// Splay tree utilities -*- C++ -*- // Copyright (C) 2020-2023 Free Software Foundation, Inc. // // This file is part of GCC. // // GCC is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 3, or (at your option) any later // version. // // GCC is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with GCC; see the file COPYING3. If not see // . #define INCLUDE_ALGORITHM #define INCLUDE_ARRAY #include "config.h" #include "system.h" #include "coretypes.h" #include "pretty-print.h" #include "splay-tree-utils.h" #include "selftest.h" #if CHECKING_P namespace { // A simple test node for rootless_splay_tree. struct rootless_test_node { int data; rootless_test_node *m_parent; rootless_test_node *m_children[2]; }; } namespace selftest { // Random input data. static const size_t MAX_DATA = 32768; static const int data[] = { 1379, 14643, 30579, 28160, 31750, 22280, 5502, 4720, 30075, 27595, 8395, 19410, 518, 19709, 29694, 19865, 25372, 11752, 15485, 21547, 25153, 25072, 10146, 3341, 15625, 3038, 10189, 19943, 1322, 11762, 807, 430, 11284, 11841, 23965, 32008, 4547, 8087, 13225, 23054, 22284, 13756, 2182, 26450, 30482, 32502, 23348, 20265, 29509, 3290, 10807, 1242, 3212, 32178, 25354, 22032, 30509, 16157, 22432, 1295, 8348, 23342, 24678, 193, 31016, 10316, 3872, 13521, 19211, 30594, 12229, 4794, 25083, 16098, 28144, 27896, 4801, 20689, 31450, 15614, 19597, 13731, 30309, 24846, 11042, 31929, 18306, 28520, 16907, 12488, 15001, 18487, 3438, 1706, 4829, 20892, 6226, 18204, 15776, 30717, 19398, 2480, 19434, 2838, 2605, 3994, 22538, 12269, 6486, 1314, 30301, 9919, 31405, 30847, 25000, 24013, 22196, 30220, 31415, 14630, 26319, 4880, 21292, 20217, 20078, 14679, 25686, 28675, 13883, 14853, 2872, 2428, 3636, 14131, 2952, 2133, 4470, 25808, 12576, 31395, 5938, 28393, 14553, 4494, 14928, 24310, 17394, 17436, 23385, 22792, 9785, 13118, 22338, 23320, 27059, 17663, 16434, 14954, 16962, 31088, 22247, 22600, 7980, 1344, 15635, 13611, 32739, 3283, 12924, 17904, 28216, 7542, 9212, 28308, 18873, 3912, 5473, 4666, 11900, 21420, 20072, 27662, 16445, 29848, 24444, 31668, 30664, 14287, 13754, 29276, 21462, 25517, 17632, 8105, 32510, 16677, 11162, 20734, 26873, 5097 }; // Look up VALUE in TREE using the single-comparator lookup function. static int lookup1 (splay_tree &tree, int value) { auto compare = [&](splay_tree_node *node) { return value - node->value (); }; return tree.lookup (compare); } // Look up VALUE in TREE using the double-comparator lookup function. static int lookup2 (splay_tree &tree, int value) { auto want_something_smaller = [&](splay_tree_node *node) { return value < node->value (); }; auto want_something_bigger = [&](splay_tree_node *node) { return value > node->value (); }; return tree.lookup (want_something_smaller, want_something_bigger); } // Test printing TREE to a pretty printer. Don't check the output against // anything; just make sure that it doesn't crash. static void test_print (splay_tree &tree) { auto print_node = [](pretty_printer *pp, splay_tree_node *node) { pp_decimal_int (pp, node->value ()); }; pretty_printer pp; tree.print (&pp, print_node); } // Test various lookups on TREE using LOOKUP, where lookup returns the // same kind of value as the rooted_splay_tree lookup functions. static void test_lookup (splay_tree &tree, int (*lookup) (splay_tree &, int)) { // Look up values that are known to exist. for (int value : data) ASSERT_EQ (lookup (tree, value), 0); // Look up values that are 1 less than values that are known to exist. for (int value : data) { int result = lookup (tree, value - 1); if (result == 0) ASSERT_EQ (tree->value (), value - 1); else if (result < 0) // VALUE - 1 is less than the root. ASSERT_EQ (tree->value (), value); else if (result > 0) { // VALUE - 1 is greater than the root. ASSERT_TRUE (tree->value () < value - 1); if (tree.splay_next_node ()) ASSERT_EQ (tree->value (), value); } } // Look up values that are 1 greater than values that are known to exist. for (int value : data) { int result = lookup (tree, value + 1); if (result == 0) ASSERT_EQ (tree->value (), value + 1); else if (result < 0) { // VALUE + 1 is less than the root. ASSERT_TRUE (tree->value () > value + 1); if (tree.splay_prev_node ()) ASSERT_EQ (tree->value (), value); } else if (result > 0) // VALUE + 1 is greater than the root. ASSERT_EQ (tree->value (), value); } } // Run all tests for this module. void splay_tree_cc_tests () { obstack ob; gcc_obstack_init (&ob); // Build up the splay tree. splay_tree tree; for (int value : data) { auto *node = XOBNEW (&ob, splay_tree_node); new (node) splay_tree_node (value); auto compare = [&](splay_tree_node *other_node) { return value - other_node->value (); }; bool inserted = tree.insert (node, compare); ASSERT_TRUE (inserted); } // Test the single-comparator lookup function. test_lookup (tree, lookup1); // Sort the input data. std::array sorted; std::copy (data, data + ARRAY_SIZE (data), sorted.begin ()); std::sort (sorted.begin (), sorted.end ()); // Iterate over the tree in ascending order. tree.splay_min_node (); bool result = true; for (int value : sorted) { ASSERT_TRUE (result); ASSERT_EQ (tree->value (), value); result = tree.splay_next_node (); } ASSERT_FALSE (result); ASSERT_EQ (tree.min_node ()->value (), sorted.front ()); // Test the double-comparator lookup function. test_lookup (tree, lookup2); // Test printing the tree now, while it's still bushy. test_print (tree); // Iterate over the tree in descending order. tree.splay_max_node (); result = true; for (auto it = sorted.rbegin (); it != sorted.rend (); ++it) { ASSERT_TRUE (result); ASSERT_EQ (tree->value (), *it); result = tree.splay_prev_node (); } ASSERT_FALSE (result); ASSERT_EQ (tree.max_node ()->value (), sorted.back ()); // Try splitting the tree into three. int mid_min = sorted[sorted.size () / 3]; int mid_max = sorted[sorted.size () * 2 / 3]; ASSERT_EQ (lookup1 (tree, mid_min), 0); splay_tree left = tree.split_before_root (); ASSERT_EQ (lookup1 (tree, mid_max), 0); splay_tree right = tree.split_after_root (); // Test removing all the nodes from their respective trees. for (int value : data) { splay_tree &t = (value < mid_min ? left : value > mid_max ? right : tree); ASSERT_EQ (lookup1 (t, value), 0); t.remove_root (); } ASSERT_EQ (left.root (), nullptr); ASSERT_EQ (tree.root (), nullptr); ASSERT_EQ (right.root (), nullptr); using rootless = default_rootless_splay_tree; // Build a tree in ascending order with the lowest element as the root. auto *nodes = XOBNEWVEC (&ob, rootless_test_node *, MAX_DATA); rootless_test_node *parent = nullptr; for (int data : sorted) { auto *node = XOBNEW (&ob, rootless_test_node); new (node) rootless_test_node (); node->data = data; nodes[data] = node; if (parent) rootless::insert_child (parent, 1, node); parent = node; } // Try comparing nodes to make sure that their order matches the data. for (size_t i = 1; i < ARRAY_SIZE (data); ++i) { int data1 = data[i - 1]; int data2 = data[i]; int comparison = rootless::compare_nodes (nodes[data1], nodes[data2]); if (data1 < data2) ASSERT_TRUE (comparison < 0); else if (data1 > data2) ASSERT_TRUE (comparison > 0); else ASSERT_EQ (comparison, 0); } obstack_free (&ob, nullptr); } } #endif // CHECKING_P