/* __builtin_object_size (ptr, object_size_type) computation Copyright (C) 2004-2021 Free Software Foundation, Inc. Contributed by Jakub Jelinek This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "tree.h" #include "gimple.h" #include "tree-pass.h" #include "ssa.h" #include "gimple-pretty-print.h" #include "fold-const.h" #include "tree-object-size.h" #include "gimple-fold.h" #include "gimple-iterator.h" #include "tree-cfg.h" #include "stringpool.h" #include "attribs.h" struct object_size_info { int object_size_type; unsigned char pass; bool changed; bitmap visited, reexamine; unsigned int *depths; unsigned int *stack, *tos; }; enum { OST_SUBOBJECT = 1, OST_MINIMUM = 2, OST_END = 4, }; static tree compute_object_offset (const_tree, const_tree); static bool addr_object_size (struct object_size_info *, const_tree, int, unsigned HOST_WIDE_INT *); static unsigned HOST_WIDE_INT alloc_object_size (const gcall *, int); static tree pass_through_call (const gcall *); static void collect_object_sizes_for (struct object_size_info *, tree); static void expr_object_size (struct object_size_info *, tree, tree); static bool merge_object_sizes (struct object_size_info *, tree, tree, unsigned HOST_WIDE_INT); static bool plus_stmt_object_size (struct object_size_info *, tree, gimple *); static bool cond_expr_object_size (struct object_size_info *, tree, gimple *); static void init_offset_limit (void); static void check_for_plus_in_loops (struct object_size_info *, tree); static void check_for_plus_in_loops_1 (struct object_size_info *, tree, unsigned int); /* object_sizes[0] is upper bound for number of bytes till the end of the object. object_sizes[1] is upper bound for number of bytes till the end of the subobject (innermost array or field with address taken). object_sizes[2] is lower bound for number of bytes till the end of the object and object_sizes[3] lower bound for subobject. */ static vec object_sizes[OST_END]; /* Bitmaps what object sizes have been computed already. */ static bitmap computed[OST_END]; /* Maximum value of offset we consider to be addition. */ static unsigned HOST_WIDE_INT offset_limit; static inline unsigned HOST_WIDE_INT unknown (int object_size_type) { return ((unsigned HOST_WIDE_INT) -((object_size_type >> 1) ^ 1)); } /* Grow object_sizes[OBJECT_SIZE_TYPE] to num_ssa_names. */ static inline void object_sizes_grow (int object_size_type) { if (num_ssa_names > object_sizes[object_size_type].length ()) object_sizes[object_size_type].safe_grow (num_ssa_names, true); } /* Release object_sizes[OBJECT_SIZE_TYPE]. */ static inline void object_sizes_release (int object_size_type) { object_sizes[object_size_type].release (); } /* Return true if object_sizes[OBJECT_SIZE_TYPE][VARNO] is unknown. */ static inline bool object_sizes_unknown_p (int object_size_type, unsigned varno) { return (object_sizes[object_size_type][varno] == unknown (object_size_type)); } /* Return size for VARNO corresponding to OSI. */ static inline unsigned HOST_WIDE_INT object_sizes_get (struct object_size_info *osi, unsigned varno) { return object_sizes[osi->object_size_type][varno]; } /* Set size for VARNO corresponding to OSI to VAL. */ static inline bool object_sizes_set_force (struct object_size_info *osi, unsigned varno, unsigned HOST_WIDE_INT val) { object_sizes[osi->object_size_type][varno] = val; return true; } /* Set size for VARNO corresponding to OSI to VAL if it is the new minimum or maximum. */ static inline bool object_sizes_set (struct object_size_info *osi, unsigned varno, unsigned HOST_WIDE_INT val) { int object_size_type = osi->object_size_type; if ((object_size_type & OST_MINIMUM) == 0) { if (object_sizes[object_size_type][varno] < val) return object_sizes_set_force (osi, varno, val); } else { if (object_sizes[object_size_type][varno] > val) return object_sizes_set_force (osi, varno, val); } return false; } /* Initialize OFFSET_LIMIT variable. */ static void init_offset_limit (void) { if (tree_fits_uhwi_p (TYPE_MAX_VALUE (sizetype))) offset_limit = tree_to_uhwi (TYPE_MAX_VALUE (sizetype)); else offset_limit = -1; offset_limit /= 2; } /* Compute offset of EXPR within VAR. Return error_mark_node if unknown. */ static tree compute_object_offset (const_tree expr, const_tree var) { enum tree_code code = PLUS_EXPR; tree base, off, t; if (expr == var) return size_zero_node; switch (TREE_CODE (expr)) { case COMPONENT_REF: base = compute_object_offset (TREE_OPERAND (expr, 0), var); if (base == error_mark_node) return base; t = TREE_OPERAND (expr, 1); off = size_binop (PLUS_EXPR, DECL_FIELD_OFFSET (t), size_int (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (t)) / BITS_PER_UNIT)); break; case REALPART_EXPR: CASE_CONVERT: case VIEW_CONVERT_EXPR: case NON_LVALUE_EXPR: return compute_object_offset (TREE_OPERAND (expr, 0), var); case IMAGPART_EXPR: base = compute_object_offset (TREE_OPERAND (expr, 0), var); if (base == error_mark_node) return base; off = TYPE_SIZE_UNIT (TREE_TYPE (expr)); break; case ARRAY_REF: base = compute_object_offset (TREE_OPERAND (expr, 0), var); if (base == error_mark_node) return base; t = TREE_OPERAND (expr, 1); tree low_bound, unit_size; low_bound = array_ref_low_bound (CONST_CAST_TREE (expr)); unit_size = array_ref_element_size (CONST_CAST_TREE (expr)); if (! integer_zerop (low_bound)) t = fold_build2 (MINUS_EXPR, TREE_TYPE (t), t, low_bound); if (TREE_CODE (t) == INTEGER_CST && tree_int_cst_sgn (t) < 0) { code = MINUS_EXPR; t = fold_build1 (NEGATE_EXPR, TREE_TYPE (t), t); } t = fold_convert (sizetype, t); off = size_binop (MULT_EXPR, unit_size, t); break; case MEM_REF: gcc_assert (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR); return wide_int_to_tree (sizetype, mem_ref_offset (expr)); default: return error_mark_node; } return size_binop (code, base, off); } /* Returns the size of the object designated by DECL considering its initializer if it either has one or if it would not affect its size, otherwise the size of the object without the initializer when MIN is true, else null. An object's initializer affects the object's size if it's a struct type with a flexible array member. */ tree decl_init_size (tree decl, bool min) { tree size = DECL_SIZE_UNIT (decl); tree type = TREE_TYPE (decl); if (TREE_CODE (type) != RECORD_TYPE) return size; tree last = last_field (type); if (!last) return size; tree last_type = TREE_TYPE (last); if (TREE_CODE (last_type) != ARRAY_TYPE || TYPE_SIZE (last_type)) return size; /* Use TYPE_SIZE_UNIT; DECL_SIZE_UNIT sometimes reflects the size of the initializer and sometimes doesn't. */ size = TYPE_SIZE_UNIT (type); tree ref = build3 (COMPONENT_REF, type, decl, last, NULL_TREE); tree compsize = component_ref_size (ref); if (!compsize) return min ? size : NULL_TREE; /* The size includes tail padding and initializer elements. */ tree pos = byte_position (last); size = fold_build2 (PLUS_EXPR, TREE_TYPE (size), pos, compsize); return size; } /* Compute __builtin_object_size for PTR, which is a ADDR_EXPR. OBJECT_SIZE_TYPE is the second argument from __builtin_object_size. If unknown, return unknown (object_size_type). */ static bool addr_object_size (struct object_size_info *osi, const_tree ptr, int object_size_type, unsigned HOST_WIDE_INT *psize) { tree pt_var, pt_var_size = NULL_TREE, var_size, bytes; gcc_assert (TREE_CODE (ptr) == ADDR_EXPR); /* Set to unknown and overwrite just before returning if the size could be determined. */ *psize = unknown (object_size_type); pt_var = TREE_OPERAND (ptr, 0); while (handled_component_p (pt_var)) pt_var = TREE_OPERAND (pt_var, 0); if (!pt_var) return false; if (TREE_CODE (pt_var) == MEM_REF) { unsigned HOST_WIDE_INT sz; if (!osi || (object_size_type & OST_SUBOBJECT) != 0 || TREE_CODE (TREE_OPERAND (pt_var, 0)) != SSA_NAME) { compute_builtin_object_size (TREE_OPERAND (pt_var, 0), object_size_type & ~OST_SUBOBJECT, &sz); } else { tree var = TREE_OPERAND (pt_var, 0); if (osi->pass == 0) collect_object_sizes_for (osi, var); if (bitmap_bit_p (computed[object_size_type], SSA_NAME_VERSION (var))) sz = object_sizes_get (osi, SSA_NAME_VERSION (var)); else sz = unknown (object_size_type); } if (sz != unknown (object_size_type)) { offset_int mem_offset; if (mem_ref_offset (pt_var).is_constant (&mem_offset)) { offset_int dsz = wi::sub (sz, mem_offset); if (wi::neg_p (dsz)) sz = 0; else if (wi::fits_uhwi_p (dsz)) sz = dsz.to_uhwi (); else sz = unknown (object_size_type); } else sz = unknown (object_size_type); } if (sz != unknown (object_size_type) && sz < offset_limit) pt_var_size = size_int (sz); } else if (DECL_P (pt_var)) { pt_var_size = decl_init_size (pt_var, object_size_type & OST_MINIMUM); if (!pt_var_size) return false; } else if (TREE_CODE (pt_var) == STRING_CST) pt_var_size = TYPE_SIZE_UNIT (TREE_TYPE (pt_var)); else return false; if (pt_var_size) { /* Validate the size determined above. */ if (!tree_fits_uhwi_p (pt_var_size) || tree_to_uhwi (pt_var_size) >= offset_limit) return false; } if (pt_var != TREE_OPERAND (ptr, 0)) { tree var; if (object_size_type & OST_SUBOBJECT) { var = TREE_OPERAND (ptr, 0); while (var != pt_var && TREE_CODE (var) != BIT_FIELD_REF && TREE_CODE (var) != COMPONENT_REF && TREE_CODE (var) != ARRAY_REF && TREE_CODE (var) != ARRAY_RANGE_REF && TREE_CODE (var) != REALPART_EXPR && TREE_CODE (var) != IMAGPART_EXPR) var = TREE_OPERAND (var, 0); if (var != pt_var && TREE_CODE (var) == ARRAY_REF) var = TREE_OPERAND (var, 0); if (! TYPE_SIZE_UNIT (TREE_TYPE (var)) || ! tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (var))) || (pt_var_size && tree_int_cst_lt (pt_var_size, TYPE_SIZE_UNIT (TREE_TYPE (var))))) var = pt_var; else if (var != pt_var && TREE_CODE (pt_var) == MEM_REF) { tree v = var; /* For &X->fld, compute object size only if fld isn't the last field, as struct { int i; char c[1]; } is often used instead of flexible array member. */ while (v && v != pt_var) switch (TREE_CODE (v)) { case ARRAY_REF: if (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (v, 0))) && TREE_CODE (TREE_OPERAND (v, 1)) == INTEGER_CST) { tree domain = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (v, 0))); if (domain && TYPE_MAX_VALUE (domain) && TREE_CODE (TYPE_MAX_VALUE (domain)) == INTEGER_CST && tree_int_cst_lt (TREE_OPERAND (v, 1), TYPE_MAX_VALUE (domain))) { v = NULL_TREE; break; } } v = TREE_OPERAND (v, 0); break; case REALPART_EXPR: case IMAGPART_EXPR: v = NULL_TREE; break; case COMPONENT_REF: if (TREE_CODE (TREE_TYPE (v)) != ARRAY_TYPE) { v = NULL_TREE; break; } while (v != pt_var && TREE_CODE (v) == COMPONENT_REF) if (TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0))) != UNION_TYPE && TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0))) != QUAL_UNION_TYPE) break; else v = TREE_OPERAND (v, 0); if (TREE_CODE (v) == COMPONENT_REF && TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0))) == RECORD_TYPE) { tree fld_chain = DECL_CHAIN (TREE_OPERAND (v, 1)); for (; fld_chain; fld_chain = DECL_CHAIN (fld_chain)) if (TREE_CODE (fld_chain) == FIELD_DECL) break; if (fld_chain) { v = NULL_TREE; break; } v = TREE_OPERAND (v, 0); } while (v != pt_var && TREE_CODE (v) == COMPONENT_REF) if (TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0))) != UNION_TYPE && TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0))) != QUAL_UNION_TYPE) break; else v = TREE_OPERAND (v, 0); if (v != pt_var) v = NULL_TREE; else v = pt_var; break; default: v = pt_var; break; } if (v == pt_var) var = pt_var; } } else var = pt_var; if (var != pt_var) var_size = TYPE_SIZE_UNIT (TREE_TYPE (var)); else if (!pt_var_size) return false; else var_size = pt_var_size; bytes = compute_object_offset (TREE_OPERAND (ptr, 0), var); if (bytes != error_mark_node) { if (TREE_CODE (bytes) == INTEGER_CST && tree_int_cst_lt (var_size, bytes)) bytes = size_zero_node; else bytes = size_binop (MINUS_EXPR, var_size, bytes); } if (var != pt_var && pt_var_size && TREE_CODE (pt_var) == MEM_REF && bytes != error_mark_node) { tree bytes2 = compute_object_offset (TREE_OPERAND (ptr, 0), pt_var); if (bytes2 != error_mark_node) { if (TREE_CODE (bytes2) == INTEGER_CST && tree_int_cst_lt (pt_var_size, bytes2)) bytes2 = size_zero_node; else bytes2 = size_binop (MINUS_EXPR, pt_var_size, bytes2); bytes = size_binop (MIN_EXPR, bytes, bytes2); } } } else if (!pt_var_size) return false; else bytes = pt_var_size; if (tree_fits_uhwi_p (bytes)) { *psize = tree_to_uhwi (bytes); return true; } return false; } /* Compute __builtin_object_size for CALL, which is a GIMPLE_CALL. Handles calls to functions declared with attribute alloc_size. OBJECT_SIZE_TYPE is the second argument from __builtin_object_size. If unknown, return unknown (object_size_type). */ static unsigned HOST_WIDE_INT alloc_object_size (const gcall *call, int object_size_type) { gcc_assert (is_gimple_call (call)); tree calltype; if (tree callfn = gimple_call_fndecl (call)) calltype = TREE_TYPE (callfn); else calltype = gimple_call_fntype (call); if (!calltype) return unknown (object_size_type); /* Set to positions of alloc_size arguments. */ int arg1 = -1, arg2 = -1; tree alloc_size = lookup_attribute ("alloc_size", TYPE_ATTRIBUTES (calltype)); if (alloc_size && TREE_VALUE (alloc_size)) { tree p = TREE_VALUE (alloc_size); arg1 = TREE_INT_CST_LOW (TREE_VALUE (p))-1; if (TREE_CHAIN (p)) arg2 = TREE_INT_CST_LOW (TREE_VALUE (TREE_CHAIN (p)))-1; } if (arg1 < 0 || arg1 >= (int)gimple_call_num_args (call) || TREE_CODE (gimple_call_arg (call, arg1)) != INTEGER_CST || (arg2 >= 0 && (arg2 >= (int)gimple_call_num_args (call) || TREE_CODE (gimple_call_arg (call, arg2)) != INTEGER_CST))) return unknown (object_size_type); tree bytes = NULL_TREE; if (arg2 >= 0) bytes = size_binop (MULT_EXPR, fold_convert (sizetype, gimple_call_arg (call, arg1)), fold_convert (sizetype, gimple_call_arg (call, arg2))); else if (arg1 >= 0) bytes = fold_convert (sizetype, gimple_call_arg (call, arg1)); if (bytes && tree_fits_uhwi_p (bytes)) return tree_to_uhwi (bytes); return unknown (object_size_type); } /* If object size is propagated from one of function's arguments directly to its return value, return that argument for GIMPLE_CALL statement CALL. Otherwise return NULL. */ static tree pass_through_call (const gcall *call) { unsigned rf = gimple_call_return_flags (call); if (rf & ERF_RETURNS_ARG) { unsigned argnum = rf & ERF_RETURN_ARG_MASK; if (argnum < gimple_call_num_args (call)) return gimple_call_arg (call, argnum); } /* __builtin_assume_aligned is intentionally not marked RET1. */ if (gimple_call_builtin_p (call, BUILT_IN_ASSUME_ALIGNED)) return gimple_call_arg (call, 0); return NULL_TREE; } /* Compute __builtin_object_size value for PTR and set *PSIZE to the resulting value. If the declared object is known and PDECL is nonnull, sets *PDECL to the object's DECL. OBJECT_SIZE_TYPE is the second argument to __builtin_object_size. Returns true on success and false when the object size could not be determined. */ bool compute_builtin_object_size (tree ptr, int object_size_type, unsigned HOST_WIDE_INT *psize) { gcc_assert (object_size_type >= 0 && object_size_type < OST_END); /* Set to unknown and overwrite just before returning if the size could be determined. */ *psize = unknown (object_size_type); if (! offset_limit) init_offset_limit (); if (TREE_CODE (ptr) == ADDR_EXPR) return addr_object_size (NULL, ptr, object_size_type, psize); if (TREE_CODE (ptr) != SSA_NAME || !POINTER_TYPE_P (TREE_TYPE (ptr))) return false; if (computed[object_size_type] == NULL) { if (optimize || object_size_type & OST_SUBOBJECT) return false; /* When not optimizing, rather than failing, make a small effort to determine the object size without the full benefit of the (costly) computation below. */ gimple *def = SSA_NAME_DEF_STMT (ptr); if (gimple_code (def) == GIMPLE_ASSIGN) { tree_code code = gimple_assign_rhs_code (def); if (code == POINTER_PLUS_EXPR) { tree offset = gimple_assign_rhs2 (def); ptr = gimple_assign_rhs1 (def); if (tree_fits_shwi_p (offset) && compute_builtin_object_size (ptr, object_size_type, psize)) { /* Return zero when the offset is out of bounds. */ unsigned HOST_WIDE_INT off = tree_to_shwi (offset); *psize = off < *psize ? *psize - off : 0; return true; } } } return false; } struct object_size_info osi; osi.object_size_type = object_size_type; if (!bitmap_bit_p (computed[object_size_type], SSA_NAME_VERSION (ptr))) { bitmap_iterator bi; unsigned int i; object_sizes_grow (object_size_type); if (dump_file) { fprintf (dump_file, "Computing %s %sobject size for ", (object_size_type & OST_MINIMUM) ? "minimum" : "maximum", (object_size_type & OST_SUBOBJECT) ? "sub" : ""); print_generic_expr (dump_file, ptr, dump_flags); fprintf (dump_file, ":\n"); } osi.visited = BITMAP_ALLOC (NULL); osi.reexamine = BITMAP_ALLOC (NULL); osi.depths = NULL; osi.stack = NULL; osi.tos = NULL; /* First pass: walk UD chains, compute object sizes that can be computed. osi.reexamine bitmap at the end will contain what variables were found in dependency cycles and therefore need to be reexamined. */ osi.pass = 0; osi.changed = false; collect_object_sizes_for (&osi, ptr); /* Second pass: keep recomputing object sizes of variables that need reexamination, until no object sizes are increased or all object sizes are computed. */ if (! bitmap_empty_p (osi.reexamine)) { bitmap reexamine = BITMAP_ALLOC (NULL); /* If looking for minimum instead of maximum object size, detect cases where a pointer is increased in a loop. Although even without this detection pass 2 would eventually terminate, it could take a long time. If a pointer is increasing this way, we need to assume 0 object size. E.g. p = &buf[0]; while (cond) p = p + 4; */ if (object_size_type & OST_MINIMUM) { osi.depths = XCNEWVEC (unsigned int, num_ssa_names); osi.stack = XNEWVEC (unsigned int, num_ssa_names); osi.tos = osi.stack; osi.pass = 1; /* collect_object_sizes_for is changing osi.reexamine bitmap, so iterate over a copy. */ bitmap_copy (reexamine, osi.reexamine); EXECUTE_IF_SET_IN_BITMAP (reexamine, 0, i, bi) if (bitmap_bit_p (osi.reexamine, i)) check_for_plus_in_loops (&osi, ssa_name (i)); free (osi.depths); osi.depths = NULL; free (osi.stack); osi.stack = NULL; osi.tos = NULL; } do { osi.pass = 2; osi.changed = false; /* collect_object_sizes_for is changing osi.reexamine bitmap, so iterate over a copy. */ bitmap_copy (reexamine, osi.reexamine); EXECUTE_IF_SET_IN_BITMAP (reexamine, 0, i, bi) if (bitmap_bit_p (osi.reexamine, i)) { collect_object_sizes_for (&osi, ssa_name (i)); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Reexamining "); print_generic_expr (dump_file, ssa_name (i), dump_flags); fprintf (dump_file, "\n"); } } } while (osi.changed); BITMAP_FREE (reexamine); } EXECUTE_IF_SET_IN_BITMAP (osi.reexamine, 0, i, bi) bitmap_set_bit (computed[object_size_type], i); /* Debugging dumps. */ if (dump_file) { EXECUTE_IF_SET_IN_BITMAP (osi.visited, 0, i, bi) if (!object_sizes_unknown_p (object_size_type, i)) { print_generic_expr (dump_file, ssa_name (i), dump_flags); fprintf (dump_file, ": %s %sobject size " HOST_WIDE_INT_PRINT_UNSIGNED "\n", ((object_size_type & OST_MINIMUM) ? "minimum" : "maximum"), (object_size_type & OST_SUBOBJECT) ? "sub" : "", object_sizes_get (&osi, i)); } } BITMAP_FREE (osi.reexamine); BITMAP_FREE (osi.visited); } *psize = object_sizes_get (&osi, SSA_NAME_VERSION (ptr)); return *psize != unknown (object_size_type); } /* Compute object_sizes for PTR, defined to VALUE, which is not an SSA_NAME. */ static void expr_object_size (struct object_size_info *osi, tree ptr, tree value) { int object_size_type = osi->object_size_type; unsigned int varno = SSA_NAME_VERSION (ptr); unsigned HOST_WIDE_INT bytes; gcc_assert (!object_sizes_unknown_p (object_size_type, varno)); gcc_assert (osi->pass == 0); if (TREE_CODE (value) == WITH_SIZE_EXPR) value = TREE_OPERAND (value, 0); /* Pointer variables should have been handled by merge_object_sizes. */ gcc_assert (TREE_CODE (value) != SSA_NAME || !POINTER_TYPE_P (TREE_TYPE (value))); if (TREE_CODE (value) == ADDR_EXPR) addr_object_size (osi, value, object_size_type, &bytes); else bytes = unknown (object_size_type); object_sizes_set (osi, varno, bytes); } /* Compute object_sizes for PTR, defined to the result of a call. */ static void call_object_size (struct object_size_info *osi, tree ptr, gcall *call) { int object_size_type = osi->object_size_type; unsigned int varno = SSA_NAME_VERSION (ptr); unsigned HOST_WIDE_INT bytes; gcc_assert (is_gimple_call (call)); gcc_assert (!object_sizes_unknown_p (object_size_type, varno)); gcc_assert (osi->pass == 0); bytes = alloc_object_size (call, object_size_type); object_sizes_set (osi, varno, bytes); } /* Compute object_sizes for PTR, defined to an unknown value. */ static void unknown_object_size (struct object_size_info *osi, tree ptr) { int object_size_type = osi->object_size_type; unsigned int varno = SSA_NAME_VERSION (ptr); gcc_checking_assert (!object_sizes_unknown_p (object_size_type, varno)); gcc_checking_assert (osi->pass == 0); object_sizes_set (osi, varno, unknown (object_size_type)); } /* Merge object sizes of ORIG + OFFSET into DEST. Return true if the object size might need reexamination later. */ static bool merge_object_sizes (struct object_size_info *osi, tree dest, tree orig, unsigned HOST_WIDE_INT offset) { int object_size_type = osi->object_size_type; unsigned int varno = SSA_NAME_VERSION (dest); unsigned HOST_WIDE_INT orig_bytes; if (object_sizes_unknown_p (object_size_type, varno)) return false; if (offset >= offset_limit) { object_sizes_set (osi, varno, unknown (object_size_type)); return false; } if (osi->pass == 0) collect_object_sizes_for (osi, orig); orig_bytes = object_sizes_get (osi, SSA_NAME_VERSION (orig)); if (orig_bytes != unknown (object_size_type)) orig_bytes = (offset > orig_bytes) ? HOST_WIDE_INT_0U : orig_bytes - offset; if (object_sizes_set (osi, varno, orig_bytes)) osi->changed = true; return bitmap_bit_p (osi->reexamine, SSA_NAME_VERSION (orig)); } /* Compute object_sizes for VAR, defined to the result of an assignment with operator POINTER_PLUS_EXPR. Return true if the object size might need reexamination later. */ static bool plus_stmt_object_size (struct object_size_info *osi, tree var, gimple *stmt) { int object_size_type = osi->object_size_type; unsigned int varno = SSA_NAME_VERSION (var); unsigned HOST_WIDE_INT bytes; tree op0, op1; if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR) { op0 = gimple_assign_rhs1 (stmt); op1 = gimple_assign_rhs2 (stmt); } else if (gimple_assign_rhs_code (stmt) == ADDR_EXPR) { tree rhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); gcc_assert (TREE_CODE (rhs) == MEM_REF); op0 = TREE_OPERAND (rhs, 0); op1 = TREE_OPERAND (rhs, 1); } else gcc_unreachable (); if (object_sizes_unknown_p (object_size_type, varno)) return false; /* Handle PTR + OFFSET here. */ if (TREE_CODE (op1) == INTEGER_CST && (TREE_CODE (op0) == SSA_NAME || TREE_CODE (op0) == ADDR_EXPR)) { if (! tree_fits_uhwi_p (op1)) bytes = unknown (object_size_type); else if (TREE_CODE (op0) == SSA_NAME) return merge_object_sizes (osi, var, op0, tree_to_uhwi (op1)); else { unsigned HOST_WIDE_INT off = tree_to_uhwi (op1); /* op0 will be ADDR_EXPR here. */ addr_object_size (osi, op0, object_size_type, &bytes); if (bytes == unknown (object_size_type)) ; else if (off > offset_limit) bytes = unknown (object_size_type); else if (off > bytes) bytes = 0; else bytes -= off; } } else bytes = unknown (object_size_type); object_sizes_set (osi, varno, bytes); return false; } /* Compute object_sizes for VAR, defined at STMT, which is a COND_EXPR. Return true if the object size might need reexamination later. */ static bool cond_expr_object_size (struct object_size_info *osi, tree var, gimple *stmt) { tree then_, else_; int object_size_type = osi->object_size_type; unsigned int varno = SSA_NAME_VERSION (var); bool reexamine = false; gcc_assert (gimple_assign_rhs_code (stmt) == COND_EXPR); if (object_sizes_unknown_p (object_size_type, varno)) return false; then_ = gimple_assign_rhs2 (stmt); else_ = gimple_assign_rhs3 (stmt); if (TREE_CODE (then_) == SSA_NAME) reexamine |= merge_object_sizes (osi, var, then_, 0); else expr_object_size (osi, var, then_); if (object_sizes_unknown_p (object_size_type, varno)) return reexamine; if (TREE_CODE (else_) == SSA_NAME) reexamine |= merge_object_sizes (osi, var, else_, 0); else expr_object_size (osi, var, else_); return reexamine; } /* Compute object sizes for VAR. For ADDR_EXPR an object size is the number of remaining bytes to the end of the object (where what is considered an object depends on OSI->object_size_type). For allocation GIMPLE_CALL like malloc or calloc object size is the size of the allocation. For POINTER_PLUS_EXPR where second operand is a constant integer, object size is object size of the first operand minus the constant. If the constant is bigger than the number of remaining bytes until the end of the object, object size is 0, but if it is instead a pointer subtraction, object size is unknown (object_size_type). To differentiate addition from subtraction, ADDR_EXPR returns unknown (object_size_type) for all objects bigger than half of the address space, and constants less than half of the address space are considered addition, while bigger constants subtraction. For a memcpy like GIMPLE_CALL that always returns one of its arguments, the object size is object size of that argument. Otherwise, object size is the maximum of object sizes of variables that it might be set to. */ static void collect_object_sizes_for (struct object_size_info *osi, tree var) { int object_size_type = osi->object_size_type; unsigned int varno = SSA_NAME_VERSION (var); gimple *stmt; bool reexamine; if (bitmap_bit_p (computed[object_size_type], varno)) return; if (osi->pass == 0) { if (bitmap_set_bit (osi->visited, varno)) { /* Initialize to 0 for maximum size and M1U for minimum size so that it gets immediately overridden. */ object_sizes_set_force (osi, varno, unknown (object_size_type ^ OST_MINIMUM)); } else { /* Found a dependency loop. Mark the variable for later re-examination. */ bitmap_set_bit (osi->reexamine, varno); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Found a dependency loop at "); print_generic_expr (dump_file, var, dump_flags); fprintf (dump_file, "\n"); } return; } } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Visiting use-def links for "); print_generic_expr (dump_file, var, dump_flags); fprintf (dump_file, "\n"); } stmt = SSA_NAME_DEF_STMT (var); reexamine = false; switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: { tree rhs = gimple_assign_rhs1 (stmt); if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR || (gimple_assign_rhs_code (stmt) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (rhs, 0)) == MEM_REF)) reexamine = plus_stmt_object_size (osi, var, stmt); else if (gimple_assign_rhs_code (stmt) == COND_EXPR) reexamine = cond_expr_object_size (osi, var, stmt); else if (gimple_assign_single_p (stmt) || gimple_assign_unary_nop_p (stmt)) { if (TREE_CODE (rhs) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (rhs))) reexamine = merge_object_sizes (osi, var, rhs, 0); else expr_object_size (osi, var, rhs); } else unknown_object_size (osi, var); break; } case GIMPLE_CALL: { gcall *call_stmt = as_a (stmt); tree arg = pass_through_call (call_stmt); if (arg) { if (TREE_CODE (arg) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (arg))) reexamine = merge_object_sizes (osi, var, arg, 0); else expr_object_size (osi, var, arg); } else call_object_size (osi, var, call_stmt); break; } case GIMPLE_ASM: /* Pointers defined by __asm__ statements can point anywhere. */ object_sizes_set (osi, varno, unknown (object_size_type)); break; case GIMPLE_NOP: if (SSA_NAME_VAR (var) && TREE_CODE (SSA_NAME_VAR (var)) == PARM_DECL) expr_object_size (osi, var, SSA_NAME_VAR (var)); else /* Uninitialized SSA names point nowhere. */ object_sizes_set (osi, varno, unknown (object_size_type)); break; case GIMPLE_PHI: { unsigned i; for (i = 0; i < gimple_phi_num_args (stmt); i++) { tree rhs = gimple_phi_arg (stmt, i)->def; if (object_sizes_unknown_p (object_size_type, varno)) break; if (TREE_CODE (rhs) == SSA_NAME) reexamine |= merge_object_sizes (osi, var, rhs, 0); else if (osi->pass == 0) expr_object_size (osi, var, rhs); } break; } default: gcc_unreachable (); } if (! reexamine || object_sizes_unknown_p (object_size_type, varno)) { bitmap_set_bit (computed[object_size_type], varno); bitmap_clear_bit (osi->reexamine, varno); } else { bitmap_set_bit (osi->reexamine, varno); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Need to reexamine "); print_generic_expr (dump_file, var, dump_flags); fprintf (dump_file, "\n"); } } } /* Helper function for check_for_plus_in_loops. Called recursively to detect loops. */ static void check_for_plus_in_loops_1 (struct object_size_info *osi, tree var, unsigned int depth) { gimple *stmt = SSA_NAME_DEF_STMT (var); unsigned int varno = SSA_NAME_VERSION (var); if (osi->depths[varno]) { if (osi->depths[varno] != depth) { unsigned int *sp; /* Found a loop involving pointer addition. */ for (sp = osi->tos; sp > osi->stack; ) { --sp; bitmap_clear_bit (osi->reexamine, *sp); bitmap_set_bit (computed[osi->object_size_type], *sp); object_sizes_set_force (osi, *sp, 0); if (*sp == varno) break; } } return; } else if (! bitmap_bit_p (osi->reexamine, varno)) return; osi->depths[varno] = depth; *osi->tos++ = varno; switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: { if ((gimple_assign_single_p (stmt) || gimple_assign_unary_nop_p (stmt)) && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME) { tree rhs = gimple_assign_rhs1 (stmt); check_for_plus_in_loops_1 (osi, rhs, depth); } else if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR) { tree basevar = gimple_assign_rhs1 (stmt); tree cst = gimple_assign_rhs2 (stmt); gcc_assert (TREE_CODE (cst) == INTEGER_CST); check_for_plus_in_loops_1 (osi, basevar, depth + !integer_zerop (cst)); } else gcc_unreachable (); break; } case GIMPLE_CALL: { gcall *call_stmt = as_a (stmt); tree arg = pass_through_call (call_stmt); if (arg) { if (TREE_CODE (arg) == SSA_NAME) check_for_plus_in_loops_1 (osi, arg, depth); else gcc_unreachable (); } break; } case GIMPLE_PHI: { unsigned i; for (i = 0; i < gimple_phi_num_args (stmt); i++) { tree rhs = gimple_phi_arg (stmt, i)->def; if (TREE_CODE (rhs) == SSA_NAME) check_for_plus_in_loops_1 (osi, rhs, depth); } break; } default: gcc_unreachable (); } osi->depths[varno] = 0; osi->tos--; } /* Check if some pointer we are computing object size of is being increased within a loop. If yes, assume all the SSA variables participating in that loop have minimum object sizes 0. */ static void check_for_plus_in_loops (struct object_size_info *osi, tree var) { gimple *stmt = SSA_NAME_DEF_STMT (var); /* NOTE: In the pre-tuples code, we handled a CALL_EXPR here, and looked for a POINTER_PLUS_EXPR in the pass-through argument, if any. In GIMPLE, however, such an expression is not a valid call operand. */ if (is_gimple_assign (stmt) && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR) { tree basevar = gimple_assign_rhs1 (stmt); tree cst = gimple_assign_rhs2 (stmt); gcc_assert (TREE_CODE (cst) == INTEGER_CST); if (integer_zerop (cst)) return; osi->depths[SSA_NAME_VERSION (basevar)] = 1; *osi->tos++ = SSA_NAME_VERSION (basevar); check_for_plus_in_loops_1 (osi, var, 2); osi->depths[SSA_NAME_VERSION (basevar)] = 0; osi->tos--; } } /* Initialize data structures for the object size computation. */ void init_object_sizes (void) { int object_size_type; if (computed[0]) return; for (object_size_type = 0; object_size_type < OST_END; object_size_type++) { object_sizes_grow (object_size_type); computed[object_size_type] = BITMAP_ALLOC (NULL); } init_offset_limit (); } /* Destroy data structures after the object size computation. */ void fini_object_sizes (void) { int object_size_type; for (object_size_type = 0; object_size_type < OST_END; object_size_type++) { object_sizes_release (object_size_type); BITMAP_FREE (computed[object_size_type]); } } /* Dummy valueize function. */ static tree do_valueize (tree t) { return t; } static unsigned int object_sizes_execute (function *fun, bool insert_min_max_p) { basic_block bb; FOR_EACH_BB_FN (bb, fun) { gimple_stmt_iterator i; for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i)) { tree result; gimple *call = gsi_stmt (i); if (!gimple_call_builtin_p (call, BUILT_IN_OBJECT_SIZE)) continue; tree lhs = gimple_call_lhs (call); if (!lhs) continue; init_object_sizes (); /* If insert_min_max_p, only attempt to fold __builtin_object_size (x, 1) and __builtin_object_size (x, 3), and rather than folding the builtin to the constant if any, create a MIN_EXPR or MAX_EXPR of the __builtin_object_size call result and the computed constant. */ if (insert_min_max_p) { tree ost = gimple_call_arg (call, 1); if (tree_fits_uhwi_p (ost)) { unsigned HOST_WIDE_INT object_size_type = tree_to_uhwi (ost); tree ptr = gimple_call_arg (call, 0); if ((object_size_type & OST_SUBOBJECT) && (TREE_CODE (ptr) == ADDR_EXPR || TREE_CODE (ptr) == SSA_NAME)) { tree type = TREE_TYPE (lhs); unsigned HOST_WIDE_INT bytes; if (compute_builtin_object_size (ptr, object_size_type, &bytes) && wi::fits_to_tree_p (bytes, type)) { tree tem = make_ssa_name (type); gimple_call_set_lhs (call, tem); enum tree_code code = (object_size_type & OST_MINIMUM ? MAX_EXPR : MIN_EXPR); tree cst = build_int_cstu (type, bytes); gimple *g = gimple_build_assign (lhs, code, tem, cst); gsi_insert_after (&i, g, GSI_NEW_STMT); update_stmt (call); } } } continue; } result = gimple_fold_stmt_to_constant (call, do_valueize); if (!result) { tree ost = gimple_call_arg (call, 1); if (tree_fits_uhwi_p (ost)) { unsigned HOST_WIDE_INT object_size_type = tree_to_uhwi (ost); if (object_size_type & OST_MINIMUM) result = build_zero_cst (size_type_node); else if (object_size_type < OST_END) result = fold_convert (size_type_node, integer_minus_one_node); } if (!result) continue; } gcc_assert (TREE_CODE (result) == INTEGER_CST); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Simplified\n "); print_gimple_stmt (dump_file, call, 0, dump_flags); fprintf (dump_file, " to "); print_generic_expr (dump_file, result); fprintf (dump_file, "\n"); } /* Propagate into all uses and fold those stmts. */ if (!SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) replace_uses_by (lhs, result); else replace_call_with_value (&i, result); } } fini_object_sizes (); return 0; } /* Simple pass to optimize all __builtin_object_size () builtins. */ namespace { const pass_data pass_data_object_sizes = { GIMPLE_PASS, /* type */ "objsz", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ ( PROP_cfg | PROP_ssa ), /* properties_required */ PROP_objsz, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_object_sizes : public gimple_opt_pass { public: pass_object_sizes (gcc::context *ctxt) : gimple_opt_pass (pass_data_object_sizes, ctxt) {} /* opt_pass methods: */ opt_pass * clone () { return new pass_object_sizes (m_ctxt); } virtual unsigned int execute (function *fun) { return object_sizes_execute (fun, false); } }; // class pass_object_sizes } // anon namespace gimple_opt_pass * make_pass_object_sizes (gcc::context *ctxt) { return new pass_object_sizes (ctxt); } /* Early version of pass to optimize all __builtin_object_size () builtins. */ namespace { const pass_data pass_data_early_object_sizes = { GIMPLE_PASS, /* type */ "early_objsz", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ ( PROP_cfg | PROP_ssa ), /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_early_object_sizes : public gimple_opt_pass { public: pass_early_object_sizes (gcc::context *ctxt) : gimple_opt_pass (pass_data_early_object_sizes, ctxt) {} /* opt_pass methods: */ virtual unsigned int execute (function *fun) { return object_sizes_execute (fun, true); } }; // class pass_object_sizes } // anon namespace gimple_opt_pass * make_pass_early_object_sizes (gcc::context *ctxt) { return new pass_early_object_sizes (ctxt); }