/* { dg-do run { target { powerpc*-*-* } } } */ /* { dg-require-effective-target int128 } */ /* { dg-require-effective-target p9vector_hw } */ /* { dg-options "-mdejagnu-cpu=power9" } */ #include #include #include bool test_nan (__ieee128 *p) { __ieee128 source = *p; /* 0x40 Test for NaN 0x20 Test for +Infinity 0x10 Test for -Infinity 0x08 Test for +Zero 0x04 Test for -Zero 0x02 Test for +Denormal 0x01 Test for -Denormal */ return scalar_test_data_class (source, 0x40); } int main () { /* NaN is represented with the maximum biased exponent value and a * non-zero fraction value. The sign bit ignored. If the * high-order bit of the fraction field is 0, then the NaN is a * Signaling NaN. Otherwise, it is a Quiet NaN. */ __int128 signal_significand = (__int128) 0xffffffff; __int128 quiet_significand = (((__int128) 0x1) << 112) | 0xffffffff; __int128 a_number_significand = (((__int128) 0x1) << 112); unsigned long long int nan_exponent = 0x7fff; unsigned long long int a_number_exponent = 16383; __ieee128 signaling_nan = scalar_insert_exp (signal_significand, nan_exponent); __ieee128 quiet_nan = scalar_insert_exp (quiet_significand, nan_exponent); __ieee128 a_number = scalar_insert_exp (a_number_significand, a_number_exponent); if (!test_nan (&signaling_nan)) abort (); if (!test_nan (&quiet_nan)) abort (); if (test_nan (&a_number)) abort (); return 0; }