// Splay tree utilities -*- C++ -*-
// Copyright (C) 2020-2022 Free Software Foundation, Inc.
//
// This file is part of GCC.
//
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
//
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// .
#define INCLUDE_ALGORITHM
#define INCLUDE_ARRAY
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "pretty-print.h"
#include "splay-tree-utils.h"
#include "selftest.h"
#if CHECKING_P
namespace {
// A simple test node for rootless_splay_tree.
struct rootless_test_node
{
int data;
rootless_test_node *m_parent;
rootless_test_node *m_children[2];
};
}
namespace selftest {
// Random input data.
static const size_t MAX_DATA = 32768;
static const int data[] = {
1379, 14643, 30579, 28160, 31750, 22280, 5502, 4720, 30075, 27595,
8395, 19410, 518, 19709, 29694, 19865, 25372, 11752, 15485, 21547,
25153, 25072, 10146, 3341, 15625, 3038, 10189, 19943, 1322, 11762,
807, 430, 11284, 11841, 23965, 32008, 4547, 8087, 13225, 23054,
22284, 13756, 2182, 26450, 30482, 32502, 23348, 20265, 29509, 3290,
10807, 1242, 3212, 32178, 25354, 22032, 30509, 16157, 22432, 1295,
8348, 23342, 24678, 193, 31016, 10316, 3872, 13521, 19211, 30594,
12229, 4794, 25083, 16098, 28144, 27896, 4801, 20689, 31450, 15614,
19597, 13731, 30309, 24846, 11042, 31929, 18306, 28520, 16907, 12488,
15001, 18487, 3438, 1706, 4829, 20892, 6226, 18204, 15776, 30717,
19398, 2480, 19434, 2838, 2605, 3994, 22538, 12269, 6486, 1314,
30301, 9919, 31405, 30847, 25000, 24013, 22196, 30220, 31415, 14630,
26319, 4880, 21292, 20217, 20078, 14679, 25686, 28675, 13883, 14853,
2872, 2428, 3636, 14131, 2952, 2133, 4470, 25808, 12576, 31395,
5938, 28393, 14553, 4494, 14928, 24310, 17394, 17436, 23385, 22792,
9785, 13118, 22338, 23320, 27059, 17663, 16434, 14954, 16962, 31088,
22247, 22600, 7980, 1344, 15635, 13611, 32739, 3283, 12924, 17904,
28216, 7542, 9212, 28308, 18873, 3912, 5473, 4666, 11900, 21420,
20072, 27662, 16445, 29848, 24444, 31668, 30664, 14287, 13754, 29276,
21462, 25517, 17632, 8105, 32510, 16677, 11162, 20734, 26873, 5097
};
// Look up VALUE in TREE using the single-comparator lookup function.
static int
lookup1 (splay_tree &tree, int value)
{
auto compare = [&](splay_tree_node *node)
{
return value - node->value ();
};
return tree.lookup (compare);
}
// Look up VALUE in TREE using the double-comparator lookup function.
static int
lookup2 (splay_tree &tree, int value)
{
auto want_something_smaller = [&](splay_tree_node *node)
{
return value < node->value ();
};
auto want_something_bigger = [&](splay_tree_node *node)
{
return value > node->value ();
};
return tree.lookup (want_something_smaller, want_something_bigger);
}
// Test printing TREE to a pretty printer. Don't check the output against
// anything; just make sure that it doesn't crash.
static void
test_print (splay_tree &tree)
{
auto print_node = [](pretty_printer *pp, splay_tree_node *node)
{
pp_decimal_int (pp, node->value ());
};
pretty_printer pp;
tree.print (&pp, print_node);
}
// Test various lookups on TREE using LOOKUP, where lookup returns the
// same kind of value as the rooted_splay_tree lookup functions.
static void
test_lookup (splay_tree &tree, int (*lookup) (splay_tree &, int))
{
// Look up values that are known to exist.
for (int value : data)
ASSERT_EQ (lookup (tree, value), 0);
// Look up values that are 1 less than values that are known to exist.
for (int value : data)
{
int result = lookup (tree, value - 1);
if (result == 0)
ASSERT_EQ (tree->value (), value - 1);
else if (result < 0)
// VALUE - 1 is less than the root.
ASSERT_EQ (tree->value (), value);
else if (result > 0)
{
// VALUE - 1 is greater than the root.
ASSERT_TRUE (tree->value () < value - 1);
if (tree.splay_next_node ())
ASSERT_EQ (tree->value (), value);
}
}
// Look up values that are 1 greater than values that are known to exist.
for (int value : data)
{
int result = lookup (tree, value + 1);
if (result == 0)
ASSERT_EQ (tree->value (), value + 1);
else if (result < 0)
{
// VALUE + 1 is less than the root.
ASSERT_TRUE (tree->value () > value + 1);
if (tree.splay_prev_node ())
ASSERT_EQ (tree->value (), value);
}
else if (result > 0)
// VALUE + 1 is greater than the root.
ASSERT_EQ (tree->value (), value);
}
}
// Run all tests for this module.
void
splay_tree_cc_tests ()
{
obstack ob;
gcc_obstack_init (&ob);
// Build up the splay tree.
splay_tree tree;
for (int value : data)
{
auto *node = XOBNEW (&ob, splay_tree_node);
new (node) splay_tree_node (value);
auto compare = [&](splay_tree_node *other_node)
{
return value - other_node->value ();
};
bool inserted = tree.insert (node, compare);
ASSERT_TRUE (inserted);
}
// Test the single-comparator lookup function.
test_lookup (tree, lookup1);
// Sort the input data.
std::array sorted;
std::copy (data, data + ARRAY_SIZE (data), sorted.begin ());
std::sort (sorted.begin (), sorted.end ());
// Iterate over the tree in ascending order.
tree.splay_min_node ();
bool result = true;
for (int value : sorted)
{
ASSERT_TRUE (result);
ASSERT_EQ (tree->value (), value);
result = tree.splay_next_node ();
}
ASSERT_FALSE (result);
ASSERT_EQ (tree.min_node ()->value (), sorted.front ());
// Test the double-comparator lookup function.
test_lookup (tree, lookup2);
// Test printing the tree now, while it's still bushy.
test_print (tree);
// Iterate over the tree in descending order.
tree.splay_max_node ();
result = true;
for (auto it = sorted.rbegin (); it != sorted.rend (); ++it)
{
ASSERT_TRUE (result);
ASSERT_EQ (tree->value (), *it);
result = tree.splay_prev_node ();
}
ASSERT_FALSE (result);
ASSERT_EQ (tree.max_node ()->value (), sorted.back ());
// Try splitting the tree into three.
int mid_min = sorted[sorted.size () / 3];
int mid_max = sorted[sorted.size () * 2 / 3];
ASSERT_EQ (lookup1 (tree, mid_min), 0);
splay_tree left = tree.split_before_root ();
ASSERT_EQ (lookup1 (tree, mid_max), 0);
splay_tree right = tree.split_after_root ();
// Test removing all the nodes from their respective trees.
for (int value : data)
{
splay_tree &t = (value < mid_min ? left
: value > mid_max ? right : tree);
ASSERT_EQ (lookup1 (t, value), 0);
t.remove_root ();
}
ASSERT_EQ (left.root (), nullptr);
ASSERT_EQ (tree.root (), nullptr);
ASSERT_EQ (right.root (), nullptr);
using rootless = default_rootless_splay_tree;
// Build a tree in ascending order with the lowest element as the root.
auto *nodes = XOBNEWVEC (&ob, rootless_test_node *, MAX_DATA);
rootless_test_node *parent = nullptr;
for (int data : sorted)
{
auto *node = XOBNEW (&ob, rootless_test_node);
new (node) rootless_test_node ();
node->data = data;
nodes[data] = node;
if (parent)
rootless::insert_child (parent, 1, node);
parent = node;
}
// Try comparing nodes to make sure that their order matches the data.
for (size_t i = 1; i < ARRAY_SIZE (data); ++i)
{
int data1 = data[i - 1];
int data2 = data[i];
int comparison = rootless::compare_nodes (nodes[data1], nodes[data2]);
if (data1 < data2)
ASSERT_TRUE (comparison < 0);
else if (data1 > data2)
ASSERT_TRUE (comparison > 0);
else
ASSERT_EQ (comparison, 0);
}
obstack_free (&ob, nullptr);
}
}
#endif // CHECKING_P