/* Single entry single exit control flow regions. Copyright (C) 2008-2015 Free Software Foundation, Inc. Contributed by Jan Sjodin and Sebastian Pop . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_SESE_H #define GCC_SESE_H typedef hash_map > bb_map_t; typedef hash_map > rename_map_t; typedef struct ifsese_s *ifsese; /* First phi is the new codegenerated phi second one is original phi. */ typedef std::pair phi_rename; /* First edge is the init edge and second is the back edge w.r.t. a loop. */ typedef std::pair init_back_edge_pair_t; /* A Single Entry, Single Exit region is a part of the CFG delimited by two edges. */ struct sese_l { sese_l (edge e, edge x) : entry (e), exit (x) {} operator bool () const { return entry && exit; } edge entry; edge exit; }; /* Get the entry of an sese S. */ static inline basic_block get_entry_bb (sese_l &s) { return s.entry->dest; } /* Get the exit of an sese S. */ static inline basic_block get_exit_bb (sese_l &s) { return s.exit->src; } /* Returns the index of V where ELEM can be found. -1 Otherwise. */ template int vec_find (const vec &v, const T &elem) { int i; T t; FOR_EACH_VEC_ELT (v, i, t) if (elem == t) return i; return -1; } /* A helper structure for bookkeeping information about a scop in graphite. */ typedef struct sese_info_t { /* The SESE region. */ sese_l region; /* Parameters used within the SCOP. */ vec params; /* Maps an old name to one or more new names. When there are several new names, one has to select the definition corresponding to the immediate dominator. */ rename_map_t *rename_map; /* Loops completely contained in this SESE. */ bitmap loops; vec loop_nest; /* Basic blocks contained in this SESE. */ vec bbs; /* Copied basic blocks indexed by the original bb. */ bb_map_t *copied_bb_map; /* A vector of phi nodes to be updated when all arguments are available. The pair contains first the old_phi and second the new_phi. */ vec incomplete_phis; /* The condition region generated for this sese. */ ifsese if_region; } *sese_info_p; extern sese_info_p new_sese_info (edge, edge); extern void free_sese_info (sese_info_p); extern void sese_insert_phis_for_liveouts (sese_info_p, basic_block, edge, edge); extern void build_sese_loop_nests (sese_info_p); extern edge copy_bb_and_scalar_dependences (basic_block, sese_info_p, edge, vec , bool *); extern struct loop *outermost_loop_in_sese (sese_l &, basic_block); extern tree scalar_evolution_in_region (sese_l &, loop_p, tree); extern bool invariant_in_sese_p_rec (tree, sese_l &, bool *); extern bool bb_contains_loop_phi_nodes (basic_block); extern bool bb_contains_loop_close_phi_nodes (basic_block); extern std::pair get_edges (basic_block bb); extern void copy_loop_phi_args (gphi *, init_back_edge_pair_t &, gphi *, init_back_edge_pair_t &, sese_info_p, bool); extern bool copy_loop_close_phi_args (basic_block, basic_block, sese_info_p, bool); extern bool copy_cond_phi_args (gphi *, gphi *, vec, sese_info_p, bool); /* Check that SESE contains LOOP. */ static inline bool sese_contains_loop (sese_info_p sese, struct loop *loop) { return bitmap_bit_p (sese->loops, loop->num); } /* The number of parameters in REGION. */ static inline unsigned sese_nb_params (sese_info_p region) { return region->params.length (); } /* Checks whether BB is contained in the region delimited by ENTRY and EXIT blocks. */ static inline bool bb_in_region (basic_block bb, basic_block entry, basic_block exit) { /* FIXME: PR67842. */ #if 0 if (flag_checking) { edge e; edge_iterator ei; /* Check that there are no edges coming in the region: all the predecessors of EXIT are dominated by ENTRY. */ FOR_EACH_EDGE (e, ei, exit->preds) gcc_assert (dominated_by_p (CDI_DOMINATORS, e->src, entry)); } #endif return dominated_by_p (CDI_DOMINATORS, bb, entry) && !(dominated_by_p (CDI_DOMINATORS, bb, exit) && !dominated_by_p (CDI_DOMINATORS, entry, exit)); } /* Checks whether BB is contained in the region delimited by ENTRY and EXIT blocks. */ static inline bool bb_in_sese_p (basic_block bb, sese_l &r) { return bb_in_region (bb, r.entry->dest, r.exit->dest); } /* Returns true when STMT is defined in REGION. */ static inline bool stmt_in_sese_p (gimple *stmt, sese_l &r) { basic_block bb = gimple_bb (stmt); return bb && bb_in_sese_p (bb, r); } /* Returns true when NAME is defined in REGION. */ static inline bool defined_in_sese_p (tree name, sese_l &r) { return stmt_in_sese_p (SSA_NAME_DEF_STMT (name), r); } /* Returns true when LOOP is in REGION. */ static inline bool loop_in_sese_p (struct loop *loop, sese_l ®ion) { return (bb_in_sese_p (loop->header, region) && bb_in_sese_p (loop->latch, region)); } /* Returns the loop depth of LOOP in REGION. The loop depth is the same as the normal loop depth, but limited by a region. Example: loop_0 loop_1 { S0 <- region start S1 loop_2 S2 S3 <- region end } loop_0 does not exist in the region -> invalid loop_1 exists, but is not completely contained in the region -> depth 0 loop_2 is completely contained -> depth 1 */ static inline unsigned int sese_loop_depth (sese_l ®ion, loop_p loop) { unsigned int depth = 0; while (loop_in_sese_p (loop, region)) { depth++; loop = loop_outer (loop); } return depth; } /* A single entry single exit specialized for conditions. */ typedef struct ifsese_s { sese_info_p region; sese_info_p true_region; sese_info_p false_region; } *ifsese; extern void if_region_set_false_region (ifsese, sese_info_p); extern ifsese move_sese_in_condition (sese_info_p); extern edge get_true_edge_from_guard_bb (basic_block); extern edge get_false_edge_from_guard_bb (basic_block); extern void set_ifsese_condition (ifsese, tree); static inline edge if_region_entry (ifsese if_region) { return if_region->region->region.entry; } static inline edge if_region_exit (ifsese if_region) { return if_region->region->region.exit; } static inline basic_block if_region_get_condition_block (ifsese if_region) { return if_region_entry (if_region)->dest; } /* Free and compute again all the dominators information. */ static inline void recompute_all_dominators (void) { mark_irreducible_loops (); free_dominance_info (CDI_DOMINATORS); calculate_dominance_info (CDI_DOMINATORS); free_dominance_info (CDI_POST_DOMINATORS); calculate_dominance_info (CDI_POST_DOMINATORS); } typedef std::pair scalar_use; typedef struct gimple_poly_bb { basic_block bb; struct poly_bb *pbb; /* Lists containing the restrictions of the conditional statements dominating this bb. This bb can only be executed, if all conditions are true. Example: for (i = 0; i <= 20; i++) { A if (2i <= 8) B } So for B there is an additional condition (2i <= 8). List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the corresponding element in CONDITION_CASES is not NULL_TREE. For a SWITCH_EXPR the corresponding element in CONDITION_CASES is a CASE_LABEL_EXPR. */ vec conditions; vec condition_cases; vec data_refs; vec read_scalar_refs; vec write_scalar_refs; } *gimple_poly_bb_p; #define GBB_BB(GBB) (GBB)->bb #define GBB_PBB(GBB) (GBB)->pbb #define GBB_DATA_REFS(GBB) (GBB)->data_refs #define GBB_CONDITIONS(GBB) (GBB)->conditions #define GBB_CONDITION_CASES(GBB) (GBB)->condition_cases /* Return the innermost loop that contains the basic block GBB. */ static inline struct loop * gbb_loop (gimple_poly_bb_p gbb) { return GBB_BB (gbb)->loop_father; } /* Returns the gimple loop, that corresponds to the loop_iterator_INDEX. If there is no corresponding gimple loop, we return NULL. */ static inline loop_p gbb_loop_at_index (gimple_poly_bb_p gbb, sese_l ®ion, int index) { loop_p loop = gbb_loop (gbb); int depth = sese_loop_depth (region, loop); while (--depth > index) loop = loop_outer (loop); gcc_assert (loop_in_sese_p (loop, region)); return loop; } /* The number of common loops in REGION for GBB1 and GBB2. */ static inline int nb_common_loops (sese_l ®ion, gimple_poly_bb_p gbb1, gimple_poly_bb_p gbb2) { loop_p l1 = gbb_loop (gbb1); loop_p l2 = gbb_loop (gbb2); loop_p common = find_common_loop (l1, l2); return sese_loop_depth (region, common); } /* Return true when DEF can be analyzed in REGION by the scalar evolution analyzer. */ static inline bool scev_analyzable_p (tree def, sese_l ®ion) { loop_p loop; tree scev; tree type = TREE_TYPE (def); /* When Graphite generates code for a scev, the code generator expresses the scev in function of a single induction variable. This is unsafe for floating point computations, as it may replace a floating point sum reduction with a multiplication. The following test returns false for non integer types to avoid such problems. */ if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type)) return false; loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def)); scev = scalar_evolution_in_region (region, loop, def); return !chrec_contains_undetermined (scev) && (TREE_CODE (scev) != SSA_NAME || !defined_in_sese_p (scev, region)) && (tree_does_not_contain_chrecs (scev) || evolution_function_is_affine_p (scev)); } #endif