/* Pointer Bounds Checker optimization pass. Copyright (C) 2014 Free Software Foundation, Inc. Contributed by Ilya Enkovich (ilya.enkovich@intel.com) This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tree-core.h" #include "tree.h" #include "target.h" #include "tree-cfg.h" #include "tree-pass.h" #include "is-a.h" #include "cfgloop.h" #include "stringpool.h" #include "tree-ssa-alias.h" #include "tree-ssanames.h" #include "tree-ssa-operands.h" #include "tree-ssa-address.h" #include "tree-ssa.h" #include "predict.h" #include "dominance.h" #include "cfg.h" #include "basic-block.h" #include "tree-ssa-loop-niter.h" #include "gimple-expr.h" #include "gimple.h" #include "tree-phinodes.h" #include "gimple-ssa.h" #include "ssa-iterators.h" #include "gimple-pretty-print.h" #include "gimple-iterator.h" #include "gimplify.h" #include "gimplify-me.h" #include "expr.h" #include "tree-chkp.h" #include "diagnostic.h" enum check_type { CHECK_LOWER_BOUND, CHECK_UPPER_BOUND }; struct pol_item { tree cst; tree var; }; struct address_t { vec pol; }; /* Structure to hold check informtation. */ struct check_info { /* Type of the check. */ check_type type; /* Address used for the check. */ address_t addr; /* Bounds used for the check. */ tree bounds; /* Check statement. Can be NULL for removed checks. */ gimple stmt; }; /* Structure to hold checks information for BB. */ struct bb_checks { vec checks; }; static void chkp_collect_value (tree ssa_name, address_t &res); #define chkp_bndmk_fndecl \ (targetm.builtin_chkp_function (BUILT_IN_CHKP_BNDMK)) #define chkp_intersect_fndecl \ (targetm.builtin_chkp_function (BUILT_IN_CHKP_INTERSECT)) #define chkp_checkl_fndecl \ (targetm.builtin_chkp_function (BUILT_IN_CHKP_BNDCL)) #define chkp_checku_fndecl \ (targetm.builtin_chkp_function (BUILT_IN_CHKP_BNDCU)) static vec check_infos = vNULL; /* Comparator for pol_item structures I1 and I2 to be used to find items with equal var. Also used for polynomial sorting. */ static int chkp_pol_item_compare (const void *i1, const void *i2) { const struct pol_item *p1 = (const struct pol_item *)i1; const struct pol_item *p2 = (const struct pol_item *)i2; if (p1->var == p2->var) return 0; else if (p1->var > p2->var) return 1; else return -1; } /* Find polynomial item in ADDR with var equal to VAR and return its index. Return -1 if item was not found. */ static int chkp_pol_find (address_t &addr, tree var) { int left = 0; int right = addr.pol.length () - 1; int n; while (right >= left) { n = (left + right) / 2; if (addr.pol[n].var == var || (var && addr.pol[n].var && TREE_CODE (var) == ADDR_EXPR && TREE_CODE (addr.pol[n].var) == ADDR_EXPR && TREE_OPERAND (var, 0) == TREE_OPERAND (addr.pol[n].var, 0))) return n; else if (addr.pol[n].var > var) right = n - 1; else left = n + 1; } return -1; } /* Return constant CST extended to size type. */ static tree chkp_extend_const (tree cst) { if (TYPE_PRECISION (TREE_TYPE (cst)) < TYPE_PRECISION (size_type_node)) return build_int_cst_type (size_type_node, tree_to_shwi (cst)); return cst; } /* Add polynomial item CST * VAR to ADDR. */ static void chkp_add_addr_item (address_t &addr, tree cst, tree var) { int n = chkp_pol_find (addr, var); cst = chkp_extend_const (cst); if (n < 0) { struct pol_item item; item.cst = cst; item.var = var; addr.pol.safe_push (item); addr.pol.qsort (&chkp_pol_item_compare); } else { addr.pol[n].cst = fold_build2 (PLUS_EXPR, TREE_TYPE (addr.pol[n].cst), addr.pol[n].cst, cst); if (TREE_CODE (addr.pol[n].cst) == INTEGER_CST && integer_zerop (addr.pol[n].cst)) addr.pol.ordered_remove (n); } } /* Subtract polynomial item CST * VAR from ADDR. */ static void chkp_sub_addr_item (address_t &addr, tree cst, tree var) { int n = chkp_pol_find (addr, var); cst = chkp_extend_const (cst); if (n < 0) { struct pol_item item; item.cst = fold_build2 (MINUS_EXPR, TREE_TYPE (cst), integer_zero_node, cst); item.var = var; addr.pol.safe_push (item); addr.pol.qsort (&chkp_pol_item_compare); } else { addr.pol[n].cst = fold_build2 (MINUS_EXPR, TREE_TYPE (addr.pol[n].cst), addr.pol[n].cst, cst); if (TREE_CODE (addr.pol[n].cst) == INTEGER_CST && integer_zerop (addr.pol[n].cst)) addr.pol.ordered_remove (n); } } /* Add address DELTA to ADDR. */ static void chkp_add_addr_addr (address_t &addr, address_t &delta) { unsigned int i; for (i = 0; i < delta.pol.length (); i++) chkp_add_addr_item (addr, delta.pol[i].cst, delta.pol[i].var); } /* Subtract address DELTA from ADDR. */ static void chkp_sub_addr_addr (address_t &addr, address_t &delta) { unsigned int i; for (i = 0; i < delta.pol.length (); i++) chkp_sub_addr_item (addr, delta.pol[i].cst, delta.pol[i].var); } /* Mutiply address ADDR by integer constant MULT. */ static void chkp_mult_addr (address_t &addr, tree mult) { unsigned int i; for (i = 0; i < addr.pol.length (); i++) addr.pol[i].cst = fold_build2 (MULT_EXPR, TREE_TYPE (addr.pol[i].cst), addr.pol[i].cst, mult); } /* Return 1 if we may prove ADDR has a constant value with determined sign, which is put into *SIGN. Otherwise return 0. */ static bool chkp_is_constant_addr (const address_t &addr, int *sign) { *sign = 0; if (addr.pol.length () == 0) return true; else if (addr.pol.length () > 1) return false; else if (addr.pol[0].var) return false; else if (integer_zerop (addr.pol[0].cst)) *sign = 0; else if (tree_int_cst_sign_bit (addr.pol[0].cst)) *sign = -1; else *sign = 1; return true; } /* Dump ADDR into dump_file. */ static void chkp_print_addr (const address_t &addr) { unsigned int n = 0; for (n = 0; n < addr.pol.length (); n++) { if (n > 0) fprintf (dump_file, " + "); if (addr.pol[n].var == NULL_TREE) print_generic_expr (dump_file, addr.pol[n].cst, 0); else { if (TREE_CODE (addr.pol[n].cst) != INTEGER_CST || !integer_onep (addr.pol[n].cst)) { print_generic_expr (dump_file, addr.pol[n].cst, 0); fprintf (dump_file, " * "); } print_generic_expr (dump_file, addr.pol[n].var, 0); } } } /* Compute value of PTR and put it into address RES. PTR has to be ADDR_EXPR. */ static void chkp_collect_addr_value (tree ptr, address_t &res) { tree obj = TREE_OPERAND (ptr, 0); address_t addr; switch (TREE_CODE (obj)) { case INDIRECT_REF: chkp_collect_value (TREE_OPERAND (obj, 0), res); break; case MEM_REF: chkp_collect_value (TREE_OPERAND (obj, 0), res); addr.pol.create (0); chkp_collect_value (TREE_OPERAND (obj, 1), addr); chkp_add_addr_addr (res, addr); addr.pol.release (); break; case ARRAY_REF: chkp_collect_value (build_fold_addr_expr (TREE_OPERAND (obj, 0)), res); addr.pol.create (0); chkp_collect_value (TREE_OPERAND (obj, 1), addr); chkp_mult_addr (addr, array_ref_element_size (obj)); chkp_add_addr_addr (res, addr); addr.pol.release (); break; case COMPONENT_REF: { tree str = TREE_OPERAND (obj, 0); tree field = TREE_OPERAND (obj, 1); chkp_collect_value (build_fold_addr_expr (str), res); addr.pol.create (0); chkp_collect_value (component_ref_field_offset (obj), addr); chkp_add_addr_addr (res, addr); addr.pol.release (); if (DECL_FIELD_BIT_OFFSET (field)) { addr.pol.create (0); chkp_collect_value (fold_build2 (TRUNC_DIV_EXPR, size_type_node, DECL_FIELD_BIT_OFFSET (field), size_int (BITS_PER_UNIT)), addr); chkp_add_addr_addr (res, addr); addr.pol.release (); } } break; default: chkp_add_addr_item (res, integer_one_node, ptr); break; } } /* Compute value of PTR and put it into address RES. */ static void chkp_collect_value (tree ptr, address_t &res) { gimple def_stmt; enum gimple_code code; enum tree_code rhs_code; address_t addr; tree rhs1; if (TREE_CODE (ptr) == INTEGER_CST) { chkp_add_addr_item (res, ptr, NULL); return; } else if (TREE_CODE (ptr) == ADDR_EXPR) { chkp_collect_addr_value (ptr, res); return; } else if (TREE_CODE (ptr) != SSA_NAME) { chkp_add_addr_item (res, integer_one_node, ptr); return; } /* Now we handle the case when polynomial is computed for SSA NAME. */ def_stmt = SSA_NAME_DEF_STMT (ptr); code = gimple_code (def_stmt); /* Currently we do not walk through statements other than assignment. */ if (code != GIMPLE_ASSIGN) { chkp_add_addr_item (res, integer_one_node, ptr); return; } rhs_code = gimple_assign_rhs_code (def_stmt); rhs1 = gimple_assign_rhs1 (def_stmt); switch (rhs_code) { case SSA_NAME: case INTEGER_CST: case ADDR_EXPR: chkp_collect_value (rhs1, res); break; case PLUS_EXPR: case POINTER_PLUS_EXPR: chkp_collect_value (rhs1, res); addr.pol.create (0); chkp_collect_value (gimple_assign_rhs2 (def_stmt), addr); chkp_add_addr_addr (res, addr); addr.pol.release (); break; case MINUS_EXPR: chkp_collect_value (rhs1, res); addr.pol.create (0); chkp_collect_value (gimple_assign_rhs2 (def_stmt), addr); chkp_sub_addr_addr (res, addr); addr.pol.release (); break; case MULT_EXPR: if (TREE_CODE (rhs1) == SSA_NAME && TREE_CODE (gimple_assign_rhs2 (def_stmt)) == INTEGER_CST) { chkp_collect_value (rhs1, res); chkp_mult_addr (res, gimple_assign_rhs2 (def_stmt)); } else if (TREE_CODE (gimple_assign_rhs2 (def_stmt)) == SSA_NAME && TREE_CODE (rhs1) == INTEGER_CST) { chkp_collect_value (gimple_assign_rhs2 (def_stmt), res); chkp_mult_addr (res, rhs1); } else chkp_add_addr_item (res, integer_one_node, ptr); break; default: chkp_add_addr_item (res, integer_one_node, ptr); break; } } /* Fill check_info structure *CI with information about check STMT. */ static void chkp_fill_check_info (gimple stmt, struct check_info *ci) { ci->addr.pol.create (0); ci->bounds = gimple_call_arg (stmt, 1); chkp_collect_value (gimple_call_arg (stmt, 0), ci->addr); ci->type = (gimple_call_fndecl (stmt) == chkp_checkl_fndecl ? CHECK_LOWER_BOUND : CHECK_UPPER_BOUND); ci->stmt = stmt; } /* Release structures holding check information for current function. */ static void chkp_release_check_info (void) { unsigned int n, m; if (check_infos.exists ()) { for (n = 0; n < check_infos.length (); n++) { for (m = 0; m < check_infos[n].checks.length (); m++) if (check_infos[n].checks[m].addr.pol.exists ()) check_infos[n].checks[m].addr.pol.release (); check_infos[n].checks.release (); } check_infos.release (); } } /* Create structures to hold check information for current function. */ static void chkp_init_check_info (void) { struct bb_checks empty_bbc; int n; empty_bbc.checks = vNULL; chkp_release_check_info (); check_infos.create (last_basic_block_for_fn (cfun)); for (n = 0; n < last_basic_block_for_fn (cfun); n++) { check_infos.safe_push (empty_bbc); check_infos.last ().checks.create (0); } } /* Find all checks in current function and store info about them in check_infos. */ static void chkp_gather_checks_info (void) { basic_block bb; gimple_stmt_iterator i; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Gathering information about checks...\n"); chkp_init_check_info (); FOR_EACH_BB_FN (bb, cfun) { struct bb_checks *bbc = &check_infos[bb->index]; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Searching checks in BB%d...\n", bb->index); for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i)) { gimple stmt = gsi_stmt (i); if (gimple_code (stmt) != GIMPLE_CALL) continue; if (gimple_call_fndecl (stmt) == chkp_checkl_fndecl || gimple_call_fndecl (stmt) == chkp_checku_fndecl) { struct check_info ci; chkp_fill_check_info (stmt, &ci); bbc->checks.safe_push (ci); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Adding check information:\n"); fprintf (dump_file, " bounds: "); print_generic_expr (dump_file, ci.bounds, 0); fprintf (dump_file, "\n address: "); chkp_print_addr (ci.addr); fprintf (dump_file, "\n check: "); print_gimple_stmt (dump_file, stmt, 0, 0); } } } } } /* Return 1 if check CI against BOUNDS always pass, -1 if check CI against BOUNDS always fails and 0 if we cannot compute check result. */ static int chkp_get_check_result (struct check_info *ci, tree bounds) { gimple bnd_def; address_t bound_val; int sign, res = 0; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Trying to compute result of the check\n"); fprintf (dump_file, " check: "); print_gimple_stmt (dump_file, ci->stmt, 0, 0); fprintf (dump_file, " address: "); chkp_print_addr (ci->addr); fprintf (dump_file, "\n bounds: "); print_generic_expr (dump_file, bounds, 0); fprintf (dump_file, "\n"); } if (TREE_CODE (bounds) != SSA_NAME) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " result: bounds tree code is not ssa_name\n"); return 0; } bnd_def = SSA_NAME_DEF_STMT (bounds); /* Currently we handle cases when bounds are result of bndmk or loaded static bounds var. */ if (gimple_code (bnd_def) == GIMPLE_CALL && gimple_call_fndecl (bnd_def) == chkp_bndmk_fndecl) { bound_val.pol.create (0); chkp_collect_value (gimple_call_arg (bnd_def, 0), bound_val); if (ci->type == CHECK_UPPER_BOUND) { address_t size_val; size_val.pol.create (0); chkp_collect_value (gimple_call_arg (bnd_def, 1), size_val); chkp_add_addr_addr (bound_val, size_val); size_val.pol.release (); chkp_add_addr_item (bound_val, integer_minus_one_node, NULL); } } else if (gimple_code (bnd_def) == GIMPLE_ASSIGN && gimple_assign_rhs1 (bnd_def) == chkp_get_zero_bounds_var ()) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " result: always pass with zero bounds\n"); return 1; } else if (gimple_code (bnd_def) == GIMPLE_ASSIGN && gimple_assign_rhs1 (bnd_def) == chkp_get_none_bounds_var ()) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " result: always fails with none bounds\n"); return -1; } else if (gimple_code (bnd_def) == GIMPLE_ASSIGN && TREE_CODE (gimple_assign_rhs1 (bnd_def)) == VAR_DECL) { tree bnd_var = gimple_assign_rhs1 (bnd_def); tree var; tree size; if (!DECL_INITIAL (bnd_var) || DECL_INITIAL (bnd_var) == error_mark_node) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " result: cannot compute bounds\n"); return 0; } gcc_assert (TREE_CODE (DECL_INITIAL (bnd_var)) == ADDR_EXPR); var = TREE_OPERAND (DECL_INITIAL (bnd_var), 0); bound_val.pol.create (0); chkp_collect_value (DECL_INITIAL (bnd_var), bound_val); if (ci->type == CHECK_UPPER_BOUND) { if (TREE_CODE (var) == VAR_DECL) { if (DECL_SIZE (var) && !chkp_variable_size_type (TREE_TYPE (var))) size = DECL_SIZE_UNIT (var); else { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " result: cannot compute bounds\n"); return 0; } } else { gcc_assert (TREE_CODE (var) == STRING_CST); size = build_int_cst (size_type_node, TREE_STRING_LENGTH (var)); } address_t size_val; size_val.pol.create (0); chkp_collect_value (size, size_val); chkp_add_addr_addr (bound_val, size_val); size_val.pol.release (); chkp_add_addr_item (bound_val, integer_minus_one_node, NULL); } } else { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " result: cannot compute bounds\n"); return 0; } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " bound value: "); chkp_print_addr (bound_val); fprintf (dump_file, "\n"); } chkp_sub_addr_addr (bound_val, ci->addr); if (!chkp_is_constant_addr (bound_val, &sign)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " result: cannot compute result\n"); res = 0; } else if (sign == 0 || (ci->type == CHECK_UPPER_BOUND && sign > 0) || (ci->type == CHECK_LOWER_BOUND && sign < 0)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " result: always pass\n"); res = 1; } else { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " result: always fail\n"); res = -1; } bound_val.pol.release (); return res; } /* Try to compare bounds value and address value used in the check CI. If we can prove that check always pass then remove it. */ static void chkp_remove_check_if_pass (struct check_info *ci) { int result = 0; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Trying to remove check: "); print_gimple_stmt (dump_file, ci->stmt, 0, 0); } result = chkp_get_check_result (ci, ci->bounds); if (result == 1) { gimple_stmt_iterator i = gsi_for_stmt (ci->stmt); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " action: delete check (always pass)\n"); gsi_remove (&i, true); unlink_stmt_vdef (ci->stmt); release_defs (ci->stmt); ci->stmt = NULL; } else if (result == -1) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " action: keep check (always fail)\n"); warning_at (gimple_location (ci->stmt), OPT_Wchkp, "memory access check always fail"); } else if (result == 0) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " action: keep check (cannot compute result)\n"); } } /* For bounds used in CI check if bounds are produced by intersection and we may use outer bounds instead. If transformation is possible then fix check statement and recompute its info. */ static void chkp_use_outer_bounds_if_possible (struct check_info *ci) { gimple bnd_def; tree bnd1, bnd2, bnd_res = NULL; int check_res1, check_res2; if (TREE_CODE (ci->bounds) != SSA_NAME) return; bnd_def = SSA_NAME_DEF_STMT (ci->bounds); if (gimple_code (bnd_def) != GIMPLE_CALL || gimple_call_fndecl (bnd_def) != chkp_intersect_fndecl) return; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Check if bounds intersection is redundant: \n"); fprintf (dump_file, " check: "); print_gimple_stmt (dump_file, ci->stmt, 0, 0); fprintf (dump_file, " intersection: "); print_gimple_stmt (dump_file, bnd_def, 0, 0); fprintf (dump_file, "\n"); } bnd1 = gimple_call_arg (bnd_def, 0); bnd2 = gimple_call_arg (bnd_def, 1); check_res1 = chkp_get_check_result (ci, bnd1); check_res2 = chkp_get_check_result (ci, bnd2); if (check_res1 == 1) bnd_res = bnd2; else if (check_res1 == -1) bnd_res = bnd1; else if (check_res2 == 1) bnd_res = bnd1; else if (check_res2 == -1) bnd_res = bnd2; if (bnd_res) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " action: use "); print_generic_expr (dump_file, bnd2, 0); fprintf (dump_file, " instead of "); print_generic_expr (dump_file, ci->bounds, 0); fprintf (dump_file, "\n"); } ci->bounds = bnd_res; gimple_call_set_arg (ci->stmt, 1, bnd_res); update_stmt (ci->stmt); chkp_fill_check_info (ci->stmt, ci); } } /* Try to find checks whose bounds were produced by intersection which does not affect check result. In such check outer bounds are used instead. It allows to remove excess intersections and helps to compare checks. */ static void chkp_remove_excess_intersections (void) { basic_block bb; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Searching for redundant bounds intersections...\n"); FOR_EACH_BB_FN (bb, cfun) { struct bb_checks *bbc = &check_infos[bb->index]; unsigned int no; /* Iterate through all found checks in BB. */ for (no = 0; no < bbc->checks.length (); no++) if (bbc->checks[no].stmt) chkp_use_outer_bounds_if_possible (&bbc->checks[no]); } } /* Try to remove all checks which are known to alwyas pass. */ static void chkp_remove_constant_checks (void) { basic_block bb; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Searching for redundant checks...\n"); FOR_EACH_BB_FN (bb, cfun) { struct bb_checks *bbc = &check_infos[bb->index]; unsigned int no; /* Iterate through all found checks in BB. */ for (no = 0; no < bbc->checks.length (); no++) if (bbc->checks[no].stmt) chkp_remove_check_if_pass (&bbc->checks[no]); } } /* Intrumentation pass inserts most of bounds creation code in the header of the function. We want to move bounds creation closer to bounds usage to reduce bounds lifetime. We also try to avoid bounds creation code on paths where bounds are not used. */ static void chkp_reduce_bounds_lifetime (void) { basic_block bb = FALLTHRU_EDGE (ENTRY_BLOCK_PTR_FOR_FN (cfun))->dest; gimple_stmt_iterator i; for (i = gsi_start_bb (bb); !gsi_end_p (i); ) { gimple dom_use, use_stmt, stmt = gsi_stmt (i); basic_block dom_bb; ssa_op_iter iter; imm_use_iterator use_iter; use_operand_p use_p; tree op; bool want_move = false; bool deps = false; if (gimple_code (stmt) == GIMPLE_CALL && gimple_call_fndecl (stmt) == chkp_bndmk_fndecl) want_move = true; if (gimple_code (stmt) == GIMPLE_ASSIGN && POINTER_BOUNDS_P (gimple_assign_lhs (stmt)) && gimple_assign_rhs_code (stmt) == VAR_DECL) want_move = true; if (!want_move) { gsi_next (&i); continue; } /* Check we do not increase other values lifetime. */ FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE) { op = USE_FROM_PTR (use_p); if (TREE_CODE (op) == SSA_NAME && gimple_code (SSA_NAME_DEF_STMT (op)) != GIMPLE_NOP) { deps = true; break; } } if (deps) { gsi_next (&i); continue; } /* Check all usages of bounds. */ if (gimple_code (stmt) == GIMPLE_CALL) op = gimple_call_lhs (stmt); else { gcc_assert (gimple_code (stmt) == GIMPLE_ASSIGN); op = gimple_assign_lhs (stmt); } dom_use = NULL; dom_bb = NULL; FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, op) { if (dom_bb && dominated_by_p (CDI_DOMINATORS, dom_bb, gimple_bb (use_stmt))) { dom_use = use_stmt; dom_bb = NULL; } else if (dom_bb) dom_bb = nearest_common_dominator (CDI_DOMINATORS, dom_bb, gimple_bb (use_stmt)); else if (!dom_use) dom_use = use_stmt; else if (stmt_dominates_stmt_p (use_stmt, dom_use)) dom_use = use_stmt; else if (!stmt_dominates_stmt_p (dom_use, use_stmt) /* If dom_use and use_stmt are PHI nodes in one BB then it is OK to keep any of them as dom_use. stmt_dominates_stmt_p returns 0 for such combination, so check it here manually. */ && (gimple_code (dom_use) != GIMPLE_PHI || gimple_code (use_stmt) != GIMPLE_PHI || gimple_bb (use_stmt) != gimple_bb (dom_use)) ) { dom_bb = nearest_common_dominator (CDI_DOMINATORS, gimple_bb (use_stmt), gimple_bb (dom_use)); dom_use = NULL; } } /* In case there is a single use, just move bounds creation to the use. */ if (dom_use || dom_bb) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Moving creation of "); print_generic_expr (dump_file, op, 0); fprintf (dump_file, " down to its use.\n"); } if (dom_use && gimple_code (dom_use) == GIMPLE_PHI) { dom_bb = get_immediate_dominator (CDI_DOMINATORS, gimple_bb (dom_use)); dom_use = NULL; } if (dom_bb == bb || (dom_use && gimple_bb (dom_use) == bb)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Cannot move statement bacause there is no " "suitable dominator block other than entry block.\n"); gsi_next (&i); } else { if (dom_bb) { gimple_stmt_iterator last = gsi_last_bb (dom_bb); if (!gsi_end_p (last) && stmt_ends_bb_p (gsi_stmt (last))) gsi_move_before (&i, &last); else gsi_move_after (&i, &last); } else { gimple_stmt_iterator gsi = gsi_for_stmt (dom_use); gsi_move_before (&i, &gsi); } update_stmt (stmt); } } else gsi_next (&i); } } /* Initilize checker optimization pass. */ static void chkp_opt_init (void) { check_infos.create (0); calculate_dominance_info (CDI_DOMINATORS); calculate_dominance_info (CDI_POST_DOMINATORS); /* With LTO constant bounds vars may be not initialized by now. Get constant bounds vars to handle their assignments during optimizations. */ chkp_get_zero_bounds_var (); chkp_get_none_bounds_var (); } /* Finalise checker optimization pass. */ static void chkp_opt_fini (void) { chkp_fix_cfg (); } /* Checker optimization pass function. */ static unsigned int chkp_opt_execute (void) { chkp_opt_init(); chkp_gather_checks_info (); chkp_remove_excess_intersections (); chkp_remove_constant_checks (); chkp_reduce_bounds_lifetime (); chkp_release_check_info (); chkp_opt_fini (); return 0; } /* Pass gate. */ static bool chkp_opt_gate (void) { return chkp_function_instrumented_p (cfun->decl) && (flag_chkp_optimize > 0 || (flag_chkp_optimize == -1 && optimize > 0)); } namespace { const pass_data pass_data_chkp_opt = { GIMPLE_PASS, /* type */ "chkpopt", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ PROP_ssa | PROP_cfg, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_verify_il | TODO_update_ssa /* todo_flags_finish */ }; class pass_chkp_opt : public gimple_opt_pass { public: pass_chkp_opt (gcc::context *ctxt) : gimple_opt_pass (pass_data_chkp_opt, ctxt) {} /* opt_pass methods: */ virtual opt_pass * clone () { return new pass_chkp_opt (m_ctxt); } virtual bool gate (function *) { return chkp_opt_gate (); } virtual unsigned int execute (function *) { return chkp_opt_execute (); } }; // class pass_chkp_opt } // anon namespace gimple_opt_pass * make_pass_chkp_opt (gcc::context *ctxt) { return new pass_chkp_opt (ctxt); }