// { dg-skip-if "" { *-*-* } { "-m32" } { "" } } // { dg-options "-w" } // { dg-output "Hash: 0x63d53fd2170bbb8c\r*\n" } #![feature(intrinsics)] #![feature(rustc_attrs)] #[lang = "sized"] trait Sized {} mod intrinsics { extern "rust-intrinsic" { pub fn wrapping_add(a: T, b: T) -> T; pub fn rotate_left(a: T, b: T) -> T; pub fn offset(ptr: *const T, count: isize) -> *const T; } } #[lang = "add"] trait Add { type Output; fn add(self, rhs: Rhs) -> Self::Output; } macro_rules! add_impl { ($($t:ty)*) => ($( impl Add for $t { type Output = $t; #[inline] #[rustc_inherit_overflow_checks] fn add(self, other: $t) -> $t { self + other } } )*) } add_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } impl *const T { pub unsafe fn add(self, count: usize) -> Self { // SAFETY: the caller must uphold the safety contract for `offset`. unsafe { self.offset(count as isize) } } pub unsafe fn offset(self, count: isize) -> *const T { // SAFETY: the caller must uphold the safety contract for `offset`. unsafe { intrinsics::offset(self, count) } } } macro_rules! impl_uint { ($($ty:ident = $lang:literal),*) => { $( #[lang = $lang] impl $ty { pub fn wrapping_add(self, rhs: Self) -> Self { intrinsics::wrapping_add(self, rhs) } pub fn rotate_left(self, n: u32) -> Self { intrinsics::rotate_left(self, n as Self) } pub fn to_le(self) -> Self { #[cfg(target_endian = "little")] { self } #[cfg(not(target_endian = "little"))] { self.swap_bytes() } } } )* } } impl_uint!( u8 = "u8", u16 = "u16", u32 = "u32", u64 = "u64", u128 = "u128", usize = "usize" ); #[repr(C)] pub(crate) struct SliceComponents { pub(crate) data_address: *const (), pub(crate) metadata: usize, } #[repr(C)] pub(crate) union SliceRepr { pub(crate) const_ptr: *const [T], pub(crate) mut_ptr: *mut [T], pub(crate) components: SliceComponents, } impl [T] { pub const fn as_ptr(&self) -> *const T { self as *const [T] as *const T } pub unsafe fn get_unchecked(&self, index: usize) -> &T { unsafe { &*self.as_ptr().add(index) } } pub fn len(&self) -> usize { unsafe { SliceRepr { const_ptr: self as *const _, } .components .metadata } } } trait HasherTrait { fn write(&mut self, msg: &[u8]); fn finish(&self) -> u64; } mod cmp { pub fn min(a: usize, b: usize) -> usize { if a < b { a } else { b } } } struct PhantomData; mod mem { extern "rust-intrinsic" { fn transmute(_: T) -> U; fn size_of() -> usize; } } mod ptr { extern "rust-intrinsic" { fn copy_nonoverlapping(src: *const T, dst: *mut T, count: usize); } } #[repr(C)] struct State { v0: u64, v2: u64, v1: u64, v3: u64, } struct Hasher { k0: u64, k1: u64, length: usize, // how many bytes we've processed state: State, // hash State tail: u64, // unprocessed bytes le ntail: usize, // how many bytes in tail are valid _marker: PhantomData, } macro_rules! compress { ($state:expr) => {{ compress!($state.v0, $state.v1, $state.v2, $state.v3) }}; ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => {{ $v0 = $v0.wrapping_add($v1); $v1 = $v1.rotate_left(13); $v1 ^= $v0; $v0 = $v0.rotate_left(32); $v2 = $v2.wrapping_add($v3); $v3 = $v3.rotate_left(16); $v3 ^= $v2; $v0 = $v0.wrapping_add($v3); $v3 = $v3.rotate_left(21); $v3 ^= $v0; $v2 = $v2.wrapping_add($v1); $v1 = $v1.rotate_left(17); $v1 ^= $v2; $v2 = $v2.rotate_left(32); }}; } #[doc(hidden)] trait Sip { fn c_rounds(_: &mut State); fn d_rounds(_: &mut State); } struct Sip13Rounds; impl Sip for Sip13Rounds { #[inline] fn c_rounds(state: &mut State) { compress!(state); } #[inline] fn d_rounds(state: &mut State) { compress!(state); compress!(state); compress!(state); } } struct Sip24Rounds; impl Sip for Sip24Rounds { #[inline] fn c_rounds(state: &mut State) { compress!(state); compress!(state); } #[inline] fn d_rounds(state: &mut State) { compress!(state); compress!(state); compress!(state); compress!(state); } } pub struct SipHasher13 { hasher: Hasher, } struct SipHasher24 { hasher: Hasher, } pub struct SipHasher(SipHasher24); macro_rules! load_int_le { ($buf:expr, $i:expr, $int_ty:ident) => {{ let mut data = 0 as $int_ty; ptr::copy_nonoverlapping( $buf.as_ptr().add($i), &mut data as *mut _ as *mut u8, mem::size_of::<$int_ty>(), ); data.to_le() }}; } #[inline] unsafe fn u8to64_le(buf: &[u8], start: usize, len: usize) -> u64 { let mut i = 0; // current byte index (from LSB) in the output u64 let mut out = 0; if i + 3 < len { // SAFETY: `i` cannot be greater than `len`, and the caller must guarantee // that the index start..start+len is in bounds. out = unsafe { load_int_le!(buf, start + i, u32) } as u64; i += 4; } if i + 1 < len { // SAFETY: same as above. out |= (unsafe { load_int_le!(buf, start + i, u16) } as u64) << ((i * 8) as u64); i += 2 } if i < len { // SAFETY: same as above. out |= (unsafe { *buf.get_unchecked(start + i) } as u64) << ((i * 8) as u64); i += 1; } out } impl SipHasher { #[inline] #[must_use] pub fn new() -> SipHasher { SipHasher::new_with_keys(0, 0) } #[inline] #[must_use] pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher { SipHasher(SipHasher24 { hasher: Hasher::new_with_keys(key0, key1), }) } } impl SipHasher13 { #[inline] pub fn new() -> SipHasher13 { SipHasher13::new_with_keys(0, 0) } #[inline] pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher13 { SipHasher13 { hasher: Hasher::new_with_keys(key0, key1), } } } impl Hasher { #[inline] fn new_with_keys(key0: u64, key1: u64) -> Hasher { let mut state = Hasher { k0: key0, k1: key1, length: 0, state: State { v0: 0, v1: 0, v2: 0, v3: 0, }, tail: 0, ntail: 0, _marker: PhantomData, }; state.reset(); state } #[inline] fn reset(&mut self) { self.length = 0; self.state.v0 = self.k0 ^ 0x736f6d6570736575; self.state.v1 = self.k1 ^ 0x646f72616e646f6d; self.state.v2 = self.k0 ^ 0x6c7967656e657261; self.state.v3 = self.k1 ^ 0x7465646279746573; self.ntail = 0; } } impl HasherTrait for SipHasher { #[inline] fn write(&mut self, msg: &[u8]) { self.0.hasher.write(msg) } #[inline] fn finish(&self) -> u64 { self.0.hasher.finish() } } impl HasherTrait for SipHasher13 { #[inline] fn write(&mut self, msg: &[u8]) { self.hasher.write(msg) } #[inline] fn finish(&self) -> u64 { self.hasher.finish() } } impl HasherTrait for Hasher { #[inline] fn write(&mut self, msg: &[u8]) { let length = msg.len(); self.length += length; let mut needed = 0; if self.ntail != 0 { needed = 8 - self.ntail; // SAFETY: `cmp::min(length, needed)` is guaranteed to not be over `length` self.tail |= unsafe { u8to64_le(msg, 0, cmp::min(length, needed)) } << ((8 * self.ntail) as u64); if length < needed { self.ntail += length; return; } else { self.state.v3 ^= self.tail; S::c_rounds(&mut self.state); self.state.v0 ^= self.tail; self.ntail = 0; } } // Buffered tail is now flushed, process new input. let len = length - needed; let left = len & 0x7; // len % 8 let mut i = needed; while i < len - left { let mi = unsafe { load_int_le!(msg, i, u64) }; self.state.v3 ^= mi; S::c_rounds(&mut self.state); self.state.v0 ^= mi; i += 8; } self.tail = unsafe { u8to64_le(msg, i, left) }; self.ntail = left; } #[inline] fn finish(&self) -> u64 { let mut state = self.state; let b: u64 = ((self.length as u64 & 0xff) << 56) | self.tail; state.v3 ^= b; S::c_rounds(&mut state); state.v0 ^= b; state.v2 ^= 0xff; S::d_rounds(&mut state); state.v0 ^ state.v1 ^ state.v2 ^ state.v3 } } extern "C" { fn printf(fmt: *const u8, ...) -> i32; } fn main() -> i32 { let mut hasher = SipHasher::new_with_keys(0x0706050403020100, 0x0f0e0d0c0b0a0908); hasher.write(b"Hello"); let result = hasher.finish(); unsafe { printf("Hash: 0x%016llx\n\0" as *const str as *const u8, result); } 0 }