLUS_EXPR where second operand is a constant integer, object size is object size of the first operand minus the constant. If the constant is bigger than the number of remaining bytes until the end of the object, object size is 0, but if it is instead a pointer subtraction, object size is size_unknown (object_size_type). To differentiate addition from subtraction, ADDR_EXPR returns size_unknown (object_size_type) for all objects bigger than half of the address space, and constants less than half of the address space are considered addition, while bigger constants subtraction. For a memcpy like GIMPLE_CALL that always returns one of its arguments, the object size is object size of that argument. Otherwise, object size is the maximum of object sizes of variables that it might be set to. */ static void collect_object_sizes_for (struct object_size_info *osi, tree var) { int object_size_type = osi->object_size_type; unsigned int varno = SSA_NAME_VERSION (var); gimple *stmt; bool reexamine; if (bitmap_bit_p (computed[object_size_type], varno)) return; if (osi->pass == 0) { if (bitmap_set_bit (osi->visited, varno)) { /* Initialize to 0 for maximum size and M1U for minimum size so that it gets immediately overridden. */ object_sizes_initialize (osi, varno, size_initval (object_size_type), size_initval (object_size_type)); } else { /* Found a dependency loop. Mark the variable for later re-examination. */ if (object_size_type & OST_DYNAMIC) object_sizes_set_temp (osi, varno); bitmap_set_bit (osi->reexamine, varno); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Found a dependency loop at "); print_generic_expr (dump_file, var, dump_flags); fprintf (dump_file, "\n"); } return; } } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Visiting use-def links for "); print_generic_expr (dump_file, var, dump_flags); fprintf (dump_file, "\n"); } stmt = SSA_NAME_DEF_STMT (var); reexamine = false; switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: { tree rhs = gimple_assign_rhs1 (stmt); if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR || (gimple_assign_rhs_code (stmt) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (rhs, 0)) == MEM_REF)) reexamine = plus_stmt_object_size (osi, var, stmt); else if (gimple_assign_rhs_code (stmt) == COND_EXPR) reexamine = cond_expr_object_size (osi, var, stmt); else if (gimple_assign_single_p (stmt) || gimple_assign_unary_nop_p (stmt)) { if (TREE_CODE (rhs) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (rhs))) reexamine = merge_object_sizes (osi, var, rhs); else expr_object_size (osi, var, rhs); } else unknown_object_size (osi, var); break; } case GIMPLE_CALL: { gcall *call_stmt = as_a (stmt); tree arg = pass_through_call (call_stmt); if (arg) { if (TREE_CODE (arg) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (arg))) reexamine = merge_object_sizes (osi, var, arg); else expr_object_size (osi, var, arg); } else call_object_size (osi, var, call_stmt); break; } case GIMPLE_ASM: /* Pointers defined by __asm__ statements can point anywhere. */ unknown_object_size (osi, var); break; case GIMPLE_NOP: if (SSA_NAME_VAR (var) && TREE_CODE (SSA_NAME_VAR (var)) == PARM_DECL) parm_object_size (osi, var); else /* Uninitialized SSA names point nowhere. */ unknown_object_size (osi, var); break; case GIMPLE_PHI: { unsigned i; if (object_size_type & OST_DYNAMIC) { phi_dynamic_object_size (osi, var); break; } for (i = 0; i < gimple_phi_num_args (stmt); i++) { tree rhs = gimple_phi_arg (stmt, i)->def; if (object_sizes_unknown_p (object_size_type, varno)) break; if (TREE_CODE (rhs) == SSA_NAME) reexamine |= merge_object_sizes (osi, var, rhs); else if (osi->pass == 0) expr_object_size (osi, var, rhs); } break; } default: gcc_unreachable (); } if (! reexamine || object_sizes_unknown_p (object_size_type, varno)) { bitmap_set_bit (computed[object_size_type], varno); if (!(object_size_type & OST_DYNAMIC)) bitmap_clear_bit (osi->reexamine, varno); } else { bitmap_set_bit (osi->reexamine, varno); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Need to reexamine "); print_generic_expr (dump_file, var, dump_flags); fprintf (dump_file, "\n"); } } } /* Helper function for check_for_plus_in_loops. Called recursively to detect loops. */ static void check_for_plus_in_loops_1 (struct object_size_info *osi, tree var, unsigned int depth) { gimple *stmt = SSA_NAME_DEF_STMT (var); unsigned int varno = SSA_NAME_VERSION (var); if (osi->depths[varno]) { if (osi->depths[varno] != depth) { unsigned int *sp; /* Found a loop involving pointer addition. */ for (sp = osi->tos; sp > osi->stack; ) { --sp; bitmap_clear_bit (osi->reexamine, *sp); bitmap_set_bit (computed[osi->object_size_type], *sp); object_sizes_set (osi, *sp, size_zero_node, object_sizes_get (osi, *sp, true)); if (*sp == varno) break; } } return; } else if (! bitmap_bit_p (osi->reexamine, varno)) return; osi->depths[varno] = depth; *osi->tos++ = varno; switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: { if ((gimple_assign_single_p (stmt) || gimple_assign_unary_nop_p (stmt)) && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME) { tree rhs = gimple_assign_rhs1 (stmt); check_for_plus_in_loops_1 (osi, rhs, depth); } else if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR) { tree basevar = gimple_assign_rhs1 (stmt); tree cst = gimple_assign_rhs2 (stmt); gcc_assert (TREE_CODE (cst) == INTEGER_CST); check_for_plus_in_loops_1 (osi, basevar, depth + !integer_zerop (cst)); } else gcc_unreachable (); break; } case GIMPLE_CALL: { gcall *call_stmt = as_a (stmt); tree arg = pass_through_call (call_stmt); if (arg) { if (TREE_CODE (arg) == SSA_NAME) check_for_plus_in_loops_1 (osi, arg, depth); else gcc_unreachable (); } break; } case GIMPLE_PHI: { unsigned i; for (i = 0; i < gimple_phi_num_args (stmt); i++) { tree rhs = gimple_phi_arg (stmt, i)->def; if (TREE_CODE (rhs) == SSA_NAME) check_for_plus_in_loops_1 (osi, rhs, depth); } break; } default: gcc_unreachable (); } osi->depths[varno] = 0; osi->tos--; } /* Check if some pointer we are computing object size of is being increased within a loop. If yes, assume all the SSA variables participating in that loop have minimum object sizes 0. */ static void check_for_plus_in_loops (struct object_size_info *osi, tree var) { gimple *stmt = SSA_NAME_DEF_STMT (var); /* NOTE: In the pre-tuples code, we handled a CALL_EXPR here, and looked for a POINTER_PLUS_EXPR in the pass-through argument, if any. In GIMPLE, however, such an expression is not a valid call operand. */ if (is_gimple_assign (stmt) && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR) { tree basevar = gimple_assign_rhs1 (stmt); tree cst = gimple_assign_rhs2 (stmt); gcc_assert (TREE_CODE (cst) == INTEGER_CST); /* Skip non-positive offsets. */ if (integer_zerop (cst) || compare_tree_int (cst, offset_limit) > 0) return; osi->depths[SSA_NAME_VERSION (basevar)] = 1; *osi->tos++ = SSA_NAME_VERSION (basevar); check_for_plus_in_loops_1 (osi, var, 2); osi->depths[SSA_NAME_VERSION (basevar)] = 0; osi->tos--; } } /* Initialize data structures for the object size computation. */ void init_object_sizes (void) { int object_size_type; if (computed[0]) return; for (object_size_type = 0; object_size_type < OST_END; object_size_type++) { object_sizes_grow (object_size_type); computed[object_size_type] = BITMAP_ALLOC (NULL); } init_offset_limit (); } /* Destroy data structures after the object size computation. */ void fini_object_sizes (void) { int object_size_type; for (object_size_type = 0; object_size_type < OST_END; object_size_type++) { object_sizes_release (object_size_type); BITMAP_FREE (computed[object_size_type]); } } /* Dummy valueize function. */ static tree do_valueize (tree t) { return t; } /* Process a __builtin_object_size or __builtin_dynamic_object_size call in CALL early for subobjects before any object information is lost due to optimization. Insert a MIN or MAX expression of the result and __builtin_object_size at I so that it may be processed in the second pass. __builtin_dynamic_object_size is treated like __builtin_object_size here since we're only looking for constant bounds. */ static void early_object_sizes_execute_one (gimple_stmt_iterator *i, gimple *call) { tree ost = gimple_call_arg (call, 1); tree lhs = gimple_call_lhs (call); gcc_assert (lhs != NULL_TREE); if (!tree_fits_uhwi_p (ost)) return; unsigned HOST_WIDE_INT object_size_type = tree_to_uhwi (ost); tree ptr = gimple_call_arg (call, 0); if (object_size_type != 1 && object_size_type != 3) return; if (TREE_CODE (ptr) != ADDR_EXPR && TREE_CODE (ptr) != SSA_NAME) return; tree type = TREE_TYPE (lhs); tree bytes; if (!compute_builtin_object_size (ptr, object_size_type, &bytes) || !int_fits_type_p (bytes, type)) return; tree tem = make_ssa_name (type); gimple_call_set_lhs (call, tem); enum tree_code code = object_size_type & OST_MINIMUM ? MAX_EXPR : MIN_EXPR; tree cst = fold_convert (type, bytes); gimple *g = gimple_build_assign (lhs, code, tem, cst); gsi_insert_after (i, g, GSI_NEW_STMT); update_stmt (call); } /* Attempt to fold one __builtin_dynamic_object_size call in CALL into an expression and insert it at I. Return true if it succeeds. */ static bool dynamic_object_sizes_execute_one (gimple_stmt_iterator *i, gimple *call) { gcc_assert (gimple_call_num_args (call) == 2); tree args[2]; args[0] = gimple_call_arg (call, 0); args[1] = gimple_call_arg (call, 1); location_t loc = EXPR_LOC_OR_LOC (args[0], input_location); tree result_type = gimple_call_return_type (as_a (call)); tree result = fold_builtin_call_array (loc, result_type, gimple_call_fn (call), 2, args); if (!result) return false; /* fold_builtin_call_array may wrap the result inside a NOP_EXPR. */ STRIP_NOPS (result); gimplify_and_update_call_from_tree (i, result); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Simplified (dynamic)\n "); print_gimple_stmt (dump_file, call, 0, dump_flags); fprintf (dump_file, " to "); print_generic_expr (dump_file, result); fprintf (dump_file, "\n"); } return true; } static unsigned int object_sizes_execute (function *fun, bool early) { todo = 0; basic_block bb; FOR_EACH_BB_FN (bb, fun) { gimple_stmt_iterator i; for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i)) { tree result; bool dynamic = false; gimple *call = gsi_stmt (i); if (gimple_call_builtin_p (call, BUILT_IN_DYNAMIC_OBJECT_SIZE)) dynamic = true; else if (!gimple_call_builtin_p (call, BUILT_IN_OBJECT_SIZE)) continue; tree lhs = gimple_call_lhs (call); if (!lhs) continue; init_object_sizes (); /* If early, only attempt to fold __builtin_object_size (x, 1) and __builtin_object_size (x, 3), and rather than folding the builtin to the constant if any, create a MIN_EXPR or MAX_EXPR of the __builtin_object_size call result and the computed constant. Do the same for __builtin_dynamic_object_size too. */ if (early) { early_object_sizes_execute_one (&i, call); continue; } if (dynamic) { if (dynamic_object_sizes_execute_one (&i, call)) continue; else { /* If we could not find a suitable size expression, lower to __builtin_object_size so that we may at least get a constant lower or higher estimate. */ tree bosfn = builtin_decl_implicit (BUILT_IN_OBJECT_SIZE); gimple_call_set_fndecl (call, bosfn); update_stmt (call); if (dump_file && (dump_flags & TDF_DETAILS)) { print_generic_expr (dump_file, gimple_call_arg (call, 0), dump_flags); fprintf (dump_file, ": Retrying as __builtin_object_size\n"); } } } result = gimple_fold_stmt_to_constant (call, do_valueize); if (!result) { tree ost = gimple_call_arg (call, 1); if (tree_fits_uhwi_p (ost)) { unsigned HOST_WIDE_INT object_size_type = tree_to_uhwi (ost); if (object_size_type & OST_MINIMUM) result = build_zero_cst (size_type_node); else if (object_size_type < OST_END) result = fold_convert (size_type_node, integer_minus_one_node); } if (!result) continue; } gcc_assert (TREE_CODE (result) == INTEGER_CST); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Simplified\n "); print_gimple_stmt (dump_file, call, 0, dump_flags); fprintf (dump_file, " to "); print_generic_expr (dump_file, result); fprintf (dump_file, "\n"); } /* Propagate into all uses and fold those stmts. */ if (!SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) replace_uses_by (lhs, result); else replace_call_with_value (&i, result); } } fini_object_sizes (); return todo; } /* Simple pass to optimize all __builtin_object_size () builtins. */ namespace { const pass_data pass_data_object_sizes = { GIMPLE_PASS, /* type */ "objsz", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ ( PROP_cfg | PROP_ssa ), /* properties_required */ PROP_objsz, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_object_sizes : public gimple_opt_pass { public: pass_object_sizes (gcc::context *ctxt) : gimple_opt_pass (pass_data_object_sizes, ctxt) {} /* opt_pass methods: */ opt_pass * clone () final override { return new pass_object_sizes (m_ctxt); } unsigned int execute (function *fun) final override { return object_sizes_execute (fun, false); } }; // class pass_object_sizes } // anon namespace gimple_opt_pass * make_pass_object_sizes (gcc::context *ctxt) { return new pass_object_sizes (ctxt); } /* Early version of pass to optimize all __builtin_object_size () builtins. */ namespace { const pass_data pass_data_early_object_sizes = { GIMPLE_PASS, /* type */ "early_objsz", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ ( PROP_cfg | PROP_ssa ), /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_early_object_sizes : public gimple_opt_pass { public: pass_early_object_sizes (gcc::context *ctxt) : gimple_opt_pass (pass_data_early_object_sizes, ctxt) {} /* opt_pass methods: */ unsigned int execute (function *fun) final override { return object_sizes_execute (fun, true); } }; // class pass_object_sizes } // anon namespace gimple_opt_pass * make_pass_early_object_sizes (gcc::context *ctxt) { return new pass_early_object_sizes (ctxt); }