/* Control flow functions for trees. Copyright (C) 2001-2013 Free Software Foundation, Inc. Contributed by Diego Novillo <dnovillo@redhat.com> This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "hash-table.h" #include "tm.h" #include "tree.h" #include "trans-mem.h" #include "stor-layout.h" #include "print-tree.h" #include "tm_p.h" #include "basic-block.h" #include "flags.h" #include "function.h" #include "gimple-pretty-print.h" #include "pointer-set.h" #include "tree-ssa-alias.h" #include "internal-fn.h" #include "gimple-fold.h" #include "tree-eh.h" #include "gimple-expr.h" #include "is-a.h" #include "gimple.h" #include "gimple-iterator.h" #include "gimplify-me.h" #include "gimple-walk.h" #include "gimple-ssa.h" #include "cgraph.h" #include "tree-cfg.h" #include "tree-phinodes.h" #include "ssa-iterators.h" #include "stringpool.h" #include "tree-ssanames.h" #include "tree-ssa-loop-manip.h" #include "tree-ssa-loop-niter.h" #include "tree-into-ssa.h" #include "expr.h" #include "tree-dfa.h" #include "tree-ssa.h" #include "tree-dump.h" #include "tree-pass.h" #include "diagnostic-core.h" #include "except.h" #include "cfgloop.h" #include "tree-ssa-propagate.h" #include "value-prof.h" #include "tree-inline.h" #include "target.h" #include "tree-ssa-live.h" #include "omp-low.h" #include "tree-cfgcleanup.h" /* This file contains functions for building the Control Flow Graph (CFG) for a function tree. */ /* Local declarations. */ /* Initial capacity for the basic block array. */ static const int initial_cfg_capacity = 20; /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs which use a particular edge. The CASE_LABEL_EXPRs are chained together via their CASE_CHAIN field, which we clear after we're done with the hash table to prevent problems with duplication of GIMPLE_SWITCHes. Access to this list of CASE_LABEL_EXPRs allows us to efficiently update the case vector in response to edge redirections. Right now this table is set up and torn down at key points in the compilation process. It would be nice if we could make the table more persistent. The key is getting notification of changes to the CFG (particularly edge removal, creation and redirection). */ static struct pointer_map_t *edge_to_cases; /* If we record edge_to_cases, this bitmap will hold indexes of basic blocks that end in a GIMPLE_SWITCH which we touched due to edge manipulations. */ static bitmap touched_switch_bbs; /* CFG statistics. */ struct cfg_stats_d { long num_merged_labels; }; static struct cfg_stats_d cfg_stats; /* Nonzero if we found a computed goto while building basic blocks. */ static bool found_computed_goto; /* Hash table to store last discriminator assigned for each locus. */ struct locus_discrim_map { location_t locus; int discriminator; }; /* Hashtable helpers. */ struct locus_discrim_hasher : typed_free_remove <locus_discrim_map> { typedef locus_discrim_map value_type; typedef locus_discrim_map compare_type; static inline hashval_t hash (const value_type *); static inline bool equal (const value_type *, const compare_type *); }; /* Trivial hash function for a location_t. ITEM is a pointer to a hash table entry that maps a location_t to a discriminator. */ inline hashval_t locus_discrim_hasher::hash (const value_type *item) { return LOCATION_LINE (item->locus); } /* Equality function for the locus-to-discriminator map. A and B point to the two hash table entries to compare. */ inline bool locus_discrim_hasher::equal (const value_type *a, const compare_type *b) { return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus); } static hash_table <locus_discrim_hasher> discriminator_per_locus; /* Basic blocks and flowgraphs. */ static void make_blocks (gimple_seq); static void factor_computed_gotos (void); /* Edges. */ static void make_edges (void); static void assign_discriminators (void); static void make_cond_expr_edges (basic_block); static void make_gimple_switch_edges (basic_block); static void make_goto_expr_edges (basic_block); static void make_gimple_asm_edges (basic_block); static edge gimple_redirect_edge_and_branch (edge, basic_block); static edge gimple_try_redirect_by_replacing_jump (edge, basic_block); static unsigned int split_critical_edges (void); /* Various helpers. */ static inline bool stmt_starts_bb_p (gimple, gimple); static int gimple_verify_flow_info (void); static void gimple_make_forwarder_block (edge); static gimple first_non_label_stmt (basic_block); static bool verify_gimple_transaction (gimple); /* Flowgraph optimization and cleanup. */ static void gimple_merge_blocks (basic_block, basic_block); static bool gimple_can_merge_blocks_p (basic_block, basic_block); static void remove_bb (basic_block); static edge find_taken_edge_computed_goto (basic_block, tree); static edge find_taken_edge_cond_expr (basic_block, tree); static edge find_taken_edge_switch_expr (basic_block, tree); static tree find_case_label_for_value (gimple, tree); void init_empty_tree_cfg_for_function (struct function *fn) { /* Initialize the basic block array. */ init_flow (fn); profile_status_for_fn (fn) = PROFILE_ABSENT; n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS; last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS; vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity); vec_safe_grow_cleared (basic_block_info_for_fn (fn), initial_cfg_capacity); /* Build a mapping of labels to their associated blocks. */ vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity); vec_safe_grow_cleared (label_to_block_map_for_fn (fn), initial_cfg_capacity); SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn)); SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn)); ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb = EXIT_BLOCK_PTR_FOR_FN (fn); EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb = ENTRY_BLOCK_PTR_FOR_FN (fn); } void init_empty_tree_cfg (void) { init_empty_tree_cfg_for_function (cfun); } /*--------------------------------------------------------------------------- Create basic blocks ---------------------------------------------------------------------------*/ /* Entry point to the CFG builder for trees. SEQ is the sequence of statements to be added to the flowgraph. */ static void build_gimple_cfg (gimple_seq seq) { /* Register specific gimple functions. */ gimple_register_cfg_hooks (); memset ((void *) &cfg_stats, 0, sizeof (cfg_stats)); init_empty_tree_cfg (); found_computed_goto = 0; make_blocks (seq); /* Computed gotos are hell to deal with, especially if there are lots of them with a large number of destinations. So we factor them to a common computed goto location before we build the edge list. After we convert back to normal form, we will un-factor the computed gotos since factoring introduces an unwanted jump. */ if (found_computed_goto) factor_computed_gotos (); /* Make sure there is always at least one block, even if it's empty. */ if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS) create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun)); /* Adjust the size of the array. */ if (basic_block_info_for_fn (cfun)->length () < (size_t) n_basic_blocks_for_fn (cfun)) vec_safe_grow_cleared (basic_block_info_for_fn (cfun), n_basic_blocks_for_fn (cfun)); /* To speed up statement iterator walks, we first purge dead labels. */ cleanup_dead_labels (); /* Group case nodes to reduce the number of edges. We do this after cleaning up dead labels because otherwise we miss a lot of obvious case merging opportunities. */ group_case_labels (); /* Create the edges of the flowgraph. */ discriminator_per_locus.create (13); make_edges (); assign_discriminators (); cleanup_dead_labels (); discriminator_per_locus.dispose (); } /* Search for ANNOTATE call with annot_expr_ivdep_kind; if found, remove it and set loop->safelen to INT_MAX. We assume that the annotation comes immediately before the condition. */ static void replace_loop_annotate () { struct loop *loop; basic_block bb; gimple_stmt_iterator gsi; gimple stmt; FOR_EACH_LOOP (loop, 0) { gsi = gsi_last_bb (loop->header); stmt = gsi_stmt (gsi); if (stmt && gimple_code (stmt) == GIMPLE_COND) { gsi_prev_nondebug (&gsi); if (gsi_end_p (gsi)) continue; stmt = gsi_stmt (gsi); if (gimple_code (stmt) != GIMPLE_CALL) continue; if (!gimple_call_internal_p (stmt) || gimple_call_internal_fn (stmt) != IFN_ANNOTATE) continue; if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)) != annot_expr_ivdep_kind) continue; stmt = gimple_build_assign (gimple_call_lhs (stmt), gimple_call_arg (stmt, 0)); gsi_replace (&gsi, stmt, true); loop->safelen = INT_MAX; } } /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */ FOR_EACH_BB_FN (bb, cfun) { gsi = gsi_last_bb (bb); stmt = gsi_stmt (gsi); if (stmt && gimple_code (stmt) == GIMPLE_COND) gsi_prev_nondebug (&gsi); if (gsi_end_p (gsi)) continue; stmt = gsi_stmt (gsi); if (gimple_code (stmt) != GIMPLE_CALL) continue; if (!gimple_call_internal_p (stmt) || gimple_call_internal_fn (stmt) != IFN_ANNOTATE) continue; if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)) != annot_expr_ivdep_kind) continue; warning_at (gimple_location (stmt), 0, "ignoring %<GCC ivdep%> " "annotation"); stmt = gimple_build_assign (gimple_call_lhs (stmt), gimple_call_arg (stmt, 0)); gsi_replace (&gsi, stmt, true); } } static unsigned int execute_build_cfg (void) { gimple_seq body = gimple_body (current_function_decl); build_gimple_cfg (body); gimple_set_body (current_function_decl, NULL); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Scope blocks:\n"); dump_scope_blocks (dump_file, dump_flags); } cleanup_tree_cfg (); loop_optimizer_init (AVOID_CFG_MODIFICATIONS); replace_loop_annotate (); return 0; } namespace { const pass_data pass_data_build_cfg = { GIMPLE_PASS, /* type */ "cfg", /* name */ OPTGROUP_NONE, /* optinfo_flags */ false, /* has_gate */ true, /* has_execute */ TV_TREE_CFG, /* tv_id */ PROP_gimple_leh, /* properties_required */ ( PROP_cfg | PROP_loops ), /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_verify_stmts, /* todo_flags_finish */ }; class pass_build_cfg : public gimple_opt_pass { public: pass_build_cfg (gcc::context *ctxt) : gimple_opt_pass (pass_data_build_cfg, ctxt) {} /* opt_pass methods: */ unsigned int execute () { return execute_build_cfg (); } }; // class pass_build_cfg } // anon namespace gimple_opt_pass * make_pass_build_cfg (gcc::context *ctxt) { return new pass_build_cfg (ctxt); } /* Return true if T is a computed goto. */ static bool computed_goto_p (gimple t) { return (gimple_code (t) == GIMPLE_GOTO && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL); } /* Returns true for edge E where e->src ends with a GIMPLE_COND and the other edge points to a bb with just __builtin_unreachable (). I.e. return true for C->M edge in: <bb C>: ... if (something) goto <bb N>; else goto <bb M>; <bb N>: __builtin_unreachable (); <bb M>: */ bool assert_unreachable_fallthru_edge_p (edge e) { basic_block pred_bb = e->src; gimple last = last_stmt (pred_bb); if (last && gimple_code (last) == GIMPLE_COND) { basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest; if (other_bb == e->dest) other_bb = EDGE_SUCC (pred_bb, 1)->dest; if (EDGE_COUNT (other_bb->succs) == 0) { gimple_stmt_iterator gsi = gsi_after_labels (other_bb); gimple stmt; if (gsi_end_p (gsi)) return false; stmt = gsi_stmt (gsi); if (is_gimple_debug (stmt)) { gsi_next_nondebug (&gsi); if (gsi_end_p (gsi)) return false; stmt = gsi_stmt (gsi); } return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE); } } return false; } /* Search the CFG for any computed gotos. If found, factor them to a common computed goto site. Also record the location of that site so that we can un-factor the gotos after we have converted back to normal form. */ static void factor_computed_gotos (void) { basic_block bb; tree factored_label_decl = NULL; tree var = NULL; gimple factored_computed_goto_label = NULL; gimple factored_computed_goto = NULL; /* We know there are one or more computed gotos in this function. Examine the last statement in each basic block to see if the block ends with a computed goto. */ FOR_EACH_BB_FN (bb, cfun) { gimple_stmt_iterator gsi = gsi_last_bb (bb); gimple last; if (gsi_end_p (gsi)) continue; last = gsi_stmt (gsi); /* Ignore the computed goto we create when we factor the original computed gotos. */ if (last == factored_computed_goto) continue; /* If the last statement is a computed goto, factor it. */ if (computed_goto_p (last)) { gimple assignment; /* The first time we find a computed goto we need to create the factored goto block and the variable each original computed goto will use for their goto destination. */ if (!factored_computed_goto) { basic_block new_bb = create_empty_bb (bb); gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb); /* Create the destination of the factored goto. Each original computed goto will put its desired destination into this variable and jump to the label we create immediately below. */ var = create_tmp_var (ptr_type_node, "gotovar"); /* Build a label for the new block which will contain the factored computed goto. */ factored_label_decl = create_artificial_label (UNKNOWN_LOCATION); factored_computed_goto_label = gimple_build_label (factored_label_decl); gsi_insert_after (&new_gsi, factored_computed_goto_label, GSI_NEW_STMT); /* Build our new computed goto. */ factored_computed_goto = gimple_build_goto (var); gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT); } /* Copy the original computed goto's destination into VAR. */ assignment = gimple_build_assign (var, gimple_goto_dest (last)); gsi_insert_before (&gsi, assignment, GSI_SAME_STMT); /* And re-vector the computed goto to the new destination. */ gimple_goto_set_dest (last, factored_label_decl); } } } /* Build a flowgraph for the sequence of stmts SEQ. */ static void make_blocks (gimple_seq seq) { gimple_stmt_iterator i = gsi_start (seq); gimple stmt = NULL; bool start_new_block = true; bool first_stmt_of_seq = true; basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun); while (!gsi_end_p (i)) { gimple prev_stmt; prev_stmt = stmt; stmt = gsi_stmt (i); /* If the statement starts a new basic block or if we have determined in a previous pass that we need to create a new block for STMT, do so now. */ if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt)) { if (!first_stmt_of_seq) gsi_split_seq_before (&i, &seq); bb = create_basic_block (seq, NULL, bb); start_new_block = false; } /* Now add STMT to BB and create the subgraphs for special statement codes. */ gimple_set_bb (stmt, bb); if (computed_goto_p (stmt)) found_computed_goto = true; /* If STMT is a basic block terminator, set START_NEW_BLOCK for the next iteration. */ if (stmt_ends_bb_p (stmt)) { /* If the stmt can make abnormal goto use a new temporary for the assignment to the LHS. This makes sure the old value of the LHS is available on the abnormal edge. Otherwise we will end up with overlapping life-ranges for abnormal SSA names. */ if (gimple_has_lhs (stmt) && stmt_can_make_abnormal_goto (stmt) && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt)))) { tree lhs = gimple_get_lhs (stmt); tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL); gimple s = gimple_build_assign (lhs, tmp); gimple_set_location (s, gimple_location (stmt)); gimple_set_block (s, gimple_block (stmt)); gimple_set_lhs (stmt, tmp); if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE) DECL_GIMPLE_REG_P (tmp) = 1; gsi_insert_after (&i, s, GSI_SAME_STMT); } start_new_block = true; } gsi_next (&i); first_stmt_of_seq = false; } } /* Create and return a new empty basic block after bb AFTER. */ static basic_block create_bb (void *h, void *e, basic_block after) { basic_block bb; gcc_assert (!e); /* Create and initialize a new basic block. Since alloc_block uses GC allocation that clears memory to allocate a basic block, we do not have to clear the newly allocated basic block here. */ bb = alloc_block (); bb->index = last_basic_block_for_fn (cfun); bb->flags = BB_NEW; set_bb_seq (bb, h ? (gimple_seq) h : NULL); /* Add the new block to the linked list of blocks. */ link_block (bb, after); /* Grow the basic block array if needed. */ if ((size_t) last_basic_block_for_fn (cfun) == basic_block_info_for_fn (cfun)->length ()) { size_t new_size = (last_basic_block_for_fn (cfun) + (last_basic_block_for_fn (cfun) + 3) / 4); vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size); } /* Add the newly created block to the array. */ SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb); n_basic_blocks_for_fn (cfun)++; last_basic_block_for_fn (cfun)++; return bb; } /*--------------------------------------------------------------------------- Edge creation ---------------------------------------------------------------------------*/ /* Fold COND_EXPR_COND of each COND_EXPR. */ void fold_cond_expr_cond (void) { basic_block bb; FOR_EACH_BB_FN (bb, cfun) { gimple stmt = last_stmt (bb); if (stmt && gimple_code (stmt) == GIMPLE_COND) { location_t loc = gimple_location (stmt); tree cond; bool zerop, onep; fold_defer_overflow_warnings (); cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node, gimple_cond_lhs (stmt), gimple_cond_rhs (stmt)); if (cond) { zerop = integer_zerop (cond); onep = integer_onep (cond); } else zerop = onep = false; fold_undefer_overflow_warnings (zerop || onep, stmt, WARN_STRICT_OVERFLOW_CONDITIONAL); if (zerop) gimple_cond_make_false (stmt); else if (onep) gimple_cond_make_true (stmt); } } } /* Join all the blocks in the flowgraph. */ static void make_edges (void) { basic_block bb; struct omp_region *cur_region = NULL; /* Create an edge from entry to the first block with executable statements in it. */ make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS), EDGE_FALLTHRU); /* Traverse the basic block array placing edges. */ FOR_EACH_BB_FN (bb, cfun) { gimple last = last_stmt (bb); bool fallthru; if (last) { enum gimple_code code = gimple_code (last); switch (code) { case GIMPLE_GOTO: make_goto_expr_edges (bb); fallthru = false; break; case GIMPLE_RETURN: make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0); fallthru = false; break; case GIMPLE_COND: make_cond_expr_edges (bb); fallthru = false; break; case GIMPLE_SWITCH: make_gimple_switch_edges (bb); fallthru = false; break; case GIMPLE_RESX: make_eh_edges (last); fallthru = false; break; case GIMPLE_EH_DISPATCH: fallthru = make_eh_dispatch_edges (last); break; case GIMPLE_CALL: /* If this function receives a nonlocal goto, then we need to make edges from this call site to all the nonlocal goto handlers. */ if (stmt_can_make_abnormal_goto (last)) make_abnormal_goto_edges (bb, true); /* If this statement has reachable exception handlers, then create abnormal edges to them. */ make_eh_edges (last); /* BUILTIN_RETURN is really a return statement. */ if (gimple_call_builtin_p (last, BUILT_IN_RETURN)) make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0), fallthru = false; /* Some calls are known not to return. */ else fallthru = !(gimple_call_flags (last) & ECF_NORETURN); break; case GIMPLE_ASSIGN: /* A GIMPLE_ASSIGN may throw internally and thus be considered control-altering. */ if (is_ctrl_altering_stmt (last)) make_eh_edges (last); fallthru = true; break; case GIMPLE_ASM: make_gimple_asm_edges (bb); fallthru = true; break; CASE_GIMPLE_OMP: fallthru = make_gimple_omp_edges (bb, &cur_region); break; case GIMPLE_TRANSACTION: { tree abort_label = gimple_transaction_label (last); if (abort_label) make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT); fallthru = true; } break; default: gcc_assert (!stmt_ends_bb_p (last)); fallthru = true; } } else fallthru = true; if (fallthru) make_edge (bb, bb->next_bb, EDGE_FALLTHRU); } free_omp_regions (); /* Fold COND_EXPR_COND of each COND_EXPR. */ fold_cond_expr_cond (); } /* Find the next available discriminator value for LOCUS. The discriminator distinguishes among several basic blocks that share a common locus, allowing for more accurate sample-based profiling. */ static int next_discriminator_for_locus (location_t locus) { struct locus_discrim_map item; struct locus_discrim_map **slot; item.locus = locus; item.discriminator = 0; slot = discriminator_per_locus.find_slot_with_hash ( &item, LOCATION_LINE (locus), INSERT); gcc_assert (slot); if (*slot == HTAB_EMPTY_ENTRY) { *slot = XNEW (struct locus_discrim_map); gcc_assert (*slot); (*slot)->locus = locus; (*slot)->discriminator = 0; } (*slot)->discriminator++; return (*slot)->discriminator; } /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */ static bool same_line_p (location_t locus1, location_t locus2) { expanded_location from, to; if (locus1 == locus2) return true; from = expand_location (locus1); to = expand_location (locus2); if (from.line != to.line) return false; if (from.file == to.file) return true; return (from.file != NULL && to.file != NULL && filename_cmp (from.file, to.file) == 0); } /* Assign discriminators to each basic block. */ static void assign_discriminators (void) { basic_block bb; FOR_EACH_BB_FN (bb, cfun) { edge e; edge_iterator ei; gimple last = last_stmt (bb); location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION; if (locus == UNKNOWN_LOCATION) continue; FOR_EACH_EDGE (e, ei, bb->succs) { gimple first = first_non_label_stmt (e->dest); gimple last = last_stmt (e->dest); if ((first && same_line_p (locus, gimple_location (first))) || (last && same_line_p (locus, gimple_location (last)))) { if (e->dest->discriminator != 0 && bb->discriminator == 0) bb->discriminator = next_discriminator_for_locus (locus); else e->dest->discriminator = next_discriminator_for_locus (locus); } } } } /* Create the edges for a GIMPLE_COND starting at block BB. */ static void make_cond_expr_edges (basic_block bb) { gimple entry = last_stmt (bb); gimple then_stmt, else_stmt; basic_block then_bb, else_bb; tree then_label, else_label; edge e; gcc_assert (entry); gcc_assert (gimple_code (entry) == GIMPLE_COND); /* Entry basic blocks for each component. */ then_label = gimple_cond_true_label (entry); else_label = gimple_cond_false_label (entry); then_bb = label_to_block (then_label); else_bb = label_to_block (else_label); then_stmt = first_stmt (then_bb); else_stmt = first_stmt (else_bb); e = make_edge (bb, then_bb, EDGE_TRUE_VALUE); e->goto_locus = gimple_location (then_stmt); e = make_edge (bb, else_bb, EDGE_FALSE_VALUE); if (e) e->goto_locus = gimple_location (else_stmt); /* We do not need the labels anymore. */ gimple_cond_set_true_label (entry, NULL_TREE); gimple_cond_set_false_label (entry, NULL_TREE); } /* Called for each element in the hash table (P) as we delete the edge to cases hash table. Clear all the TREE_CHAINs to prevent problems with copying of SWITCH_EXPRs and structure sharing rules, then free the hash table element. */ static bool edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value, void *data ATTRIBUTE_UNUSED) { tree t, next; for (t = (tree) *value; t; t = next) { next = CASE_CHAIN (t); CASE_CHAIN (t) = NULL; } *value = NULL; return true; } /* Start recording information mapping edges to case labels. */ void start_recording_case_labels (void) { gcc_assert (edge_to_cases == NULL); edge_to_cases = pointer_map_create (); touched_switch_bbs = BITMAP_ALLOC (NULL); } /* Return nonzero if we are recording information for case labels. */ static bool recording_case_labels_p (void) { return (edge_to_cases != NULL); } /* Stop recording information mapping edges to case labels and remove any information we have recorded. */ void end_recording_case_labels (void) { bitmap_iterator bi; unsigned i; pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL); pointer_map_destroy (edge_to_cases); edge_to_cases = NULL; EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi) { basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); if (bb) { gimple stmt = last_stmt (bb); if (stmt && gimple_code (stmt) == GIMPLE_SWITCH) group_case_labels_stmt (stmt); } } BITMAP_FREE (touched_switch_bbs); } /* If we are inside a {start,end}_recording_cases block, then return a chain of CASE_LABEL_EXPRs from T which reference E. Otherwise return NULL. */ static tree get_cases_for_edge (edge e, gimple t) { void **slot; size_t i, n; /* If we are not recording cases, then we do not have CASE_LABEL_EXPR chains available. Return NULL so the caller can detect this case. */ if (!recording_case_labels_p ()) return NULL; slot = pointer_map_contains (edge_to_cases, e); if (slot) return (tree) *slot; /* If we did not find E in the hash table, then this must be the first time we have been queried for information about E & T. Add all the elements from T to the hash table then perform the query again. */ n = gimple_switch_num_labels (t); for (i = 0; i < n; i++) { tree elt = gimple_switch_label (t, i); tree lab = CASE_LABEL (elt); basic_block label_bb = label_to_block (lab); edge this_edge = find_edge (e->src, label_bb); /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create a new chain. */ slot = pointer_map_insert (edge_to_cases, this_edge); CASE_CHAIN (elt) = (tree) *slot; *slot = elt; } return (tree) *pointer_map_contains (edge_to_cases, e); } /* Create the edges for a GIMPLE_SWITCH starting at block BB. */ static void make_gimple_switch_edges (basic_block bb) { gimple entry = last_stmt (bb); size_t i, n; n = gimple_switch_num_labels (entry); for (i = 0; i < n; ++i) { tree lab = CASE_LABEL (gimple_switch_label (entry, i)); basic_block label_bb = label_to_block (lab); make_edge (bb, label_bb, 0); } } /* Return the basic block holding label DEST. */ basic_block label_to_block_fn (struct function *ifun, tree dest) { int uid = LABEL_DECL_UID (dest); /* We would die hard when faced by an undefined label. Emit a label to the very first basic block. This will hopefully make even the dataflow and undefined variable warnings quite right. */ if (seen_error () && uid < 0) { gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS)); gimple stmt; stmt = gimple_build_label (dest); gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); uid = LABEL_DECL_UID (dest); } if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid) return NULL; return (*ifun->cfg->x_label_to_block_map)[uid]; } /* Create edges for an abnormal goto statement at block BB. If FOR_CALL is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */ void make_abnormal_goto_edges (basic_block bb, bool for_call) { basic_block target_bb; gimple_stmt_iterator gsi; FOR_EACH_BB_FN (target_bb, cfun) { for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple label_stmt = gsi_stmt (gsi); tree target; if (gimple_code (label_stmt) != GIMPLE_LABEL) break; target = gimple_label_label (label_stmt); /* Make an edge to every label block that has been marked as a potential target for a computed goto or a non-local goto. */ if ((FORCED_LABEL (target) && !for_call) || (DECL_NONLOCAL (target) && for_call)) { make_edge (bb, target_bb, EDGE_ABNORMAL); break; } } if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi))) gsi_next_nondebug (&gsi); if (!gsi_end_p (gsi)) { /* Make an edge to every setjmp-like call. */ gimple call_stmt = gsi_stmt (gsi); if (is_gimple_call (call_stmt) && (gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)) make_edge (bb, target_bb, EDGE_ABNORMAL); } } } /* Create edges for a goto statement at block BB. */ static void make_goto_expr_edges (basic_block bb) { gimple_stmt_iterator last = gsi_last_bb (bb); gimple goto_t = gsi_stmt (last); /* A simple GOTO creates normal edges. */ if (simple_goto_p (goto_t)) { tree dest = gimple_goto_dest (goto_t); basic_block label_bb = label_to_block (dest); edge e = make_edge (bb, label_bb, EDGE_FALLTHRU); e->goto_locus = gimple_location (goto_t); gsi_remove (&last, true); return; } /* A computed GOTO creates abnormal edges. */ make_abnormal_goto_edges (bb, false); } /* Create edges for an asm statement with labels at block BB. */ static void make_gimple_asm_edges (basic_block bb) { gimple stmt = last_stmt (bb); int i, n = gimple_asm_nlabels (stmt); for (i = 0; i < n; ++i) { tree label = TREE_VALUE (gimple_asm_label_op (stmt, i)); basic_block label_bb = label_to_block (label); make_edge (bb, label_bb, 0); } } /*--------------------------------------------------------------------------- Flowgraph analysis ---------------------------------------------------------------------------*/ /* Cleanup useless labels in basic blocks. This is something we wish to do early because it allows us to group case labels before creating the edges for the CFG, and it speeds up block statement iterators in all passes later on. We rerun this pass after CFG is created, to get rid of the labels that are no longer referenced. After then we do not run it any more, since (almost) no new labels should be created. */ /* A map from basic block index to the leading label of that block. */ static struct label_record { /* The label. */ tree label; /* True if the label is referenced from somewhere. */ bool used; } *label_for_bb; /* Given LABEL return the first label in the same basic block. */ static tree main_block_label (tree label) { basic_block bb = label_to_block (label); tree main_label = label_for_bb[bb->index].label; /* label_to_block possibly inserted undefined label into the chain. */ if (!main_label) { label_for_bb[bb->index].label = label; main_label = label; } label_for_bb[bb->index].used = true; return main_label; } /* Clean up redundant labels within the exception tree. */ static void cleanup_dead_labels_eh (void) { eh_landing_pad lp; eh_region r; tree lab; int i; if (cfun->eh == NULL) return; for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i) if (lp && lp->post_landing_pad) { lab = main_block_label (lp->post_landing_pad); if (lab != lp->post_landing_pad) { EH_LANDING_PAD_NR (lp->post_landing_pad) = 0; EH_LANDING_PAD_NR (lab) = lp->index; } } FOR_ALL_EH_REGION (r) switch (r->type) { case ERT_CLEANUP: case ERT_MUST_NOT_THROW: break; case ERT_TRY: { eh_catch c; for (c = r->u.eh_try.first_catch; c ; c = c->next_catch) { lab = c->label; if (lab) c->label = main_block_label (lab); } } break; case ERT_ALLOWED_EXCEPTIONS: lab = r->u.allowed.label; if (lab) r->u.allowed.label = main_block_label (lab); break; } } /* Cleanup redundant labels. This is a three-step process: 1) Find the leading label for each block. 2) Redirect all references to labels to the leading labels. 3) Cleanup all useless labels. */ void cleanup_dead_labels (void) { basic_block bb; label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun)); /* Find a suitable label for each block. We use the first user-defined label if there is one, or otherwise just the first label we see. */ FOR_EACH_BB_FN (bb, cfun) { gimple_stmt_iterator i; for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i)) { tree label; gimple stmt = gsi_stmt (i); if (gimple_code (stmt) != GIMPLE_LABEL) break; label = gimple_label_label (stmt); /* If we have not yet seen a label for the current block, remember this one and see if there are more labels. */ if (!label_for_bb[bb->index].label) { label_for_bb[bb->index].label = label; continue; } /* If we did see a label for the current block already, but it is an artificially created label, replace it if the current label is a user defined label. */ if (!DECL_ARTIFICIAL (label) && DECL_ARTIFICIAL (label_for_bb[bb->index].label)) { label_for_bb[bb->index].label = label; break; } } } /* Now redirect all jumps/branches to the selected label. First do so for each block ending in a control statement. */ FOR_EACH_BB_FN (bb, cfun) { gimple stmt = last_stmt (bb); tree label, new_label; if (!stmt) continue; switch (gimple_code (stmt)) { case GIMPLE_COND: label = gimple_cond_true_label (stmt); if (label) { new_label = main_block_label (label); if (new_label != label) gimple_cond_set_true_label (stmt, new_label); } label = gimple_cond_false_label (stmt); if (label) { new_label = main_block_label (label); if (new_label != label) gimple_cond_set_false_label (stmt, new_label); } break; case GIMPLE_SWITCH: { size_t i, n = gimple_switch_num_labels (stmt); /* Replace all destination labels. */ for (i = 0; i < n; ++i) { tree case_label = gimple_switch_label (stmt, i); label = CASE_LABEL (case_label); new_label = main_block_label (label); if (new_label != label) CASE_LABEL (case_label) = new_label; } break; } case GIMPLE_ASM: { int i, n = gimple_asm_nlabels (stmt); for (i = 0; i < n; ++i) { tree cons = gimple_asm_label_op (stmt, i); tree label = main_block_label (TREE_VALUE (cons)); TREE_VALUE (cons) = label; } break; } /* We have to handle gotos until they're removed, and we don't remove them until after we've created the CFG edges. */ case GIMPLE_GOTO: if (!computed_goto_p (stmt)) { label = gimple_goto_dest (stmt); new_label = main_block_label (label); if (new_label != label) gimple_goto_set_dest (stmt, new_label); } break; case GIMPLE_TRANSACTION: { tree label = gimple_transaction_label (stmt); if (label) { tree new_label = main_block_label (label); if (new_label != label) gimple_transaction_set_label (stmt, new_label); } } break; default: break; } } /* Do the same for the exception region tree labels. */ cleanup_dead_labels_eh (); /* Finally, purge dead labels. All user-defined labels and labels that can be the target of non-local gotos and labels which have their address taken are preserved. */ FOR_EACH_BB_FN (bb, cfun) { gimple_stmt_iterator i; tree label_for_this_bb = label_for_bb[bb->index].label; if (!label_for_this_bb) continue; /* If the main label of the block is unused, we may still remove it. */ if (!label_for_bb[bb->index].used) label_for_this_bb = NULL; for (i = gsi_start_bb (bb); !gsi_end_p (i); ) { tree label; gimple stmt = gsi_stmt (i); if (gimple_code (stmt) != GIMPLE_LABEL) break; label = gimple_label_label (stmt); if (label == label_for_this_bb || !DECL_ARTIFICIAL (label) || DECL_NONLOCAL (label) || FORCED_LABEL (label)) gsi_next (&i); else gsi_remove (&i, true); } } free (label_for_bb); } /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine the ones jumping to the same label. Eg. three separate entries 1: 2: 3: become one entry 1..3: */ void group_case_labels_stmt (gimple stmt) { int old_size = gimple_switch_num_labels (stmt); int i, j, new_size = old_size; basic_block default_bb = NULL; default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt))); /* Look for possible opportunities to merge cases. */ i = 1; while (i < old_size) { tree base_case, base_high; basic_block base_bb; base_case = gimple_switch_label (stmt, i); gcc_assert (base_case); base_bb = label_to_block (CASE_LABEL (base_case)); /* Discard cases that have the same destination as the default case. */ if (base_bb == default_bb) { gimple_switch_set_label (stmt, i, NULL_TREE); i++; new_size--; continue; } base_high = CASE_HIGH (base_case) ? CASE_HIGH (base_case) : CASE_LOW (base_case); i++; /* Try to merge case labels. Break out when we reach the end of the label vector or when we cannot merge the next case label with the current one. */ while (i < old_size) { tree merge_case = gimple_switch_label (stmt, i); basic_block merge_bb = label_to_block (CASE_LABEL (merge_case)); double_int bhp1 = tree_to_double_int (base_high) + double_int_one; /* Merge the cases if they jump to the same place, and their ranges are consecutive. */ if (merge_bb == base_bb && tree_to_double_int (CASE_LOW (merge_case)) == bhp1) { base_high = CASE_HIGH (merge_case) ? CASE_HIGH (merge_case) : CASE_LOW (merge_case); CASE_HIGH (base_case) = base_high; gimple_switch_set_label (stmt, i, NULL_TREE); new_size--; i++; } else break; } } /* Compress the case labels in the label vector, and adjust the length of the vector. */ for (i = 0, j = 0; i < new_size; i++) { while (! gimple_switch_label (stmt, j)) j++; gimple_switch_set_label (stmt, i, gimple_switch_label (stmt, j++)); } gcc_assert (new_size <= old_size); gimple_switch_set_num_labels (stmt, new_size); } /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH), and scan the sorted vector of cases. Combine the ones jumping to the same label. */ void group_case_labels (void) { basic_block bb; FOR_EACH_BB_FN (bb, cfun) { gimple stmt = last_stmt (bb); if (stmt && gimple_code (stmt) == GIMPLE_SWITCH) group_case_labels_stmt (stmt); } } /* Checks whether we can merge block B into block A. */ static bool gimple_can_merge_blocks_p (basic_block a, basic_block b) { gimple stmt; gimple_stmt_iterator gsi; if (!single_succ_p (a)) return false; if (single_succ_edge (a)->flags & EDGE_COMPLEX) return false; if (single_succ (a) != b) return false; if (!single_pred_p (b)) return false; if (b == EXIT_BLOCK_PTR_FOR_FN (cfun)) return false; /* If A ends by a statement causing exceptions or something similar, we cannot merge the blocks. */ stmt = last_stmt (a); if (stmt && stmt_ends_bb_p (stmt)) return false; /* Do not allow a block with only a non-local label to be merged. */ if (stmt && gimple_code (stmt) == GIMPLE_LABEL && DECL_NONLOCAL (gimple_label_label (stmt))) return false; /* Examine the labels at the beginning of B. */ for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi)) { tree lab; stmt = gsi_stmt (gsi); if (gimple_code (stmt) != GIMPLE_LABEL) break; lab = gimple_label_label (stmt); /* Do not remove user forced labels or for -O0 any user labels. */ if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab))) return false; } /* Protect the loop latches. */ if (current_loops && b->loop_father->latch == b) return false; /* It must be possible to eliminate all phi nodes in B. If ssa form is not up-to-date and a name-mapping is registered, we cannot eliminate any phis. Symbols marked for renaming are never a problem though. */ for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple phi = gsi_stmt (gsi); /* Technically only new names matter. */ if (name_registered_for_update_p (PHI_RESULT (phi))) return false; } /* When not optimizing, don't merge if we'd lose goto_locus. */ if (!optimize && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION) { location_t goto_locus = single_succ_edge (a)->goto_locus; gimple_stmt_iterator prev, next; prev = gsi_last_nondebug_bb (a); next = gsi_after_labels (b); if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next))) gsi_next_nondebug (&next); if ((gsi_end_p (prev) || gimple_location (gsi_stmt (prev)) != goto_locus) && (gsi_end_p (next) || gimple_location (gsi_stmt (next)) != goto_locus)) return false; } return true; } /* Replaces all uses of NAME by VAL. */ void replace_uses_by (tree name, tree val) { imm_use_iterator imm_iter; use_operand_p use; gimple stmt; edge e; FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name) { FOR_EACH_IMM_USE_ON_STMT (use, imm_iter) { replace_exp (use, val); if (gimple_code (stmt) == GIMPLE_PHI) { e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use)); if (e->flags & EDGE_ABNORMAL) { /* This can only occur for virtual operands, since for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name)) would prevent replacement. */ gcc_checking_assert (virtual_operand_p (name)); SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1; } } } if (gimple_code (stmt) != GIMPLE_PHI) { gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gimple orig_stmt = stmt; size_t i; /* Mark the block if we changed the last stmt in it. */ if (cfgcleanup_altered_bbs && stmt_ends_bb_p (stmt)) bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index); /* FIXME. It shouldn't be required to keep TREE_CONSTANT on ADDR_EXPRs up-to-date on GIMPLE. Propagation will only change sth from non-invariant to invariant, and only when propagating constants. */ if (is_gimple_min_invariant (val)) for (i = 0; i < gimple_num_ops (stmt); i++) { tree op = gimple_op (stmt, i); /* Operands may be empty here. For example, the labels of a GIMPLE_COND are nulled out following the creation of the corresponding CFG edges. */ if (op && TREE_CODE (op) == ADDR_EXPR) recompute_tree_invariant_for_addr_expr (op); } if (fold_stmt (&gsi)) stmt = gsi_stmt (gsi); if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt)) gimple_purge_dead_eh_edges (gimple_bb (stmt)); update_stmt (stmt); } } gcc_checking_assert (has_zero_uses (name)); /* Also update the trees stored in loop structures. */ if (current_loops) { struct loop *loop; FOR_EACH_LOOP (loop, 0) { substitute_in_loop_info (loop, name, val); } } } /* Merge block B into block A. */ static void gimple_merge_blocks (basic_block a, basic_block b) { gimple_stmt_iterator last, gsi, psi; if (dump_file) fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index); /* Remove all single-valued PHI nodes from block B of the form V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */ gsi = gsi_last_bb (a); for (psi = gsi_start_phis (b); !gsi_end_p (psi); ) { gimple phi = gsi_stmt (psi); tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0); gimple copy; bool may_replace_uses = (virtual_operand_p (def) || may_propagate_copy (def, use)); /* In case we maintain loop closed ssa form, do not propagate arguments of loop exit phi nodes. */ if (current_loops && loops_state_satisfies_p (LOOP_CLOSED_SSA) && !virtual_operand_p (def) && TREE_CODE (use) == SSA_NAME && a->loop_father != b->loop_father) may_replace_uses = false; if (!may_replace_uses) { gcc_assert (!virtual_operand_p (def)); /* Note that just emitting the copies is fine -- there is no problem with ordering of phi nodes. This is because A is the single predecessor of B, therefore results of the phi nodes cannot appear as arguments of the phi nodes. */ copy = gimple_build_assign (def, use); gsi_insert_after (&gsi, copy, GSI_NEW_STMT); remove_phi_node (&psi, false); } else { /* If we deal with a PHI for virtual operands, we can simply propagate these without fussing with folding or updating the stmt. */ if (virtual_operand_p (def)) { imm_use_iterator iter; use_operand_p use_p; gimple stmt; FOR_EACH_IMM_USE_STMT (stmt, iter, def) FOR_EACH_IMM_USE_ON_STMT (use_p, iter) SET_USE (use_p, use); if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)) SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1; } else replace_uses_by (def, use); remove_phi_node (&psi, true); } } /* Ensure that B follows A. */ move_block_after (b, a); gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU); gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a))); /* Remove labels from B and set gimple_bb to A for other statements. */ for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);) { gimple stmt = gsi_stmt (gsi); if (gimple_code (stmt) == GIMPLE_LABEL) { tree label = gimple_label_label (stmt); int lp_nr; gsi_remove (&gsi, false); /* Now that we can thread computed gotos, we might have a situation where we have a forced label in block B However, the label at the start of block B might still be used in other ways (think about the runtime checking for Fortran assigned gotos). So we can not just delete the label. Instead we move the label to the start of block A. */ if (FORCED_LABEL (label)) { gimple_stmt_iterator dest_gsi = gsi_start_bb (a); gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT); } /* Other user labels keep around in a form of a debug stmt. */ else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS) { gimple dbg = gimple_build_debug_bind (label, integer_zero_node, stmt); gimple_debug_bind_reset_value (dbg); gsi_insert_before (&gsi, dbg, GSI_SAME_STMT); } lp_nr = EH_LANDING_PAD_NR (label); if (lp_nr) { eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr); lp->post_landing_pad = NULL; } } else { gimple_set_bb (stmt, a); gsi_next (&gsi); } } /* Merge the sequences. */ last = gsi_last_bb (a); gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT); set_bb_seq (b, NULL); if (cfgcleanup_altered_bbs) bitmap_set_bit (cfgcleanup_altered_bbs, a->index); } /* Return the one of two successors of BB that is not reachable by a complex edge, if there is one. Else, return BB. We use this in optimizations that use post-dominators for their heuristics, to catch the cases in C++ where function calls are involved. */ basic_block single_noncomplex_succ (basic_block bb) { edge e0, e1; if (EDGE_COUNT (bb->succs) != 2) return bb; e0 = EDGE_SUCC (bb, 0); e1 = EDGE_SUCC (bb, 1); if (e0->flags & EDGE_COMPLEX) return e1->dest; if (e1->flags & EDGE_COMPLEX) return e0->dest; return bb; } /* T is CALL_EXPR. Set current_function_calls_* flags. */ void notice_special_calls (gimple call) { int flags = gimple_call_flags (call); if (flags & ECF_MAY_BE_ALLOCA) cfun->calls_alloca = true; if (flags & ECF_RETURNS_TWICE) cfun->calls_setjmp = true; } /* Clear flags set by notice_special_calls. Used by dead code removal to update the flags. */ void clear_special_calls (void) { cfun->calls_alloca = false; cfun->calls_setjmp = false; } /* Remove PHI nodes associated with basic block BB and all edges out of BB. */ static void remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb) { /* Since this block is no longer reachable, we can just delete all of its PHI nodes. */ remove_phi_nodes (bb); /* Remove edges to BB's successors. */ while (EDGE_COUNT (bb->succs) > 0) remove_edge (EDGE_SUCC (bb, 0)); } /* Remove statements of basic block BB. */ static void remove_bb (basic_block bb) { gimple_stmt_iterator i; if (dump_file) { fprintf (dump_file, "Removing basic block %d\n", bb->index); if (dump_flags & TDF_DETAILS) { dump_bb (dump_file, bb, 0, dump_flags); fprintf (dump_file, "\n"); } } if (current_loops) { struct loop *loop = bb->loop_father; /* If a loop gets removed, clean up the information associated with it. */ if (loop->latch == bb || loop->header == bb) free_numbers_of_iterations_estimates_loop (loop); } /* Remove all the instructions in the block. */ if (bb_seq (bb) != NULL) { /* Walk backwards so as to get a chance to substitute all released DEFs into debug stmts. See eliminate_unnecessary_stmts() in tree-ssa-dce.c for more details. */ for (i = gsi_last_bb (bb); !gsi_end_p (i);) { gimple stmt = gsi_stmt (i); if (gimple_code (stmt) == GIMPLE_LABEL && (FORCED_LABEL (gimple_label_label (stmt)) || DECL_NONLOCAL (gimple_label_label (stmt)))) { basic_block new_bb; gimple_stmt_iterator new_gsi; /* A non-reachable non-local label may still be referenced. But it no longer needs to carry the extra semantics of non-locality. */ if (DECL_NONLOCAL (gimple_label_label (stmt))) { DECL_NONLOCAL (gimple_label_label (stmt)) = 0; FORCED_LABEL (gimple_label_label (stmt)) = 1; } new_bb = bb->prev_bb; new_gsi = gsi_start_bb (new_bb); gsi_remove (&i, false); gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT); } else { /* Release SSA definitions if we are in SSA. Note that we may be called when not in SSA. For example, final_cleanup calls this function via cleanup_tree_cfg. */ if (gimple_in_ssa_p (cfun)) release_defs (stmt); gsi_remove (&i, true); } if (gsi_end_p (i)) i = gsi_last_bb (bb); else gsi_prev (&i); } } remove_phi_nodes_and_edges_for_unreachable_block (bb); bb->il.gimple.seq = NULL; bb->il.gimple.phi_nodes = NULL; } /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a predicate VAL, return the edge that will be taken out of the block. If VAL does not match a unique edge, NULL is returned. */ edge find_taken_edge (basic_block bb, tree val) { gimple stmt; stmt = last_stmt (bb); gcc_assert (stmt); gcc_assert (is_ctrl_stmt (stmt)); if (val == NULL) return NULL; if (!is_gimple_min_invariant (val)) return NULL; if (gimple_code (stmt) == GIMPLE_COND) return find_taken_edge_cond_expr (bb, val); if (gimple_code (stmt) == GIMPLE_SWITCH) return find_taken_edge_switch_expr (bb, val); if (computed_goto_p (stmt)) { /* Only optimize if the argument is a label, if the argument is not a label then we can not construct a proper CFG. It may be the case that we only need to allow the LABEL_REF to appear inside an ADDR_EXPR, but we also allow the LABEL_REF to appear inside a LABEL_EXPR just to be safe. */ if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR) && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL) return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0)); return NULL; } gcc_unreachable (); } /* Given a constant value VAL and the entry block BB to a GOTO_EXPR statement, determine which of the outgoing edges will be taken out of the block. Return NULL if either edge may be taken. */ static edge find_taken_edge_computed_goto (basic_block bb, tree val) { basic_block dest; edge e = NULL; dest = label_to_block (val); if (dest) { e = find_edge (bb, dest); gcc_assert (e != NULL); } return e; } /* Given a constant value VAL and the entry block BB to a COND_EXPR statement, determine which of the two edges will be taken out of the block. Return NULL if either edge may be taken. */ static edge find_taken_edge_cond_expr (basic_block bb, tree val) { edge true_edge, false_edge; extract_true_false_edges_from_block (bb, &true_edge, &false_edge); gcc_assert (TREE_CODE (val) == INTEGER_CST); return (integer_zerop (val) ? false_edge : true_edge); } /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR statement, determine which edge will be taken out of the block. Return NULL if any edge may be taken. */ static edge find_taken_edge_switch_expr (basic_block bb, tree val) { basic_block dest_bb; edge e; gimple switch_stmt; tree taken_case; switch_stmt = last_stmt (bb); taken_case = find_case_label_for_value (switch_stmt, val); dest_bb = label_to_block (CASE_LABEL (taken_case)); e = find_edge (bb, dest_bb); gcc_assert (e); return e; } /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL. We can make optimal use here of the fact that the case labels are sorted: We can do a binary search for a case matching VAL. */ static tree find_case_label_for_value (gimple switch_stmt, tree val) { size_t low, high, n = gimple_switch_num_labels (switch_stmt); tree default_case = gimple_switch_default_label (switch_stmt); for (low = 0, high = n; high - low > 1; ) { size_t i = (high + low) / 2; tree t = gimple_switch_label (switch_stmt, i); int cmp; /* Cache the result of comparing CASE_LOW and val. */ cmp = tree_int_cst_compare (CASE_LOW (t), val); if (cmp > 0) high = i; else low = i; if (CASE_HIGH (t) == NULL) { /* A singe-valued case label. */ if (cmp == 0) return t; } else { /* A case range. We can only handle integer ranges. */ if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0) return t; } } return default_case; } /* Dump a basic block on stderr. */ void gimple_debug_bb (basic_block bb) { dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS); } /* Dump basic block with index N on stderr. */ basic_block gimple_debug_bb_n (int n) { gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n)); return BASIC_BLOCK_FOR_FN (cfun, n); } /* Dump the CFG on stderr. FLAGS are the same used by the tree dumping functions (see TDF_* in dumpfile.h). */ void gimple_debug_cfg (int flags) { gimple_dump_cfg (stderr, flags); } /* Dump the program showing basic block boundaries on the given FILE. FLAGS are the same used by the tree dumping functions (see TDF_* in tree.h). */ void gimple_dump_cfg (FILE *file, int flags) { if (flags & TDF_DETAILS) { dump_function_header (file, current_function_decl, flags); fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n", n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun), last_basic_block_for_fn (cfun)); brief_dump_cfg (file, flags | TDF_COMMENT); fprintf (file, "\n"); } if (flags & TDF_STATS) dump_cfg_stats (file); dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS); } /* Dump CFG statistics on FILE. */ void dump_cfg_stats (FILE *file) { static long max_num_merged_labels = 0; unsigned long size, total = 0; long num_edges; basic_block bb; const char * const fmt_str = "%-30s%-13s%12s\n"; const char * const fmt_str_1 = "%-30s%13d%11lu%c\n"; const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n"; const char * const fmt_str_3 = "%-43s%11lu%c\n"; const char *funcname = current_function_name (); fprintf (file, "\nCFG Statistics for %s\n\n", funcname); fprintf (file, "---------------------------------------------------------\n"); fprintf (file, fmt_str, "", " Number of ", "Memory"); fprintf (file, fmt_str, "", " instances ", "used "); fprintf (file, "---------------------------------------------------------\n"); size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def); total += size; fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun), SCALE (size), LABEL (size)); num_edges = 0; FOR_EACH_BB_FN (bb, cfun) num_edges += EDGE_COUNT (bb->succs); size = num_edges * sizeof (struct edge_def); total += size; fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size)); fprintf (file, "---------------------------------------------------------\n"); fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total), LABEL (total)); fprintf (file, "---------------------------------------------------------\n"); fprintf (file, "\n"); if (cfg_stats.num_merged_labels > max_num_merged_labels) max_num_merged_labels = cfg_stats.num_merged_labels; fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n", cfg_stats.num_merged_labels, max_num_merged_labels); fprintf (file, "\n"); } /* Dump CFG statistics on stderr. Keep extern so that it's always linked in the final executable. */ DEBUG_FUNCTION void debug_cfg_stats (void) { dump_cfg_stats (stderr); } /*--------------------------------------------------------------------------- Miscellaneous helpers ---------------------------------------------------------------------------*/ /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control flow. Transfers of control flow associated with EH are excluded. */ static bool call_can_make_abnormal_goto (gimple t) { /* If the function has no non-local labels, then a call cannot make an abnormal transfer of control. */ if (!cfun->has_nonlocal_label && !cfun->calls_setjmp) return false; /* Likewise if the call has no side effects. */ if (!gimple_has_side_effects (t)) return false; /* Likewise if the called function is leaf. */ if (gimple_call_flags (t) & ECF_LEAF) return false; return true; } /* Return true if T can make an abnormal transfer of control flow. Transfers of control flow associated with EH are excluded. */ bool stmt_can_make_abnormal_goto (gimple t) { if (computed_goto_p (t)) return true; if (is_gimple_call (t)) return call_can_make_abnormal_goto (t); return false; } /* Return true if T represents a stmt that always transfers control. */ bool is_ctrl_stmt (gimple t) { switch (gimple_code (t)) { case GIMPLE_COND: case GIMPLE_SWITCH: case GIMPLE_GOTO: case GIMPLE_RETURN: case GIMPLE_RESX: return true; default: return false; } } /* Return true if T is a statement that may alter the flow of control (e.g., a call to a non-returning function). */ bool is_ctrl_altering_stmt (gimple t) { gcc_assert (t); switch (gimple_code (t)) { case GIMPLE_CALL: { int flags = gimple_call_flags (t); /* A call alters control flow if it can make an abnormal goto. */ if (call_can_make_abnormal_goto (t)) return true; /* A call also alters control flow if it does not return. */ if (flags & ECF_NORETURN) return true; /* TM ending statements have backedges out of the transaction. Return true so we split the basic block containing them. Note that the TM_BUILTIN test is merely an optimization. */ if ((flags & ECF_TM_BUILTIN) && is_tm_ending_fndecl (gimple_call_fndecl (t))) return true; /* BUILT_IN_RETURN call is same as return statement. */ if (gimple_call_builtin_p (t, BUILT_IN_RETURN)) return true; } break; case GIMPLE_EH_DISPATCH: /* EH_DISPATCH branches to the individual catch handlers at this level of a try or allowed-exceptions region. It can fallthru to the next statement as well. */ return true; case GIMPLE_ASM: if (gimple_asm_nlabels (t) > 0) return true; break; CASE_GIMPLE_OMP: /* OpenMP directives alter control flow. */ return true; case GIMPLE_TRANSACTION: /* A transaction start alters control flow. */ return true; default: break; } /* If a statement can throw, it alters control flow. */ return stmt_can_throw_internal (t); } /* Return true if T is a simple local goto. */ bool simple_goto_p (gimple t) { return (gimple_code (t) == GIMPLE_GOTO && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL); } /* Return true if STMT should start a new basic block. PREV_STMT is the statement preceding STMT. It is used when STMT is a label or a case label. Labels should only start a new basic block if their previous statement wasn't a label. Otherwise, sequence of labels would generate unnecessary basic blocks that only contain a single label. */ static inline bool stmt_starts_bb_p (gimple stmt, gimple prev_stmt) { if (stmt == NULL) return false; /* Labels start a new basic block only if the preceding statement wasn't a label of the same type. This prevents the creation of consecutive blocks that have nothing but a single label. */ if (gimple_code (stmt) == GIMPLE_LABEL) { /* Nonlocal and computed GOTO targets always start a new block. */ if (DECL_NONLOCAL (gimple_label_label (stmt)) || FORCED_LABEL (gimple_label_label (stmt))) return true; if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL) { if (DECL_NONLOCAL (gimple_label_label (prev_stmt))) return true; cfg_stats.num_merged_labels++; return false; } else return true; } else if (gimple_code (stmt) == GIMPLE_CALL && gimple_call_flags (stmt) & ECF_RETURNS_TWICE) /* setjmp acts similar to a nonlocal GOTO target and thus should start a new block. */ return true; return false; } /* Return true if T should end a basic block. */ bool stmt_ends_bb_p (gimple t) { return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t); } /* Remove block annotations and other data structures. */ void delete_tree_cfg_annotations (void) { vec_free (label_to_block_map_for_fn (cfun)); } /* Return the first statement in basic block BB. */ gimple first_stmt (basic_block bb) { gimple_stmt_iterator i = gsi_start_bb (bb); gimple stmt = NULL; while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i)))) { gsi_next (&i); stmt = NULL; } return stmt; } /* Return the first non-label statement in basic block BB. */ static gimple first_non_label_stmt (basic_block bb) { gimple_stmt_iterator i = gsi_start_bb (bb); while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL) gsi_next (&i); return !gsi_end_p (i) ? gsi_stmt (i) : NULL; } /* Return the last statement in basic block BB. */ gimple last_stmt (basic_block bb) { gimple_stmt_iterator i = gsi_last_bb (bb); gimple stmt = NULL; while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i)))) { gsi_prev (&i); stmt = NULL; } return stmt; } /* Return the last statement of an otherwise empty block. Return NULL if the block is totally empty, or if it contains more than one statement. */ gimple last_and_only_stmt (basic_block bb) { gimple_stmt_iterator i = gsi_last_nondebug_bb (bb); gimple last, prev; if (gsi_end_p (i)) return NULL; last = gsi_stmt (i); gsi_prev_nondebug (&i); if (gsi_end_p (i)) return last; /* Empty statements should no longer appear in the instruction stream. Everything that might have appeared before should be deleted by remove_useless_stmts, and the optimizers should just gsi_remove instead of smashing with build_empty_stmt. Thus the only thing that should appear here in a block containing one executable statement is a label. */ prev = gsi_stmt (i); if (gimple_code (prev) == GIMPLE_LABEL) return last; else return NULL; } /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */ static void reinstall_phi_args (edge new_edge, edge old_edge) { edge_var_map_vector *v; edge_var_map *vm; int i; gimple_stmt_iterator phis; v = redirect_edge_var_map_vector (old_edge); if (!v) return; for (i = 0, phis = gsi_start_phis (new_edge->dest); v->iterate (i, &vm) && !gsi_end_p (phis); i++, gsi_next (&phis)) { gimple phi = gsi_stmt (phis); tree result = redirect_edge_var_map_result (vm); tree arg = redirect_edge_var_map_def (vm); gcc_assert (result == gimple_phi_result (phi)); add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm)); } redirect_edge_var_map_clear (old_edge); } /* Returns the basic block after which the new basic block created by splitting edge EDGE_IN should be placed. Tries to keep the new block near its "logical" location. This is of most help to humans looking at debugging dumps. */ static basic_block split_edge_bb_loc (edge edge_in) { basic_block dest = edge_in->dest; basic_block dest_prev = dest->prev_bb; if (dest_prev) { edge e = find_edge (dest_prev, dest); if (e && !(e->flags & EDGE_COMPLEX)) return edge_in->src; } return dest_prev; } /* Split a (typically critical) edge EDGE_IN. Return the new block. Abort on abnormal edges. */ static basic_block gimple_split_edge (edge edge_in) { basic_block new_bb, after_bb, dest; edge new_edge, e; /* Abnormal edges cannot be split. */ gcc_assert (!(edge_in->flags & EDGE_ABNORMAL)); dest = edge_in->dest; after_bb = split_edge_bb_loc (edge_in); new_bb = create_empty_bb (after_bb); new_bb->frequency = EDGE_FREQUENCY (edge_in); new_bb->count = edge_in->count; new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU); new_edge->probability = REG_BR_PROB_BASE; new_edge->count = edge_in->count; e = redirect_edge_and_branch (edge_in, new_bb); gcc_assert (e == edge_in); reinstall_phi_args (new_edge, e); return new_bb; } /* Verify properties of the address expression T with base object BASE. */ static tree verify_address (tree t, tree base) { bool old_constant; bool old_side_effects; bool new_constant; bool new_side_effects; old_constant = TREE_CONSTANT (t); old_side_effects = TREE_SIDE_EFFECTS (t); recompute_tree_invariant_for_addr_expr (t); new_side_effects = TREE_SIDE_EFFECTS (t); new_constant = TREE_CONSTANT (t); if (old_constant != new_constant) { error ("constant not recomputed when ADDR_EXPR changed"); return t; } if (old_side_effects != new_side_effects) { error ("side effects not recomputed when ADDR_EXPR changed"); return t; } if (!(TREE_CODE (base) == VAR_DECL || TREE_CODE (base) == PARM_DECL || TREE_CODE (base) == RESULT_DECL)) return NULL_TREE; if (DECL_GIMPLE_REG_P (base)) { error ("DECL_GIMPLE_REG_P set on a variable with address taken"); return base; } return NULL_TREE; } /* Callback for walk_tree, check that all elements with address taken are properly noticed as such. The DATA is an int* that is 1 if TP was seen inside a PHI node. */ static tree verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) { tree t = *tp, x; if (TYPE_P (t)) *walk_subtrees = 0; /* Check operand N for being valid GIMPLE and give error MSG if not. */ #define CHECK_OP(N, MSG) \ do { if (!is_gimple_val (TREE_OPERAND (t, N))) \ { error (MSG); return TREE_OPERAND (t, N); }} while (0) switch (TREE_CODE (t)) { case SSA_NAME: if (SSA_NAME_IN_FREE_LIST (t)) { error ("SSA name in freelist but still referenced"); return *tp; } break; case INDIRECT_REF: error ("INDIRECT_REF in gimple IL"); return t; case MEM_REF: x = TREE_OPERAND (t, 0); if (!POINTER_TYPE_P (TREE_TYPE (x)) || !is_gimple_mem_ref_addr (x)) { error ("invalid first operand of MEM_REF"); return x; } if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1)))) { error ("invalid offset operand of MEM_REF"); return TREE_OPERAND (t, 1); } if (TREE_CODE (x) == ADDR_EXPR && (x = verify_address (x, TREE_OPERAND (x, 0)))) return x; *walk_subtrees = 0; break; case ASSERT_EXPR: x = fold (ASSERT_EXPR_COND (t)); if (x == boolean_false_node) { error ("ASSERT_EXPR with an always-false condition"); return *tp; } break; case MODIFY_EXPR: error ("MODIFY_EXPR not expected while having tuples"); return *tp; case ADDR_EXPR: { tree tem; gcc_assert (is_gimple_address (t)); /* Skip any references (they will be checked when we recurse down the tree) and ensure that any variable used as a prefix is marked addressable. */ for (x = TREE_OPERAND (t, 0); handled_component_p (x); x = TREE_OPERAND (x, 0)) ; if ((tem = verify_address (t, x))) return tem; if (!(TREE_CODE (x) == VAR_DECL || TREE_CODE (x) == PARM_DECL || TREE_CODE (x) == RESULT_DECL)) return NULL; if (!TREE_ADDRESSABLE (x)) { error ("address taken, but ADDRESSABLE bit not set"); return x; } break; } case COND_EXPR: x = COND_EXPR_COND (t); if (!INTEGRAL_TYPE_P (TREE_TYPE (x))) { error ("non-integral used in condition"); return x; } if (!is_gimple_condexpr (x)) { error ("invalid conditional operand"); return x; } break; case NON_LVALUE_EXPR: case TRUTH_NOT_EXPR: gcc_unreachable (); CASE_CONVERT: case FIX_TRUNC_EXPR: case FLOAT_EXPR: case NEGATE_EXPR: case ABS_EXPR: case BIT_NOT_EXPR: CHECK_OP (0, "invalid operand to unary operator"); break; case REALPART_EXPR: case IMAGPART_EXPR: case BIT_FIELD_REF: if (!is_gimple_reg_type (TREE_TYPE (t))) { error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR"); return t; } if (TREE_CODE (t) == BIT_FIELD_REF) { tree t0 = TREE_OPERAND (t, 0); tree t1 = TREE_OPERAND (t, 1); tree t2 = TREE_OPERAND (t, 2); if (!tree_fits_uhwi_p (t1) || !tree_fits_uhwi_p (t2)) { error ("invalid position or size operand to BIT_FIELD_REF"); return t; } if (INTEGRAL_TYPE_P (TREE_TYPE (t)) && (TYPE_PRECISION (TREE_TYPE (t)) != tree_to_uhwi (t1))) { error ("integral result type precision does not match " "field size of BIT_FIELD_REF"); return t; } else if (!INTEGRAL_TYPE_P (TREE_TYPE (t)) && TYPE_MODE (TREE_TYPE (t)) != BLKmode && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t))) != tree_to_uhwi (t1))) { error ("mode precision of non-integral result does not " "match field size of BIT_FIELD_REF"); return t; } if (!AGGREGATE_TYPE_P (TREE_TYPE (t0)) && (tree_to_uhwi (t1) + tree_to_uhwi (t2) > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0))))) { error ("position plus size exceeds size of referenced object in " "BIT_FIELD_REF"); return t; } } t = TREE_OPERAND (t, 0); /* Fall-through. */ case COMPONENT_REF: case ARRAY_REF: case ARRAY_RANGE_REF: case VIEW_CONVERT_EXPR: /* We have a nest of references. Verify that each of the operands that determine where to reference is either a constant or a variable, verify that the base is valid, and then show we've already checked the subtrees. */ while (handled_component_p (t)) { if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2)) CHECK_OP (2, "invalid COMPONENT_REF offset operator"); else if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF) { CHECK_OP (1, "invalid array index"); if (TREE_OPERAND (t, 2)) CHECK_OP (2, "invalid array lower bound"); if (TREE_OPERAND (t, 3)) CHECK_OP (3, "invalid array stride"); } else if (TREE_CODE (t) == BIT_FIELD_REF || TREE_CODE (t) == REALPART_EXPR || TREE_CODE (t) == IMAGPART_EXPR) { error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or " "REALPART_EXPR"); return t; } t = TREE_OPERAND (t, 0); } if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t)) { error ("invalid reference prefix"); return t; } *walk_subtrees = 0; break; case PLUS_EXPR: case MINUS_EXPR: /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using POINTER_PLUS_EXPR. */ if (POINTER_TYPE_P (TREE_TYPE (t))) { error ("invalid operand to plus/minus, type is a pointer"); return t; } CHECK_OP (0, "invalid operand to binary operator"); CHECK_OP (1, "invalid operand to binary operator"); break; case POINTER_PLUS_EXPR: /* Check to make sure the first operand is a pointer or reference type. */ if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0)))) { error ("invalid operand to pointer plus, first operand is not a pointer"); return t; } /* Check to make sure the second operand is a ptrofftype. */ if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1)))) { error ("invalid operand to pointer plus, second operand is not an " "integer type of appropriate width"); return t; } /* FALLTHROUGH */ case LT_EXPR: case LE_EXPR: case GT_EXPR: case GE_EXPR: case EQ_EXPR: case NE_EXPR: case UNORDERED_EXPR: case ORDERED_EXPR: case UNLT_EXPR: case UNLE_EXPR: case UNGT_EXPR: case UNGE_EXPR: case UNEQ_EXPR: case LTGT_EXPR: case MULT_EXPR: case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: case ROUND_DIV_EXPR: case TRUNC_MOD_EXPR: case CEIL_MOD_EXPR: case FLOOR_MOD_EXPR: case ROUND_MOD_EXPR: case RDIV_EXPR: case EXACT_DIV_EXPR: case MIN_EXPR: case MAX_EXPR: case LSHIFT_EXPR: case RSHIFT_EXPR: case LROTATE_EXPR: case RROTATE_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: case BIT_AND_EXPR: CHECK_OP (0, "invalid operand to binary operator"); CHECK_OP (1, "invalid operand to binary operator"); break; case CONSTRUCTOR: if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE) *walk_subtrees = 0; break; case CASE_LABEL_EXPR: if (CASE_CHAIN (t)) { error ("invalid CASE_CHAIN"); return t; } break; default: break; } return NULL; #undef CHECK_OP } /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference. Returns true if there is an error, otherwise false. */ static bool verify_types_in_gimple_min_lval (tree expr) { tree op; if (is_gimple_id (expr)) return false; if (TREE_CODE (expr) != TARGET_MEM_REF && TREE_CODE (expr) != MEM_REF) { error ("invalid expression for min lvalue"); return true; } /* TARGET_MEM_REFs are strange beasts. */ if (TREE_CODE (expr) == TARGET_MEM_REF) return false; op = TREE_OPERAND (expr, 0); if (!is_gimple_val (op)) { error ("invalid operand in indirect reference"); debug_generic_stmt (op); return true; } /* Memory references now generally can involve a value conversion. */ return false; } /* Verify if EXPR is a valid GIMPLE reference expression. If REQUIRE_LVALUE is true verifies it is an lvalue. Returns true if there is an error, otherwise false. */ static bool verify_types_in_gimple_reference (tree expr, bool require_lvalue) { while (handled_component_p (expr)) { tree op = TREE_OPERAND (expr, 0); if (TREE_CODE (expr) == ARRAY_REF || TREE_CODE (expr) == ARRAY_RANGE_REF) { if (!is_gimple_val (TREE_OPERAND (expr, 1)) || (TREE_OPERAND (expr, 2) && !is_gimple_val (TREE_OPERAND (expr, 2))) || (TREE_OPERAND (expr, 3) && !is_gimple_val (TREE_OPERAND (expr, 3)))) { error ("invalid operands to array reference"); debug_generic_stmt (expr); return true; } } /* Verify if the reference array element types are compatible. */ if (TREE_CODE (expr) == ARRAY_REF && !useless_type_conversion_p (TREE_TYPE (expr), TREE_TYPE (TREE_TYPE (op)))) { error ("type mismatch in array reference"); debug_generic_stmt (TREE_TYPE (expr)); debug_generic_stmt (TREE_TYPE (TREE_TYPE (op))); return true; } if (TREE_CODE (expr) == ARRAY_RANGE_REF && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)), TREE_TYPE (TREE_TYPE (op)))) { error ("type mismatch in array range reference"); debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr))); debug_generic_stmt (TREE_TYPE (TREE_TYPE (op))); return true; } if ((TREE_CODE (expr) == REALPART_EXPR || TREE_CODE (expr) == IMAGPART_EXPR) && !useless_type_conversion_p (TREE_TYPE (expr), TREE_TYPE (TREE_TYPE (op)))) { error ("type mismatch in real/imagpart reference"); debug_generic_stmt (TREE_TYPE (expr)); debug_generic_stmt (TREE_TYPE (TREE_TYPE (op))); return true; } if (TREE_CODE (expr) == COMPONENT_REF && !useless_type_conversion_p (TREE_TYPE (expr), TREE_TYPE (TREE_OPERAND (expr, 1)))) { error ("type mismatch in component reference"); debug_generic_stmt (TREE_TYPE (expr)); debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1))); return true; } if (TREE_CODE (expr) == VIEW_CONVERT_EXPR) { /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check that their operand is not an SSA name or an invariant when requiring an lvalue (this usually means there is a SRA or IPA-SRA bug). Otherwise there is nothing to verify, gross mismatches at most invoke undefined behavior. */ if (require_lvalue && (TREE_CODE (op) == SSA_NAME || is_gimple_min_invariant (op))) { error ("conversion of an SSA_NAME on the left hand side"); debug_generic_stmt (expr); return true; } else if (TREE_CODE (op) == SSA_NAME && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op))) { error ("conversion of register to a different size"); debug_generic_stmt (expr); return true; } else if (!handled_component_p (op)) return false; } expr = op; } if (TREE_CODE (expr) == MEM_REF) { if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0))) { error ("invalid address operand in MEM_REF"); debug_generic_stmt (expr); return true; } if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1)))) { error ("invalid offset operand in MEM_REF"); debug_generic_stmt (expr); return true; } } else if (TREE_CODE (expr) == TARGET_MEM_REF) { if (!TMR_BASE (expr) || !is_gimple_mem_ref_addr (TMR_BASE (expr))) { error ("invalid address operand in TARGET_MEM_REF"); return true; } if (!TMR_OFFSET (expr) || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr)))) { error ("invalid offset operand in TARGET_MEM_REF"); debug_generic_stmt (expr); return true; } } return ((require_lvalue || !is_gimple_min_invariant (expr)) && verify_types_in_gimple_min_lval (expr)); } /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ) list of pointer-to types that is trivially convertible to DEST. */ static bool one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj) { tree src; if (!TYPE_POINTER_TO (src_obj)) return true; for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src)) if (useless_type_conversion_p (dest, src)) return true; return false; } /* Return true if TYPE1 is a fixed-point type and if conversions to and from TYPE2 can be handled by FIXED_CONVERT_EXPR. */ static bool valid_fixed_convert_types_p (tree type1, tree type2) { return (FIXED_POINT_TYPE_P (type1) && (INTEGRAL_TYPE_P (type2) || SCALAR_FLOAT_TYPE_P (type2) || FIXED_POINT_TYPE_P (type2))); } /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there is a problem, otherwise false. */ static bool verify_gimple_call (gimple stmt) { tree fn = gimple_call_fn (stmt); tree fntype, fndecl; unsigned i; if (gimple_call_internal_p (stmt)) { if (fn) { error ("gimple call has two targets"); debug_generic_stmt (fn); return true; } } else { if (!fn) { error ("gimple call has no target"); return true; } } if (fn && !is_gimple_call_addr (fn)) { error ("invalid function in gimple call"); debug_generic_stmt (fn); return true; } if (fn && (!POINTER_TYPE_P (TREE_TYPE (fn)) || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))) { error ("non-function in gimple call"); return true; } fndecl = gimple_call_fndecl (stmt); if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL && DECL_LOOPING_CONST_OR_PURE_P (fndecl) && !DECL_PURE_P (fndecl) && !TREE_READONLY (fndecl)) { error ("invalid pure const state for function"); return true; } if (gimple_call_lhs (stmt) && (!is_gimple_lvalue (gimple_call_lhs (stmt)) || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true))) { error ("invalid LHS in gimple call"); return true; } if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt)) { error ("LHS in noreturn call"); return true; } fntype = gimple_call_fntype (stmt); if (fntype && gimple_call_lhs (stmt) && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)), TREE_TYPE (fntype)) /* ??? At least C++ misses conversions at assignments from void * call results. ??? Java is completely off. Especially with functions returning java.lang.Object. For now simply allow arbitrary pointer type conversions. */ && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt))) && POINTER_TYPE_P (TREE_TYPE (fntype)))) { error ("invalid conversion in gimple call"); debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt))); debug_generic_stmt (TREE_TYPE (fntype)); return true; } if (gimple_call_chain (stmt) && !is_gimple_val (gimple_call_chain (stmt))) { error ("invalid static chain in gimple call"); debug_generic_stmt (gimple_call_chain (stmt)); return true; } /* If there is a static chain argument, this should not be an indirect call, and the decl should have DECL_STATIC_CHAIN set. */ if (gimple_call_chain (stmt)) { if (!gimple_call_fndecl (stmt)) { error ("static chain in indirect gimple call"); return true; } fn = TREE_OPERAND (fn, 0); if (!DECL_STATIC_CHAIN (fn)) { error ("static chain with function that doesn%'t use one"); return true; } } /* ??? The C frontend passes unpromoted arguments in case it didn't see a function declaration before the call. So for now leave the call arguments mostly unverified. Once we gimplify unit-at-a-time we have a chance to fix this. */ for (i = 0; i < gimple_call_num_args (stmt); ++i) { tree arg = gimple_call_arg (stmt, i); if ((is_gimple_reg_type (TREE_TYPE (arg)) && !is_gimple_val (arg)) || (!is_gimple_reg_type (TREE_TYPE (arg)) && !is_gimple_lvalue (arg))) { error ("invalid argument to gimple call"); debug_generic_expr (arg); return true; } } return false; } /* Verifies the gimple comparison with the result type TYPE and the operands OP0 and OP1. */ static bool verify_gimple_comparison (tree type, tree op0, tree op1) { tree op0_type = TREE_TYPE (op0); tree op1_type = TREE_TYPE (op1); if (!is_gimple_val (op0) || !is_gimple_val (op1)) { error ("invalid operands in gimple comparison"); return true; } /* For comparisons we do not have the operations type as the effective type the comparison is carried out in. Instead we require that either the first operand is trivially convertible into the second, or the other way around. Because we special-case pointers to void we allow comparisons of pointers with the same mode as well. */ if (!useless_type_conversion_p (op0_type, op1_type) && !useless_type_conversion_p (op1_type, op0_type) && (!POINTER_TYPE_P (op0_type) || !POINTER_TYPE_P (op1_type) || TYPE_MODE (op0_type) != TYPE_MODE (op1_type))) { error ("mismatching comparison operand types"); debug_generic_expr (op0_type); debug_generic_expr (op1_type); return true; } /* The resulting type of a comparison may be an effective boolean type. */ if (INTEGRAL_TYPE_P (type) && (TREE_CODE (type) == BOOLEAN_TYPE || TYPE_PRECISION (type) == 1)) { if (TREE_CODE (op0_type) == VECTOR_TYPE || TREE_CODE (op1_type) == VECTOR_TYPE) { error ("vector comparison returning a boolean"); debug_generic_expr (op0_type); debug_generic_expr (op1_type); return true; } } /* Or an integer vector type with the same size and element count as the comparison operand types. */ else if (TREE_CODE (type) == VECTOR_TYPE && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE) { if (TREE_CODE (op0_type) != VECTOR_TYPE || TREE_CODE (op1_type) != VECTOR_TYPE) { error ("non-vector operands in vector comparison"); debug_generic_expr (op0_type); debug_generic_expr (op1_type); return true; } if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type) || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type))) != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))) /* The result of a vector comparison is of signed integral type. */ || TYPE_UNSIGNED (TREE_TYPE (type))) { error ("invalid vector comparison resulting type"); debug_generic_expr (type); return true; } } else { error ("bogus comparison result type"); debug_generic_expr (type); return true; } return false; } /* Verify a gimple assignment statement STMT with an unary rhs. Returns true if anything is wrong. */ static bool verify_gimple_assign_unary (gimple stmt) { enum tree_code rhs_code = gimple_assign_rhs_code (stmt); tree lhs = gimple_assign_lhs (stmt); tree lhs_type = TREE_TYPE (lhs); tree rhs1 = gimple_assign_rhs1 (stmt); tree rhs1_type = TREE_TYPE (rhs1); if (!is_gimple_reg (lhs)) { error ("non-register as LHS of unary operation"); return true; } if (!is_gimple_val (rhs1)) { error ("invalid operand in unary operation"); return true; } /* First handle conversions. */ switch (rhs_code) { CASE_CONVERT: { /* Allow conversions from pointer type to integral type only if there is no sign or zero extension involved. For targets were the precision of ptrofftype doesn't match that of pointers we need to allow arbitrary conversions to ptrofftype. */ if ((POINTER_TYPE_P (lhs_type) && INTEGRAL_TYPE_P (rhs1_type)) || (POINTER_TYPE_P (rhs1_type) && INTEGRAL_TYPE_P (lhs_type) && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type) || ptrofftype_p (sizetype)))) return false; /* Allow conversion from integral to offset type and vice versa. */ if ((TREE_CODE (lhs_type) == OFFSET_TYPE && INTEGRAL_TYPE_P (rhs1_type)) || (INTEGRAL_TYPE_P (lhs_type) && TREE_CODE (rhs1_type) == OFFSET_TYPE)) return false; /* Otherwise assert we are converting between types of the same kind. */ if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type)) { error ("invalid types in nop conversion"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); return true; } return false; } case ADDR_SPACE_CONVERT_EXPR: { if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type) || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type)) == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type)))) { error ("invalid types in address space conversion"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); return true; } return false; } case FIXED_CONVERT_EXPR: { if (!valid_fixed_convert_types_p (lhs_type, rhs1_type) && !valid_fixed_convert_types_p (rhs1_type, lhs_type)) { error ("invalid types in fixed-point conversion"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); return true; } return false; } case FLOAT_EXPR: { if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type)) && (!VECTOR_INTEGER_TYPE_P (rhs1_type) || !VECTOR_FLOAT_TYPE_P (lhs_type))) { error ("invalid types in conversion to floating point"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); return true; } return false; } case FIX_TRUNC_EXPR: { if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type)) && (!VECTOR_INTEGER_TYPE_P (lhs_type) || !VECTOR_FLOAT_TYPE_P (rhs1_type))) { error ("invalid types in conversion to integer"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); return true; } return false; } case VEC_UNPACK_HI_EXPR: case VEC_UNPACK_LO_EXPR: case REDUC_MAX_EXPR: case REDUC_MIN_EXPR: case REDUC_PLUS_EXPR: case VEC_UNPACK_FLOAT_HI_EXPR: case VEC_UNPACK_FLOAT_LO_EXPR: /* FIXME. */ return false; case NEGATE_EXPR: case ABS_EXPR: case BIT_NOT_EXPR: case PAREN_EXPR: case NON_LVALUE_EXPR: case CONJ_EXPR: break; default: gcc_unreachable (); } /* For the remaining codes assert there is no conversion involved. */ if (!useless_type_conversion_p (lhs_type, rhs1_type)) { error ("non-trivial conversion in unary operation"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); return true; } return false; } /* Verify a gimple assignment statement STMT with a binary rhs. Returns true if anything is wrong. */ static bool verify_gimple_assign_binary (gimple stmt) { enum tree_code rhs_code = gimple_assign_rhs_code (stmt); tree lhs = gimple_assign_lhs (stmt); tree lhs_type = TREE_TYPE (lhs); tree rhs1 = gimple_assign_rhs1 (stmt); tree rhs1_type = TREE_TYPE (rhs1); tree rhs2 = gimple_assign_rhs2 (stmt); tree rhs2_type = TREE_TYPE (rhs2); if (!is_gimple_reg (lhs)) { error ("non-register as LHS of binary operation"); return true; } if (!is_gimple_val (rhs1) || !is_gimple_val (rhs2)) { error ("invalid operands in binary operation"); return true; } /* First handle operations that involve different types. */ switch (rhs_code) { case COMPLEX_EXPR: { if (TREE_CODE (lhs_type) != COMPLEX_TYPE || !(INTEGRAL_TYPE_P (rhs1_type) || SCALAR_FLOAT_TYPE_P (rhs1_type)) || !(INTEGRAL_TYPE_P (rhs2_type) || SCALAR_FLOAT_TYPE_P (rhs2_type))) { error ("type mismatch in complex expression"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); debug_generic_expr (rhs2_type); return true; } return false; } case LSHIFT_EXPR: case RSHIFT_EXPR: case LROTATE_EXPR: case RROTATE_EXPR: { /* Shifts and rotates are ok on integral types, fixed point types and integer vector types. */ if ((!INTEGRAL_TYPE_P (rhs1_type) && !FIXED_POINT_TYPE_P (rhs1_type) && !(TREE_CODE (rhs1_type) == VECTOR_TYPE && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)))) || (!INTEGRAL_TYPE_P (rhs2_type) /* Vector shifts of vectors are also ok. */ && !(TREE_CODE (rhs1_type) == VECTOR_TYPE && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) && TREE_CODE (rhs2_type) == VECTOR_TYPE && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type)))) || !useless_type_conversion_p (lhs_type, rhs1_type)) { error ("type mismatch in shift expression"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); debug_generic_expr (rhs2_type); return true; } return false; } case VEC_LSHIFT_EXPR: case VEC_RSHIFT_EXPR: { if (TREE_CODE (rhs1_type) != VECTOR_TYPE || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) || POINTER_TYPE_P (TREE_TYPE (rhs1_type)) || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type)) || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))) || (!INTEGRAL_TYPE_P (rhs2_type) && (TREE_CODE (rhs2_type) != VECTOR_TYPE || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type)))) || !useless_type_conversion_p (lhs_type, rhs1_type)) { error ("type mismatch in vector shift expression"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); debug_generic_expr (rhs2_type); return true; } /* For shifting a vector of non-integral components we only allow shifting by a constant multiple of the element size. */ if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) && (TREE_CODE (rhs2) != INTEGER_CST || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2, TYPE_SIZE (TREE_TYPE (rhs1_type))))) { error ("non-element sized vector shift of floating point vector"); return true; } return false; } case WIDEN_LSHIFT_EXPR: { if (!INTEGRAL_TYPE_P (lhs_type) || !INTEGRAL_TYPE_P (rhs1_type) || TREE_CODE (rhs2) != INTEGER_CST || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))) { error ("type mismatch in widening vector shift expression"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); debug_generic_expr (rhs2_type); return true; } return false; } case VEC_WIDEN_LSHIFT_HI_EXPR: case VEC_WIDEN_LSHIFT_LO_EXPR: { if (TREE_CODE (rhs1_type) != VECTOR_TYPE || TREE_CODE (lhs_type) != VECTOR_TYPE || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)) || TREE_CODE (rhs2) != INTEGER_CST || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type)) > TYPE_PRECISION (TREE_TYPE (lhs_type)))) { error ("type mismatch in widening vector shift expression"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); debug_generic_expr (rhs2_type); return true; } return false; } case PLUS_EXPR: case MINUS_EXPR: { tree lhs_etype = lhs_type; tree rhs1_etype = rhs1_type; tree rhs2_etype = rhs2_type; if (TREE_CODE (lhs_type) == VECTOR_TYPE) { if (TREE_CODE (rhs1_type) != VECTOR_TYPE || TREE_CODE (rhs2_type) != VECTOR_TYPE) { error ("invalid non-vector operands to vector valued plus"); return true; } lhs_etype = TREE_TYPE (lhs_type); rhs1_etype = TREE_TYPE (rhs1_type); rhs2_etype = TREE_TYPE (rhs2_type); } if (POINTER_TYPE_P (lhs_etype) || POINTER_TYPE_P (rhs1_etype) || POINTER_TYPE_P (rhs2_etype)) { error ("invalid (pointer) operands to plus/minus"); return true; } /* Continue with generic binary expression handling. */ break; } case POINTER_PLUS_EXPR: { if (!POINTER_TYPE_P (rhs1_type) || !useless_type_conversion_p (lhs_type, rhs1_type) || !ptrofftype_p (rhs2_type)) { error ("type mismatch in pointer plus expression"); debug_generic_stmt (lhs_type); debug_generic_stmt (rhs1_type); debug_generic_stmt (rhs2_type); return true; } return false; } case TRUTH_ANDIF_EXPR: case TRUTH_ORIF_EXPR: case TRUTH_AND_EXPR: case TRUTH_OR_EXPR: case TRUTH_XOR_EXPR: gcc_unreachable (); case LT_EXPR: case LE_EXPR: case GT_EXPR: case GE_EXPR: case EQ_EXPR: case NE_EXPR: case UNORDERED_EXPR: case ORDERED_EXPR: case UNLT_EXPR: case UNLE_EXPR: case UNGT_EXPR: case UNGE_EXPR: case UNEQ_EXPR: case LTGT_EXPR: /* Comparisons are also binary, but the result type is not connected to the operand types. */ return verify_gimple_comparison (lhs_type, rhs1, rhs2); case WIDEN_MULT_EXPR: if (TREE_CODE (lhs_type) != INTEGER_TYPE) return true; return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)) || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))); case WIDEN_SUM_EXPR: case VEC_WIDEN_MULT_HI_EXPR: case VEC_WIDEN_MULT_LO_EXPR: case VEC_WIDEN_MULT_EVEN_EXPR: case VEC_WIDEN_MULT_ODD_EXPR: case VEC_PACK_TRUNC_EXPR: case VEC_PACK_SAT_EXPR: case VEC_PACK_FIX_TRUNC_EXPR: /* FIXME. */ return false; case MULT_EXPR: case MULT_HIGHPART_EXPR: case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: case ROUND_DIV_EXPR: case TRUNC_MOD_EXPR: case CEIL_MOD_EXPR: case FLOOR_MOD_EXPR: case ROUND_MOD_EXPR: case RDIV_EXPR: case EXACT_DIV_EXPR: case MIN_EXPR: case MAX_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: case BIT_AND_EXPR: /* Continue with generic binary expression handling. */ break; default: gcc_unreachable (); } if (!useless_type_conversion_p (lhs_type, rhs1_type) || !useless_type_conversion_p (lhs_type, rhs2_type)) { error ("type mismatch in binary expression"); debug_generic_stmt (lhs_type); debug_generic_stmt (rhs1_type); debug_generic_stmt (rhs2_type); return true; } return false; } /* Verify a gimple assignment statement STMT with a ternary rhs. Returns true if anything is wrong. */ static bool verify_gimple_assign_ternary (gimple stmt) { enum tree_code rhs_code = gimple_assign_rhs_code (stmt); tree lhs = gimple_assign_lhs (stmt); tree lhs_type = TREE_TYPE (lhs); tree rhs1 = gimple_assign_rhs1 (stmt); tree rhs1_type = TREE_TYPE (rhs1); tree rhs2 = gimple_assign_rhs2 (stmt); tree rhs2_type = TREE_TYPE (rhs2); tree rhs3 = gimple_assign_rhs3 (stmt); tree rhs3_type = TREE_TYPE (rhs3); if (!is_gimple_reg (lhs)) { error ("non-register as LHS of ternary operation"); return true; } if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR) ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1)) || !is_gimple_val (rhs2) || !is_gimple_val (rhs3)) { error ("invalid operands in ternary operation"); return true; } /* First handle operations that involve different types. */ switch (rhs_code) { case WIDEN_MULT_PLUS_EXPR: case WIDEN_MULT_MINUS_EXPR: if ((!INTEGRAL_TYPE_P (rhs1_type) && !FIXED_POINT_TYPE_P (rhs1_type)) || !useless_type_conversion_p (rhs1_type, rhs2_type) || !useless_type_conversion_p (lhs_type, rhs3_type) || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type) || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)) { error ("type mismatch in widening multiply-accumulate expression"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); debug_generic_expr (rhs2_type); debug_generic_expr (rhs3_type); return true; } break; case FMA_EXPR: if (!useless_type_conversion_p (lhs_type, rhs1_type) || !useless_type_conversion_p (lhs_type, rhs2_type) || !useless_type_conversion_p (lhs_type, rhs3_type)) { error ("type mismatch in fused multiply-add expression"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); debug_generic_expr (rhs2_type); debug_generic_expr (rhs3_type); return true; } break; case COND_EXPR: case VEC_COND_EXPR: if (!useless_type_conversion_p (lhs_type, rhs2_type) || !useless_type_conversion_p (lhs_type, rhs3_type)) { error ("type mismatch in conditional expression"); debug_generic_expr (lhs_type); debug_generic_expr (rhs2_type); debug_generic_expr (rhs3_type); return true; } break; case VEC_PERM_EXPR: if (!useless_type_conversion_p (lhs_type, rhs1_type) || !useless_type_conversion_p (lhs_type, rhs2_type)) { error ("type mismatch in vector permute expression"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); debug_generic_expr (rhs2_type); debug_generic_expr (rhs3_type); return true; } if (TREE_CODE (rhs1_type) != VECTOR_TYPE || TREE_CODE (rhs2_type) != VECTOR_TYPE || TREE_CODE (rhs3_type) != VECTOR_TYPE) { error ("vector types expected in vector permute expression"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); debug_generic_expr (rhs2_type); debug_generic_expr (rhs3_type); return true; } if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type) || TYPE_VECTOR_SUBPARTS (rhs2_type) != TYPE_VECTOR_SUBPARTS (rhs3_type) || TYPE_VECTOR_SUBPARTS (rhs3_type) != TYPE_VECTOR_SUBPARTS (lhs_type)) { error ("vectors with different element number found " "in vector permute expression"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); debug_generic_expr (rhs2_type); debug_generic_expr (rhs3_type); return true; } if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type))) != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))) { error ("invalid mask type in vector permute expression"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); debug_generic_expr (rhs2_type); debug_generic_expr (rhs3_type); return true; } return false; case DOT_PROD_EXPR: case REALIGN_LOAD_EXPR: /* FIXME. */ return false; default: gcc_unreachable (); } return false; } /* Verify a gimple assignment statement STMT with a single rhs. Returns true if anything is wrong. */ static bool verify_gimple_assign_single (gimple stmt) { enum tree_code rhs_code = gimple_assign_rhs_code (stmt); tree lhs = gimple_assign_lhs (stmt); tree lhs_type = TREE_TYPE (lhs); tree rhs1 = gimple_assign_rhs1 (stmt); tree rhs1_type = TREE_TYPE (rhs1); bool res = false; if (!useless_type_conversion_p (lhs_type, rhs1_type)) { error ("non-trivial conversion at assignment"); debug_generic_expr (lhs_type); debug_generic_expr (rhs1_type); return true; } if (gimple_clobber_p (stmt) && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF)) { error ("non-decl/MEM_REF LHS in clobber statement"); debug_generic_expr (lhs); return true; } if (handled_component_p (lhs)) res |= verify_types_in_gimple_reference (lhs, true); /* Special codes we cannot handle via their class. */ switch (rhs_code) { case ADDR_EXPR: { tree op = TREE_OPERAND (rhs1, 0); if (!is_gimple_addressable (op)) { error ("invalid operand in unary expression"); return true; } /* Technically there is no longer a need for matching types, but gimple hygiene asks for this check. In LTO we can end up combining incompatible units and thus end up with addresses of globals that change their type to a common one. */ if (!in_lto_p && !types_compatible_p (TREE_TYPE (op), TREE_TYPE (TREE_TYPE (rhs1))) && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1), TREE_TYPE (op))) { error ("type mismatch in address expression"); debug_generic_stmt (TREE_TYPE (rhs1)); debug_generic_stmt (TREE_TYPE (op)); return true; } return verify_types_in_gimple_reference (op, true); } /* tcc_reference */ case INDIRECT_REF: error ("INDIRECT_REF in gimple IL"); return true; case COMPONENT_REF: case BIT_FIELD_REF: case ARRAY_REF: case ARRAY_RANGE_REF: case VIEW_CONVERT_EXPR: case REALPART_EXPR: case IMAGPART_EXPR: case TARGET_MEM_REF: case MEM_REF: if (!is_gimple_reg (lhs) && is_gimple_reg_type (TREE_TYPE (lhs))) { error ("invalid rhs for gimple memory store"); debug_generic_stmt (lhs); debug_generic_stmt (rhs1); return true; } return res || verify_types_in_gimple_reference (rhs1, false); /* tcc_constant */ case SSA_NAME: case INTEGER_CST: case REAL_CST: case FIXED_CST: case COMPLEX_CST: case VECTOR_CST: case STRING_CST: return res; /* tcc_declaration */ case CONST_DECL: return res; case VAR_DECL: case PARM_DECL: if (!is_gimple_reg (lhs) && !is_gimple_reg (rhs1) && is_gimple_reg_type (TREE_TYPE (lhs))) { error ("invalid rhs for gimple memory store"); debug_generic_stmt (lhs); debug_generic_stmt (rhs1); return true; } return res; case CONSTRUCTOR: if (TREE_CODE (rhs1_type) == VECTOR_TYPE) { unsigned int i; tree elt_i, elt_v, elt_t = NULL_TREE; if (CONSTRUCTOR_NELTS (rhs1) == 0) return res; /* For vector CONSTRUCTORs we require that either it is empty CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements (then the element count must be correct to cover the whole outer vector and index must be NULL on all elements, or it is a CONSTRUCTOR of scalar elements, where we as an exception allow smaller number of elements (assuming zero filling) and consecutive indexes as compared to NULL indexes (such CONSTRUCTORs can appear in the IL from FEs). */ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v) { if (elt_t == NULL_TREE) { elt_t = TREE_TYPE (elt_v); if (TREE_CODE (elt_t) == VECTOR_TYPE) { tree elt_t = TREE_TYPE (elt_v); if (!useless_type_conversion_p (TREE_TYPE (rhs1_type), TREE_TYPE (elt_t))) { error ("incorrect type of vector CONSTRUCTOR" " elements"); debug_generic_stmt (rhs1); return true; } else if (CONSTRUCTOR_NELTS (rhs1) * TYPE_VECTOR_SUBPARTS (elt_t) != TYPE_VECTOR_SUBPARTS (rhs1_type)) { error ("incorrect number of vector CONSTRUCTOR" " elements"); debug_generic_stmt (rhs1); return true; } } else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type), elt_t)) { error ("incorrect type of vector CONSTRUCTOR elements"); debug_generic_stmt (rhs1); return true; } else if (CONSTRUCTOR_NELTS (rhs1) > TYPE_VECTOR_SUBPARTS (rhs1_type)) { error ("incorrect number of vector CONSTRUCTOR elements"); debug_generic_stmt (rhs1); return true; } } else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v))) { error ("incorrect type of vector CONSTRUCTOR elements"); debug_generic_stmt (rhs1); return true; } if (elt_i != NULL_TREE && (TREE_CODE (elt_t) == VECTOR_TYPE || TREE_CODE (elt_i) != INTEGER_CST || compare_tree_int (elt_i, i) != 0)) { error ("vector CONSTRUCTOR with non-NULL element index"); debug_generic_stmt (rhs1); return true; } } } return res; case OBJ_TYPE_REF: case ASSERT_EXPR: case WITH_SIZE_EXPR: /* FIXME. */ return res; default:; } return res; } /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there is a problem, otherwise false. */ static bool verify_gimple_assign (gimple stmt) { switch (gimple_assign_rhs_class (stmt)) { case GIMPLE_SINGLE_RHS: return verify_gimple_assign_single (stmt); case GIMPLE_UNARY_RHS: return verify_gimple_assign_unary (stmt); case GIMPLE_BINARY_RHS: return verify_gimple_assign_binary (stmt); case GIMPLE_TERNARY_RHS: return verify_gimple_assign_ternary (stmt); default: gcc_unreachable (); } } /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there is a problem, otherwise false. */ static bool verify_gimple_return (gimple stmt) { tree op = gimple_return_retval (stmt); tree restype = TREE_TYPE (TREE_TYPE (cfun->decl)); /* We cannot test for present return values as we do not fix up missing return values from the original source. */ if (op == NULL) return false; if (!is_gimple_val (op) && TREE_CODE (op) != RESULT_DECL) { error ("invalid operand in return statement"); debug_generic_stmt (op); return true; } if ((TREE_CODE (op) == RESULT_DECL && DECL_BY_REFERENCE (op)) || (TREE_CODE (op) == SSA_NAME && SSA_NAME_VAR (op) && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL && DECL_BY_REFERENCE (SSA_NAME_VAR (op)))) op = TREE_TYPE (op); if (!useless_type_conversion_p (restype, TREE_TYPE (op))) { error ("invalid conversion in return statement"); debug_generic_stmt (restype); debug_generic_stmt (TREE_TYPE (op)); return true; } return false; } /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there is a problem, otherwise false. */ static bool verify_gimple_goto (gimple stmt) { tree dest = gimple_goto_dest (stmt); /* ??? We have two canonical forms of direct goto destinations, a bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */ if (TREE_CODE (dest) != LABEL_DECL && (!is_gimple_val (dest) || !POINTER_TYPE_P (TREE_TYPE (dest)))) { error ("goto destination is neither a label nor a pointer"); return true; } return false; } /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there is a problem, otherwise false. */ static bool verify_gimple_switch (gimple stmt) { unsigned int i, n; tree elt, prev_upper_bound = NULL_TREE; tree index_type, elt_type = NULL_TREE; if (!is_gimple_val (gimple_switch_index (stmt))) { error ("invalid operand to switch statement"); debug_generic_stmt (gimple_switch_index (stmt)); return true; } index_type = TREE_TYPE (gimple_switch_index (stmt)); if (! INTEGRAL_TYPE_P (index_type)) { error ("non-integral type switch statement"); debug_generic_expr (index_type); return true; } elt = gimple_switch_label (stmt, 0); if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE) { error ("invalid default case label in switch statement"); debug_generic_expr (elt); return true; } n = gimple_switch_num_labels (stmt); for (i = 1; i < n; i++) { elt = gimple_switch_label (stmt, i); if (! CASE_LOW (elt)) { error ("invalid case label in switch statement"); debug_generic_expr (elt); return true; } if (CASE_HIGH (elt) && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt))) { error ("invalid case range in switch statement"); debug_generic_expr (elt); return true; } if (elt_type) { if (TREE_TYPE (CASE_LOW (elt)) != elt_type || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type)) { error ("type mismatch for case label in switch statement"); debug_generic_expr (elt); return true; } } else { elt_type = TREE_TYPE (CASE_LOW (elt)); if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type)) { error ("type precision mismatch in switch statement"); return true; } } if (prev_upper_bound) { if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt))) { error ("case labels not sorted in switch statement"); return true; } } prev_upper_bound = CASE_HIGH (elt); if (! prev_upper_bound) prev_upper_bound = CASE_LOW (elt); } return false; } /* Verify a gimple debug statement STMT. Returns true if anything is wrong. */ static bool verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED) { /* There isn't much that could be wrong in a gimple debug stmt. A gimple debug bind stmt, for example, maps a tree, that's usually a VAR_DECL or a PARM_DECL, but that could also be some scalarized component or member of an aggregate type, to another tree, that can be an arbitrary expression. These stmts expand into debug insns, and are converted to debug notes by var-tracking.c. */ return false; } /* Verify a gimple label statement STMT. Returns true if anything is wrong. */ static bool verify_gimple_label (gimple stmt) { tree decl = gimple_label_label (stmt); int uid; bool err = false; if (TREE_CODE (decl) != LABEL_DECL) return true; if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl) && DECL_CONTEXT (decl) != current_function_decl) { error ("label's context is not the current function decl"); err |= true; } uid = LABEL_DECL_UID (decl); if (cfun->cfg && (uid == -1 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt))) { error ("incorrect entry in label_to_block_map"); err |= true; } uid = EH_LANDING_PAD_NR (decl); if (uid) { eh_landing_pad lp = get_eh_landing_pad_from_number (uid); if (decl != lp->post_landing_pad) { error ("incorrect setting of landing pad number"); err |= true; } } return err; } /* Verify the GIMPLE statement STMT. Returns true if there is an error, otherwise false. */ static bool verify_gimple_stmt (gimple stmt) { switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: return verify_gimple_assign (stmt); case GIMPLE_LABEL: return verify_gimple_label (stmt); case GIMPLE_CALL: return verify_gimple_call (stmt); case GIMPLE_COND: if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison) { error ("invalid comparison code in gimple cond"); return true; } if (!(!gimple_cond_true_label (stmt) || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL) || !(!gimple_cond_false_label (stmt) || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL)) { error ("invalid labels in gimple cond"); return true; } return verify_gimple_comparison (boolean_type_node, gimple_cond_lhs (stmt), gimple_cond_rhs (stmt)); case GIMPLE_GOTO: return verify_gimple_goto (stmt); case GIMPLE_SWITCH: return verify_gimple_switch (stmt); case GIMPLE_RETURN: return verify_gimple_return (stmt); case GIMPLE_ASM: return false; case GIMPLE_TRANSACTION: return verify_gimple_transaction (stmt); /* Tuples that do not have tree operands. */ case GIMPLE_NOP: case GIMPLE_PREDICT: case GIMPLE_RESX: case GIMPLE_EH_DISPATCH: case GIMPLE_EH_MUST_NOT_THROW: return false; CASE_GIMPLE_OMP: /* OpenMP directives are validated by the FE and never operated on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain non-gimple expressions when the main index variable has had its address taken. This does not affect the loop itself because the header of an GIMPLE_OMP_FOR is merely used to determine how to setup the parallel iteration. */ return false; case GIMPLE_DEBUG: return verify_gimple_debug (stmt); default: gcc_unreachable (); } } /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem, and false otherwise. */ static bool verify_gimple_phi (gimple phi) { bool err = false; unsigned i; tree phi_result = gimple_phi_result (phi); bool virtual_p; if (!phi_result) { error ("invalid PHI result"); return true; } virtual_p = virtual_operand_p (phi_result); if (TREE_CODE (phi_result) != SSA_NAME || (virtual_p && SSA_NAME_VAR (phi_result) != gimple_vop (cfun))) { error ("invalid PHI result"); err = true; } for (i = 0; i < gimple_phi_num_args (phi); i++) { tree t = gimple_phi_arg_def (phi, i); if (!t) { error ("missing PHI def"); err |= true; continue; } /* Addressable variables do have SSA_NAMEs but they are not considered gimple values. */ else if ((TREE_CODE (t) == SSA_NAME && virtual_p != virtual_operand_p (t)) || (virtual_p && (TREE_CODE (t) != SSA_NAME || SSA_NAME_VAR (t) != gimple_vop (cfun))) || (!virtual_p && !is_gimple_val (t))) { error ("invalid PHI argument"); debug_generic_expr (t); err |= true; } #ifdef ENABLE_TYPES_CHECKING if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t))) { error ("incompatible types in PHI argument %u", i); debug_generic_stmt (TREE_TYPE (phi_result)); debug_generic_stmt (TREE_TYPE (t)); err |= true; } #endif } return err; } /* Verify the GIMPLE statements inside the sequence STMTS. */ static bool verify_gimple_in_seq_2 (gimple_seq stmts) { gimple_stmt_iterator ittr; bool err = false; for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr)) { gimple stmt = gsi_stmt (ittr); switch (gimple_code (stmt)) { case GIMPLE_BIND: err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt)); break; case GIMPLE_TRY: err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt)); err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt)); break; case GIMPLE_EH_FILTER: err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt)); break; case GIMPLE_EH_ELSE: err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt)); err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt)); break; case GIMPLE_CATCH: err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt)); break; case GIMPLE_TRANSACTION: err |= verify_gimple_transaction (stmt); break; default: { bool err2 = verify_gimple_stmt (stmt); if (err2) debug_gimple_stmt (stmt); err |= err2; } } } return err; } /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there is a problem, otherwise false. */ static bool verify_gimple_transaction (gimple stmt) { tree lab = gimple_transaction_label (stmt); if (lab != NULL && TREE_CODE (lab) != LABEL_DECL) return true; return verify_gimple_in_seq_2 (gimple_transaction_body (stmt)); } /* Verify the GIMPLE statements inside the statement list STMTS. */ DEBUG_FUNCTION void verify_gimple_in_seq (gimple_seq stmts) { timevar_push (TV_TREE_STMT_VERIFY); if (verify_gimple_in_seq_2 (stmts)) internal_error ("verify_gimple failed"); timevar_pop (TV_TREE_STMT_VERIFY); } /* Return true when the T can be shared. */ static bool tree_node_can_be_shared (tree t) { if (IS_TYPE_OR_DECL_P (t) || is_gimple_min_invariant (t) || TREE_CODE (t) == SSA_NAME || t == error_mark_node || TREE_CODE (t) == IDENTIFIER_NODE) return true; if (TREE_CODE (t) == CASE_LABEL_EXPR) return true; if (DECL_P (t)) return true; return false; } /* Called via walk_tree. Verify tree sharing. */ static tree verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data) { struct pointer_set_t *visited = (struct pointer_set_t *) data; if (tree_node_can_be_shared (*tp)) { *walk_subtrees = false; return NULL; } if (pointer_set_insert (visited, *tp)) return *tp; return NULL; } /* Called via walk_gimple_stmt. Verify tree sharing. */ static tree verify_node_sharing (tree *tp, int *walk_subtrees, void *data) { struct walk_stmt_info *wi = (struct walk_stmt_info *) data; return verify_node_sharing_1 (tp, walk_subtrees, wi->info); } static bool eh_error_found; static int verify_eh_throw_stmt_node (void **slot, void *data) { struct throw_stmt_node *node = (struct throw_stmt_node *)*slot; struct pointer_set_t *visited = (struct pointer_set_t *) data; if (!pointer_set_contains (visited, node->stmt)) { error ("dead STMT in EH table"); debug_gimple_stmt (node->stmt); eh_error_found = true; } return 1; } /* Verify if the location LOCs block is in BLOCKS. */ static bool verify_location (pointer_set_t *blocks, location_t loc) { tree block = LOCATION_BLOCK (loc); if (block != NULL_TREE && !pointer_set_contains (blocks, block)) { error ("location references block not in block tree"); return true; } if (block != NULL_TREE) return verify_location (blocks, BLOCK_SOURCE_LOCATION (block)); return false; } /* Called via walk_tree. Verify that expressions have no blocks. */ static tree verify_expr_no_block (tree *tp, int *walk_subtrees, void *) { if (!EXPR_P (*tp)) { *walk_subtrees = false; return NULL; } location_t loc = EXPR_LOCATION (*tp); if (LOCATION_BLOCK (loc) != NULL) return *tp; return NULL; } /* Called via walk_tree. Verify locations of expressions. */ static tree verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data) { struct pointer_set_t *blocks = (struct pointer_set_t *) data; if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (*tp)) { tree t = DECL_DEBUG_EXPR (*tp); tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL); if (addr) return addr; } if ((TREE_CODE (*tp) == VAR_DECL || TREE_CODE (*tp) == PARM_DECL || TREE_CODE (*tp) == RESULT_DECL) && DECL_HAS_VALUE_EXPR_P (*tp)) { tree t = DECL_VALUE_EXPR (*tp); tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL); if (addr) return addr; } if (!EXPR_P (*tp)) { *walk_subtrees = false; return NULL; } location_t loc = EXPR_LOCATION (*tp); if (verify_location (blocks, loc)) return *tp; return NULL; } /* Called via walk_gimple_op. Verify locations of expressions. */ static tree verify_expr_location (tree *tp, int *walk_subtrees, void *data) { struct walk_stmt_info *wi = (struct walk_stmt_info *) data; return verify_expr_location_1 (tp, walk_subtrees, wi->info); } /* Insert all subblocks of BLOCK into BLOCKS and recurse. */ static void collect_subblocks (pointer_set_t *blocks, tree block) { tree t; for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t)) { pointer_set_insert (blocks, t); collect_subblocks (blocks, t); } } /* Verify the GIMPLE statements in the CFG of FN. */ DEBUG_FUNCTION void verify_gimple_in_cfg (struct function *fn) { basic_block bb; bool err = false; struct pointer_set_t *visited, *visited_stmts, *blocks; timevar_push (TV_TREE_STMT_VERIFY); visited = pointer_set_create (); visited_stmts = pointer_set_create (); /* Collect all BLOCKs referenced by the BLOCK tree of FN. */ blocks = pointer_set_create (); if (DECL_INITIAL (fn->decl)) { pointer_set_insert (blocks, DECL_INITIAL (fn->decl)); collect_subblocks (blocks, DECL_INITIAL (fn->decl)); } FOR_EACH_BB_FN (bb, fn) { gimple_stmt_iterator gsi; for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple phi = gsi_stmt (gsi); bool err2 = false; unsigned i; pointer_set_insert (visited_stmts, phi); if (gimple_bb (phi) != bb) { error ("gimple_bb (phi) is set to a wrong basic block"); err2 = true; } err2 |= verify_gimple_phi (phi); /* Only PHI arguments have locations. */ if (gimple_location (phi) != UNKNOWN_LOCATION) { error ("PHI node with location"); err2 = true; } for (i = 0; i < gimple_phi_num_args (phi); i++) { tree arg = gimple_phi_arg_def (phi, i); tree addr = walk_tree (&arg, verify_node_sharing_1, visited, NULL); if (addr) { error ("incorrect sharing of tree nodes"); debug_generic_expr (addr); err2 |= true; } location_t loc = gimple_phi_arg_location (phi, i); if (virtual_operand_p (gimple_phi_result (phi)) && loc != UNKNOWN_LOCATION) { error ("virtual PHI with argument locations"); err2 = true; } addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL); if (addr) { debug_generic_expr (addr); err2 = true; } err2 |= verify_location (blocks, loc); } if (err2) debug_gimple_stmt (phi); err |= err2; } for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple stmt = gsi_stmt (gsi); bool err2 = false; struct walk_stmt_info wi; tree addr; int lp_nr; pointer_set_insert (visited_stmts, stmt); if (gimple_bb (stmt) != bb) { error ("gimple_bb (stmt) is set to a wrong basic block"); err2 = true; } err2 |= verify_gimple_stmt (stmt); err2 |= verify_location (blocks, gimple_location (stmt)); memset (&wi, 0, sizeof (wi)); wi.info = (void *) visited; addr = walk_gimple_op (stmt, verify_node_sharing, &wi); if (addr) { error ("incorrect sharing of tree nodes"); debug_generic_expr (addr); err2 |= true; } memset (&wi, 0, sizeof (wi)); wi.info = (void *) blocks; addr = walk_gimple_op (stmt, verify_expr_location, &wi); if (addr) { debug_generic_expr (addr); err2 |= true; } /* ??? Instead of not checking these stmts at all the walker should know its context via wi. */ if (!is_gimple_debug (stmt) && !is_gimple_omp (stmt)) { memset (&wi, 0, sizeof (wi)); addr = walk_gimple_op (stmt, verify_expr, &wi); if (addr) { debug_generic_expr (addr); inform (gimple_location (stmt), "in statement"); err2 |= true; } } /* If the statement is marked as part of an EH region, then it is expected that the statement could throw. Verify that when we have optimizations that simplify statements such that we prove that they cannot throw, that we update other data structures to match. */ lp_nr = lookup_stmt_eh_lp (stmt); if (lp_nr != 0) { if (!stmt_could_throw_p (stmt)) { error ("statement marked for throw, but doesn%'t"); err2 |= true; } else if (lp_nr > 0 && !gsi_one_before_end_p (gsi) && stmt_can_throw_internal (stmt)) { error ("statement marked for throw in middle of block"); err2 |= true; } } if (err2) debug_gimple_stmt (stmt); err |= err2; } } eh_error_found = false; if (get_eh_throw_stmt_table (cfun)) htab_traverse (get_eh_throw_stmt_table (cfun), verify_eh_throw_stmt_node, visited_stmts); if (err || eh_error_found) internal_error ("verify_gimple failed"); pointer_set_destroy (visited); pointer_set_destroy (visited_stmts); pointer_set_destroy (blocks); verify_histograms (); timevar_pop (TV_TREE_STMT_VERIFY); } /* Verifies that the flow information is OK. */ static int gimple_verify_flow_info (void) { int err = 0; basic_block bb; gimple_stmt_iterator gsi; gimple stmt; edge e; edge_iterator ei; if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes) { error ("ENTRY_BLOCK has IL associated with it"); err = 1; } if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes) { error ("EXIT_BLOCK has IL associated with it"); err = 1; } FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) if (e->flags & EDGE_FALLTHRU) { error ("fallthru to exit from bb %d", e->src->index); err = 1; } FOR_EACH_BB_FN (bb, cfun) { bool found_ctrl_stmt = false; stmt = NULL; /* Skip labels on the start of basic block. */ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { tree label; gimple prev_stmt = stmt; stmt = gsi_stmt (gsi); if (gimple_code (stmt) != GIMPLE_LABEL) break; label = gimple_label_label (stmt); if (prev_stmt && DECL_NONLOCAL (label)) { error ("nonlocal label "); print_generic_expr (stderr, label, 0); fprintf (stderr, " is not first in a sequence of labels in bb %d", bb->index); err = 1; } if (prev_stmt && EH_LANDING_PAD_NR (label) != 0) { error ("EH landing pad label "); print_generic_expr (stderr, label, 0); fprintf (stderr, " is not first in a sequence of labels in bb %d", bb->index); err = 1; } if (label_to_block (label) != bb) { error ("label "); print_generic_expr (stderr, label, 0); fprintf (stderr, " to block does not match in bb %d", bb->index); err = 1; } if (decl_function_context (label) != current_function_decl) { error ("label "); print_generic_expr (stderr, label, 0); fprintf (stderr, " has incorrect context in bb %d", bb->index); err = 1; } } /* Verify that body of basic block BB is free of control flow. */ for (; !gsi_end_p (gsi); gsi_next (&gsi)) { gimple stmt = gsi_stmt (gsi); if (found_ctrl_stmt) { error ("control flow in the middle of basic block %d", bb->index); err = 1; } if (stmt_ends_bb_p (stmt)) found_ctrl_stmt = true; if (gimple_code (stmt) == GIMPLE_LABEL) { error ("label "); print_generic_expr (stderr, gimple_label_label (stmt), 0); fprintf (stderr, " in the middle of basic block %d", bb->index); err = 1; } } gsi = gsi_last_bb (bb); if (gsi_end_p (gsi)) continue; stmt = gsi_stmt (gsi); if (gimple_code (stmt) == GIMPLE_LABEL) continue; err |= verify_eh_edges (stmt); if (is_ctrl_stmt (stmt)) { FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALLTHRU) { error ("fallthru edge after a control statement in bb %d", bb->index); err = 1; } } if (gimple_code (stmt) != GIMPLE_COND) { /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set after anything else but if statement. */ FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)) { error ("true/false edge after a non-GIMPLE_COND in bb %d", bb->index); err = 1; } } switch (gimple_code (stmt)) { case GIMPLE_COND: { edge true_edge; edge false_edge; extract_true_false_edges_from_block (bb, &true_edge, &false_edge); if (!true_edge || !false_edge || !(true_edge->flags & EDGE_TRUE_VALUE) || !(false_edge->flags & EDGE_FALSE_VALUE) || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL)) || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL)) || EDGE_COUNT (bb->succs) >= 3) { error ("wrong outgoing edge flags at end of bb %d", bb->index); err = 1; } } break; case GIMPLE_GOTO: if (simple_goto_p (stmt)) { error ("explicit goto at end of bb %d", bb->index); err = 1; } else { /* FIXME. We should double check that the labels in the destination blocks have their address taken. */ FOR_EACH_EDGE (e, ei, bb->succs) if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)) || !(e->flags & EDGE_ABNORMAL)) { error ("wrong outgoing edge flags at end of bb %d", bb->index); err = 1; } } break; case GIMPLE_CALL: if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN)) break; /* ... fallthru ... */ case GIMPLE_RETURN: if (!single_succ_p (bb) || (single_succ_edge (bb)->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))) { error ("wrong outgoing edge flags at end of bb %d", bb->index); err = 1; } if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun)) { error ("return edge does not point to exit in bb %d", bb->index); err = 1; } break; case GIMPLE_SWITCH: { tree prev; edge e; size_t i, n; n = gimple_switch_num_labels (stmt); /* Mark all the destination basic blocks. */ for (i = 0; i < n; ++i) { tree lab = CASE_LABEL (gimple_switch_label (stmt, i)); basic_block label_bb = label_to_block (lab); gcc_assert (!label_bb->aux || label_bb->aux == (void *)1); label_bb->aux = (void *)1; } /* Verify that the case labels are sorted. */ prev = gimple_switch_label (stmt, 0); for (i = 1; i < n; ++i) { tree c = gimple_switch_label (stmt, i); if (!CASE_LOW (c)) { error ("found default case not at the start of " "case vector"); err = 1; continue; } if (CASE_LOW (prev) && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c))) { error ("case labels not sorted: "); print_generic_expr (stderr, prev, 0); fprintf (stderr," is greater than "); print_generic_expr (stderr, c, 0); fprintf (stderr," but comes before it.\n"); err = 1; } prev = c; } /* VRP will remove the default case if it can prove it will never be executed. So do not verify there always exists a default case here. */ FOR_EACH_EDGE (e, ei, bb->succs) { if (!e->dest->aux) { error ("extra outgoing edge %d->%d", bb->index, e->dest->index); err = 1; } e->dest->aux = (void *)2; if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))) { error ("wrong outgoing edge flags at end of bb %d", bb->index); err = 1; } } /* Check that we have all of them. */ for (i = 0; i < n; ++i) { tree lab = CASE_LABEL (gimple_switch_label (stmt, i)); basic_block label_bb = label_to_block (lab); if (label_bb->aux != (void *)2) { error ("missing edge %i->%i", bb->index, label_bb->index); err = 1; } } FOR_EACH_EDGE (e, ei, bb->succs) e->dest->aux = (void *)0; } break; case GIMPLE_EH_DISPATCH: err |= verify_eh_dispatch_edge (stmt); break; default: break; } } if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY) verify_dominators (CDI_DOMINATORS); return err; } /* Updates phi nodes after creating a forwarder block joined by edge FALLTHRU. */ static void gimple_make_forwarder_block (edge fallthru) { edge e; edge_iterator ei; basic_block dummy, bb; tree var; gimple_stmt_iterator gsi; dummy = fallthru->src; bb = fallthru->dest; if (single_pred_p (bb)) return; /* If we redirected a branch we must create new PHI nodes at the start of BB. */ for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple phi, new_phi; phi = gsi_stmt (gsi); var = gimple_phi_result (phi); new_phi = create_phi_node (var, bb); gimple_phi_set_result (phi, copy_ssa_name (var, phi)); add_phi_arg (new_phi, gimple_phi_result (phi), fallthru, UNKNOWN_LOCATION); } /* Add the arguments we have stored on edges. */ FOR_EACH_EDGE (e, ei, bb->preds) { if (e == fallthru) continue; flush_pending_stmts (e); } } /* Return a non-special label in the head of basic block BLOCK. Create one if it doesn't exist. */ tree gimple_block_label (basic_block bb) { gimple_stmt_iterator i, s = gsi_start_bb (bb); bool first = true; tree label; gimple stmt; for (i = s; !gsi_end_p (i); first = false, gsi_next (&i)) { stmt = gsi_stmt (i); if (gimple_code (stmt) != GIMPLE_LABEL) break; label = gimple_label_label (stmt); if (!DECL_NONLOCAL (label)) { if (!first) gsi_move_before (&i, &s); return label; } } label = create_artificial_label (UNKNOWN_LOCATION); stmt = gimple_build_label (label); gsi_insert_before (&s, stmt, GSI_NEW_STMT); return label; } /* Attempt to perform edge redirection by replacing a possibly complex jump instruction by a goto or by removing the jump completely. This can apply only if all edges now point to the same block. The parameters and return values are equivalent to redirect_edge_and_branch. */ static edge gimple_try_redirect_by_replacing_jump (edge e, basic_block target) { basic_block src = e->src; gimple_stmt_iterator i; gimple stmt; /* We can replace or remove a complex jump only when we have exactly two edges. */ if (EDGE_COUNT (src->succs) != 2 /* Verify that all targets will be TARGET. Specifically, the edge that is not E must also go to TARGET. */ || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target) return NULL; i = gsi_last_bb (src); if (gsi_end_p (i)) return NULL; stmt = gsi_stmt (i); if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH) { gsi_remove (&i, true); e = ssa_redirect_edge (e, target); e->flags = EDGE_FALLTHRU; return e; } return NULL; } /* Redirect E to DEST. Return NULL on failure. Otherwise, return the edge representing the redirected branch. */ static edge gimple_redirect_edge_and_branch (edge e, basic_block dest) { basic_block bb = e->src; gimple_stmt_iterator gsi; edge ret; gimple stmt; if (e->flags & EDGE_ABNORMAL) return NULL; if (e->dest == dest) return NULL; if (e->flags & EDGE_EH) return redirect_eh_edge (e, dest); if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)) { ret = gimple_try_redirect_by_replacing_jump (e, dest); if (ret) return ret; } gsi = gsi_last_bb (bb); stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi); switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK) { case GIMPLE_COND: /* For COND_EXPR, we only need to redirect the edge. */ break; case GIMPLE_GOTO: /* No non-abnormal edges should lead from a non-simple goto, and simple ones should be represented implicitly. */ gcc_unreachable (); case GIMPLE_SWITCH: { tree label = gimple_block_label (dest); tree cases = get_cases_for_edge (e, stmt); /* If we have a list of cases associated with E, then use it as it's a lot faster than walking the entire case vector. */ if (cases) { edge e2 = find_edge (e->src, dest); tree last, first; first = cases; while (cases) { last = cases; CASE_LABEL (cases) = label; cases = CASE_CHAIN (cases); } /* If there was already an edge in the CFG, then we need to move all the cases associated with E to E2. */ if (e2) { tree cases2 = get_cases_for_edge (e2, stmt); CASE_CHAIN (last) = CASE_CHAIN (cases2); CASE_CHAIN (cases2) = first; } bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index); } else { size_t i, n = gimple_switch_num_labels (stmt); for (i = 0; i < n; i++) { tree elt = gimple_switch_label (stmt, i); if (label_to_block (CASE_LABEL (elt)) == e->dest) CASE_LABEL (elt) = label; } } } break; case GIMPLE_ASM: { int i, n = gimple_asm_nlabels (stmt); tree label = NULL; for (i = 0; i < n; ++i) { tree cons = gimple_asm_label_op (stmt, i); if (label_to_block (TREE_VALUE (cons)) == e->dest) { if (!label) label = gimple_block_label (dest); TREE_VALUE (cons) = label; } } /* If we didn't find any label matching the former edge in the asm labels, we must be redirecting the fallthrough edge. */ gcc_assert (label || (e->flags & EDGE_FALLTHRU)); } break; case GIMPLE_RETURN: gsi_remove (&gsi, true); e->flags |= EDGE_FALLTHRU; break; case GIMPLE_OMP_RETURN: case GIMPLE_OMP_CONTINUE: case GIMPLE_OMP_SECTIONS_SWITCH: case GIMPLE_OMP_FOR: /* The edges from OMP constructs can be simply redirected. */ break; case GIMPLE_EH_DISPATCH: if (!(e->flags & EDGE_FALLTHRU)) redirect_eh_dispatch_edge (stmt, e, dest); break; case GIMPLE_TRANSACTION: /* The ABORT edge has a stored label associated with it, otherwise the edges are simply redirectable. */ if (e->flags == 0) gimple_transaction_set_label (stmt, gimple_block_label (dest)); break; default: /* Otherwise it must be a fallthru edge, and we don't need to do anything besides redirecting it. */ gcc_assert (e->flags & EDGE_FALLTHRU); break; } /* Update/insert PHI nodes as necessary. */ /* Now update the edges in the CFG. */ e = ssa_redirect_edge (e, dest); return e; } /* Returns true if it is possible to remove edge E by redirecting it to the destination of the other edge from E->src. */ static bool gimple_can_remove_branch_p (const_edge e) { if (e->flags & (EDGE_ABNORMAL | EDGE_EH)) return false; return true; } /* Simple wrapper, as we can always redirect fallthru edges. */ static basic_block gimple_redirect_edge_and_branch_force (edge e, basic_block dest) { e = gimple_redirect_edge_and_branch (e, dest); gcc_assert (e); return NULL; } /* Splits basic block BB after statement STMT (but at least after the labels). If STMT is NULL, BB is split just after the labels. */ static basic_block gimple_split_block (basic_block bb, void *stmt) { gimple_stmt_iterator gsi; gimple_stmt_iterator gsi_tgt; gimple act; gimple_seq list; basic_block new_bb; edge e; edge_iterator ei; new_bb = create_empty_bb (bb); /* Redirect the outgoing edges. */ new_bb->succs = bb->succs; bb->succs = NULL; FOR_EACH_EDGE (e, ei, new_bb->succs) e->src = new_bb; if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL) stmt = NULL; /* Move everything from GSI to the new basic block. */ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { act = gsi_stmt (gsi); if (gimple_code (act) == GIMPLE_LABEL) continue; if (!stmt) break; if (stmt == act) { gsi_next (&gsi); break; } } if (gsi_end_p (gsi)) return new_bb; /* Split the statement list - avoid re-creating new containers as this brings ugly quadratic memory consumption in the inliner. (We are still quadratic since we need to update stmt BB pointers, sadly.) */ gsi_split_seq_before (&gsi, &list); set_bb_seq (new_bb, list); for (gsi_tgt = gsi_start (list); !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt)) gimple_set_bb (gsi_stmt (gsi_tgt), new_bb); return new_bb; } /* Moves basic block BB after block AFTER. */ static bool gimple_move_block_after (basic_block bb, basic_block after) { if (bb->prev_bb == after) return true; unlink_block (bb); link_block (bb, after); return true; } /* Return TRUE if block BB has no executable statements, otherwise return FALSE. */ static bool gimple_empty_block_p (basic_block bb) { /* BB must have no executable statements. */ gimple_stmt_iterator gsi = gsi_after_labels (bb); if (phi_nodes (bb)) return false; if (gsi_end_p (gsi)) return true; if (is_gimple_debug (gsi_stmt (gsi))) gsi_next_nondebug (&gsi); return gsi_end_p (gsi); } /* Split a basic block if it ends with a conditional branch and if the other part of the block is not empty. */ static basic_block gimple_split_block_before_cond_jump (basic_block bb) { gimple last, split_point; gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb); if (gsi_end_p (gsi)) return NULL; last = gsi_stmt (gsi); if (gimple_code (last) != GIMPLE_COND && gimple_code (last) != GIMPLE_SWITCH) return NULL; gsi_prev_nondebug (&gsi); split_point = gsi_stmt (gsi); return split_block (bb, split_point)->dest; } /* Return true if basic_block can be duplicated. */ static bool gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED) { return true; } /* Create a duplicate of the basic block BB. NOTE: This does not preserve SSA form. */ static basic_block gimple_duplicate_bb (basic_block bb) { basic_block new_bb; gimple_stmt_iterator gsi, gsi_tgt; gimple_seq phis = phi_nodes (bb); gimple phi, stmt, copy; new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb); /* Copy the PHI nodes. We ignore PHI node arguments here because the incoming edges have not been setup yet. */ for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi)) { phi = gsi_stmt (gsi); copy = create_phi_node (NULL_TREE, new_bb); create_new_def_for (gimple_phi_result (phi), copy, gimple_phi_result_ptr (copy)); gimple_set_uid (copy, gimple_uid (phi)); } gsi_tgt = gsi_start_bb (new_bb); for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { def_operand_p def_p; ssa_op_iter op_iter; tree lhs; stmt = gsi_stmt (gsi); if (gimple_code (stmt) == GIMPLE_LABEL) continue; /* Don't duplicate label debug stmts. */ if (gimple_debug_bind_p (stmt) && TREE_CODE (gimple_debug_bind_get_var (stmt)) == LABEL_DECL) continue; /* Create a new copy of STMT and duplicate STMT's virtual operands. */ copy = gimple_copy (stmt); gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT); maybe_duplicate_eh_stmt (copy, stmt); gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt); /* When copying around a stmt writing into a local non-user aggregate, make sure it won't share stack slot with other vars. */ lhs = gimple_get_lhs (stmt); if (lhs && TREE_CODE (lhs) != SSA_NAME) { tree base = get_base_address (lhs); if (base && (TREE_CODE (base) == VAR_DECL || TREE_CODE (base) == RESULT_DECL) && DECL_IGNORED_P (base) && !TREE_STATIC (base) && !DECL_EXTERNAL (base) && (TREE_CODE (base) != VAR_DECL || !DECL_HAS_VALUE_EXPR_P (base))) DECL_NONSHAREABLE (base) = 1; } /* Create new names for all the definitions created by COPY and add replacement mappings for each new name. */ FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS) create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p); } return new_bb; } /* Adds phi node arguments for edge E_COPY after basic block duplication. */ static void add_phi_args_after_copy_edge (edge e_copy) { basic_block bb, bb_copy = e_copy->src, dest; edge e; edge_iterator ei; gimple phi, phi_copy; tree def; gimple_stmt_iterator psi, psi_copy; if (gimple_seq_empty_p (phi_nodes (e_copy->dest))) return; bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy; if (e_copy->dest->flags & BB_DUPLICATED) dest = get_bb_original (e_copy->dest); else dest = e_copy->dest; e = find_edge (bb, dest); if (!e) { /* During loop unrolling the target of the latch edge is copied. In this case we are not looking for edge to dest, but to duplicated block whose original was dest. */ FOR_EACH_EDGE (e, ei, bb->succs) { if ((e->dest->flags & BB_DUPLICATED) && get_bb_original (e->dest) == dest) break; } gcc_assert (e != NULL); } for (psi = gsi_start_phis (e->dest), psi_copy = gsi_start_phis (e_copy->dest); !gsi_end_p (psi); gsi_next (&psi), gsi_next (&psi_copy)) { phi = gsi_stmt (psi); phi_copy = gsi_stmt (psi_copy); def = PHI_ARG_DEF_FROM_EDGE (phi, e); add_phi_arg (phi_copy, def, e_copy, gimple_phi_arg_location_from_edge (phi, e)); } } /* Basic block BB_COPY was created by code duplication. Add phi node arguments for edges going out of BB_COPY. The blocks that were duplicated have BB_DUPLICATED set. */ void add_phi_args_after_copy_bb (basic_block bb_copy) { edge e_copy; edge_iterator ei; FOR_EACH_EDGE (e_copy, ei, bb_copy->succs) { add_phi_args_after_copy_edge (e_copy); } } /* Blocks in REGION_COPY array of length N_REGION were created by duplication of basic blocks. Add phi node arguments for edges going from these blocks. If E_COPY is not NULL, also add phi node arguments for its destination.*/ void add_phi_args_after_copy (basic_block *region_copy, unsigned n_region, edge e_copy) { unsigned i; for (i = 0; i < n_region; i++) region_copy[i]->flags |= BB_DUPLICATED; for (i = 0; i < n_region; i++) add_phi_args_after_copy_bb (region_copy[i]); if (e_copy) add_phi_args_after_copy_edge (e_copy); for (i = 0; i < n_region; i++) region_copy[i]->flags &= ~BB_DUPLICATED; } /* Duplicates a REGION (set of N_REGION basic blocks) with just a single important exit edge EXIT. By important we mean that no SSA name defined inside region is live over the other exit edges of the region. All entry edges to the region must go to ENTRY->dest. The edge ENTRY is redirected to the duplicate of the region. Dominance and loop information is updated if UPDATE_DOMINANCE is true, but not the SSA web. If UPDATE_DOMINANCE is false then we assume that the caller will update the dominance information after calling this function. The new basic blocks are stored to REGION_COPY in the same order as they had in REGION, provided that REGION_COPY is not NULL. The function returns false if it is unable to copy the region, true otherwise. */ bool gimple_duplicate_sese_region (edge entry, edge exit, basic_block *region, unsigned n_region, basic_block *region_copy, bool update_dominance) { unsigned i; bool free_region_copy = false, copying_header = false; struct loop *loop = entry->dest->loop_father; edge exit_copy; vec<basic_block> doms; edge redirected; int total_freq = 0, entry_freq = 0; gcov_type total_count = 0, entry_count = 0; if (!can_copy_bbs_p (region, n_region)) return false; /* Some sanity checking. Note that we do not check for all possible missuses of the functions. I.e. if you ask to copy something weird, it will work, but the state of structures probably will not be correct. */ for (i = 0; i < n_region; i++) { /* We do not handle subloops, i.e. all the blocks must belong to the same loop. */ if (region[i]->loop_father != loop) return false; if (region[i] != entry->dest && region[i] == loop->header) return false; } set_loop_copy (loop, loop); /* In case the function is used for loop header copying (which is the primary use), ensure that EXIT and its copy will be new latch and entry edges. */ if (loop->header == entry->dest) { copying_header = true; set_loop_copy (loop, loop_outer (loop)); if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src)) return false; for (i = 0; i < n_region; i++) if (region[i] != exit->src && dominated_by_p (CDI_DOMINATORS, region[i], exit->src)) return false; } if (!region_copy) { region_copy = XNEWVEC (basic_block, n_region); free_region_copy = true; } initialize_original_copy_tables (); /* Record blocks outside the region that are dominated by something inside. */ if (update_dominance) { doms.create (0); doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region); } if (entry->dest->count) { total_count = entry->dest->count; entry_count = entry->count; /* Fix up corner cases, to avoid division by zero or creation of negative frequencies. */ if (entry_count > total_count) entry_count = total_count; } else { total_freq = entry->dest->frequency; entry_freq = EDGE_FREQUENCY (entry); /* Fix up corner cases, to avoid division by zero or creation of negative frequencies. */ if (total_freq == 0) total_freq = 1; else if (entry_freq > total_freq) entry_freq = total_freq; } copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop, split_edge_bb_loc (entry), update_dominance); if (total_count) { scale_bbs_frequencies_gcov_type (region, n_region, total_count - entry_count, total_count); scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count, total_count); } else { scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq, total_freq); scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq); } if (copying_header) { loop->header = exit->dest; loop->latch = exit->src; } /* Redirect the entry and add the phi node arguments. */ redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest)); gcc_assert (redirected != NULL); flush_pending_stmts (entry); /* Concerning updating of dominators: We must recount dominators for entry block and its copy. Anything that is outside of the region, but was dominated by something inside needs recounting as well. */ if (update_dominance) { set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src); doms.safe_push (get_bb_original (entry->dest)); iterate_fix_dominators (CDI_DOMINATORS, doms, false); doms.release (); } /* Add the other PHI node arguments. */ add_phi_args_after_copy (region_copy, n_region, NULL); if (free_region_copy) free (region_copy); free_original_copy_tables (); return true; } /* Checks if BB is part of the region defined by N_REGION BBS. */ static bool bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region) { unsigned int n; for (n = 0; n < n_region; n++) { if (bb == bbs[n]) return true; } return false; } /* Duplicates REGION consisting of N_REGION blocks. The new blocks are stored to REGION_COPY in the same order in that they appear in REGION, if REGION_COPY is not NULL. ENTRY is the entry to the region, EXIT an exit from it. The condition guarding EXIT is moved to ENTRY. Returns true if duplication succeeds, false otherwise. For example, some_code; if (cond) A; else B; is transformed to if (cond) { some_code; A; } else { some_code; B; } */ bool gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED, basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED, basic_block *region_copy ATTRIBUTE_UNUSED) { unsigned i; bool free_region_copy = false; struct loop *loop = exit->dest->loop_father; struct loop *orig_loop = entry->dest->loop_father; basic_block switch_bb, entry_bb, nentry_bb; vec<basic_block> doms; int total_freq = 0, exit_freq = 0; gcov_type total_count = 0, exit_count = 0; edge exits[2], nexits[2], e; gimple_stmt_iterator gsi; gimple cond_stmt; edge sorig, snew; basic_block exit_bb; gimple_stmt_iterator psi; gimple phi; tree def; struct loop *target, *aloop, *cloop; gcc_assert (EDGE_COUNT (exit->src->succs) == 2); exits[0] = exit; exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit); if (!can_copy_bbs_p (region, n_region)) return false; initialize_original_copy_tables (); set_loop_copy (orig_loop, loop); target= loop; for (aloop = orig_loop->inner; aloop; aloop = aloop->next) { if (bb_part_of_region_p (aloop->header, region, n_region)) { cloop = duplicate_loop (aloop, target); duplicate_subloops (aloop, cloop); } } if (!region_copy) { region_copy = XNEWVEC (basic_block, n_region); free_region_copy = true; } gcc_assert (!need_ssa_update_p (cfun)); /* Record blocks outside the region that are dominated by something inside. */ doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region); if (exit->src->count) { total_count = exit->src->count; exit_count = exit->count; /* Fix up corner cases, to avoid division by zero or creation of negative frequencies. */ if (exit_count > total_count) exit_count = total_count; } else { total_freq = exit->src->frequency; exit_freq = EDGE_FREQUENCY (exit); /* Fix up corner cases, to avoid division by zero or creation of negative frequencies. */ if (total_freq == 0) total_freq = 1; if (exit_freq > total_freq) exit_freq = total_freq; } copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop, split_edge_bb_loc (exit), true); if (total_count) { scale_bbs_frequencies_gcov_type (region, n_region, total_count - exit_count, total_count); scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count, total_count); } else { scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq, total_freq); scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq); } /* Create the switch block, and put the exit condition to it. */ entry_bb = entry->dest; nentry_bb = get_bb_copy (entry_bb); if (!last_stmt (entry->src) || !stmt_ends_bb_p (last_stmt (entry->src))) switch_bb = entry->src; else switch_bb = split_edge (entry); set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb); gsi = gsi_last_bb (switch_bb); cond_stmt = last_stmt (exit->src); gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND); cond_stmt = gimple_copy (cond_stmt); gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT); sorig = single_succ_edge (switch_bb); sorig->flags = exits[1]->flags; snew = make_edge (switch_bb, nentry_bb, exits[0]->flags); /* Register the new edge from SWITCH_BB in loop exit lists. */ rescan_loop_exit (snew, true, false); /* Add the PHI node arguments. */ add_phi_args_after_copy (region_copy, n_region, snew); /* Get rid of now superfluous conditions and associated edges (and phi node arguments). */ exit_bb = exit->dest; e = redirect_edge_and_branch (exits[0], exits[1]->dest); PENDING_STMT (e) = NULL; /* The latch of ORIG_LOOP was copied, and so was the backedge to the original header. We redirect this backedge to EXIT_BB. */ for (i = 0; i < n_region; i++) if (get_bb_original (region_copy[i]) == orig_loop->latch) { gcc_assert (single_succ_edge (region_copy[i])); e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb); PENDING_STMT (e) = NULL; for (psi = gsi_start_phis (exit_bb); !gsi_end_p (psi); gsi_next (&psi)) { phi = gsi_stmt (psi); def = PHI_ARG_DEF (phi, nexits[0]->dest_idx); add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e)); } } e = redirect_edge_and_branch (nexits[1], nexits[0]->dest); PENDING_STMT (e) = NULL; /* Anything that is outside of the region, but was dominated by something inside needs to update dominance info. */ iterate_fix_dominators (CDI_DOMINATORS, doms, false); doms.release (); /* Update the SSA web. */ update_ssa (TODO_update_ssa); if (free_region_copy) free (region_copy); free_original_copy_tables (); return true; } /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop adding blocks when the dominator traversal reaches EXIT. This function silently assumes that ENTRY strictly dominates EXIT. */ void gather_blocks_in_sese_region (basic_block entry, basic_block exit, vec<basic_block> *bbs_p) { basic_block son; for (son = first_dom_son (CDI_DOMINATORS, entry); son; son = next_dom_son (CDI_DOMINATORS, son)) { bbs_p->safe_push (son); if (son != exit) gather_blocks_in_sese_region (son, exit, bbs_p); } } /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT). The duplicates are recorded in VARS_MAP. */ static void replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map, tree to_context) { tree t = *tp, new_t; struct function *f = DECL_STRUCT_FUNCTION (to_context); void **loc; if (DECL_CONTEXT (t) == to_context) return; loc = pointer_map_contains (vars_map, t); if (!loc) { loc = pointer_map_insert (vars_map, t); if (SSA_VAR_P (t)) { new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t)); add_local_decl (f, new_t); } else { gcc_assert (TREE_CODE (t) == CONST_DECL); new_t = copy_node (t); } DECL_CONTEXT (new_t) = to_context; *loc = new_t; } else new_t = (tree) *loc; *tp = new_t; } /* Creates an ssa name in TO_CONTEXT equivalent to NAME. VARS_MAP maps old ssa names and var_decls to the new ones. */ static tree replace_ssa_name (tree name, struct pointer_map_t *vars_map, tree to_context) { void **loc; tree new_name; gcc_assert (!virtual_operand_p (name)); loc = pointer_map_contains (vars_map, name); if (!loc) { tree decl = SSA_NAME_VAR (name); if (decl) { replace_by_duplicate_decl (&decl, vars_map, to_context); new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context), decl, SSA_NAME_DEF_STMT (name)); if (SSA_NAME_IS_DEFAULT_DEF (name)) set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context), decl, new_name); } else new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context), name, SSA_NAME_DEF_STMT (name)); loc = pointer_map_insert (vars_map, name); *loc = new_name; } else new_name = (tree) *loc; return new_name; } struct move_stmt_d { tree orig_block; tree new_block; tree from_context; tree to_context; struct pointer_map_t *vars_map; htab_t new_label_map; struct pointer_map_t *eh_map; bool remap_decls_p; }; /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression contained in *TP if it has been ORIG_BLOCK previously and change the DECL_CONTEXT of every local variable referenced in *TP. */ static tree move_stmt_op (tree *tp, int *walk_subtrees, void *data) { struct walk_stmt_info *wi = (struct walk_stmt_info *) data; struct move_stmt_d *p = (struct move_stmt_d *) wi->info; tree t = *tp; if (EXPR_P (t)) { tree block = TREE_BLOCK (t); if (block == p->orig_block || (p->orig_block == NULL_TREE && block != NULL_TREE)) TREE_SET_BLOCK (t, p->new_block); #ifdef ENABLE_CHECKING else if (block != NULL_TREE) { while (block && TREE_CODE (block) == BLOCK && block != p->orig_block) block = BLOCK_SUPERCONTEXT (block); gcc_assert (block == p->orig_block); } #endif } else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME) { if (TREE_CODE (t) == SSA_NAME) *tp = replace_ssa_name (t, p->vars_map, p->to_context); else if (TREE_CODE (t) == LABEL_DECL) { if (p->new_label_map) { struct tree_map in, *out; in.base.from = t; out = (struct tree_map *) htab_find_with_hash (p->new_label_map, &in, DECL_UID (t)); if (out) *tp = t = out->to; } DECL_CONTEXT (t) = p->to_context; } else if (p->remap_decls_p) { /* Replace T with its duplicate. T should no longer appear in the parent function, so this looks wasteful; however, it may appear in referenced_vars, and more importantly, as virtual operands of statements, and in alias lists of other variables. It would be quite difficult to expunge it from all those places. ??? It might suffice to do this for addressable variables. */ if ((TREE_CODE (t) == VAR_DECL && !is_global_var (t)) || TREE_CODE (t) == CONST_DECL) replace_by_duplicate_decl (tp, p->vars_map, p->to_context); } *walk_subtrees = 0; } else if (TYPE_P (t)) *walk_subtrees = 0; return NULL_TREE; } /* Helper for move_stmt_r. Given an EH region number for the source function, map that to the duplicate EH regio number in the dest. */ static int move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p) { eh_region old_r, new_r; void **slot; old_r = get_eh_region_from_number (old_nr); slot = pointer_map_contains (p->eh_map, old_r); new_r = (eh_region) *slot; return new_r->index; } /* Similar, but operate on INTEGER_CSTs. */ static tree move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p) { int old_nr, new_nr; old_nr = tree_to_shwi (old_t_nr); new_nr = move_stmt_eh_region_nr (old_nr, p); return build_int_cst (integer_type_node, new_nr); } /* Like move_stmt_op, but for gimple statements. Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression contained in the current statement in *GSI_P and change the DECL_CONTEXT of every local variable referenced in the current statement. */ static tree move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p, struct walk_stmt_info *wi) { struct move_stmt_d *p = (struct move_stmt_d *) wi->info; gimple stmt = gsi_stmt (*gsi_p); tree block = gimple_block (stmt); if (block == p->orig_block || (p->orig_block == NULL_TREE && block != NULL_TREE)) gimple_set_block (stmt, p->new_block); switch (gimple_code (stmt)) { case GIMPLE_CALL: /* Remap the region numbers for __builtin_eh_{pointer,filter}. */ { tree r, fndecl = gimple_call_fndecl (stmt); if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) switch (DECL_FUNCTION_CODE (fndecl)) { case BUILT_IN_EH_COPY_VALUES: r = gimple_call_arg (stmt, 1); r = move_stmt_eh_region_tree_nr (r, p); gimple_call_set_arg (stmt, 1, r); /* FALLTHRU */ case BUILT_IN_EH_POINTER: case BUILT_IN_EH_FILTER: r = gimple_call_arg (stmt, 0); r = move_stmt_eh_region_tree_nr (r, p); gimple_call_set_arg (stmt, 0, r); break; default: break; } } break; case GIMPLE_RESX: { int r = gimple_resx_region (stmt); r = move_stmt_eh_region_nr (r, p); gimple_resx_set_region (stmt, r); } break; case GIMPLE_EH_DISPATCH: { int r = gimple_eh_dispatch_region (stmt); r = move_stmt_eh_region_nr (r, p); gimple_eh_dispatch_set_region (stmt, r); } break; case GIMPLE_OMP_RETURN: case GIMPLE_OMP_CONTINUE: break; default: if (is_gimple_omp (stmt)) { /* Do not remap variables inside OMP directives. Variables referenced in clauses and directive header belong to the parent function and should not be moved into the child function. */ bool save_remap_decls_p = p->remap_decls_p; p->remap_decls_p = false; *handled_ops_p = true; walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r, move_stmt_op, wi); p->remap_decls_p = save_remap_decls_p; } break; } return NULL_TREE; } /* Move basic block BB from function CFUN to function DEST_FN. The block is moved out of the original linked list and placed after block AFTER in the new list. Also, the block is removed from the original array of blocks and placed in DEST_FN's array of blocks. If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is updated to reflect the moved edges. The local variables are remapped to new instances, VARS_MAP is used to record the mapping. */ static void move_block_to_fn (struct function *dest_cfun, basic_block bb, basic_block after, bool update_edge_count_p, struct move_stmt_d *d) { struct control_flow_graph *cfg; edge_iterator ei; edge e; gimple_stmt_iterator si; unsigned old_len, new_len; /* Remove BB from dominance structures. */ delete_from_dominance_info (CDI_DOMINATORS, bb); /* Move BB from its current loop to the copy in the new function. */ if (current_loops) { struct loop *new_loop = (struct loop *)bb->loop_father->aux; if (new_loop) bb->loop_father = new_loop; } /* Link BB to the new linked list. */ move_block_after (bb, after); /* Update the edge count in the corresponding flowgraphs. */ if (update_edge_count_p) FOR_EACH_EDGE (e, ei, bb->succs) { cfun->cfg->x_n_edges--; dest_cfun->cfg->x_n_edges++; } /* Remove BB from the original basic block array. */ (*cfun->cfg->x_basic_block_info)[bb->index] = NULL; cfun->cfg->x_n_basic_blocks--; /* Grow DEST_CFUN's basic block array if needed. */ cfg = dest_cfun->cfg; cfg->x_n_basic_blocks++; if (bb->index >= cfg->x_last_basic_block) cfg->x_last_basic_block = bb->index + 1; old_len = vec_safe_length (cfg->x_basic_block_info); if ((unsigned) cfg->x_last_basic_block >= old_len) { new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4; vec_safe_grow_cleared (cfg->x_basic_block_info, new_len); } (*cfg->x_basic_block_info)[bb->index] = bb; /* Remap the variables in phi nodes. */ for (si = gsi_start_phis (bb); !gsi_end_p (si); ) { gimple phi = gsi_stmt (si); use_operand_p use; tree op = PHI_RESULT (phi); ssa_op_iter oi; unsigned i; if (virtual_operand_p (op)) { /* Remove the phi nodes for virtual operands (alias analysis will be run for the new function, anyway). */ remove_phi_node (&si, true); continue; } SET_PHI_RESULT (phi, replace_ssa_name (op, d->vars_map, dest_cfun->decl)); FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE) { op = USE_FROM_PTR (use); if (TREE_CODE (op) == SSA_NAME) SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl)); } for (i = 0; i < EDGE_COUNT (bb->preds); i++) { location_t locus = gimple_phi_arg_location (phi, i); tree block = LOCATION_BLOCK (locus); if (locus == UNKNOWN_LOCATION) continue; if (d->orig_block == NULL_TREE || block == d->orig_block) { if (d->new_block == NULL_TREE) locus = LOCATION_LOCUS (locus); else locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block); gimple_phi_arg_set_location (phi, i, locus); } } gsi_next (&si); } for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) { gimple stmt = gsi_stmt (si); struct walk_stmt_info wi; memset (&wi, 0, sizeof (wi)); wi.info = d; walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi); if (gimple_code (stmt) == GIMPLE_LABEL) { tree label = gimple_label_label (stmt); int uid = LABEL_DECL_UID (label); gcc_assert (uid > -1); old_len = vec_safe_length (cfg->x_label_to_block_map); if (old_len <= (unsigned) uid) { new_len = 3 * uid / 2 + 1; vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len); } (*cfg->x_label_to_block_map)[uid] = bb; (*cfun->cfg->x_label_to_block_map)[uid] = NULL; gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl); if (uid >= dest_cfun->cfg->last_label_uid) dest_cfun->cfg->last_label_uid = uid + 1; } maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0); remove_stmt_from_eh_lp_fn (cfun, stmt); gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt); gimple_remove_stmt_histograms (cfun, stmt); /* We cannot leave any operands allocated from the operand caches of the current function. */ free_stmt_operands (cfun, stmt); push_cfun (dest_cfun); update_stmt (stmt); pop_cfun (); } FOR_EACH_EDGE (e, ei, bb->succs) if (e->goto_locus != UNKNOWN_LOCATION) { tree block = LOCATION_BLOCK (e->goto_locus); if (d->orig_block == NULL_TREE || block == d->orig_block) e->goto_locus = d->new_block ? COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) : LOCATION_LOCUS (e->goto_locus); } } /* Examine the statements in BB (which is in SRC_CFUN); find and return the outermost EH region. Use REGION as the incoming base EH region. */ static eh_region find_outermost_region_in_block (struct function *src_cfun, basic_block bb, eh_region region) { gimple_stmt_iterator si; for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) { gimple stmt = gsi_stmt (si); eh_region stmt_region; int lp_nr; lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt); stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr); if (stmt_region) { if (region == NULL) region = stmt_region; else if (stmt_region != region) { region = eh_region_outermost (src_cfun, stmt_region, region); gcc_assert (region != NULL); } } } return region; } static tree new_label_mapper (tree decl, void *data) { htab_t hash = (htab_t) data; struct tree_map *m; void **slot; gcc_assert (TREE_CODE (decl) == LABEL_DECL); m = XNEW (struct tree_map); m->hash = DECL_UID (decl); m->base.from = decl; m->to = create_artificial_label (UNKNOWN_LOCATION); LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl); if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid) cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1; slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT); gcc_assert (*slot == NULL); *slot = m; return m->to; } /* Change DECL_CONTEXT of all BLOCK_VARS in block, including subblocks. */ static void replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map, tree to_context) { tree *tp, t; for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp)) { t = *tp; if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL) continue; replace_by_duplicate_decl (&t, vars_map, to_context); if (t != *tp) { if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp)) { SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp)); DECL_HAS_VALUE_EXPR_P (t) = 1; } DECL_CHAIN (t) = DECL_CHAIN (*tp); *tp = t; } } for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block)) replace_block_vars_by_duplicates (block, vars_map, to_context); } /* Fixup the loop arrays and numbers after moving LOOP and its subloops from FN1 to FN2. */ static void fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2, struct loop *loop) { /* Discard it from the old loop array. */ (*get_loops (fn1))[loop->num] = NULL; /* Place it in the new loop array, assigning it a new number. */ loop->num = number_of_loops (fn2); vec_safe_push (loops_for_fn (fn2)->larray, loop); /* Recurse to children. */ for (loop = loop->inner; loop; loop = loop->next) fixup_loop_arrays_after_move (fn1, fn2, loop); } /* Move a single-entry, single-exit region delimited by ENTRY_BB and EXIT_BB to function DEST_CFUN. The whole region is replaced by a single basic block in the original CFG and the new basic block is returned. DEST_CFUN must not have a CFG yet. Note that the region need not be a pure SESE region. Blocks inside the region may contain calls to abort/exit. The only restriction is that ENTRY_BB should be the only entry point and it must dominate EXIT_BB. Change TREE_BLOCK of all statements in ORIG_BLOCK to the new functions outermost BLOCK, move all subblocks of ORIG_BLOCK to the new function. All local variables referenced in the region are assumed to be in the corresponding BLOCK_VARS and unexpanded variable lists associated with DEST_CFUN. */ basic_block move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb, basic_block exit_bb, tree orig_block) { vec<basic_block> bbs, dom_bbs; basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb); basic_block after, bb, *entry_pred, *exit_succ, abb; struct function *saved_cfun = cfun; int *entry_flag, *exit_flag; unsigned *entry_prob, *exit_prob; unsigned i, num_entry_edges, num_exit_edges, num_nodes; edge e; edge_iterator ei; htab_t new_label_map; struct pointer_map_t *vars_map, *eh_map; struct loop *loop = entry_bb->loop_father; struct loop *loop0 = get_loop (saved_cfun, 0); struct move_stmt_d d; /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE region. */ gcc_assert (entry_bb != exit_bb && (!exit_bb || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb))); /* Collect all the blocks in the region. Manually add ENTRY_BB because it won't be added by dfs_enumerate_from. */ bbs.create (0); bbs.safe_push (entry_bb); gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs); /* The blocks that used to be dominated by something in BBS will now be dominated by the new block. */ dom_bbs = get_dominated_by_region (CDI_DOMINATORS, bbs.address (), bbs.length ()); /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember the predecessor edges to ENTRY_BB and the successor edges to EXIT_BB so that we can re-attach them to the new basic block that will replace the region. */ num_entry_edges = EDGE_COUNT (entry_bb->preds); entry_pred = XNEWVEC (basic_block, num_entry_edges); entry_flag = XNEWVEC (int, num_entry_edges); entry_prob = XNEWVEC (unsigned, num_entry_edges); i = 0; for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;) { entry_prob[i] = e->probability; entry_flag[i] = e->flags; entry_pred[i++] = e->src; remove_edge (e); } if (exit_bb) { num_exit_edges = EDGE_COUNT (exit_bb->succs); exit_succ = XNEWVEC (basic_block, num_exit_edges); exit_flag = XNEWVEC (int, num_exit_edges); exit_prob = XNEWVEC (unsigned, num_exit_edges); i = 0; for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;) { exit_prob[i] = e->probability; exit_flag[i] = e->flags; exit_succ[i++] = e->dest; remove_edge (e); } } else { num_exit_edges = 0; exit_succ = NULL; exit_flag = NULL; exit_prob = NULL; } /* Switch context to the child function to initialize DEST_FN's CFG. */ gcc_assert (dest_cfun->cfg == NULL); push_cfun (dest_cfun); init_empty_tree_cfg (); /* Initialize EH information for the new function. */ eh_map = NULL; new_label_map = NULL; if (saved_cfun->eh) { eh_region region = NULL; FOR_EACH_VEC_ELT (bbs, i, bb) region = find_outermost_region_in_block (saved_cfun, bb, region); init_eh_for_function (); if (region != NULL) { new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free); eh_map = duplicate_eh_regions (saved_cfun, region, 0, new_label_mapper, new_label_map); } } /* Initialize an empty loop tree. */ struct loops *loops = ggc_alloc_cleared_loops (); init_loops_structure (dest_cfun, loops, 1); loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES; set_loops_for_fn (dest_cfun, loops); /* Move the outlined loop tree part. */ num_nodes = bbs.length (); FOR_EACH_VEC_ELT (bbs, i, bb) { if (bb->loop_father->header == bb) { struct loop *this_loop = bb->loop_father; struct loop *outer = loop_outer (this_loop); if (outer == loop /* If the SESE region contains some bbs ending with a noreturn call, those are considered to belong to the outermost loop in saved_cfun, rather than the entry_bb's loop_father. */ || outer == loop0) { if (outer != loop) num_nodes -= this_loop->num_nodes; flow_loop_tree_node_remove (bb->loop_father); flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop); fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop); } } else if (bb->loop_father == loop0 && loop0 != loop) num_nodes--; /* Remove loop exits from the outlined region. */ if (loops_for_fn (saved_cfun)->exits) FOR_EACH_EDGE (e, ei, bb->succs) { void **slot = htab_find_slot_with_hash (loops_for_fn (saved_cfun)->exits, e, htab_hash_pointer (e), NO_INSERT); if (slot) htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot); } } /* Adjust the number of blocks in the tree root of the outlined part. */ get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2; /* Setup a mapping to be used by move_block_to_fn. */ loop->aux = current_loops->tree_root; loop0->aux = current_loops->tree_root; pop_cfun (); /* Move blocks from BBS into DEST_CFUN. */ gcc_assert (bbs.length () >= 2); after = dest_cfun->cfg->x_entry_block_ptr; vars_map = pointer_map_create (); memset (&d, 0, sizeof (d)); d.orig_block = orig_block; d.new_block = DECL_INITIAL (dest_cfun->decl); d.from_context = cfun->decl; d.to_context = dest_cfun->decl; d.vars_map = vars_map; d.new_label_map = new_label_map; d.eh_map = eh_map; d.remap_decls_p = true; FOR_EACH_VEC_ELT (bbs, i, bb) { /* No need to update edge counts on the last block. It has already been updated earlier when we detached the region from the original CFG. */ move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d); after = bb; } loop->aux = NULL; loop0->aux = NULL; /* Loop sizes are no longer correct, fix them up. */ loop->num_nodes -= num_nodes; for (struct loop *outer = loop_outer (loop); outer; outer = loop_outer (outer)) outer->num_nodes -= num_nodes; loop0->num_nodes -= bbs.length () - num_nodes; if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vect_loops) { struct loop *aloop; for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++) if (aloop != NULL) { if (aloop->simduid) { replace_by_duplicate_decl (&aloop->simduid, d.vars_map, d.to_context); dest_cfun->has_simduid_loops = true; } if (aloop->force_vect) dest_cfun->has_force_vect_loops = true; } } /* Rewire BLOCK_SUBBLOCKS of orig_block. */ if (orig_block) { tree block; gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl)) == NULL_TREE); BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl)) = BLOCK_SUBBLOCKS (orig_block); for (block = BLOCK_SUBBLOCKS (orig_block); block; block = BLOCK_CHAIN (block)) BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl); BLOCK_SUBBLOCKS (orig_block) = NULL_TREE; } replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl), vars_map, dest_cfun->decl); if (new_label_map) htab_delete (new_label_map); if (eh_map) pointer_map_destroy (eh_map); pointer_map_destroy (vars_map); /* Rewire the entry and exit blocks. The successor to the entry block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in the child function. Similarly, the predecessor of DEST_FN's EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the various CFG manipulation function get to the right CFG. FIXME, this is silly. The CFG ought to become a parameter to these helpers. */ push_cfun (dest_cfun); make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU); if (exit_bb) make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0); pop_cfun (); /* Back in the original function, the SESE region has disappeared, create a new basic block in its place. */ bb = create_empty_bb (entry_pred[0]); if (current_loops) add_bb_to_loop (bb, loop); for (i = 0; i < num_entry_edges; i++) { e = make_edge (entry_pred[i], bb, entry_flag[i]); e->probability = entry_prob[i]; } for (i = 0; i < num_exit_edges; i++) { e = make_edge (bb, exit_succ[i], exit_flag[i]); e->probability = exit_prob[i]; } set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry); FOR_EACH_VEC_ELT (dom_bbs, i, abb) set_immediate_dominator (CDI_DOMINATORS, abb, bb); dom_bbs.release (); if (exit_bb) { free (exit_prob); free (exit_flag); free (exit_succ); } free (entry_prob); free (entry_flag); free (entry_pred); bbs.release (); return bb; } /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h) */ void dump_function_to_file (tree fndecl, FILE *file, int flags) { tree arg, var, old_current_fndecl = current_function_decl; struct function *dsf; bool ignore_topmost_bind = false, any_var = false; basic_block bb; tree chain; bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL && decl_is_tm_clone (fndecl)); struct function *fun = DECL_STRUCT_FUNCTION (fndecl); current_function_decl = fndecl; fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : ""); arg = DECL_ARGUMENTS (fndecl); while (arg) { print_generic_expr (file, TREE_TYPE (arg), dump_flags); fprintf (file, " "); print_generic_expr (file, arg, dump_flags); if (flags & TDF_VERBOSE) print_node (file, "", arg, 4); if (DECL_CHAIN (arg)) fprintf (file, ", "); arg = DECL_CHAIN (arg); } fprintf (file, ")\n"); if (flags & TDF_VERBOSE) print_node (file, "", fndecl, 2); dsf = DECL_STRUCT_FUNCTION (fndecl); if (dsf && (flags & TDF_EH)) dump_eh_tree (file, dsf); if (flags & TDF_RAW && !gimple_has_body_p (fndecl)) { dump_node (fndecl, TDF_SLIM | flags, file); current_function_decl = old_current_fndecl; return; } /* When GIMPLE is lowered, the variables are no longer available in BIND_EXPRs, so display them separately. */ if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf)) { unsigned ix; ignore_topmost_bind = true; fprintf (file, "{\n"); if (!vec_safe_is_empty (fun->local_decls)) FOR_EACH_LOCAL_DECL (fun, ix, var) { print_generic_decl (file, var, flags); if (flags & TDF_VERBOSE) print_node (file, "", var, 4); fprintf (file, "\n"); any_var = true; } if (gimple_in_ssa_p (cfun)) for (ix = 1; ix < num_ssa_names; ++ix) { tree name = ssa_name (ix); if (name && !SSA_NAME_VAR (name)) { fprintf (file, " "); print_generic_expr (file, TREE_TYPE (name), flags); fprintf (file, " "); print_generic_expr (file, name, flags); fprintf (file, ";\n"); any_var = true; } } } if (fun && fun->decl == fndecl && fun->cfg && basic_block_info_for_fn (fun)) { /* If the CFG has been built, emit a CFG-based dump. */ if (!ignore_topmost_bind) fprintf (file, "{\n"); if (any_var && n_basic_blocks_for_fn (fun)) fprintf (file, "\n"); FOR_EACH_BB_FN (bb, fun) dump_bb (file, bb, 2, flags | TDF_COMMENT); fprintf (file, "}\n"); } else if (DECL_SAVED_TREE (fndecl) == NULL) { /* The function is now in GIMPLE form but the CFG has not been built yet. Emit the single sequence of GIMPLE statements that make up its body. */ gimple_seq body = gimple_body (fndecl); if (gimple_seq_first_stmt (body) && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body) && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND) print_gimple_seq (file, body, 0, flags); else { if (!ignore_topmost_bind) fprintf (file, "{\n"); if (any_var) fprintf (file, "\n"); print_gimple_seq (file, body, 2, flags); fprintf (file, "}\n"); } } else { int indent; /* Make a tree based dump. */ chain = DECL_SAVED_TREE (fndecl); if (chain && TREE_CODE (chain) == BIND_EXPR) { if (ignore_topmost_bind) { chain = BIND_EXPR_BODY (chain); indent = 2; } else indent = 0; } else { if (!ignore_topmost_bind) fprintf (file, "{\n"); indent = 2; } if (any_var) fprintf (file, "\n"); print_generic_stmt_indented (file, chain, flags, indent); if (ignore_topmost_bind) fprintf (file, "}\n"); } if (flags & TDF_ENUMERATE_LOCALS) dump_enumerated_decls (file, flags); fprintf (file, "\n\n"); current_function_decl = old_current_fndecl; } /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */ DEBUG_FUNCTION void debug_function (tree fn, int flags) { dump_function_to_file (fn, stderr, flags); } /* Print on FILE the indexes for the predecessors of basic_block BB. */ static void print_pred_bbs (FILE *file, basic_block bb) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->preds) fprintf (file, "bb_%d ", e->src->index); } /* Print on FILE the indexes for the successors of basic_block BB. */ static void print_succ_bbs (FILE *file, basic_block bb) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->succs) fprintf (file, "bb_%d ", e->dest->index); } /* Print to FILE the basic block BB following the VERBOSITY level. */ void print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity) { char *s_indent = (char *) alloca ((size_t) indent + 1); memset ((void *) s_indent, ' ', (size_t) indent); s_indent[indent] = '\0'; /* Print basic_block's header. */ if (verbosity >= 2) { fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index); print_pred_bbs (file, bb); fprintf (file, "}, succs = {"); print_succ_bbs (file, bb); fprintf (file, "})\n"); } /* Print basic_block's body. */ if (verbosity >= 3) { fprintf (file, "%s {\n", s_indent); dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS); fprintf (file, "%s }\n", s_indent); } } static void print_loop_and_siblings (FILE *, struct loop *, int, int); /* Pretty print LOOP on FILE, indented INDENT spaces. Following VERBOSITY level this outputs the contents of the loop, or just its structure. */ static void print_loop (FILE *file, struct loop *loop, int indent, int verbosity) { char *s_indent; basic_block bb; if (loop == NULL) return; s_indent = (char *) alloca ((size_t) indent + 1); memset ((void *) s_indent, ' ', (size_t) indent); s_indent[indent] = '\0'; /* Print loop's header. */ fprintf (file, "%sloop_%d (", s_indent, loop->num); if (loop->header) fprintf (file, "header = %d", loop->header->index); else { fprintf (file, "deleted)\n"); return; } if (loop->latch) fprintf (file, ", latch = %d", loop->latch->index); else fprintf (file, ", multiple latches"); fprintf (file, ", niter = "); print_generic_expr (file, loop->nb_iterations, 0); if (loop->any_upper_bound) { fprintf (file, ", upper_bound = "); dump_double_int (file, loop->nb_iterations_upper_bound, true); } if (loop->any_estimate) { fprintf (file, ", estimate = "); dump_double_int (file, loop->nb_iterations_estimate, true); } fprintf (file, ")\n"); /* Print loop's body. */ if (verbosity >= 1) { fprintf (file, "%s{\n", s_indent); FOR_EACH_BB_FN (bb, cfun) if (bb->loop_father == loop) print_loops_bb (file, bb, indent, verbosity); print_loop_and_siblings (file, loop->inner, indent + 2, verbosity); fprintf (file, "%s}\n", s_indent); } } /* Print the LOOP and its sibling loops on FILE, indented INDENT spaces. Following VERBOSITY level this outputs the contents of the loop, or just its structure. */ static void print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity) { if (loop == NULL) return; print_loop (file, loop, indent, verbosity); print_loop_and_siblings (file, loop->next, indent, verbosity); } /* Follow a CFG edge from the entry point of the program, and on entry of a loop, pretty print the loop structure on FILE. */ void print_loops (FILE *file, int verbosity) { basic_block bb; bb = ENTRY_BLOCK_PTR_FOR_FN (cfun); if (bb && bb->loop_father) print_loop_and_siblings (file, bb->loop_father, 0, verbosity); } /* Dump a loop. */ DEBUG_FUNCTION void debug (struct loop &ref) { print_loop (stderr, &ref, 0, /*verbosity*/0); } DEBUG_FUNCTION void debug (struct loop *ptr) { if (ptr) debug (*ptr); else fprintf (stderr, "<nil>\n"); } /* Dump a loop verbosely. */ DEBUG_FUNCTION void debug_verbose (struct loop &ref) { print_loop (stderr, &ref, 0, /*verbosity*/3); } DEBUG_FUNCTION void debug_verbose (struct loop *ptr) { if (ptr) debug (*ptr); else fprintf (stderr, "<nil>\n"); } /* Debugging loops structure at tree level, at some VERBOSITY level. */ DEBUG_FUNCTION void debug_loops (int verbosity) { print_loops (stderr, verbosity); } /* Print on stderr the code of LOOP, at some VERBOSITY level. */ DEBUG_FUNCTION void debug_loop (struct loop *loop, int verbosity) { print_loop (stderr, loop, 0, verbosity); } /* Print on stderr the code of loop number NUM, at some VERBOSITY level. */ DEBUG_FUNCTION void debug_loop_num (unsigned num, int verbosity) { debug_loop (get_loop (cfun, num), verbosity); } /* Return true if BB ends with a call, possibly followed by some instructions that must stay with the call. Return false, otherwise. */ static bool gimple_block_ends_with_call_p (basic_block bb) { gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb); return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi)); } /* Return true if BB ends with a conditional branch. Return false, otherwise. */ static bool gimple_block_ends_with_condjump_p (const_basic_block bb) { gimple stmt = last_stmt (CONST_CAST_BB (bb)); return (stmt && gimple_code (stmt) == GIMPLE_COND); } /* Return true if we need to add fake edge to exit at statement T. Helper function for gimple_flow_call_edges_add. */ static bool need_fake_edge_p (gimple t) { tree fndecl = NULL_TREE; int call_flags = 0; /* NORETURN and LONGJMP calls already have an edge to exit. CONST and PURE calls do not need one. We don't currently check for CONST and PURE here, although it would be a good idea, because those attributes are figured out from the RTL in mark_constant_function, and the counter incrementation code from -fprofile-arcs leads to different results from -fbranch-probabilities. */ if (is_gimple_call (t)) { fndecl = gimple_call_fndecl (t); call_flags = gimple_call_flags (t); } if (is_gimple_call (t) && fndecl && DECL_BUILT_IN (fndecl) && (call_flags & ECF_NOTHROW) && !(call_flags & ECF_RETURNS_TWICE) /* fork() doesn't really return twice, but the effect of wrapping it in __gcov_fork() which calls __gcov_flush() and clears the counters before forking has the same effect as returning twice. Force a fake edge. */ && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK)) return false; if (is_gimple_call (t)) { edge_iterator ei; edge e; basic_block bb; if (!(call_flags & ECF_NORETURN)) return true; bb = gimple_bb (t); FOR_EACH_EDGE (e, ei, bb->succs) if ((e->flags & EDGE_FAKE) == 0) return true; } if (gimple_code (t) == GIMPLE_ASM && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t))) return true; return false; } /* Add fake edges to the function exit for any non constant and non noreturn calls (or noreturn calls with EH/abnormal edges), volatile inline assembly in the bitmap of blocks specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks that were split. The goal is to expose cases in which entering a basic block does not imply that all subsequent instructions must be executed. */ static int gimple_flow_call_edges_add (sbitmap blocks) { int i; int blocks_split = 0; int last_bb = last_basic_block_for_fn (cfun); bool check_last_block = false; if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS) return 0; if (! blocks) check_last_block = true; else check_last_block = bitmap_bit_p (blocks, EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index); /* In the last basic block, before epilogue generation, there will be a fallthru edge to EXIT. Special care is required if the last insn of the last basic block is a call because make_edge folds duplicate edges, which would result in the fallthru edge also being marked fake, which would result in the fallthru edge being removed by remove_fake_edges, which would result in an invalid CFG. Moreover, we can't elide the outgoing fake edge, since the block profiler needs to take this into account in order to solve the minimal spanning tree in the case that the call doesn't return. Handle this by adding a dummy instruction in a new last basic block. */ if (check_last_block) { basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb; gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb); gimple t = NULL; if (!gsi_end_p (gsi)) t = gsi_stmt (gsi); if (t && need_fake_edge_p (t)) { edge e; e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)); if (e) { gsi_insert_on_edge (e, gimple_build_nop ()); gsi_commit_edge_inserts (); } } } /* Now add fake edges to the function exit for any non constant calls since there is no way that we can determine if they will return or not... */ for (i = 0; i < last_bb; i++) { basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); gimple_stmt_iterator gsi; gimple stmt, last_stmt; if (!bb) continue; if (blocks && !bitmap_bit_p (blocks, i)) continue; gsi = gsi_last_nondebug_bb (bb); if (!gsi_end_p (gsi)) { last_stmt = gsi_stmt (gsi); do { stmt = gsi_stmt (gsi); if (need_fake_edge_p (stmt)) { edge e; /* The handling above of the final block before the epilogue should be enough to verify that there is no edge to the exit block in CFG already. Calling make_edge in such case would cause us to mark that edge as fake and remove it later. */ #ifdef ENABLE_CHECKING if (stmt == last_stmt) { e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)); gcc_assert (e == NULL); } #endif /* Note that the following may create a new basic block and renumber the existing basic blocks. */ if (stmt != last_stmt) { e = split_block (bb, stmt); if (e) blocks_split++; } make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE); } gsi_prev (&gsi); } while (!gsi_end_p (gsi)); } } if (blocks_split) verify_flow_info (); return blocks_split; } /* Removes edge E and all the blocks dominated by it, and updates dominance information. The IL in E->src needs to be updated separately. If dominance info is not available, only the edge E is removed.*/ void remove_edge_and_dominated_blocks (edge e) { vec<basic_block> bbs_to_remove = vNULL; vec<basic_block> bbs_to_fix_dom = vNULL; bitmap df, df_idom; edge f; edge_iterator ei; bool none_removed = false; unsigned i; basic_block bb, dbb; bitmap_iterator bi; if (!dom_info_available_p (CDI_DOMINATORS)) { remove_edge (e); return; } /* No updating is needed for edges to exit. */ if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) { if (cfgcleanup_altered_bbs) bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index); remove_edge (e); return; } /* First, we find the basic blocks to remove. If E->dest has a predecessor that is not dominated by E->dest, then this set is empty. Otherwise, all the basic blocks dominated by E->dest are removed. Also, to DF_IDOM we store the immediate dominators of the blocks in the dominance frontier of E (i.e., of the successors of the removed blocks, if there are any, and of E->dest otherwise). */ FOR_EACH_EDGE (f, ei, e->dest->preds) { if (f == e) continue; if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest)) { none_removed = true; break; } } df = BITMAP_ALLOC (NULL); df_idom = BITMAP_ALLOC (NULL); if (none_removed) bitmap_set_bit (df_idom, get_immediate_dominator (CDI_DOMINATORS, e->dest)->index); else { bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest); FOR_EACH_VEC_ELT (bbs_to_remove, i, bb) { FOR_EACH_EDGE (f, ei, bb->succs) { if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) bitmap_set_bit (df, f->dest->index); } } FOR_EACH_VEC_ELT (bbs_to_remove, i, bb) bitmap_clear_bit (df, bb->index); EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi) { bb = BASIC_BLOCK_FOR_FN (cfun, i); bitmap_set_bit (df_idom, get_immediate_dominator (CDI_DOMINATORS, bb)->index); } } if (cfgcleanup_altered_bbs) { /* Record the set of the altered basic blocks. */ bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index); bitmap_ior_into (cfgcleanup_altered_bbs, df); } /* Remove E and the cancelled blocks. */ if (none_removed) remove_edge (e); else { /* Walk backwards so as to get a chance to substitute all released DEFs into debug stmts. See eliminate_unnecessary_stmts() in tree-ssa-dce.c for more details. */ for (i = bbs_to_remove.length (); i-- > 0; ) delete_basic_block (bbs_to_remove[i]); } /* Update the dominance information. The immediate dominator may change only for blocks whose immediate dominator belongs to DF_IDOM: Suppose that idom(X) = Y before removal of E and idom(X) != Y after the removal. Let Z the arbitrary block such that idom(Z) = Y and Z dominates X after the removal. Before removal, there exists a path P from Y to X that avoids Z. Let F be the last edge on P that is removed, and let W = F->dest. Before removal, idom(W) = Y (since Y dominates W, and because of P, Z does not dominate W), and W belongs to the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */ EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi) { bb = BASIC_BLOCK_FOR_FN (cfun, i); for (dbb = first_dom_son (CDI_DOMINATORS, bb); dbb; dbb = next_dom_son (CDI_DOMINATORS, dbb)) bbs_to_fix_dom.safe_push (dbb); } iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true); BITMAP_FREE (df); BITMAP_FREE (df_idom); bbs_to_remove.release (); bbs_to_fix_dom.release (); } /* Purge dead EH edges from basic block BB. */ bool gimple_purge_dead_eh_edges (basic_block bb) { bool changed = false; edge e; edge_iterator ei; gimple stmt = last_stmt (bb); if (stmt && stmt_can_throw_internal (stmt)) return false; for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) { if (e->flags & EDGE_EH) { remove_edge_and_dominated_blocks (e); changed = true; } else ei_next (&ei); } return changed; } /* Purge dead EH edges from basic block listed in BLOCKS. */ bool gimple_purge_all_dead_eh_edges (const_bitmap blocks) { bool changed = false; unsigned i; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi) { basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); /* Earlier gimple_purge_dead_eh_edges could have removed this basic block already. */ gcc_assert (bb || changed); if (bb != NULL) changed |= gimple_purge_dead_eh_edges (bb); } return changed; } /* Purge dead abnormal call edges from basic block BB. */ bool gimple_purge_dead_abnormal_call_edges (basic_block bb) { bool changed = false; edge e; edge_iterator ei; gimple stmt = last_stmt (bb); if (!cfun->has_nonlocal_label && !cfun->calls_setjmp) return false; if (stmt && stmt_can_make_abnormal_goto (stmt)) return false; for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) { if (e->flags & EDGE_ABNORMAL) { if (e->flags & EDGE_FALLTHRU) e->flags &= ~EDGE_ABNORMAL; else remove_edge_and_dominated_blocks (e); changed = true; } else ei_next (&ei); } return changed; } /* Purge dead abnormal call edges from basic block listed in BLOCKS. */ bool gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks) { bool changed = false; unsigned i; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi) { basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); /* Earlier gimple_purge_dead_abnormal_call_edges could have removed this basic block already. */ gcc_assert (bb || changed); if (bb != NULL) changed |= gimple_purge_dead_abnormal_call_edges (bb); } return changed; } /* This function is called whenever a new edge is created or redirected. */ static void gimple_execute_on_growing_pred (edge e) { basic_block bb = e->dest; if (!gimple_seq_empty_p (phi_nodes (bb))) reserve_phi_args_for_new_edge (bb); } /* This function is called immediately before edge E is removed from the edge vector E->dest->preds. */ static void gimple_execute_on_shrinking_pred (edge e) { if (!gimple_seq_empty_p (phi_nodes (e->dest))) remove_phi_args (e); } /*--------------------------------------------------------------------------- Helper functions for Loop versioning ---------------------------------------------------------------------------*/ /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy of 'first'. Both of them are dominated by 'new_head' basic block. When 'new_head' was created by 'second's incoming edge it received phi arguments on the edge by split_edge(). Later, additional edge 'e' was created to connect 'new_head' and 'first'. Now this routine adds phi args on this additional edge 'e' that new_head to second edge received as part of edge splitting. */ static void gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second, basic_block new_head, edge e) { gimple phi1, phi2; gimple_stmt_iterator psi1, psi2; tree def; edge e2 = find_edge (new_head, second); /* Because NEW_HEAD has been created by splitting SECOND's incoming edge, we should always have an edge from NEW_HEAD to SECOND. */ gcc_assert (e2 != NULL); /* Browse all 'second' basic block phi nodes and add phi args to edge 'e' for 'first' head. PHI args are always in correct order. */ for (psi2 = gsi_start_phis (second), psi1 = gsi_start_phis (first); !gsi_end_p (psi2) && !gsi_end_p (psi1); gsi_next (&psi2), gsi_next (&psi1)) { phi1 = gsi_stmt (psi1); phi2 = gsi_stmt (psi2); def = PHI_ARG_DEF (phi2, e2->dest_idx); add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2)); } } /* Adds a if else statement to COND_BB with condition COND_EXPR. SECOND_HEAD is the destination of the THEN and FIRST_HEAD is the destination of the ELSE part. */ static void gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED, basic_block second_head ATTRIBUTE_UNUSED, basic_block cond_bb, void *cond_e) { gimple_stmt_iterator gsi; gimple new_cond_expr; tree cond_expr = (tree) cond_e; edge e0; /* Build new conditional expr */ new_cond_expr = gimple_build_cond_from_tree (cond_expr, NULL_TREE, NULL_TREE); /* Add new cond in cond_bb. */ gsi = gsi_last_bb (cond_bb); gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT); /* Adjust edges appropriately to connect new head with first head as well as second head. */ e0 = single_succ_edge (cond_bb); e0->flags &= ~EDGE_FALLTHRU; e0->flags |= EDGE_FALSE_VALUE; } /* Do book-keeping of basic block BB for the profile consistency checker. If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1 then do post-pass accounting. Store the counting in RECORD. */ static void gimple_account_profile_record (basic_block bb, int after_pass, struct profile_record *record) { gimple_stmt_iterator i; for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i)) { record->size[after_pass] += estimate_num_insns (gsi_stmt (i), &eni_size_weights); if (profile_status_for_fn (cfun) == PROFILE_READ) record->time[after_pass] += estimate_num_insns (gsi_stmt (i), &eni_time_weights) * bb->count; else if (profile_status_for_fn (cfun) == PROFILE_GUESSED) record->time[after_pass] += estimate_num_insns (gsi_stmt (i), &eni_time_weights) * bb->frequency; } } struct cfg_hooks gimple_cfg_hooks = { "gimple", gimple_verify_flow_info, gimple_dump_bb, /* dump_bb */ gimple_dump_bb_for_graph, /* dump_bb_for_graph */ create_bb, /* create_basic_block */ gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */ gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */ gimple_can_remove_branch_p, /* can_remove_branch_p */ remove_bb, /* delete_basic_block */ gimple_split_block, /* split_block */ gimple_move_block_after, /* move_block_after */ gimple_can_merge_blocks_p, /* can_merge_blocks_p */ gimple_merge_blocks, /* merge_blocks */ gimple_predict_edge, /* predict_edge */ gimple_predicted_by_p, /* predicted_by_p */ gimple_can_duplicate_bb_p, /* can_duplicate_block_p */ gimple_duplicate_bb, /* duplicate_block */ gimple_split_edge, /* split_edge */ gimple_make_forwarder_block, /* make_forward_block */ NULL, /* tidy_fallthru_edge */ NULL, /* force_nonfallthru */ gimple_block_ends_with_call_p,/* block_ends_with_call_p */ gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */ gimple_flow_call_edges_add, /* flow_call_edges_add */ gimple_execute_on_growing_pred, /* execute_on_growing_pred */ gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */ gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */ gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */ gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/ extract_true_false_edges_from_block, /* extract_cond_bb_edges */ flush_pending_stmts, /* flush_pending_stmts */ gimple_empty_block_p, /* block_empty_p */ gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */ gimple_account_profile_record, }; /* Split all critical edges. */ static unsigned int split_critical_edges (void) { basic_block bb; edge e; edge_iterator ei; /* split_edge can redirect edges out of SWITCH_EXPRs, which can get expensive. So we want to enable recording of edge to CASE_LABEL_EXPR mappings around the calls to split_edge. */ start_recording_case_labels (); FOR_ALL_BB_FN (bb, cfun) { FOR_EACH_EDGE (e, ei, bb->succs) { if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL)) split_edge (e); /* PRE inserts statements to edges and expects that since split_critical_edges was done beforehand, committing edge insertions will not split more edges. In addition to critical edges we must split edges that have multiple successors and end by control flow statements, such as RESX. Go ahead and split them too. This matches the logic in gimple_find_edge_insert_loc. */ else if ((!single_pred_p (e->dest) || !gimple_seq_empty_p (phi_nodes (e->dest)) || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && !(e->flags & EDGE_ABNORMAL)) { gimple_stmt_iterator gsi; gsi = gsi_last_bb (e->src); if (!gsi_end_p (gsi) && stmt_ends_bb_p (gsi_stmt (gsi)) && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN && !gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_RETURN))) split_edge (e); } } } end_recording_case_labels (); return 0; } namespace { const pass_data pass_data_split_crit_edges = { GIMPLE_PASS, /* type */ "crited", /* name */ OPTGROUP_NONE, /* optinfo_flags */ false, /* has_gate */ true, /* has_execute */ TV_TREE_SPLIT_EDGES, /* tv_id */ PROP_cfg, /* properties_required */ PROP_no_crit_edges, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_verify_flow, /* todo_flags_finish */ }; class pass_split_crit_edges : public gimple_opt_pass { public: pass_split_crit_edges (gcc::context *ctxt) : gimple_opt_pass (pass_data_split_crit_edges, ctxt) {} /* opt_pass methods: */ unsigned int execute () { return split_critical_edges (); } opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); } }; // class pass_split_crit_edges } // anon namespace gimple_opt_pass * make_pass_split_crit_edges (gcc::context *ctxt) { return new pass_split_crit_edges (ctxt); } /* Build a ternary operation and gimplify it. Emit code before GSI. Return the gimple_val holding the result. */ tree gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code, tree type, tree a, tree b, tree c) { tree ret; location_t loc = gimple_location (gsi_stmt (*gsi)); ret = fold_build3_loc (loc, code, type, a, b, c); STRIP_NOPS (ret); return force_gimple_operand_gsi (gsi, ret, true, NULL, true, GSI_SAME_STMT); } /* Build a binary operation and gimplify it. Emit code before GSI. Return the gimple_val holding the result. */ tree gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code, tree type, tree a, tree b) { tree ret; ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b); STRIP_NOPS (ret); return force_gimple_operand_gsi (gsi, ret, true, NULL, true, GSI_SAME_STMT); } /* Build a unary operation and gimplify it. Emit code before GSI. Return the gimple_val holding the result. */ tree gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type, tree a) { tree ret; ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a); STRIP_NOPS (ret); return force_gimple_operand_gsi (gsi, ret, true, NULL, true, GSI_SAME_STMT); } /* Emit return warnings. */ static unsigned int execute_warn_function_return (void) { source_location location; gimple last; edge e; edge_iterator ei; if (!targetm.warn_func_return (cfun->decl)) return 0; /* If we have a path to EXIT, then we do return. */ if (TREE_THIS_VOLATILE (cfun->decl) && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0) { location = UNKNOWN_LOCATION; FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) { last = last_stmt (e->src); if ((gimple_code (last) == GIMPLE_RETURN || gimple_call_builtin_p (last, BUILT_IN_RETURN)) && (location = gimple_location (last)) != UNKNOWN_LOCATION) break; } if (location == UNKNOWN_LOCATION) location = cfun->function_end_locus; warning_at (location, 0, "%<noreturn%> function does return"); } /* If we see "return;" in some basic block, then we do reach the end without returning a value. */ else if (warn_return_type && !TREE_NO_WARNING (cfun->decl) && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl)))) { FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) { gimple last = last_stmt (e->src); if (gimple_code (last) == GIMPLE_RETURN && gimple_return_retval (last) == NULL && !gimple_no_warning_p (last)) { location = gimple_location (last); if (location == UNKNOWN_LOCATION) location = cfun->function_end_locus; warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function"); TREE_NO_WARNING (cfun->decl) = 1; break; } } } return 0; } /* Given a basic block B which ends with a conditional and has precisely two successors, determine which of the edges is taken if the conditional is true and which is taken if the conditional is false. Set TRUE_EDGE and FALSE_EDGE appropriately. */ void extract_true_false_edges_from_block (basic_block b, edge *true_edge, edge *false_edge) { edge e = EDGE_SUCC (b, 0); if (e->flags & EDGE_TRUE_VALUE) { *true_edge = e; *false_edge = EDGE_SUCC (b, 1); } else { *false_edge = e; *true_edge = EDGE_SUCC (b, 1); } } namespace { const pass_data pass_data_warn_function_return = { GIMPLE_PASS, /* type */ "*warn_function_return", /* name */ OPTGROUP_NONE, /* optinfo_flags */ false, /* has_gate */ true, /* has_execute */ TV_NONE, /* tv_id */ PROP_cfg, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_warn_function_return : public gimple_opt_pass { public: pass_warn_function_return (gcc::context *ctxt) : gimple_opt_pass (pass_data_warn_function_return, ctxt) {} /* opt_pass methods: */ unsigned int execute () { return execute_warn_function_return (); } }; // class pass_warn_function_return } // anon namespace gimple_opt_pass * make_pass_warn_function_return (gcc::context *ctxt) { return new pass_warn_function_return (ctxt); } /* Walk a gimplified function and warn for functions whose return value is ignored and attribute((warn_unused_result)) is set. This is done before inlining, so we don't have to worry about that. */ static void do_warn_unused_result (gimple_seq seq) { tree fdecl, ftype; gimple_stmt_iterator i; for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i)) { gimple g = gsi_stmt (i); switch (gimple_code (g)) { case GIMPLE_BIND: do_warn_unused_result (gimple_bind_body (g)); break; case GIMPLE_TRY: do_warn_unused_result (gimple_try_eval (g)); do_warn_unused_result (gimple_try_cleanup (g)); break; case GIMPLE_CATCH: do_warn_unused_result (gimple_catch_handler (g)); break; case GIMPLE_EH_FILTER: do_warn_unused_result (gimple_eh_filter_failure (g)); break; case GIMPLE_CALL: if (gimple_call_lhs (g)) break; if (gimple_call_internal_p (g)) break; /* This is a naked call, as opposed to a GIMPLE_CALL with an LHS. All calls whose value is ignored should be represented like this. Look for the attribute. */ fdecl = gimple_call_fndecl (g); ftype = gimple_call_fntype (g); if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype))) { location_t loc = gimple_location (g); if (fdecl) warning_at (loc, OPT_Wunused_result, "ignoring return value of %qD, " "declared with attribute warn_unused_result", fdecl); else warning_at (loc, OPT_Wunused_result, "ignoring return value of function " "declared with attribute warn_unused_result"); } break; default: /* Not a container, not a call, or a call whose value is used. */ break; } } } static unsigned int run_warn_unused_result (void) { do_warn_unused_result (gimple_body (current_function_decl)); return 0; } static bool gate_warn_unused_result (void) { return flag_warn_unused_result; } namespace { const pass_data pass_data_warn_unused_result = { GIMPLE_PASS, /* type */ "*warn_unused_result", /* name */ OPTGROUP_NONE, /* optinfo_flags */ true, /* has_gate */ true, /* has_execute */ TV_NONE, /* tv_id */ PROP_gimple_any, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_warn_unused_result : public gimple_opt_pass { public: pass_warn_unused_result (gcc::context *ctxt) : gimple_opt_pass (pass_data_warn_unused_result, ctxt) {} /* opt_pass methods: */ bool gate () { return gate_warn_unused_result (); } unsigned int execute () { return run_warn_unused_result (); } }; // class pass_warn_unused_result } // anon namespace gimple_opt_pass * make_pass_warn_unused_result (gcc::context *ctxt) { return new pass_warn_unused_result (ctxt); } /* IPA passes, compilation of earlier functions or inlining might have changed some properties, such as marked functions nothrow, pure, const or noreturn. Remove redundant edges and basic blocks, and create new ones if necessary. This pass can't be executed as stand alone pass from pass manager, because in between inlining and this fixup the verify_flow_info would fail. */ unsigned int execute_fixup_cfg (void) { basic_block bb; gimple_stmt_iterator gsi; int todo = gimple_in_ssa_p (cfun) ? TODO_verify_ssa : 0; gcov_type count_scale; edge e; edge_iterator ei; count_scale = GCOV_COMPUTE_SCALE (cgraph_get_node (current_function_decl)->count, ENTRY_BLOCK_PTR_FOR_FN (cfun)->count); ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = cgraph_get_node (current_function_decl)->count; EXIT_BLOCK_PTR_FOR_FN (cfun)->count = apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count, count_scale); FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) e->count = apply_scale (e->count, count_scale); FOR_EACH_BB_FN (bb, cfun) { bb->count = apply_scale (bb->count, count_scale); for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple stmt = gsi_stmt (gsi); tree decl = is_gimple_call (stmt) ? gimple_call_fndecl (stmt) : NULL; if (decl) { int flags = gimple_call_flags (stmt); if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE)) { if (gimple_purge_dead_abnormal_call_edges (bb)) todo |= TODO_cleanup_cfg; if (gimple_in_ssa_p (cfun)) { todo |= TODO_update_ssa | TODO_cleanup_cfg; update_stmt (stmt); } } if (flags & ECF_NORETURN && fixup_noreturn_call (stmt)) todo |= TODO_cleanup_cfg; } if (maybe_clean_eh_stmt (stmt) && gimple_purge_dead_eh_edges (bb)) todo |= TODO_cleanup_cfg; } FOR_EACH_EDGE (e, ei, bb->succs) e->count = apply_scale (e->count, count_scale); /* If we have a basic block with no successors that does not end with a control statement or a noreturn call end it with a call to __builtin_unreachable. This situation can occur when inlining a noreturn call that does in fact return. */ if (EDGE_COUNT (bb->succs) == 0) { gimple stmt = last_stmt (bb); if (!stmt || (!is_ctrl_stmt (stmt) && (!is_gimple_call (stmt) || (gimple_call_flags (stmt) & ECF_NORETURN) == 0))) { stmt = gimple_build_call (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0); gimple_stmt_iterator gsi = gsi_last_bb (bb); gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); } } } if (count_scale != REG_BR_PROB_BASE) compute_function_frequency (); /* We just processed all calls. */ if (cfun->gimple_df) vec_free (MODIFIED_NORETURN_CALLS (cfun)); /* Dump a textual representation of the flowgraph. */ if (dump_file) gimple_dump_cfg (dump_file, dump_flags); if (current_loops && (todo & TODO_cleanup_cfg)) loops_state_set (LOOPS_NEED_FIXUP); return todo; } namespace { const pass_data pass_data_fixup_cfg = { GIMPLE_PASS, /* type */ "*free_cfg_annotations", /* name */ OPTGROUP_NONE, /* optinfo_flags */ false, /* has_gate */ true, /* has_execute */ TV_NONE, /* tv_id */ PROP_cfg, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_fixup_cfg : public gimple_opt_pass { public: pass_fixup_cfg (gcc::context *ctxt) : gimple_opt_pass (pass_data_fixup_cfg, ctxt) {} /* opt_pass methods: */ opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); } unsigned int execute () { return execute_fixup_cfg (); } }; // class pass_fixup_cfg } // anon namespace gimple_opt_pass * make_pass_fixup_cfg (gcc::context *ctxt) { return new pass_fixup_cfg (ctxt); } /* Garbage collection support for edge_def. */ extern void gt_ggc_mx (tree&); extern void gt_ggc_mx (gimple&); extern void gt_ggc_mx (rtx&); extern void gt_ggc_mx (basic_block&); void gt_ggc_mx (edge_def *e) { tree block = LOCATION_BLOCK (e->goto_locus); gt_ggc_mx (e->src); gt_ggc_mx (e->dest); if (current_ir_type () == IR_GIMPLE) gt_ggc_mx (e->insns.g); else gt_ggc_mx (e->insns.r); gt_ggc_mx (block); } /* PCH support for edge_def. */ extern void gt_pch_nx (tree&); extern void gt_pch_nx (gimple&); extern void gt_pch_nx (rtx&); extern void gt_pch_nx (basic_block&); void gt_pch_nx (edge_def *e) { tree block = LOCATION_BLOCK (e->goto_locus); gt_pch_nx (e->src); gt_pch_nx (e->dest); if (current_ir_type () == IR_GIMPLE) gt_pch_nx (e->insns.g); else gt_pch_nx (e->insns.r); gt_pch_nx (block); } void gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie) { tree block = LOCATION_BLOCK (e->goto_locus); op (&(e->src), cookie); op (&(e->dest), cookie); if (current_ir_type () == IR_GIMPLE) op (&(e->insns.g), cookie); else op (&(e->insns.r), cookie); op (&(block), cookie); }