/* If-conversion for vectorizer. Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Contributed by Devang Patel This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* This pass implements a tree level if-conversion of loops. Its initial goal is to help the vectorizer to vectorize loops with conditions. A short description of if-conversion: o Decide if a loop is if-convertible or not. o Walk all loop basic blocks in breadth first order (BFS order). o Remove conditional statements (at the end of basic block) and propagate condition into destination basic blocks' predicate list. o Replace modify expression with conditional modify expression using current basic block's condition. o Merge all basic blocks o Replace phi nodes with conditional modify expr o Merge all basic blocks into header Sample transformation: INPUT ----- # i_23 = PHI <0(0), i_18(10)>; :; j_15 = A[i_23]; if (j_15 > 41) goto ; else goto ; :; goto (); :; # iftmp.2_4 = PHI <0(8), 42(2)>; :; A[i_23] = iftmp.2_4; i_18 = i_23 + 1; if (i_18 <= 15) goto ; else goto ; :; goto (); :; OUTPUT ------ # i_23 = PHI <0(0), i_18(10)>; :; j_15 = A[i_23]; :; iftmp.2_4 = j_15 > 41 ? 42 : 0; A[i_23] = iftmp.2_4; i_18 = i_23 + 1; if (i_18 <= 15) goto ; else goto ; :; goto (); :; */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "flags.h" #include "timevar.h" #include "basic-block.h" #include "tree-pretty-print.h" #include "gimple-pretty-print.h" #include "tree-flow.h" #include "tree-dump.h" #include "cfgloop.h" #include "tree-chrec.h" #include "tree-data-ref.h" #include "tree-scalar-evolution.h" #include "tree-pass.h" /* List of basic blocks in if-conversion-suitable order. */ static basic_block *ifc_bbs; /* Structure used to predicate basic blocks. This is attached to the ->aux field of the BBs in the loop to be if-converted. */ typedef struct bb_predicate_s { /* The condition under which this basic block is executed. */ tree predicate; /* PREDICATE is gimplified, and the sequence of statements is recorded here, in order to avoid the duplication of computations that occur in previous conditions. See PR44483. */ gimple_seq predicate_gimplified_stmts; } *bb_predicate_p; /* Returns true when the basic block BB has a predicate. */ static inline bool bb_has_predicate (basic_block bb) { return bb->aux != NULL; } /* Returns the gimplified predicate for basic block BB. */ static inline tree bb_predicate (basic_block bb) { return ((bb_predicate_p) bb->aux)->predicate; } /* Sets the gimplified predicate COND for basic block BB. */ static inline void set_bb_predicate (basic_block bb, tree cond) { ((bb_predicate_p) bb->aux)->predicate = cond; } /* Returns the sequence of statements of the gimplification of the predicate for basic block BB. */ static inline gimple_seq bb_predicate_gimplified_stmts (basic_block bb) { return ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts; } /* Sets the sequence of statements STMTS of the gimplification of the predicate for basic block BB. */ static inline void set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts) { ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts = stmts; } /* Adds the sequence of statements STMTS to the sequence of statements of the predicate for basic block BB. */ static inline void add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts) { gimple_seq_add_seq (&(((bb_predicate_p) bb->aux)->predicate_gimplified_stmts), stmts); } /* Initializes to TRUE the predicate of basic block BB. */ static inline void init_bb_predicate (basic_block bb) { bb->aux = XNEW (struct bb_predicate_s); set_bb_predicate_gimplified_stmts (bb, NULL); set_bb_predicate (bb, NULL_TREE); } /* Free the predicate of basic block BB. */ static inline void free_bb_predicate (basic_block bb) { gimple_seq stmts; if (!bb_has_predicate (bb)) return; /* Release the SSA_NAMEs created for the gimplification of the predicate. */ stmts = bb_predicate_gimplified_stmts (bb); if (stmts) { gimple_stmt_iterator i; for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i)) free_stmt_operands (gsi_stmt (i)); } free (bb->aux); bb->aux = NULL; } /* Create a new temp variable of type TYPE. Add GIMPLE_ASSIGN to assign EXP to the new variable. */ static gimple ifc_temp_var (tree type, tree exp) { const char *name = "_ifc_"; tree var, new_name; gimple stmt; /* Create new temporary variable. */ var = create_tmp_var (type, name); add_referenced_var (var); /* Build new statement to assign EXP to new variable. */ stmt = gimple_build_assign (var, exp); /* Get SSA name for the new variable and set make new statement its definition statement. */ new_name = make_ssa_name (var, stmt); gimple_assign_set_lhs (stmt, new_name); SSA_NAME_DEF_STMT (new_name) = stmt; update_stmt (stmt); return stmt; } /* Return true when COND is a true predicate. */ static inline bool is_true_predicate (tree cond) { return (cond == NULL_TREE || cond == boolean_true_node || integer_onep (cond)); } /* Returns true when BB has a predicate that is not trivial: true or NULL_TREE. */ static inline bool is_predicated (basic_block bb) { return !is_true_predicate (bb_predicate (bb)); } /* Add condition NEW_COND to the predicate list of basic block BB. */ static inline void add_to_predicate_list (basic_block bb, tree new_cond) { tree cond = bb_predicate (bb); set_bb_predicate (bb, is_true_predicate (cond) ? new_cond : fold_build2_loc (EXPR_LOCATION (cond), TRUTH_OR_EXPR, boolean_type_node, cond, new_cond)); } /* Add the condition COND to the previous condition PREV_COND, and add this to the predicate list of the destination of edge E. LOOP is the loop to be if-converted. */ static void add_to_dst_predicate_list (struct loop *loop, edge e, tree prev_cond, tree cond) { if (!flow_bb_inside_loop_p (loop, e->dest)) return; if (!is_true_predicate (prev_cond)) cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, prev_cond, cond); add_to_predicate_list (e->dest, cond); } /* Return true if one of the successor edges of BB exits LOOP. */ static bool bb_with_exit_edge_p (struct loop *loop, basic_block bb) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->succs) if (loop_exit_edge_p (loop, e)) return true; return false; } /* Return true when PHI is if-convertible. PHI is part of loop LOOP and it belongs to basic block BB. PHI is not if-convertible if: - it has more than 2 arguments, - virtual PHI is immediately used in another PHI node, - virtual PHI on BB other than header. */ static bool if_convertible_phi_p (struct loop *loop, basic_block bb, gimple phi) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "-------------------------\n"); print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); } if (bb != loop->header && gimple_phi_num_args (phi) != 2) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "More than two phi node args.\n"); return false; } if (!is_gimple_reg (SSA_NAME_VAR (gimple_phi_result (phi)))) { imm_use_iterator imm_iter; use_operand_p use_p; if (bb != loop->header) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Virtual phi not on loop header.\n"); return false; } FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (phi)) { if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Difficult to handle this virtual phi.\n"); return false; } } } return true; } /* Return true when STMT is if-convertible. GIMPLE_ASSIGN statement is not if-convertible if, - it is not movable, - it could trap, - LHS is not var decl. GIMPLE_ASSIGN is part of block BB, which is inside loop LOOP. */ static bool if_convertible_gimple_assign_stmt_p (struct loop *loop, basic_block bb, gimple stmt) { tree lhs = gimple_assign_lhs (stmt); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "-------------------------\n"); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); } /* Some of these constrains might be too conservative. */ if (stmt_ends_bb_p (stmt) || gimple_has_volatile_ops (stmt) || (TREE_CODE (lhs) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) || gimple_has_side_effects (stmt)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "stmt not suitable for ifcvt\n"); return false; } if (gimple_assign_rhs_could_trap_p (stmt)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "tree could trap...\n"); return false; } if (TREE_CODE (lhs) != SSA_NAME && bb != loop->header && !bb_with_exit_edge_p (loop, bb)) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "LHS is not var\n"); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); } return false; } return true; } /* Return true when STMT is if-convertible. A statement is if-convertible if: - it is an if-convertible GIMPLE_ASSGIN, - it is a GIMPLE_LABEL or a GIMPLE_COND. STMT is inside BB, which is inside loop LOOP. */ static bool if_convertible_stmt_p (struct loop *loop, basic_block bb, gimple stmt) { switch (gimple_code (stmt)) { case GIMPLE_LABEL: case GIMPLE_DEBUG: case GIMPLE_COND: return true; case GIMPLE_ASSIGN: return if_convertible_gimple_assign_stmt_p (loop, bb, stmt); default: /* Don't know what to do with 'em so don't do anything. */ if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "don't know what to do\n"); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); } return false; break; } return true; } /* Return true when BB is if-convertible. This routine does not check basic block's statements and phis. A basic block is not if-convertible if: - it is non-empty and it is after the exit block (in BFS order), - it is after the exit block but before the latch, - its edges are not normal. EXIT_BB is the basic block containing the exit of the LOOP. BB is inside LOOP. */ static bool if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb) { edge e; edge_iterator ei; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "----------[%d]-------------\n", bb->index); if (EDGE_COUNT (bb->preds) > 2 || EDGE_COUNT (bb->succs) > 2) return false; if (exit_bb) { if (bb != loop->latch) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "basic block after exit bb but before latch\n"); return false; } else if (!empty_block_p (bb)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "non empty basic block after exit bb\n"); return false; } else if (bb == loop->latch && bb != exit_bb && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "latch is not dominated by exit_block\n"); return false; } } /* Be less adventurous and handle only normal edges. */ FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Difficult to handle edges\n"); return false; } return true; } /* Return true when all predecessor blocks of BB are visited. The VISITED bitmap keeps track of the visited blocks. */ static bool pred_blocks_visited_p (basic_block bb, bitmap *visited) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->preds) if (!bitmap_bit_p (*visited, e->src->index)) return false; return true; } /* Get body of a LOOP in suitable order for if-conversion. It is caller's responsibility to deallocate basic block list. If-conversion suitable order is, breadth first sort (BFS) order with an additional constraint: select a block only if all its predecessors are already selected. */ static basic_block * get_loop_body_in_if_conv_order (const struct loop *loop) { basic_block *blocks, *blocks_in_bfs_order; basic_block bb; bitmap visited; unsigned int index = 0; unsigned int visited_count = 0; gcc_assert (loop->num_nodes); gcc_assert (loop->latch != EXIT_BLOCK_PTR); blocks = XCNEWVEC (basic_block, loop->num_nodes); visited = BITMAP_ALLOC (NULL); blocks_in_bfs_order = get_loop_body_in_bfs_order (loop); index = 0; while (index < loop->num_nodes) { bb = blocks_in_bfs_order [index]; if (bb->flags & BB_IRREDUCIBLE_LOOP) { free (blocks_in_bfs_order); BITMAP_FREE (visited); free (blocks); return NULL; } if (!bitmap_bit_p (visited, bb->index)) { if (pred_blocks_visited_p (bb, &visited) || bb == loop->header) { /* This block is now visited. */ bitmap_set_bit (visited, bb->index); blocks[visited_count++] = bb; } } index++; if (index == loop->num_nodes && visited_count != loop->num_nodes) /* Not done yet. */ index = 0; } free (blocks_in_bfs_order); BITMAP_FREE (visited); return blocks; } /* Returns true when the analysis of the predicates for all the basic blocks in LOOP succeeded. predicate_bbs first allocates the predicates of the basic blocks. These fields are then initialized with the tree expressions representing the predicates under which a basic block is executed in the LOOP. As the loop->header is executed at each iteration, it has the "true" predicate. Other statements executed under a condition are predicated with that condition, for example | if (x) | S1; | else | S2; S1 will be predicated with "x", and S2 will be predicated with "!x". */ static bool predicate_bbs (loop_p loop) { unsigned int i; for (i = 0; i < loop->num_nodes; i++) init_bb_predicate (ifc_bbs[i]); for (i = 0; i < loop->num_nodes; i++) { basic_block bb = ifc_bbs[i]; tree cond; gimple_stmt_iterator itr; /* The loop latch is always executed and has no extra conditions to be processed: skip it. */ if (bb == loop->latch) { set_bb_predicate (loop->latch, boolean_true_node); set_bb_predicate_gimplified_stmts (loop->latch, NULL); continue; } cond = bb_predicate (bb); if (cond && bb != loop->header) { gimple_seq stmts; cond = force_gimple_operand (cond, &stmts, true, NULL_TREE); add_bb_predicate_gimplified_stmts (bb, stmts); } for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr)) { gimple stmt = gsi_stmt (itr); switch (gimple_code (stmt)) { case GIMPLE_LABEL: case GIMPLE_ASSIGN: case GIMPLE_CALL: case GIMPLE_DEBUG: break; case GIMPLE_COND: { tree c2; edge true_edge, false_edge; location_t loc = gimple_location (stmt); tree c = fold_build2_loc (loc, gimple_cond_code (stmt), boolean_type_node, gimple_cond_lhs (stmt), gimple_cond_rhs (stmt)); /* Add new condition into destination's predicate list. */ extract_true_false_edges_from_block (gimple_bb (stmt), &true_edge, &false_edge); /* If C is true, then TRUE_EDGE is taken. */ add_to_dst_predicate_list (loop, true_edge, cond, c); /* If C is false, then FALSE_EDGE is taken. */ c2 = invert_truthvalue_loc (loc, unshare_expr (c)); add_to_dst_predicate_list (loop, false_edge, cond, c2); cond = NULL_TREE; break; } default: /* Not handled yet in if-conversion. */ return false; } } /* If current bb has only one successor, then consider it as an unconditional goto. */ if (single_succ_p (bb)) { basic_block bb_n = single_succ (bb); /* The successor bb inherits the predicate of its predecessor. If there is no predicate in the predecessor bb, then consider the successor bb as always executed. */ if (cond == NULL_TREE) cond = boolean_true_node; add_to_predicate_list (bb_n, cond); } } /* The loop header is always executed. */ set_bb_predicate (loop->header, boolean_true_node); gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL && bb_predicate_gimplified_stmts (loop->latch) == NULL); return true; } /* Return true when LOOP is if-convertible. LOOP is if-convertible if: - it is innermost, - it has two or more basic blocks, - it has only one exit, - loop header is not the exit edge, - if its basic blocks and phi nodes are if convertible. */ static bool if_convertible_loop_p (struct loop *loop) { unsigned int i; edge e; edge_iterator ei; basic_block exit_bb = NULL; /* Handle only innermost loop. */ if (!loop || loop->inner) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "not innermost loop\n"); return false; } /* If only one block, no need for if-conversion. */ if (loop->num_nodes <= 2) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "less than 2 basic blocks\n"); return false; } /* More than one loop exit is too much to handle. */ if (!single_exit (loop)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "multiple exits\n"); return false; } /* ??? Check target's vector conditional operation support for vectorizer. */ /* If one of the loop header's edge is exit edge then do not apply if-conversion. */ FOR_EACH_EDGE (e, ei, loop->header->succs) { if (loop_exit_edge_p (loop, e)) return false; } /* Don't if-convert the loop when the data dependences cannot be computed: the loop won't be vectorized in that case. */ { VEC (data_reference_p, heap) *refs = VEC_alloc (data_reference_p, heap, 5); VEC (ddr_p, heap) *ddrs = VEC_alloc (ddr_p, heap, 25); bool res = compute_data_dependences_for_loop (loop, true, &refs, &ddrs); free_data_refs (refs); free_dependence_relations (ddrs); if (!res) return false; } calculate_dominance_info (CDI_DOMINATORS); /* Allow statements that can be handled during if-conversion. */ ifc_bbs = get_loop_body_in_if_conv_order (loop); if (!ifc_bbs) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Irreducible loop\n"); return false; } for (i = 0; i < loop->num_nodes; i++) { basic_block bb = ifc_bbs[i]; if (!if_convertible_bb_p (loop, bb, exit_bb)) return false; if (bb_with_exit_edge_p (loop, bb)) exit_bb = bb; } if (!predicate_bbs (loop)) return false; for (i = 0; i < loop->num_nodes; i++) { basic_block bb = ifc_bbs[i]; gimple_stmt_iterator itr; for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr)) if (!if_convertible_phi_p (loop, bb, gsi_stmt (itr))) return false; /* For non predicated BBs, don't check their statements. */ if (!is_predicated (bb)) continue; for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr)) if (!if_convertible_stmt_p (loop, bb, gsi_stmt (itr))) return false; } if (dump_file) fprintf (dump_file, "Applying if-conversion\n"); return true; } /* Basic block BB has two predecessors. Using predecessor's bb predicate, set an appropriate condition COND for the PHI node replacement. Return the true block whose phi arguments are selected when cond is true. LOOP is the loop containing the if-converted region, GSI is the place to insert the code for the if-conversion. */ static basic_block find_phi_replacement_condition (struct loop *loop, basic_block bb, tree *cond, gimple_stmt_iterator *gsi) { edge first_edge, second_edge; tree tmp_cond; gcc_assert (EDGE_COUNT (bb->preds) == 2); first_edge = EDGE_PRED (bb, 0); second_edge = EDGE_PRED (bb, 1); /* Use condition based on following criteria: 1) S1: x = !c ? a : b; S2: x = c ? b : a; S2 is preferred over S1. Make 'b' first_bb and use its condition. 2) Do not make loop header first_bb. 3) S1: x = !(c == d)? a : b; S21: t1 = c == d; S22: x = t1 ? b : a; S3: x = (c == d) ? b : a; S3 is preferred over S1 and S2*, Make 'b' first_bb and use its condition. 4) If pred B is dominated by pred A then use pred B's condition. See PR23115. */ /* Select condition that is not TRUTH_NOT_EXPR. */ tmp_cond = bb_predicate (first_edge->src); gcc_assert (tmp_cond); if (TREE_CODE (tmp_cond) == TRUTH_NOT_EXPR) { edge tmp_edge; tmp_edge = first_edge; first_edge = second_edge; second_edge = tmp_edge; } /* Check if FIRST_BB is loop header or not and make sure that FIRST_BB does not dominate SECOND_BB. */ if (first_edge->src == loop->header || dominated_by_p (CDI_DOMINATORS, second_edge->src, first_edge->src)) { *cond = bb_predicate (second_edge->src); if (TREE_CODE (*cond) == TRUTH_NOT_EXPR) *cond = invert_truthvalue (*cond); else /* Select non loop header bb. */ first_edge = second_edge; } else *cond = bb_predicate (first_edge->src); /* Gimplify the condition: the vectorizer prefers to have gimple values as conditions. Various targets use different means to communicate conditions in vector compare operations. Using a gimple value allows the compiler to emit vector compare and select RTL without exposing compare's result. */ *cond = force_gimple_operand_gsi (gsi, unshare_expr (*cond), false, NULL_TREE, true, GSI_SAME_STMT); if (!is_gimple_reg (*cond) && !is_gimple_condexpr (*cond)) { gimple new_stmt; new_stmt = ifc_temp_var (TREE_TYPE (*cond), unshare_expr (*cond)); gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); *cond = gimple_assign_lhs (new_stmt); } gcc_assert (*cond); return first_edge->src; } /* Replace PHI node with conditional modify expr using COND. This routine does not handle PHI nodes with more than two arguments. For example, S1: A = PHI src == true_bb) { arg_0 = gimple_phi_arg_def (phi, 1); arg_1 = gimple_phi_arg_def (phi, 0); } else { arg_0 = gimple_phi_arg_def (phi, 0); arg_1 = gimple_phi_arg_def (phi, 1); } /* Build new RHS using selected condition and arguments. */ rhs = build3 (COND_EXPR, TREE_TYPE (PHI_RESULT (phi)), unshare_expr (cond), arg_0, arg_1); } new_stmt = gimple_build_assign (PHI_RESULT (phi), rhs); SSA_NAME_DEF_STMT (gimple_phi_result (phi)) = new_stmt; gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); update_stmt (new_stmt); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "new phi replacement stmt\n"); print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM); } } /* Replaces in LOOP all the phi nodes other than those in the LOOP->header block with conditional modify expressions. */ static void ifconvert_phi_nodes (struct loop *loop) { basic_block bb; unsigned int orig_loop_num_nodes = loop->num_nodes; unsigned int i; for (i = 1; i < orig_loop_num_nodes; i++) { gimple phi; tree cond = NULL_TREE; gimple_stmt_iterator gsi, phi_gsi; basic_block true_bb = NULL; bb = ifc_bbs[i]; if (bb == loop->header) continue; phi_gsi = gsi_start_phis (bb); if (gsi_end_p (phi_gsi)) continue; /* BB has two predecessors. Using predecessor's aux field, set appropriate condition for the PHI node replacement. */ gsi = gsi_after_labels (bb); true_bb = find_phi_replacement_condition (loop, bb, &cond, &gsi); while (!gsi_end_p (phi_gsi)) { phi = gsi_stmt (phi_gsi); replace_phi_with_cond_gimple_assign_stmt (phi, cond, true_bb, &gsi); release_phi_node (phi); gsi_next (&phi_gsi); } set_phi_nodes (bb, NULL); } } /* Insert in each basic block of LOOP the statements produced by the gimplification of the predicates. */ static void insert_gimplified_predicates (loop_p loop) { unsigned int i; for (i = 0; i < loop->num_nodes; i++) { basic_block bb = ifc_bbs[i]; gimple_seq stmts = bb_predicate_gimplified_stmts (bb); if (stmts) { gimple_stmt_iterator gsi = gsi_last_bb (bb); if (gsi_end_p (gsi) || gimple_code (gsi_stmt (gsi)) == GIMPLE_COND) gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT); else gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT); /* Once the sequence is code generated, set it to NULL. */ set_bb_predicate_gimplified_stmts (bb, NULL); } } } /* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks other than the exit and latch of the LOOP. Also resets the GIMPLE_DEBUG information. */ static void remove_conditions_and_labels (loop_p loop) { gimple_stmt_iterator gsi; unsigned int i; for (i = 0; i < loop->num_nodes; i++) { basic_block bb = ifc_bbs[i]; if (bb_with_exit_edge_p (loop, bb) || bb == loop->latch) continue; for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); ) switch (gimple_code (gsi_stmt (gsi))) { case GIMPLE_COND: case GIMPLE_LABEL: gsi_remove (&gsi, true); break; case GIMPLE_DEBUG: /* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */ if (gimple_debug_bind_p (gsi_stmt (gsi))) { gimple_debug_bind_reset_value (gsi_stmt (gsi)); update_stmt (gsi_stmt (gsi)); } gsi_next (&gsi); break; default: gsi_next (&gsi); } } } /* Combine all the basic blocks from LOOP into one or two super basic blocks. Replace PHI nodes with conditional modify expressions. */ static void combine_blocks (struct loop *loop) { basic_block bb, exit_bb, merge_target_bb; unsigned int orig_loop_num_nodes = loop->num_nodes; unsigned int i; edge e; edge_iterator ei; remove_conditions_and_labels (loop); insert_gimplified_predicates (loop); ifconvert_phi_nodes (loop); /* Merge basic blocks: first remove all the edges in the loop, except for those from the exit block. */ exit_bb = NULL; for (i = 0; i < orig_loop_num_nodes; i++) { bb = ifc_bbs[i]; if (bb_with_exit_edge_p (loop, bb)) { exit_bb = bb; break; } } gcc_assert (exit_bb != loop->latch); for (i = 1; i < orig_loop_num_nodes; i++) { bb = ifc_bbs[i]; for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));) { if (e->src == exit_bb) ei_next (&ei); else remove_edge (e); } } if (exit_bb != NULL) { if (exit_bb != loop->header) { /* Connect this node to loop header. */ make_edge (loop->header, exit_bb, EDGE_FALLTHRU); set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header); } /* Redirect non-exit edges to loop->latch. */ FOR_EACH_EDGE (e, ei, exit_bb->succs) { if (!loop_exit_edge_p (loop, e)) redirect_edge_and_branch (e, loop->latch); } set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb); } else { /* If the loop does not have an exit, reconnect header and latch. */ make_edge (loop->header, loop->latch, EDGE_FALLTHRU); set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header); } merge_target_bb = loop->header; for (i = 1; i < orig_loop_num_nodes; i++) { gimple_stmt_iterator gsi; gimple_stmt_iterator last; bb = ifc_bbs[i]; if (bb == exit_bb || bb == loop->latch) continue; /* Make stmts member of loop->header. */ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) gimple_set_bb (gsi_stmt (gsi), merge_target_bb); /* Update stmt list. */ last = gsi_last_bb (merge_target_bb); gsi_insert_seq_after (&last, bb_seq (bb), GSI_NEW_STMT); set_bb_seq (bb, NULL); delete_basic_block (bb); } /* If possible, merge loop header to the block with the exit edge. This reduces the number of basic blocks to two, to please the vectorizer that handles only loops with two nodes. FIXME: Call cleanup_tree_cfg. */ if (exit_bb && exit_bb != loop->header && can_merge_blocks_p (loop->header, exit_bb)) merge_blocks (loop->header, exit_bb); } /* If-convert LOOP when it is legal. For the moment this pass has no profitability analysis. */ static void tree_if_conversion (struct loop *loop) { ifc_bbs = NULL; if (!if_convertible_loop_p (loop)) goto cleanup; /* Now all statements are if-convertible. Combine all the basic blocks into one huge basic block doing the if-conversion on-the-fly. */ combine_blocks (loop); cleanup: if (ifc_bbs) { unsigned int i; for (i = 0; i < loop->num_nodes; i++) free_bb_predicate (ifc_bbs[i]); free (ifc_bbs); ifc_bbs = NULL; } } /* Tree if-conversion pass management. */ static unsigned int main_tree_if_conversion (void) { loop_iterator li; struct loop *loop; if (number_of_loops () <= 1) return 0; FOR_EACH_LOOP (li, loop, 0) tree_if_conversion (loop); return 0; } static bool gate_tree_if_conversion (void) { return flag_tree_vectorize != 0; } struct gimple_opt_pass pass_if_conversion = { { GIMPLE_PASS, "ifcvt", /* name */ gate_tree_if_conversion, /* gate */ main_tree_if_conversion, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_NONE, /* tv_id */ PROP_cfg | PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func | TODO_verify_stmts | TODO_verify_flow /* todo_flags_finish */ } };