/* The tracer pass for the GNU compiler. Contributed by Jan Hubicka, SuSE Labs. Adapted to work on GIMPLE instead of RTL by Robert Kidd, UIUC. Copyright (C) 2001-2024 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* This pass performs the tail duplication needed for superblock formation. For more information see: Design and Analysis of Profile-Based Optimization in Compaq's Compilation Tools for Alpha; Journal of Instruction-Level Parallelism 3 (2000) 1-25 Unlike Compaq's implementation we don't do the loop peeling as most probably a better job can be done by a special pass and we don't need to worry too much about the code size implications as the tail duplicates are crossjumped again if optimizations are not performed. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "cfghooks.h" #include "tree-pass.h" #include "profile.h" #include "cfganal.h" #include "gimple-iterator.h" #include "tree-cfg.h" #include "tree-ssa.h" #include "tree-inline.h" #include "cfgloop.h" #include "alloc-pool.h" #include "fibonacci_heap.h" #include "tracer.h" static void analyze_bb (basic_block, int *); static bool better_p (const_edge, const_edge); static edge find_best_successor (basic_block); static edge find_best_predecessor (basic_block); static int find_trace (basic_block, basic_block *); /* Minimal outgoing edge probability considered for superblock formation. */ static int probability_cutoff; static int branch_ratio_cutoff; /* A bit BB->index is set if BB has already been seen, i.e. it is connected to some trace already. */ static sbitmap bb_seen; static inline void mark_bb_seen (basic_block bb) { unsigned int size = SBITMAP_SIZE (bb_seen); if ((unsigned int)bb->index >= size) bb_seen = sbitmap_resize (bb_seen, size * 2, 0); bitmap_set_bit (bb_seen, bb->index); } static inline bool bb_seen_p (basic_block bb) { return bitmap_bit_p (bb_seen, bb->index); } static sbitmap can_duplicate_bb; /* Cache VAL as value of can_duplicate_bb_p for BB. */ static inline void cache_can_duplicate_bb_p (const_basic_block bb, bool val) { if (val) bitmap_set_bit (can_duplicate_bb, bb->index); } /* Return cached value of can_duplicate_bb_p for BB. */ static bool cached_can_duplicate_bb_p (const_basic_block bb) { if (can_duplicate_bb) { unsigned int size = SBITMAP_SIZE (can_duplicate_bb); if ((unsigned int)bb->index < size) return bitmap_bit_p (can_duplicate_bb, bb->index); /* Assume added bb's should not be duplicated. */ return false; } return can_duplicate_block_p (bb); } /* Return true if we should ignore the basic block for purposes of tracing. */ bool ignore_bb_p (const_basic_block bb) { if (bb->index < NUM_FIXED_BLOCKS) return true; if (optimize_bb_for_size_p (bb)) return true; return !cached_can_duplicate_bb_p (bb); } /* Return number of instructions in the block. */ static void analyze_bb (basic_block bb, int *count) { gimple_stmt_iterator gsi; gimple *stmt; int n = 0; for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { stmt = gsi_stmt (gsi); n += estimate_num_insns (stmt, &eni_size_weights); } *count = n; cache_can_duplicate_bb_p (bb, can_duplicate_block_p (CONST_CAST_BB (bb))); } /* Return true if E1 is more frequent than E2. */ static bool better_p (const_edge e1, const_edge e2) { if ((e1->count () > e2->count ()) || (e1->count () < e2->count ())) return e1->count () > e2->count (); /* This is needed to avoid changes in the decision after CFG is modified. */ if (e1->src != e2->src) return e1->src->index > e2->src->index; return e1->dest->index > e2->dest->index; } /* Return most frequent successor of basic block BB. */ static edge find_best_successor (basic_block bb) { edge e; edge best = NULL; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->succs) { if (!e->count ().initialized_p ()) return NULL; if (!best || better_p (e, best)) best = e; } if (!best || ignore_bb_p (best->dest)) return NULL; if (!best->probability.initialized_p () || best->probability.to_reg_br_prob_base () <= probability_cutoff) return NULL; return best; } /* Return most frequent predecessor of basic block BB. */ static edge find_best_predecessor (basic_block bb) { edge e; edge best = NULL; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->preds) { if (!e->count ().initialized_p ()) return NULL; if (!best || better_p (e, best)) best = e; } if (!best || ignore_bb_p (best->src)) return NULL; if (bb->count.initialized_p () && (best->count ().to_frequency (cfun) * REG_BR_PROB_BASE < bb->count.to_frequency (cfun) * branch_ratio_cutoff)) return NULL; return best; } /* Find the trace using bb and record it in the TRACE array. Return number of basic blocks recorded. */ static int find_trace (basic_block bb, basic_block *trace) { int i = 0; edge e; if (dump_file) fprintf (dump_file, "Trace seed %i [%i]", bb->index, bb->count.to_frequency (cfun)); while ((e = find_best_predecessor (bb)) != NULL) { basic_block bb2 = e->src; if (bb_seen_p (bb2) || (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX)) || find_best_successor (bb2) != e) break; if (dump_file) fprintf (dump_file, ",%i [%i]", bb->index, bb->count.to_frequency (cfun)); bb = bb2; } if (dump_file) fprintf (dump_file, " forward %i [%i]", bb->index, bb->count.to_frequency (cfun)); trace[i++] = bb; /* Follow the trace in forward direction. */ while ((e = find_best_successor (bb)) != NULL) { bb = e->dest; if (bb_seen_p (bb) || (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX)) || find_best_predecessor (bb) != e) break; if (dump_file) fprintf (dump_file, ",%i [%i]", bb->index, bb->count.to_frequency (cfun)); trace[i++] = bb; } if (dump_file) fprintf (dump_file, "\n"); return i; } /* Duplicate block BB2, placing it after BB in the CFG. Return the newly created block. */ basic_block transform_duplicate (basic_block bb, basic_block bb2) { edge e; basic_block copy; e = find_edge (bb, bb2); copy = duplicate_block (bb2, e, bb); flush_pending_stmts (e); add_phi_args_after_copy (©, 1, NULL); return (copy); } /* Look for basic blocks in frequency order, construct traces and tail duplicate if profitable. */ static bool tail_duplicate (void) { auto_vec*> blocks; blocks.safe_grow_cleared (last_basic_block_for_fn (cfun), true); basic_block *trace = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun)); int *counts = XNEWVEC (int, last_basic_block_for_fn (cfun)); int ninsns = 0, nduplicated = 0; gcov_type weighted_insns = 0, traced_insns = 0; fibonacci_heap heap (LONG_MIN); gcov_type cover_insns; int max_dup_insns; basic_block bb; bool changed = false; /* Create an oversized sbitmap to reduce the chance that we need to resize it. */ bb_seen = sbitmap_alloc (last_basic_block_for_fn (cfun) * 2); bitmap_clear (bb_seen); can_duplicate_bb = sbitmap_alloc (last_basic_block_for_fn (cfun)); bitmap_clear (can_duplicate_bb); initialize_original_copy_tables (); if (profile_info && profile_status_for_fn (cfun) == PROFILE_READ) probability_cutoff = param_tracer_min_branch_probability_feedback; else probability_cutoff = param_tracer_min_branch_probability; probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff; branch_ratio_cutoff = (REG_BR_PROB_BASE / 100 * param_tracer_min_branch_ratio); FOR_EACH_BB_FN (bb, cfun) { int n; analyze_bb (bb, &n); if (!ignore_bb_p (bb)) blocks[bb->index] = heap.insert (-bb->count.to_frequency (cfun), bb); counts [bb->index] = n; ninsns += n; weighted_insns += n * bb->count.to_frequency (cfun); } if (profile_info && profile_status_for_fn (cfun) == PROFILE_READ) cover_insns = param_tracer_dynamic_coverage_feedback; else cover_insns = param_tracer_dynamic_coverage; cover_insns = (weighted_insns * cover_insns + 50) / 100; max_dup_insns = (ninsns * param_tracer_max_code_growth + 50) / 100; while (traced_insns < cover_insns && nduplicated < max_dup_insns && !heap.empty ()) { basic_block bb = heap.extract_min (); int n, pos; if (!bb) break; blocks[bb->index] = NULL; if (ignore_bb_p (bb)) continue; gcc_assert (!bb_seen_p (bb)); n = find_trace (bb, trace); bb = trace[0]; traced_insns += bb->count.to_frequency (cfun) * counts [bb->index]; if (blocks[bb->index]) { heap.delete_node (blocks[bb->index]); blocks[bb->index] = NULL; } for (pos = 1; pos < n; pos++) { basic_block bb2 = trace[pos]; if (blocks[bb2->index]) { heap.delete_node (blocks[bb2->index]); blocks[bb2->index] = NULL; } traced_insns += bb2->count.to_frequency (cfun) * counts [bb2->index]; if (EDGE_COUNT (bb2->preds) > 1 && can_duplicate_block_p (bb2) /* We have the tendency to duplicate the loop header of all do { } while loops. Do not do that - it is not profitable and it might create a loop with multiple entries or at least rotate the loop. */ && bb2->loop_father->header != bb2) { nduplicated += counts [bb2->index]; basic_block copy = transform_duplicate (bb, bb2); /* Reconsider the original copy of block we've duplicated. Removing the most common predecessor may make it to be head. */ blocks[bb2->index] = heap.insert (-bb2->count.to_frequency (cfun), bb2); if (dump_file) fprintf (dump_file, "Duplicated %i as %i [%i]\n", bb2->index, copy->index, copy->count.to_frequency (cfun)); bb2 = copy; changed = true; } mark_bb_seen (bb2); bb = bb2; /* In case the trace became infrequent, stop duplicating. */ if (ignore_bb_p (bb)) break; } if (dump_file) fprintf (dump_file, " covered now %.1f\n\n", traced_insns * 100.0 / weighted_insns); } if (dump_file) fprintf (dump_file, "Duplicated %i insns (%i%%)\n", nduplicated, nduplicated * 100 / ninsns); free_original_copy_tables (); sbitmap_free (bb_seen); sbitmap_free (can_duplicate_bb); can_duplicate_bb = NULL; free (trace); free (counts); return changed; } namespace { const pass_data pass_data_tracer = { GIMPLE_PASS, /* type */ "tracer", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_TRACER, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_update_ssa, /* todo_flags_finish */ }; class pass_tracer : public gimple_opt_pass { public: pass_tracer (gcc::context *ctxt) : gimple_opt_pass (pass_data_tracer, ctxt) {} /* opt_pass methods: */ bool gate (function *) final override { return (optimize > 0 && flag_tracer && flag_reorder_blocks); } unsigned int execute (function *) final override; }; // class pass_tracer unsigned int pass_tracer::execute (function *fun) { bool changed; if (n_basic_blocks_for_fn (fun) <= NUM_FIXED_BLOCKS + 1) return 0; mark_dfs_back_edges (); if (dump_file) brief_dump_cfg (dump_file, dump_flags); /* Trace formation is done on the fly inside tail_duplicate */ changed = tail_duplicate (); if (changed) { free_dominance_info (CDI_DOMINATORS); /* If we changed the CFG schedule loops for fixup by cleanup_cfg. */ loops_state_set (LOOPS_NEED_FIXUP); } if (dump_file) brief_dump_cfg (dump_file, dump_flags); return changed ? TODO_cleanup_cfg : 0; } } // anon namespace gimple_opt_pass * make_pass_tracer (gcc::context *ctxt) { return new pass_tracer (ctxt); }