/* Instruction scheduling pass.
   Copyright (C) 1992 Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com)
   Enhanced by, and currently maintained by, Jim Wilson (wilson@cygnus.com)

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* Instruction scheduling pass.

   This pass implements list scheduling within basic blocks.  It is
   run after flow analysis, but before register allocation.  The
   scheduler works as follows:

   We compute insn priorities based on data dependencies.  Flow
   analysis only creates a fraction of the data-dependencies we must
   observe: namely, only those dependencies which the combiner can be
   expected to use.  For this pass, we must therefore create the
   remaining dependencies we need to observe: register dependencies,
   memory dependencies, dependencies to keep function calls in order,
   and the dependence between a conditional branch and the setting of
   condition codes are all dealt with here.

   The scheduler first traverses the data flow graph, starting with
   the last instruction, and proceeding to the first, assigning
   values to insn_priority as it goes.  This sorts the instructions
   topologically by data dependence.

   Once priorities have been established, we order the insns using
   list scheduling.  This works as follows: starting with a list of
   all the ready insns, and sorted according to priority number, we
   schedule the insn from the end of the list by placing its
   predecessors in the list according to their priority order.  We
   consider this insn scheduled by setting the pointer to the "end" of
   the list to point to the previous insn.  When an insn has no
   predecessors, we also add it to the ready list.  When all insns down
   to the lowest priority have been scheduled, the critical path of the
   basic block has been made as short as possible.  The remaining insns
   are then scheduled in remaining slots.

   The following list shows the order in which we want to break ties:

	1.  choose insn with lowest conflict cost, ties broken by
	2.  choose insn with the longest path to end of bb, ties broken by
	3.  choose insn that kills the most registers, ties broken by
	4.  choose insn that conflicts with the most ready insns, or finally
	5.  choose insn with lowest UID.

   Memory references complicate matters.  Only if we can be certain
   that memory references are not part of the data dependency graph
   (via true, anti, or output dependence), can we move operations past
   memory references.  To first approximation, reads can be done
   independently, while writes introduce dependencies.  Better
   approximations will yield fewer dependencies.

   Dependencies set up by memory references are treated in exactly the
   same way as other dependencies, by using LOG_LINKS.

   Having optimized the critical path, we may have also unduly
   extended the lifetimes of some registers.  If an operation requires
   that constants be loaded into registers, it is certainly desirable
   to load those constants as early as necessary, but no earlier.
   I.e., it will not do to load up a bunch of registers at the
   beginning of a basic block only to use them at the end, if they
   could be loaded later, since this may result in excessive register
   utilization.

   Note that since branches are never in basic blocks, but only end
   basic blocks, this pass will not do any branch scheduling.  But
   that is ok, since we can use GNU's delayed branch scheduling
   pass to take care of this case.

   Also note that no further optimizations based on algebraic identities
   are performed, so this pass would be a good one to perform instruction
   splitting, such as breaking up a multiply instruction into shifts
   and adds where that is profitable.

   Given the memory aliasing analysis that this pass should perform,
   it should be possible to remove redundant stores to memory, and to
   load values from registers instead of hitting memory.

   This pass must update information that subsequent passes expect to be
   correct.  Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
   reg_n_calls_crossed, and reg_live_length.  Also, basic_block_head,
   basic_block_end.

   The information in the line number notes is carefully retained by this
   pass.  All other NOTE insns are grouped in their same relative order at
   the beginning of basic blocks that have been scheduled.  */

#include <stdio.h>
#include "config.h"
#include "rtl.h"
#include "basic-block.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-attr.h"

/* Arrays set up by scheduling for the same respective purposes as
   similar-named arrays set up by flow analysis.  We work with these
   arrays during the scheduling pass so we can compare values against
   unscheduled code.

   Values of these arrays are copied at the end of this pass into the
   arrays set up by flow analysis.  */
static short *sched_reg_n_deaths;
static int *sched_reg_n_calls_crossed;
static int *sched_reg_live_length;

/* Element N is the next insn that sets (hard or pseudo) register
   N within the current basic block; or zero, if there is no
   such insn.  Needed for new registers which may be introduced
   by splitting insns.  */
static rtx *reg_last_uses;
static rtx *reg_last_sets;

/* Vector indexed by INSN_UID giving the original ordering of the insns.  */
static int *insn_luid;
#define INSN_LUID(INSN) (insn_luid[INSN_UID (INSN)])

/* Vector indexed by INSN_UID giving each instruction a priority.  */
static int *insn_priority;
#define INSN_PRIORITY(INSN) (insn_priority[INSN_UID (INSN)])

#define DONE_PRIORITY	-1
#define MAX_PRIORITY	0x7fffffff
#define TAIL_PRIORITY	0x7ffffffe
#define LAUNCH_PRIORITY	0x7f000001
#define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
#define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)

/* Vector indexed by INSN_UID giving number of insns refering to this insn.  */
static int *insn_ref_count;
#define INSN_REF_COUNT(INSN) (insn_ref_count[INSN_UID (INSN)])

/* Vector indexed by INSN_UID giving line-number note in effect for each
   insn.  For line-number notes, this indicates whether the note may be
   reused.  */
static rtx *line_note;
#define LINE_NOTE(INSN) (line_note[INSN_UID (INSN)])

/* Vector indexed by basic block number giving the starting line-number
   for each basic block.  */
static rtx *line_note_head;

/* List of important notes we must keep around.  This is a pointer to the
   last element in the list.  */
static rtx note_list;

/* Regsets telling whether a given register is live or dead before the last
   scheduled insn.  Must scan the instructions once before scheduling to
   determine what registers are live or dead at the end of the block.  */
static regset bb_dead_regs;
static regset bb_live_regs;

/* Regset telling whether a given register is live after the insn currently
   being scheduled.  Before processing an insn, this is equal to bb_live_regs
   above.  This is used so that we can find regsiters that are newly born/dead
   after processing an insn.  */
static regset old_live_regs;

/* The chain of REG_DEAD notes.  REG_DEAD notes are removed from all insns
   during the initial scan and reused later.  If there are not exactly as
   many REG_DEAD notes in the post scheduled code as there were in the
   prescheduled code then we trigger an abort because this indicates a bug.  */
static rtx dead_notes;

/* Queues, etc.  */

/* An instruction is ready to be scheduled when all insns following it
   have already been scheduled.  It is important to ensure that all
   insns which use its result will not be executed until its result
   has been computed.  We maintain three lists (conceptually):

   (1) a "Ready" list of unscheduled, uncommitted insns
   (2) a "Scheduled" list of scheduled insns
   (3) a "Pending" list of insns which can be scheduled, but
       for stalls.

   Insns move from the "Ready" list to the "Pending" list when
   all insns following them have been scheduled.

   Insns move from the "Pending" list to the "Scheduled" list
   when there is sufficient space in the pipeline to prevent
   stalls between the insn and scheduled insns which use it.

   The "Pending" list acts as a buffer to prevent insns
   from avalanching.

   The "Ready" list is implemented by the variable `ready'.
   The "Pending" list are the insns in the LOG_LINKS of ready insns.
   The "Scheduled" list is the new insn chain built by this pass.  */

/* Implement a circular buffer from which instructions are issued.  */
#define Q_SIZE 128
static rtx insn_queue[Q_SIZE];
static int q_ptr = 0;
static int q_size = 0;
#define NEXT_Q(X) (((X)+1) & (Q_SIZE-1))
#define NEXT_Q_AFTER(X,C) (((X)+C) & (Q_SIZE-1))

/* Forward declarations.  */
static void sched_analyze_2 ();
static void schedule_block ();

/* Main entry point of this file.  */
void schedule_insns ();

#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))

/* Vector indexed by N giving the initial (unchanging) value known
   for pseudo-register N.  */
static rtx *reg_known_value;

/* Indicates number of valid entries in reg_known_value.  */
static int reg_known_value_size;

static rtx
canon_rtx (x)
     rtx x;
{
  if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
      && REGNO (x) <= reg_known_value_size)
    return reg_known_value[REGNO (x)];
  else if (GET_CODE (x) == PLUS)
    {
      rtx x0 = canon_rtx (XEXP (x, 0));
      rtx x1 = canon_rtx (XEXP (x, 1));

      if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
	{
	  /* We can tolerate LO_SUMs being offset here; these
	     rtl are used for nothing other than comparisons.  */
	  if (GET_CODE (x0) == CONST_INT)
	    return plus_constant_for_output (x1, INTVAL (x0));
	  else if (GET_CODE (x1) == CONST_INT)
	    return plus_constant_for_output (x0, INTVAL (x1));
	  return gen_rtx (PLUS, GET_MODE (x), x0, x1);
	}
    }
  return x;
}

/* Set up all info needed to perform alias analysis on memory references.  */

void
init_alias_analysis ()
{
  int maxreg = max_reg_num ();
  rtx insn;
  rtx note;
  rtx set;

  reg_known_value_size = maxreg;

  reg_known_value
    = (rtx *) oballoc ((maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx))
      - FIRST_PSEUDO_REGISTER;
  bzero (reg_known_value+FIRST_PSEUDO_REGISTER,
	 (maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx));

  /* Fill in the entries with known constant values.  */
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    if ((set = single_set (insn)) != 0
	&& GET_CODE (SET_DEST (set)) == REG
	&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
	&& (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
	     && reg_n_sets[REGNO (SET_DEST (set))] == 1)
	    || (note = find_reg_note (insn, REG_EQUIV, 0)) != 0)
	&& GET_CODE (XEXP (note, 0)) != EXPR_LIST)
      reg_known_value[REGNO (SET_DEST (set))] = XEXP (note, 0);

  /* Fill in the remaining entries.  */
  while (--maxreg >= FIRST_PSEUDO_REGISTER)
    if (reg_known_value[maxreg] == 0)
      reg_known_value[maxreg] = regno_reg_rtx[maxreg];
}

/* Return 1 if X and Y are identical-looking rtx's.

   We use the data in reg_known_value above to see if two registers with
   different numbers are, in fact, equivalent.  */

static int
rtx_equal_for_memref_p (x, y)
     rtx x, y;
{
  register int i;
  register int j;
  register enum rtx_code code;
  register char *fmt;

  if (x == 0 && y == 0)
    return 1;
  if (x == 0 || y == 0)
    return 0;
  x = canon_rtx (x);
  y = canon_rtx (y);

  if (x == y)
    return 1;

  code = GET_CODE (x);
  /* Rtx's of different codes cannot be equal.  */
  if (code != GET_CODE (y))
    return 0;

  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
     (REG:SI x) and (REG:HI x) are NOT equivalent.  */

  if (GET_MODE (x) != GET_MODE (y))
    return 0;

  /* REG, LABEL_REF, and SYMBOL_REF can be compared nonrecursively.  */

  if (code == REG)
    return REGNO (x) == REGNO (y);
  if (code == LABEL_REF)
    return XEXP (x, 0) == XEXP (y, 0);
  if (code == SYMBOL_REF)
    return XSTR (x, 0) == XSTR (y, 0);

  /* Compare the elements.  If any pair of corresponding elements
     fail to match, return 0 for the whole things.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      switch (fmt[i])
	{
	case 'n':
	case 'i':
	  if (XINT (x, i) != XINT (y, i))
	    return 0;
	  break;

	case 'V':
	case 'E':
	  /* Two vectors must have the same length.  */
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return 0;

	  /* And the corresponding elements must match.  */
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (rtx_equal_for_memref_p (XVECEXP (x, i, j), XVECEXP (y, i, j)) == 0)
	      return 0;
	  break;

	case 'e':
	  if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
	    return 0;
	  break;

	case 'S':
	case 's':
	  if (strcmp (XSTR (x, i), XSTR (y, i)))
	    return 0;
	  break;

	case 'u':
	  /* These are just backpointers, so they don't matter.  */
	  break;

	case '0':
	  break;

	  /* It is believed that rtx's at this level will never
	     contain anything but integers and other rtx's,
	     except for within LABEL_REFs and SYMBOL_REFs.  */
	default:
	  abort ();
	}
    }
  return 1;
}

/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
   X and return it, or return 0 if none found.  */

static rtx
find_symbolic_term (x)
     rtx x;
{
  register int i;
  register enum rtx_code code;
  register char *fmt;

  code = GET_CODE (x);
  if (code == SYMBOL_REF || code == LABEL_REF)
    return x;
  if (GET_RTX_CLASS (code) == 'o')
    return 0;

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      rtx t;

      if (fmt[i] == 'e')
	{
	  t = find_symbolic_term (XEXP (x, i));
	  if (t != 0)
	    return t;
	}
      else if (fmt[i] == 'E')
	break;
    }
  return 0;
}

/* Return nonzero if X and Y (memory addresses) could reference the
   same location in memory.  C is an offset accumulator.  When
   C is nonzero, we are testing aliases between X and Y + C.
   XSIZE is the size in bytes of the X reference,
   similarly YSIZE is the size in bytes for Y.

   If XSIZE or YSIZE is zero, we do not know the amount of memory being
   referenced (the reference was BLKmode), so make the most pessimistic
   assumptions.

   We recognize the following cases of non-conflicting memory:

	(1) addresses involving the frame pointer cannot conflict
	    with addresses involving static variables.
	(2) static variables with different addresses cannot conflict.

   Nice to notice that varying addresses cannot confict with fp if no
   local variables had their addresses taken, but that's too hard now.  */

static int
memrefs_conflict_p (xsize, x, ysize, y, c)
     rtx x, y;
     int xsize, ysize;
     int c;
{
  if (GET_CODE (x) == HIGH)
    x = XEXP (x, 0);
  else if (GET_CODE (x) == LO_SUM)
    x = XEXP (x, 1);
  else
    x = canon_rtx (x);
  if (GET_CODE (y) == HIGH)
    y = XEXP (y, 0);
  else if (GET_CODE (y) == LO_SUM)
    y = XEXP (y, 1);
  else
    y = canon_rtx (y);

  if (rtx_equal_for_memref_p (x, y))
    return (xsize == 0 || ysize == 0 ||
	    (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));

  if (y == frame_pointer_rtx || y == stack_pointer_rtx)
    {
      rtx t = y;
      int tsize = ysize;
      y = x; ysize = xsize;
      x = t; xsize = tsize;
    }

  if (x == frame_pointer_rtx || x == stack_pointer_rtx)
    {
      rtx y1;

      if (CONSTANT_P (y))
	return 0;

      if (GET_CODE (y) == PLUS
	  && canon_rtx (XEXP (y, 0)) == x
	  && (y1 = canon_rtx (XEXP (y, 1)))
	  && GET_CODE (y1) == CONST_INT)
	{
	  c += INTVAL (y1);
	  return (xsize == 0 || ysize == 0
		  || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
	}

      if (GET_CODE (y) == PLUS
	  && (y1 = canon_rtx (XEXP (y, 0)))
	  && CONSTANT_P (y1))
	return 0;

      return 1;
    }

  if (GET_CODE (x) == PLUS)
    {
      /* The fact that X is canonnicallized means that this
	 PLUS rtx is canonnicallized.  */
      rtx x0 = XEXP (x, 0);
      rtx x1 = XEXP (x, 1);

      if (GET_CODE (y) == PLUS)
	{
	  /* The fact that Y is canonnicallized means that this
	     PLUS rtx is canonnicallized.  */
	  rtx y0 = XEXP (y, 0);
	  rtx y1 = XEXP (y, 1);

	  if (rtx_equal_for_memref_p (x1, y1))
	    return memrefs_conflict_p (xsize, x0, ysize, y0, c);
	  if (rtx_equal_for_memref_p (x0, y0))
	    return memrefs_conflict_p (xsize, x1, ysize, y1, c);
	  if (GET_CODE (x1) == CONST_INT)
	    if (GET_CODE (y1) == CONST_INT)
	      return memrefs_conflict_p (xsize, x0, ysize, y0,
					 c - INTVAL (x1) + INTVAL (y1));
	    else
	      return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
	  else if (GET_CODE (y1) == CONST_INT)
	    return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));

	  /* Handle case where we cannot understand iteration operators,
	     but we notice that the base addresses are distinct objects.  */
	  x = find_symbolic_term (x);
	  if (x == 0)
	    return 1;
	  y = find_symbolic_term (y);
	  if (y == 0)
	    return 1;
	  return rtx_equal_for_memref_p (x, y);
	}
      else if (GET_CODE (x1) == CONST_INT)
	return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
    }
  else if (GET_CODE (y) == PLUS)
    {
      /* The fact that Y is canonnicallized means that this
	 PLUS rtx is canonnicallized.  */
      rtx y0 = XEXP (y, 0);
      rtx y1 = XEXP (y, 1);

      if (GET_CODE (y1) == CONST_INT)
	return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
      else
	return 1;
    }

  if (GET_CODE (x) == GET_CODE (y))
    switch (GET_CODE (x))
      {
      case MULT:
	{
	  /* Handle cases where we expect the second operands to be the
	     same, and check only whether the first operand would conflict
	     or not.  */
	  rtx x0, y0;
	  rtx x1 = canon_rtx (XEXP (x, 1));
	  rtx y1 = canon_rtx (XEXP (y, 1));
	  if (! rtx_equal_for_memref_p (x1, y1))
	    return 1;
	  x0 = canon_rtx (XEXP (x, 0));
	  y0 = canon_rtx (XEXP (y, 0));
	  if (rtx_equal_for_memref_p (x0, y0))
	    return (xsize == 0 || ysize == 0
		    || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));

	  /* Can't properly adjust our sizes.  */
	  if (GET_CODE (x1) != CONST_INT)
	    return 1;
	  xsize /= INTVAL (x1);
	  ysize /= INTVAL (x1);
	  c /= INTVAL (x1);
	  return memrefs_conflict_p (xsize, x0, ysize, y0, c);
	}
      }

  if (CONSTANT_P (x))
    {
      if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
	{
	  c += (INTVAL (y) - INTVAL (x));
	  return (xsize == 0 || ysize == 0
		  || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
	}

      if (GET_CODE (x) == CONST)
	{
	  if (GET_CODE (y) == CONST)
	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
				       ysize, canon_rtx (XEXP (y, 0)), c);
	  else
	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
				       ysize, y, c);
	}
      if (GET_CODE (y) == CONST)
	return memrefs_conflict_p (xsize, x, ysize,
				   canon_rtx (XEXP (y, 0)), c);

      if (CONSTANT_P (y))
	return (rtx_equal_for_memref_p (x, y)
		&& (xsize == 0 || ysize == 0
		    || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)));

      return 1;
    }
  return 1;
}

/* Functions to compute memory dependencies.

   Since we process the insns in execution order, we can build tables
   to keep track of what registers are fixed (and not aliased), what registers
   are varying in known ways, and what registers are varying in unknown
   ways.

   If both memory references are volatile, then there must always be a
   dependence between the two references, since their order can not be
   changed.  A volatile and non-volatile reference can be interchanged
   though. 

   A MEM_IN_STRUCT reference at a varying address can never conflict with a
   non-MEM_IN_STRUCT reference at a fixed address.  */

/* Read dependence: X is read after read in MEM takes place.  There can
   only be a dependence here if both reads are volatile.  */

int
read_dependence (mem, x)
     rtx mem;
     rtx x;
{
  return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
}

/* True dependence: X is read after store in MEM takes place.  */

int
true_dependence (mem, x)
     rtx mem;
     rtx x;
{
  if (RTX_UNCHANGING_P (x))
    return 0;

  return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
	  || (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
				  SIZE_FOR_MODE (x), XEXP (x, 0), 0)
	      && ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
		    && ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
	      && ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
		    && ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
}

/* Anti dependence: X is written after read in MEM takes place.  */

int
anti_dependence (mem, x)
     rtx mem;
     rtx x;
{
  if (RTX_UNCHANGING_P (mem))
    return 0;

  return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
	  || (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
				  SIZE_FOR_MODE (x), XEXP (x, 0), 0)
	      && ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
		    && ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
	      && ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
		    && ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
}

/* Output dependence: X is written after store in MEM takes place.  */

int
output_dependence (mem, x)
     rtx mem;
     rtx x;
{
  return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
	  || (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
				  SIZE_FOR_MODE (x), XEXP (x, 0), 0)
	      && ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
		    && ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
	      && ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
		    && ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
}

#ifndef INSN_SCHEDULING
void schedule_insns () {}
#else
#ifndef __GNUC__
#define __inline
#endif

/* Computation of memory dependencies.  */

/* The *_insns and *_mems are paired lists.  Each pending memory operation
   will have a pointer to the MEM rtx on one list and a pointer to the
   containing insn on the other list in the same place in the list.  */

/* We can't use add_dependence like the old code did, because a single insn
   may have multiple memory accesses, and hence needs to be on the list
   once for each memory access.  Add_dependence won't let you add an insn
   to a list more than once.  */

/* An INSN_LIST containing all insns with pending read operations.  */
static rtx pending_read_insns;

/* An EXPR_LIST containing all MEM rtx's which are pending reads.  */
static rtx pending_read_mems;

/* An INSN_LIST containing all insns with pending write operations.  */
static rtx pending_write_insns;

/* An EXPR_LIST containing all MEM rtx's which are pending writes.  */
static rtx pending_write_mems;

/* Indicates the combined length of the two pending lists.  We must prevent
   these lists from ever growing too large since the number of dependencies
   produced is at least O(N*N), and execution time is at least O(4*N*N), as
   a function of the length of these pending lists.  */

static int pending_lists_length;

/* An INSN_LIST containing all INSN_LISTs allocated but currently unused.  */

static rtx unused_insn_list;

/* An EXPR_LIST containing all EXPR_LISTs allocated but currently unused.  */

static rtx unused_expr_list;

/* The last insn upon which all memory references must depend.
   This is an insn which flushed the pending lists, creating a dependency
   between it and all previously pending memory references.  This creates
   a barrier (or a checkpoint) which no memory reference is allowed to cross.

   This includes all non constant CALL_INSNs.  When we do interprocedural
   alias analysis, this restriction can be relaxed.
   This may also be an INSN that writes memory if the pending lists grow
   too large.  */

static rtx last_pending_memory_flush;

/* The last function call we have seen.  All hard regs, and, of course,
   the last function call, must depend on this.  */

static rtx last_function_call;

/* The LOG_LINKS field of this is a list of insns which use a pseudo register
   that does not already cross a call.  We create dependencies between each
   of those insn and the next call insn, to ensure that they won't cross a call
   after scheduling is done.  */

static rtx sched_before_next_call;

/* Pointer to the last instruction scheduled.  Used by rank_for_schedule,
   so that insns independent of the last scheduled insn will be preferred
   over dependent instructions.  */

static rtx last_scheduled_insn;

/* Process an insn's memory dependencies.  There are four kinds of
   dependencies:

   (0) read dependence: read follows read
   (1) true dependence: read follows write
   (2) anti dependence: write follows read
   (3) output dependence: write follows write

   We are careful to build only dependencies which actually exist, and
   use transitivity to avoid building too many links.  */

/* Return the INSN_LIST containing INSN in LIST, or NULL
   if LIST does not contain INSN.  */

__inline static rtx
find_insn_list (insn, list)
     rtx insn;
     rtx list;
{
  while (list)
    {
      if (XEXP (list, 0) == insn)
	return list;
      list = XEXP (list, 1);
    }
  return 0;
}

/* Compute cost of executing INSN.  This is the number of virtual
   cycles taken between instruction issue and instruction results.  */

__inline static int
insn_cost (insn)
     rtx insn;
{
  register int cost;

  recog_memoized (insn);

  /* A USE insn, or something else we don't need to understand.
     We can't pass these directly to result_ready_cost because it will trigger
     a fatal error for unrecognizable insns.  */
  if (INSN_CODE (insn) < 0)
    return 1;
  else
    {
      cost = result_ready_cost (insn);

      if (cost < 1)
	cost = 1;

      return cost;
    }
}

/* Compute the priority number for INSN.  */

static int
priority (insn)
     rtx insn;
{
  if (insn && GET_RTX_CLASS (GET_CODE (insn)) == 'i')
    {
      int prev_priority;
      int max_priority;
      int this_priority = INSN_PRIORITY (insn);
      rtx prev;

      if (this_priority > 0)
	return this_priority;

      max_priority = 1;

      /* Nonzero if these insns must be scheduled together.  */
      if (SCHED_GROUP_P (insn))
	{
	  prev = insn;
	  while (SCHED_GROUP_P (prev))
	    {
	      prev = PREV_INSN (prev);
	      INSN_REF_COUNT (prev) += 1;
	    }
	}

      for (prev = LOG_LINKS (insn); prev; prev = XEXP (prev, 1))
	{
	  rtx x = XEXP (prev, 0);

	  /* A dependence pointing to a note is always obsolete, because
	     sched_analyze_insn will have created any necessary new dependences
	     which replace it.  Notes can be created when instructions are
	     deleted by insn splitting, or by register allocation.  */
	  if (GET_CODE (x) == NOTE)
	    {
	      remove_dependence (insn, x);
	      continue;
	    }

	  /* This priority calculation was chosen because it results in the
	     least instruction movement, and does not hurt the performance
	     of the resulting code compared to the old algorithm.
	     This makes the sched algorithm more stable, which results
	     in better code, because there is less register pressure,
	     cross jumping is more likely to work, and debugging is easier.

	     When all instructions have a latency of 1, there is no need to
	     move any instructions.  Subtracting one here ensures that in such
	     cases all instructions will end up with a priority of one, and
	     hence no scheduling will be done.

	     The original code did not subtract the one, and added the
	     insn_cost of the current instruction to its priority (e.g.
	     move the insn_cost call down to the end).  */

	  if (REG_NOTE_KIND (prev) == 0)
	    /* Data dependence.  */
	    prev_priority = priority (x) + insn_cost (x) - 1;
	  else
	    /* Anti or output dependence.  Don't add the latency of this
	       insn's result, because it isn't being used.  */
	    prev_priority = priority (x);

	  if (prev_priority > max_priority)
	    max_priority = prev_priority;
	  INSN_REF_COUNT (x) += 1;
	}

      INSN_PRIORITY (insn) = max_priority;
      return INSN_PRIORITY (insn);
    }
  return 0;
}

/* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
   them to the unused_*_list variables, so that they can be reused.  */

static void
free_pending_lists ()
{
  register rtx link, prev_link;

  if (pending_read_insns)
    {
      prev_link = pending_read_insns;
      link = XEXP (prev_link, 1);

      while (link)
	{
	  prev_link = link;
	  link = XEXP (link, 1);
	}

      XEXP (prev_link, 1) = unused_insn_list;
      unused_insn_list = pending_read_insns;
      pending_read_insns = 0;
    }

  if (pending_write_insns)
    {
      prev_link = pending_write_insns;
      link = XEXP (prev_link, 1);

      while (link)
	{
	  prev_link = link;
	  link = XEXP (link, 1);
	}

      XEXP (prev_link, 1) = unused_insn_list;
      unused_insn_list = pending_write_insns;
      pending_write_insns = 0;
    }

  if (pending_read_mems)
    {
      prev_link = pending_read_mems;
      link = XEXP (prev_link, 1);

      while (link)
	{
	  prev_link = link;
	  link = XEXP (link, 1);
	}

      XEXP (prev_link, 1) = unused_expr_list;
      unused_expr_list = pending_read_mems;
      pending_read_mems = 0;
    }

  if (pending_write_mems)
    {
      prev_link = pending_write_mems;
      link = XEXP (prev_link, 1);

      while (link)
	{
	  prev_link = link;
	  link = XEXP (link, 1);
	}

      XEXP (prev_link, 1) = unused_expr_list;
      unused_expr_list = pending_write_mems;
      pending_write_mems = 0;
    }
}

/* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
   The MEM is a memory reference contained within INSN, which we are saving
   so that we can do memory aliasing on it.  */

static void
add_insn_mem_dependence (insn_list, mem_list, insn, mem)
     rtx *insn_list, *mem_list, insn, mem;
{
  register rtx link;

  if (unused_insn_list)
    {
      link = unused_insn_list;
      unused_insn_list = XEXP (link, 1);
    }
  else
    link = rtx_alloc (INSN_LIST);
  XEXP (link, 0) = insn;
  XEXP (link, 1) = *insn_list;
  *insn_list = link;

  if (unused_expr_list)
    {
      link = unused_expr_list;
      unused_expr_list = XEXP (link, 1);
    }
  else
    link = rtx_alloc (EXPR_LIST);
  XEXP (link, 0) = mem;
  XEXP (link, 1) = *mem_list;
  *mem_list = link;

  pending_lists_length++;
}

/* Make a dependency between every memory reference on the pending lists
   and INSN, thus flushing the pending lists.  */

static void
flush_pending_lists (insn)
     rtx insn;
{
  rtx link;

  while (pending_read_insns)
    {
      add_dependence (insn, XEXP (pending_read_insns, 0), REG_DEP_ANTI);

      link = pending_read_insns;
      pending_read_insns = XEXP (pending_read_insns, 1);
      XEXP (link, 1) = unused_insn_list;
      unused_insn_list = link;

      link = pending_read_mems;
      pending_read_mems = XEXP (pending_read_mems, 1);
      XEXP (link, 1) = unused_expr_list;
      unused_expr_list = link;
    }
  while (pending_write_insns)
    {
      add_dependence (insn, XEXP (pending_write_insns, 0), REG_DEP_ANTI);

      link = pending_write_insns;
      pending_write_insns = XEXP (pending_write_insns, 1);
      XEXP (link, 1) = unused_insn_list;
      unused_insn_list = link;

      link = pending_write_mems;
      pending_write_mems = XEXP (pending_write_mems, 1);
      XEXP (link, 1) = unused_expr_list;
      unused_expr_list = link;
    }
  pending_lists_length = 0;

  if (last_pending_memory_flush)
    add_dependence (insn, last_pending_memory_flush, REG_DEP_ANTI);

  last_pending_memory_flush = insn;
}

/* Analyze a single SET or CLOBBER rtx, X, creating all dependencies generated
   by the write to the destination of X, and reads of everything mentioned.  */

static void
sched_analyze_1 (x, insn)
     rtx x;
     rtx insn;
{
  register int regno;
  register rtx dest = SET_DEST (x);

  if (dest == 0)
    return;

  while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
	 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
    {
      if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
	{
	  /* The second and third arguments are values read by this insn.  */
	  sched_analyze_2 (XEXP (dest, 1), insn);
	  sched_analyze_2 (XEXP (dest, 2), insn);
	}
      dest = SUBREG_REG (dest);
    }

  if (GET_CODE (dest) == REG)
    {
      register int offset, bit, i;

      regno = REGNO (dest);

      /* A hard reg in a wide mode may really be multiple registers.
	 If so, mark all of them just like the first.  */
      if (regno < FIRST_PSEUDO_REGISTER)
	{
	  i = HARD_REGNO_NREGS (regno, GET_MODE (dest));
	  while (--i >= 0)
	    {
	      rtx u;

	      for (u = reg_last_uses[regno+i]; u; u = XEXP (u, 1))
		add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
	      reg_last_uses[regno + i] = 0;
	      if (reg_last_sets[regno + i])
		add_dependence (insn, reg_last_sets[regno + i],
				REG_DEP_OUTPUT);
	      reg_last_sets[regno + i] = insn;
	      if ((call_used_regs[i] || global_regs[i])
		  && last_function_call)
		/* Function calls clobber all call_used regs.  */
		add_dependence (insn, last_function_call, REG_DEP_ANTI);
	    }
	}
      else
	{
	  rtx u;

	  for (u = reg_last_uses[regno]; u; u = XEXP (u, 1))
	    add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
	  reg_last_uses[regno] = 0;
	  if (reg_last_sets[regno])
	    add_dependence (insn, reg_last_sets[regno], REG_DEP_OUTPUT);
	  reg_last_sets[regno] = insn;

	  /* Don't let it cross a call after scheduling if it doesn't
	     already cross one.  */
	  if (reg_n_calls_crossed[regno] == 0 && last_function_call)
	    add_dependence (insn, last_function_call, REG_DEP_ANTI);
	}
    }
  else if (GET_CODE (dest) == MEM)
    {
      /* Writing memory.  */

      if (pending_lists_length > 32)
	{
	  /* Flush all pending reads and writes to prevent the pending lists
	     from getting any larger.  Insn scheduling runs too slowly when
	     these lists get long.  The number 32 was chosen because it
	     seems like a resonable number.  When compiling GCC with itself,
	     this flush occurs 8 times for sparc, and 10 times for m88k using
	     the number 32.  */
	  flush_pending_lists (insn);
	}
      else
	{
	  rtx pending, pending_mem;

	  pending = pending_read_insns;
	  pending_mem = pending_read_mems;
	  while (pending)
	    {
	      /* If a dependency already exists, don't create a new one.  */
	      if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
		if (anti_dependence (XEXP (pending_mem, 0), dest, insn))
		  add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);

	      pending = XEXP (pending, 1);
	      pending_mem = XEXP (pending_mem, 1);
	    }

	  pending = pending_write_insns;
	  pending_mem = pending_write_mems;
	  while (pending)
	    {
	      /* If a dependency already exists, don't create a new one.  */
	      if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
		if (output_dependence (XEXP (pending_mem, 0), dest))
		  add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);

	      pending = XEXP (pending, 1);
	      pending_mem = XEXP (pending_mem, 1);
	    }

	  if (last_pending_memory_flush)
	    add_dependence (insn, last_pending_memory_flush, REG_DEP_ANTI);

	  add_insn_mem_dependence (&pending_write_insns, &pending_write_mems,
				   insn, dest);
	}
      sched_analyze_2 (XEXP (dest, 0), insn);
    }

  /* Analyze reads.  */
  if (GET_CODE (x) == SET)
    sched_analyze_2 (SET_SRC (x), insn);
  else if (GET_CODE (x) != CLOBBER)
    sched_analyze_2 (dest, insn);
}

/* Analyze the uses of memory and registers in rtx X in INSN.  */

static void
sched_analyze_2 (x, insn)
     rtx x;
     rtx insn;
{
  register int i;
  register int j;
  register enum rtx_code code;
  register char *fmt;

  if (x == 0)
    return;

  code = GET_CODE (x);

  /* Get rid of the easy cases first.  */

  /* Ignore constants.  Note that we must handle CONST_DOUBLE here
     because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
     this does not mean that this insn is using cc0.  */
  if (code == CONST_INT || code == CONST_DOUBLE || code == SYMBOL_REF
      || code == CONST || code == LABEL_REF)
    return;

#ifdef HAVE_cc0
  else if (code == CC0)
    {
      rtx link;

      /* User of CC0 depends on immediately preceding insn.
	 All notes are removed from the list of insns to schedule before we
	 reach here, so the previous insn must be the setter of cc0.  */
      if (GET_CODE (PREV_INSN (insn)) != INSN)
	abort ();
      SCHED_GROUP_P (insn) = 1;

      /* Make a copy of all dependencies on PREV_INSN, and add to this insn.
	 This is so that all the dependencies will apply to the group.  */

      for (link = LOG_LINKS (PREV_INSN (insn)); link; link = XEXP (link, 1))
	add_dependence (insn, XEXP (link, 0), GET_MODE (link));

      return;
    }
#endif

  else if (code == REG)
    {
      int regno = REGNO (x);
      if (regno < FIRST_PSEUDO_REGISTER)
	{
	  int i;

	  i = HARD_REGNO_NREGS (regno, GET_MODE (x));
	  while (--i >= 0)
	    {
	      reg_last_uses[regno + i]
		= gen_rtx (INSN_LIST, VOIDmode,
			   insn, reg_last_uses[regno + i]);
	      if (reg_last_sets[regno + i])
		add_dependence (insn, reg_last_sets[regno + i], 0);
	      if ((call_used_regs[regno + i] || global_regs[regno + i])
		  && last_function_call)
		/* Function calls clobber all call_used regs.  */
		add_dependence (insn, last_function_call, REG_DEP_ANTI);
	    }
	}
      else
	{
	  reg_last_uses[regno]
	    = gen_rtx (INSN_LIST, VOIDmode, insn, reg_last_uses[regno]);
	  if (reg_last_sets[regno])
	    add_dependence (insn, reg_last_sets[regno], 0);

	  /* If the register does not already cross any calls, then add this
	     insn to the sched_before_next_call list so that it will still
	     not cross calls after scheduling.  */
	  if (reg_n_calls_crossed[regno] == 0)
	    add_dependence (sched_before_next_call, insn, REG_DEP_ANTI);
	}
      return;
    }

  /* The interesting case.  */
  else if (code == MEM)
    {
      /* Reading memory.  */

      /* Don't create a dependence for memory references which are known to
	 be unchanging, such as constant pool accesses.  These will never
	 conflict with any other memory access.  */
      if (RTX_UNCHANGING_P (x) == 0)
	{
	  rtx pending, pending_mem;

	  pending = pending_read_insns;
	  pending_mem = pending_read_mems;
	  while (pending)
	    {
	      /* If a dependency already exists, don't create a new one.  */
	      if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
		if (read_dependence (XEXP (pending_mem, 0), x))
		  add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);

	      pending = XEXP (pending, 1);
	      pending_mem = XEXP (pending_mem, 1);
	    }

	  pending = pending_write_insns;
	  pending_mem = pending_write_mems;
	  while (pending)
	    {
	      /* If a dependency already exists, don't create a new one.  */
	      if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
		if (true_dependence (XEXP (pending_mem, 0), x))
		  add_dependence (insn, XEXP (pending, 0), 0);

	      pending = XEXP (pending, 1);
	      pending_mem = XEXP (pending_mem, 1);
	    }
	  if (last_pending_memory_flush)
	    add_dependence (insn, last_pending_memory_flush, REG_DEP_ANTI);

	  /* Always add these dependencies to pending_reads, since
	     this insn may be followed by a write.  */
	  add_insn_mem_dependence (&pending_read_insns, &pending_read_mems,
				   insn, x);
	}
      /* Take advantage of tail recursion here.  */
      sched_analyze_2 (XEXP (x, 0), insn);
      return;
    }

  else if (code == ASM_OPERANDS || code == ASM_INPUT
	   || code == UNSPEC_VOLATILE)
    {
      rtx u;

      /* Traditional and volatile asm instructions must be considered to use
	 and clobber all hard registers and all of memory.  So must
	 UNSPEC_VOLATILE operations.  */
      if ((code == ASM_OPERANDS && MEM_VOLATILE_P (x)) || code == ASM_INPUT
	  || code == UNSPEC_VOLATILE)
	{
	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	    {
	      for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
		if (GET_CODE (PATTERN (XEXP (u, 0))) != USE)
		  add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
	      reg_last_uses[i] = 0;
	      if (reg_last_sets[i]
		  && GET_CODE (PATTERN (reg_last_sets[i])) != USE)
		add_dependence (insn, reg_last_sets[i], 0);
	      reg_last_sets[i] = insn;
	    }

	  flush_pending_lists (insn);
	}

      /* For all ASM_OPERANDS, we must traverse the vector of input operands.
	 We can not just fall through here since then we would be confused
	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
	 traditional asms unlike their normal usage.  */

      if (code == ASM_OPERANDS)
	{
	  for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
	    sched_analyze_2 (ASM_OPERANDS_INPUT (x, j), insn);
	  return;
	}
    }

  /* Other cases: walk the insn.  */
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	sched_analyze_2 (XEXP (x, i), insn);
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  sched_analyze_2 (XVECEXP (x, i, j), insn);
    }
}

/* Analyze an INSN with pattern X to find all dependencies.  */

static void
sched_analyze_insn (x, insn)
     rtx x, insn;
{
  register RTX_CODE code = GET_CODE (x);
  rtx link;

  if (code == SET || code == CLOBBER)
    sched_analyze_1 (x, insn);
  else if (code == PARALLEL)
    {
      register int i;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  code = GET_CODE (XVECEXP (x, 0, i));
	  if (code == SET || code == CLOBBER)
	    sched_analyze_1 (XVECEXP (x, 0, i), insn);
	  else
	    sched_analyze_2 (XVECEXP (x, 0, i), insn);
	}
    }
  else
    sched_analyze_2 (x, insn);

  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
    {
      /* Any REG_INC note is a SET of the register indicated.  */
      if (REG_NOTE_KIND (link) == REG_INC)
	{
	  rtx dest = XEXP (link, 0);
	  int regno = REGNO (dest);
	  int i;

	  /* A hard reg in a wide mode may really be multiple registers.
	     If so, mark all of them just like the first.  */
	  if (regno < FIRST_PSEUDO_REGISTER)
	    {
	      i = HARD_REGNO_NREGS (regno, GET_MODE (dest));
	      while (--i >= 0)
		{
		  rtx u;
		  
		  for (u = reg_last_uses[regno+i]; u; u = XEXP (u, 1))
		    add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
		  reg_last_uses[regno + i] = 0;
		  if (reg_last_sets[regno + i])
		    add_dependence (insn, reg_last_sets[regno + i],
				    REG_DEP_OUTPUT);
		  reg_last_sets[regno + i] = insn;
		  if ((call_used_regs[i] || global_regs[i])
		      && last_function_call)
		    /* Function calls clobber all call_used regs.  */
		    add_dependence (insn, last_function_call, REG_DEP_ANTI);
		}
	    }
	  else
	    {
	      rtx u;
	      
	      for (u = reg_last_uses[regno]; u; u = XEXP (u, 1))
		add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
	      reg_last_uses[regno] = 0;
	      if (reg_last_sets[regno])
		add_dependence (insn, reg_last_sets[regno], REG_DEP_OUTPUT);
	      reg_last_sets[regno] = insn;

	      /* Don't let it cross a call after scheduling if it doesn't
		 already cross one.  */
	      if (reg_n_calls_crossed[regno] == 0 && last_function_call)
		add_dependence (insn, last_function_call, 0);
	    }
	}
    }

  /* Handle function calls.  */
  if (GET_CODE (insn) == CALL_INSN)
    {
      rtx dep_insn;
      rtx prev_dep_insn;

      /* When scheduling instructions, we make sure calls don't lose their
	 accompanying USE insns by depending them one on another in order.   */

      prev_dep_insn = insn;
      dep_insn = PREV_INSN (insn);
      while (GET_CODE (dep_insn) == INSN
	     && GET_CODE (PATTERN (dep_insn)) == USE)
	{
	  SCHED_GROUP_P (prev_dep_insn) = 1;

	  /* Make a copy of all dependencies on dep_insn, and add to insn.
	     This is so that all of the dependencies will apply to the
	     group.  */

	  for (link = LOG_LINKS (dep_insn); link; link = XEXP (link, 1))
	    add_dependence (insn, XEXP (link, 0), GET_MODE (link));

	  prev_dep_insn = dep_insn;
	  dep_insn = PREV_INSN (dep_insn);
	}
    }
}

/* Analyze every insn between HEAD and TAIL inclusive, creating LOG_LINKS
   for every dependency.  */

static int
sched_analyze (head, tail)
     rtx head, tail;
{
  register rtx insn;
  register int n_insns = 0;
  register rtx u;
  register int luid = 0;

  for (insn = head; ; insn = NEXT_INSN (insn))
    {
      INSN_LUID (insn) = luid++;

      if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
	{
	  sched_analyze_insn (PATTERN (insn), insn);
	  n_insns += 1;
	}
      else if (GET_CODE (insn) == CALL_INSN)
	{
	  rtx dest = 0;
	  rtx x;
	  register int i;

	  /* Any instruction using a hard register which may get clobbered
	     by a call needs to be marked as dependent on this call.
	     This prevents a use of a hard return reg from being moved
	     past a void call (i.e. it does not explicitly set the hard
	     return reg).  */

	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	    if (call_used_regs[i] || global_regs[i])
	      {
		for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
		  if (GET_CODE (PATTERN (XEXP (u, 0))) != USE)
		    add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
		reg_last_uses[i] = 0;
		if (reg_last_sets[i]
		    && GET_CODE (PATTERN (reg_last_sets[i])) != USE)
		  add_dependence (insn, reg_last_sets[i], REG_DEP_ANTI);
		reg_last_sets[i] = insn;
		/* Insn, being a CALL_INSN, magically depends on
		   `last_function_call' already.  */
	      }

	  /* For each insn which shouldn't cross a call, add a dependence
	     between that insn and this call insn.  */
	  x = LOG_LINKS (sched_before_next_call);
	  while (x)
	    {
	      add_dependence (insn, XEXP (x, 0), REG_DEP_ANTI);
	      x = XEXP (x, 1);
	    }
	  LOG_LINKS (sched_before_next_call) = 0;

	  sched_analyze_insn (PATTERN (insn), insn);

	  /* We don't need to flush memory for a function call which does
	     not involve memory.  */
	  if (! CONST_CALL_P (insn))
	    {
	      /* In the absence of interprocedural alias analysis,
		 we must flush all pending reads and writes, and
		 start new dependencies starting from here.  */
	      flush_pending_lists (insn);
	    }

	  /* Depend this function call (actually, the user of this
	     function call) on all hard register clobberage.  */
	  last_function_call = insn;
	  n_insns += 1;
	}

      if (insn == tail)
	return n_insns;
    }
}

/* Called when we see a set of a register.  If death is true, then we are
   scanning backwards.  Mark that register as unborn.  If nobody says
   otherwise, that is how things will remain.  If death is false, then we
   are scanning forwards.  Mark that register as being born.  */

static void
sched_note_set (b, x, death)
     int b;
     rtx x;
     int death;
{
  register int regno, j;
  register rtx reg = SET_DEST (x);
  int subreg_p = 0;

  if (reg == 0)
    return;

  while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == STRICT_LOW_PART
	 || GET_CODE (reg) == SIGN_EXTRACT || GET_CODE (reg) == ZERO_EXTRACT)
    {
      /* Must treat modification of just one hardware register of a multi-reg
	 value or just a byte field of a register exactly the same way that
	 mark_set_1 in flow.c does.  */
      if (GET_CODE (reg) == ZERO_EXTRACT
	  || GET_CODE (reg) == SIGN_EXTRACT
	  || (GET_CODE (reg) == SUBREG
	      && REG_SIZE (SUBREG_REG (reg)) > REG_SIZE (reg)))
	subreg_p = 1;

      reg = SUBREG_REG (reg);
    }

  if (GET_CODE (reg) != REG)
    return;

  /* Global registers are always live, so the code below does not apply
     to them.  */

  regno = REGNO (reg);
  if (regno >= FIRST_PSEUDO_REGISTER || ! global_regs[regno])
    {
      register int offset = regno / REGSET_ELT_BITS;
      register int bit = 1 << (regno % REGSET_ELT_BITS);

      if (death)
	{
	  /* If we only set part of the register, then this set does not
	     kill it.  */
	  if (subreg_p)
	    return;

	  /* Try killing this register.  */
	  if (regno < FIRST_PSEUDO_REGISTER)
	    {
	      int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
	      while (--j >= 0)
		{
		  offset = (regno + j) / REGSET_ELT_BITS;
		  bit = 1 << ((regno + j) % REGSET_ELT_BITS);
		  
		  bb_live_regs[offset] &= ~bit;
		  bb_dead_regs[offset] |= bit;
		}
	    }
	  else
	    {
	      bb_live_regs[offset] &= ~bit;
	      bb_dead_regs[offset] |= bit;
	    }
	}
      else
	{
	  /* Make the register live again.  */
	  if (regno < FIRST_PSEUDO_REGISTER)
	    {
	      int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
	      while (--j >= 0)
		{
		  offset = (regno + j) / REGSET_ELT_BITS;
		  bit = 1 << ((regno + j) % REGSET_ELT_BITS);
		  
		  bb_live_regs[offset] |= bit;
		  bb_dead_regs[offset] &= ~bit;
		}
	    }
	  else
	    {
	      bb_live_regs[offset] |= bit;
	      bb_dead_regs[offset] &= ~bit;
	    }
	}
    }
}

/* Macros and functions for keeping the priority queue sorted, and
   dealing with queueing and unqueueing of instructions.  */

#define SCHED_SORT(READY, NEW_READY, OLD_READY) \
  do { if ((NEW_READY) - (OLD_READY) == 1)				\
	 swap_sort (READY, NEW_READY);					\
       else if ((NEW_READY) - (OLD_READY) > 1)				\
	 qsort (READY, NEW_READY, sizeof (rtx), rank_for_schedule); }	\
  while (0)

/* Returns a positive value if y is preferred; returns a negative value if
   x is preferred.  Should never return 0, since that will make the sort
   unstable.  */

static int
rank_for_schedule (x, y)
     rtx *x, *y;
{
  rtx tmp = *y;
  rtx tmp2 = *x;
  rtx tmp_dep, tmp2_dep;
  int tmp_class, tmp2_class;
  int value;

  /* Choose the instruction with the highest priority, if different.  */
  if (value = INSN_PRIORITY (tmp) - INSN_PRIORITY (tmp2))
    return value;

  if (last_scheduled_insn)
    {
      /* Classify the instructions into three classes:
	 1) Data dependent on last schedule insn.
	 2) Anti/Output dependent on last scheduled insn.
	 3) Independent of last scheduled insn, or has latency of one.
	 Choose the insn from the highest numbered class if different.  */
      tmp_dep = find_insn_list (tmp, LOG_LINKS (last_scheduled_insn));
      if (tmp_dep == 0 || insn_cost (tmp) == 1)
	tmp_class = 3;
      else if (REG_NOTE_KIND (tmp_dep) == 0)
	tmp_class = 1;
      else
	tmp_class = 2;

      tmp2_dep = find_insn_list (tmp2, LOG_LINKS (last_scheduled_insn));
      if (tmp2_dep == 0 || insn_cost (tmp2) == 1)
	tmp2_class = 3;
      else if (REG_NOTE_KIND (tmp2_dep) == 0)
	tmp2_class = 1;
      else
	tmp2_class = 2;

      if (value = tmp_class - tmp2_class)
	return value;
    }

  /* If insns are equally good, sort by INSN_LUID (original insn order),
     so that we make the sort stable.  This minimizes instruction movement,
     thus minimizing sched's effect on debugging and cross-jumping.  */
  return INSN_LUID (tmp) - INSN_LUID (tmp2);
}

/* Resort the array A in which only element at index N may be out of order.  */

__inline static void
swap_sort (a, n)
     rtx *a;
     int n;
{
  rtx insn = a[n-1];
  int i = n-2;

  while (i >= 0 && rank_for_schedule (a+i, &insn) >= 0)
    {
      a[i+1] = a[i];
      i -= 1;
    }
  a[i+1] = insn;
}

static int max_priority;

/* Add INSN to the insn queue so that it fires at least N_CYCLES
   before the currently executing insn.  */

__inline static void
queue_insn (insn, n_cycles)
     rtx insn;
     int n_cycles;
{
  int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
  NEXT_INSN (insn) = insn_queue[next_q];
  insn_queue[next_q] = insn;
  q_size += 1;
}

/* Return nonzero if PAT is the pattern of an insn which makes a
   register live.  */

__inline static int
birthing_insn_p (pat)
     rtx pat;
{
  int j;

  if (reload_completed == 1)
    return 0;

  if (GET_CODE (pat) == SET
      && GET_CODE (SET_DEST (pat)) == REG)
    {
      rtx dest = SET_DEST (pat);
      int i = REGNO (dest);
      int offset = i / REGSET_ELT_BITS;
      int bit = 1 << (i % REGSET_ELT_BITS);

      /* It would be more accurate to use refers_to_regno_p or
	 reg_mentioned_p to determine when the dest is not live before this
	 insn.  */

      if (bb_live_regs[offset] & bit)
	return (reg_n_sets[i] == 1);

      return 0;
    }
  if (GET_CODE (pat) == PARALLEL)
    {
      for (j = 0; j < XVECLEN (pat, 0); j++)
	if (birthing_insn_p (XVECEXP (pat, 0, j)))
	  return 1;
    }
  return 0;
}

/* If PREV is an insn which is immediately ready to execute, return 1,
   otherwise return 0.  We may adjust its priority if that will help shorten
   register lifetimes.  */

static int
launch_link (prev)
     rtx prev;
{
  rtx pat = PATTERN (prev);
  rtx note;
  /* MAX of (a) number of cycles needed by prev
	    (b) number of cycles before needed resources are free.  */
  int n_cycles = insn_cost (prev);
  int n_deaths = 0;

  /* Trying to shorten register lives after reload has completed
     is useless and wrong.  It gives inaccurate schedules.  */
  if (reload_completed == 0)
    {
      for (note = REG_NOTES (prev); note; note = XEXP (note, 1))
	if (REG_NOTE_KIND (note) == REG_DEAD)
	  n_deaths += 1;

      /* Defer scheduling insns which kill registers, since that
	 shortens register lives.  Prefer scheduling insns which
	 make registers live for the same reason.  */
      switch (n_deaths)
	{
	default:
	  INSN_PRIORITY (prev) >>= 3;
	  break;
	case 3:
	  INSN_PRIORITY (prev) >>= 2;
	  break;
	case 2:
	case 1:
	  INSN_PRIORITY (prev) >>= 1;
	  break;
	case 0:
	  if (birthing_insn_p (pat))
	    {
	      int max = max_priority;

	      if (max > INSN_PRIORITY (prev))
		INSN_PRIORITY (prev) = max;
	    }
	  break;
	}
    }

  if (n_cycles <= 1)
    return 1;
  queue_insn (prev, n_cycles);
  return 0;
}

/* INSN is the "currently executing insn".  Launch each insn which was
   waiting on INSN (in the backwards dataflow sense).  READY is a
   vector of insns which are ready to fire.  N_READY is the number of
   elements in READY.  */

static int
launch_links (insn, ready, n_ready)
     rtx insn;
     rtx *ready;
     int n_ready;
{
  rtx link;
  int new_ready = n_ready;

  if (LOG_LINKS (insn) == 0)
    return n_ready;

  /* This is used by the function launch_link above.  */
  if (n_ready > 0)
    max_priority = MAX (INSN_PRIORITY (ready[0]), INSN_PRIORITY (insn));
  else
    max_priority = INSN_PRIORITY (insn);

  for (link = LOG_LINKS (insn); link != 0; link = XEXP (link, 1))
    {
      rtx prev = XEXP (link, 0);

      if ((INSN_REF_COUNT (prev) -= 1) == 0 && launch_link (prev))
	ready[new_ready++] = prev;
    }

  return new_ready;
}

/* Add a REG_DEAD note for REG to INSN, reusing a REG_DEAD note from the
   dead_notes list.  */

static void
create_reg_dead_note (reg, insn)
     rtx reg, insn;
{
  rtx link = dead_notes;
		
  if (link == 0)
    /* In theory, we should not end up with more REG_DEAD reg notes than we
       started with.  In practice, this can occur as the result of bugs in
       flow, combine and/or sched.  */
    {
#if 1
      abort ();
#else
      link = rtx_alloc (EXPR_LIST);
      PUT_REG_NOTE_KIND (link, REG_DEAD);
#endif
    }
  else
    dead_notes = XEXP (dead_notes, 1);

  XEXP (link, 0) = reg;
  XEXP (link, 1) = REG_NOTES (insn);
  REG_NOTES (insn) = link;
}

/* Subroutine on attach_deaths_insn--handles the recursive search
   through INSN.  If SET_P is true, then x is being modified by the insn.  */

static void
attach_deaths (x, insn, set_p)
     rtx x;
     rtx insn;
     int set_p;
{
  register int i;
  register int j;
  register enum rtx_code code;
  register char *fmt;

  if (x == 0)
    return;

  code = GET_CODE (x);

  switch (code)
    {
    case CONST_INT:
    case CONST_DOUBLE:
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST:
    case CODE_LABEL:
    case PC:
    case CC0:
      /* Get rid of the easy cases first.  */
      return;

    case REG:
      {
	/* If the register dies in this insn, queue that note, and mark
	   this register as needing to die.  */
	/* This code is very similar to mark_used_1 (if set_p is false)
	   and mark_set_1 (if set_p is true) in flow.c.  */

	register int regno = REGNO (x);
	register int offset = regno / REGSET_ELT_BITS;
	register int bit = 1 << (regno % REGSET_ELT_BITS);
	int all_needed = (old_live_regs[offset] & bit);
	int some_needed = (old_live_regs[offset] & bit);

	if (set_p)
	  return;

	if (regno < FIRST_PSEUDO_REGISTER)
	  {
	    int n;

	    n = HARD_REGNO_NREGS (regno, GET_MODE (x));
	    while (--n > 0)
	      {
		some_needed |= (old_live_regs[(regno + n) / REGSET_ELT_BITS]
				& 1 << ((regno + n) % REGSET_ELT_BITS));
		all_needed &= (old_live_regs[(regno + n) / REGSET_ELT_BITS]
			       & 1 << ((regno + n) % REGSET_ELT_BITS));
	      }
	  }

	/* If it wasn't live before we started, then add a REG_DEAD note.
	   We must check the previous lifetime info not the current info,
	   because we may have to execute this code several times, e.g.
	   once for a clobber (which doesn't add a note) and later
	   for a use (which does add a note).
	   
	   Always make the register live.  We must do this even if it was
	   live before, because this may be an insn which sets and uses
	   the same register, in which case the register has already been
	   killed, so we must make it live again.

	   Global registers are always live, and should never have a REG_DEAD
	   note added for them, so none of the code below applies to them.  */

	if (regno >= FIRST_PSEUDO_REGISTER || ! global_regs[regno])
	  {
	    /* Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
	       STACK_POINTER_REGNUM, since these are always considered to be
	       live.  Similarly for ARG_POINTER_REGNUM if it is fixed.  */
	    if (regno != FRAME_POINTER_REGNUM
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
		&& ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
		&& regno != STACK_POINTER_REGNUM)
	      {
		if (! all_needed && ! dead_or_set_p (insn, x))
		  {
		    /* If none of the words in X is needed, make a REG_DEAD
		       note.  Otherwise, we must make partial REG_DEAD
		       notes.  */
		    if (! some_needed)
		      create_reg_dead_note (x, insn);
		    else
		      {
			int i;

			/* Don't make a REG_DEAD note for a part of a
			   register that is set in the insn.  */
			for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
			     i >= 0; i--)
			  if ((old_live_regs[(regno + i) / REGSET_ELT_BITS]
			       & 1 << ((regno +i) % REGSET_ELT_BITS)) == 0
			      && ! dead_or_set_regno_p (insn, regno + i))
			    create_reg_dead_note (gen_rtx (REG, word_mode,
							   regno + i),
						  insn);
		      }
		  }
	      }

	    if (regno < FIRST_PSEUDO_REGISTER)
	      {
		int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
		while (--j >= 0)
		  {
		    offset = (regno + j) / REGSET_ELT_BITS;
		    bit = 1 << ((regno + j) % REGSET_ELT_BITS);

		    bb_dead_regs[offset] &= ~bit;
		    bb_live_regs[offset] |= bit;
		  }
	      }
	    else
	      {
		bb_dead_regs[offset] &= ~bit;
		bb_live_regs[offset] |= bit;
	      }
	  }
	return;
      }

    case MEM:
      /* Handle tail-recursive case.  */
      attach_deaths (XEXP (x, 0), insn, 0);
      return;

    case SUBREG:
    case STRICT_LOW_PART:
      /* These two cases preserve the value of SET_P, so handle them
	 separately.  */
      attach_deaths (XEXP (x, 0), insn, set_p);
      return;

    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
      /* This case preserves the value of SET_P for the first operand, but
	 clears it for the other two.  */
      attach_deaths (XEXP (x, 0), insn, set_p);
      attach_deaths (XEXP (x, 1), insn, 0);
      attach_deaths (XEXP (x, 2), insn, 0);
      return;

    default:
      /* Other cases: walk the insn.  */
      fmt = GET_RTX_FORMAT (code);
      for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
	{
	  if (fmt[i] == 'e')
	    attach_deaths (XEXP (x, i), insn, 0);
	  else if (fmt[i] == 'E')
	    for (j = 0; j < XVECLEN (x, i); j++)
	      attach_deaths (XVECEXP (x, i, j), insn, 0);
	}
    }
}

/* After INSN has executed, add register death notes for each register
   that is dead after INSN.  */

static void
attach_deaths_insn (insn)
     rtx insn;
{
  rtx x = PATTERN (insn);
  register RTX_CODE code = GET_CODE (x);

  if (code == SET)
    {
      attach_deaths (SET_SRC (x), insn, 0);

      /* A register might die here even if it is the destination, e.g.
	 it is the target of a volatile read and is otherwise unused.
	 Hence we must always call attach_deaths for the SET_DEST.  */
      attach_deaths (SET_DEST (x), insn, 1);
    }
  else if (code == PARALLEL)
    {
      register int i;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  code = GET_CODE (XVECEXP (x, 0, i));
	  if (code == SET)
	    {
	      attach_deaths (SET_SRC (XVECEXP (x, 0, i)), insn, 0);

	      attach_deaths (SET_DEST (XVECEXP (x, 0, i)), insn, 1);
	    }
	  else if (code == CLOBBER)
	    attach_deaths (XEXP (XVECEXP (x, 0, i), 0), insn, 1);
	  else
	    attach_deaths (XVECEXP (x, 0, i), insn, 0);
	}
    }
  else if (code == CLOBBER)
    attach_deaths (XEXP (x, 0), insn, 1);
  else
    attach_deaths (x, insn, 0);
}

/* Delete notes beginning with INSN and maybe put them in the chain
   of notes ended by NOTE_LIST.
   Returns the insn following the notes.  */

static rtx
unlink_notes (insn, tail)
     rtx insn, tail;
{
  rtx prev = PREV_INSN (insn);

  while (insn != tail && GET_CODE (insn) == NOTE)
    {
      rtx next = NEXT_INSN (insn);
      /* Delete the note from its current position.  */
      if (prev)
	NEXT_INSN (prev) = next;
      if (next)
	PREV_INSN (next) = prev;

      if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
	/* Record line-number notes so they can be reused.  */
	LINE_NOTE (insn) = insn;
      else
	{
	  /* Insert the note at the end of the notes list.  */
	  PREV_INSN (insn) = note_list;
	  if (note_list)
	    NEXT_INSN (note_list) = insn;
	  note_list = insn;
	}

      insn = next;
    }
  return insn;
}

/* Data structure for keeping track of register information
   during that register's life.  */

struct sometimes
{
  short offset; short bit;
  short live_length; short calls_crossed;
};

/* Constructor for `sometimes' data structure.  */

static int
new_sometimes_live (regs_sometimes_live, offset, bit, sometimes_max)
     struct sometimes *regs_sometimes_live;
     int offset, bit;
     int sometimes_max;
{
  register struct sometimes *p;
  register int regno = offset * REGSET_ELT_BITS + bit;
  int i;

  /* There should never be a register greater than max_regno here.  If there
     is, it means that a define_split has created a new pseudo reg.  This
     is not allowed, since there will not be flow info available for any
     new register, so catch the error here.  */
  if (regno >= max_regno)
    abort ();

  p = &regs_sometimes_live[sometimes_max];
  p->offset = offset;
  p->bit = bit;
  p->live_length = 0;
  p->calls_crossed = 0;
  sometimes_max++;
  return sometimes_max;
}

/* Count lengths of all regs we are currently tracking,
   and find new registers no longer live.  */

static void
finish_sometimes_live (regs_sometimes_live, sometimes_max)
     struct sometimes *regs_sometimes_live;
     int sometimes_max;
{
  int i;

  for (i = 0; i < sometimes_max; i++)
    {
      register struct sometimes *p = &regs_sometimes_live[i];
      int regno;

      regno = p->offset * REGSET_ELT_BITS + p->bit;

      sched_reg_live_length[regno] += p->live_length;
      sched_reg_n_calls_crossed[regno] += p->calls_crossed;
    }
}

/* Use modified list scheduling to rearrange insns in basic block
   B.  FILE, if nonzero, is where we dump interesting output about
   this pass.  */

static void
schedule_block (b, file)
     int b;
     FILE *file;
{
  rtx insn, last;
  rtx last_note = 0;
  rtx *ready, link;
  int i, j, n_ready = 0, new_ready, n_insns = 0;
  int sched_n_insns = 0;
#define NEED_NOTHING	0
#define NEED_HEAD	1
#define NEED_TAIL	2
  int new_needs;

  /* HEAD and TAIL delimit the region being scheduled.  */
  rtx head = basic_block_head[b];
  rtx tail = basic_block_end[b];
  /* PREV_HEAD and NEXT_TAIL are the boundaries of the insns
     being scheduled.  When the insns have been ordered,
     these insns delimit where the new insns are to be
     spliced back into the insn chain.  */
  rtx next_tail;
  rtx prev_head;

  /* Keep life information accurate.  */
  register struct sometimes *regs_sometimes_live;
  int sometimes_max;

  if (file)
    fprintf (file, ";;\t -- basic block number %d from %d to %d --\n",
	     b, INSN_UID (basic_block_head[b]), INSN_UID (basic_block_end[b]));

  i = max_reg_num ();
  reg_last_uses = (rtx *) alloca (i * sizeof (rtx));
  bzero (reg_last_uses, i * sizeof (rtx));
  reg_last_sets = (rtx *) alloca (i * sizeof (rtx));
  bzero (reg_last_sets, i * sizeof (rtx));

  /* Remove certain insns at the beginning from scheduling,
     by advancing HEAD.  */

  /* At the start of a function, before reload has run, don't delay getting
     parameters from hard registers into pseudo registers.  */
  if (reload_completed == 0 && b == 0)
    {
      while (head != tail
	     && GET_CODE (head) == NOTE
	     && NOTE_LINE_NUMBER (head) != NOTE_INSN_FUNCTION_BEG)
	head = NEXT_INSN (head);
      while (head != tail
	     && GET_CODE (head) == INSN
	     && GET_CODE (PATTERN (head)) == SET)
	{
	  rtx src = SET_SRC (PATTERN (head));
	  while (GET_CODE (src) == SUBREG
		 || GET_CODE (src) == SIGN_EXTEND
		 || GET_CODE (src) == ZERO_EXTEND
		 || GET_CODE (src) == SIGN_EXTRACT
		 || GET_CODE (src) == ZERO_EXTRACT)
	    src = XEXP (src, 0);
	  if (GET_CODE (src) != REG
	      || REGNO (src) >= FIRST_PSEUDO_REGISTER)
	    break;
	  /* Keep this insn from ever being scheduled.  */
	  INSN_REF_COUNT (head) = 1;
	  head = NEXT_INSN (head);
	}
    }

  /* Don't include any notes or labels at the beginning of the
     basic block, or notes at the ends of basic blocks.  */
  while (head != tail)
    {
      if (GET_CODE (head) == NOTE)
	head = NEXT_INSN (head);
      else if (GET_CODE (tail) == NOTE)
	tail = PREV_INSN (tail);
      else if (GET_CODE (head) == CODE_LABEL)
	head = NEXT_INSN (head);
      else break;
    }
  /* If the only insn left is a NOTE or a CODE_LABEL, then there is no need
     to schedule this block.  */
  if (head == tail
      && (GET_CODE (head) == NOTE || GET_CODE (head) == CODE_LABEL))
    return;

#if 0
  /* This short-cut doesn't work.  It does not count call insns crossed by
     registers in reg_sometimes_live.  It does not mark these registers as
     dead if they die in this block.  It does not mark these registers live
     (or create new reg_sometimes_live entries if necessary) if they are born
     in this block.

     The easy solution is to just always schedule a block.  This block only
     has one insn, so this won't slow down this pass by much.  */

  if (head == tail)
    return;
#endif

  /* Exclude certain insns at the end of the basic block by advancing TAIL.  */
  /* This isn't correct.  Instead of advancing TAIL, should assign very
     high priorities to these insns to guarantee that they get scheduled last.
     If these insns are ignored, as is currently done, the register life info
     may be incorrectly computed.  */
  if (GET_CODE (tail) == INSN
      && GET_CODE (PATTERN (tail)) == USE
      && next_nonnote_insn (tail) == 0)
    {
      /* If this was the only insn in the block, then there are no insns to
	 schedule.  */
      if (head == tail)
	return;

      /* We don't try to reorder the USE at the end of a function.  */
      tail = prev_nonnote_insn (tail);

#if 0
      /* This short-cut does not work.  See comment above.  */
      if (head == tail)
	return;
#endif
    }
  else if (GET_CODE (tail) == JUMP_INSN
	   && SCHED_GROUP_P (tail) == 0
	   && GET_CODE (PREV_INSN (tail)) == INSN
	   && GET_CODE (PATTERN (PREV_INSN (tail))) == USE
	   && REG_FUNCTION_VALUE_P (XEXP (PATTERN (PREV_INSN (tail)), 0)))
    {
      /* Don't let the setting of the function's return value register
	 move from this jump.  For the same reason we want to get the
	 parameters into pseudo registers as quickly as possible, we
	 want to set the function's return value register as late as
	 possible.  */

      /* If this is the only insn in the block, then there is no need to
	 schedule the block.  */
      if (head == tail)
	return;
	
      tail = PREV_INSN (tail);
      if (head == tail)
	return;

      tail = prev_nonnote_insn (tail);

#if 0
      /* This shortcut does not work.  See comment above.  */
      if (head == tail)
	return;
#endif
    }

#ifdef HAVE_cc0
  /* This is probably wrong.  Instead of doing this, should give this insn
     a very high priority to guarantee that it gets scheduled last.  */
  /* Can not separate an insn that sets the condition code from one that
     uses it.  So we must leave an insn that sets cc0 where it is.  */
  if (sets_cc0_p (PATTERN (tail)))
    tail = PREV_INSN (tail);
#endif

  /* Now HEAD through TAIL are the insns actually to be rearranged;
     Let PREV_HEAD and NEXT_TAIL enclose them.  */
  prev_head = PREV_INSN (head);
  next_tail = NEXT_INSN (tail);

  /* Initialize basic block data structures.  */
  dead_notes = 0;
  pending_read_insns = 0;
  pending_read_mems = 0;
  pending_write_insns = 0;
  pending_write_mems = 0;
  pending_lists_length = 0;
  last_pending_memory_flush = 0;
  last_function_call = 0;
  last_scheduled_insn = 0;

  LOG_LINKS (sched_before_next_call) = 0;

  n_insns += sched_analyze (head, tail);
  if (n_insns == 0)
    {
      free_pending_lists ();
      return;
    }

  /* Allocate vector to hold insns to be rearranged (except those
     insns which are controlled by an insn with SCHED_GROUP_P set).
     All these insns are included between ORIG_HEAD and ORIG_TAIL,
     as those variables ultimately are set up.  */
  ready = (rtx *) alloca ((n_insns+1) * sizeof (rtx));

  /* TAIL is now the last of the insns to be rearranged.
     Put those insns into the READY vector.  */
  insn = tail;

  /* If the last insn is a branch, force it to be the last insn after
     scheduling.  Also, don't try to reorder calls at the ends the basic
     block -- this will only lead to worse register allocation.  */
  if (GET_CODE (tail) == CALL_INSN || GET_CODE (tail) == JUMP_INSN)
    {
      priority (tail);
      ready[n_ready++] = tail;
      INSN_PRIORITY (tail) = TAIL_PRIORITY;
      INSN_REF_COUNT (tail) = 0;
      insn = PREV_INSN (tail);
    }

  /* Assign priorities to instructions.  Also check whether they
     are in priority order already.  If so then I will be nonnegative.
     We use this shortcut only before reloading.  */
#if 0
  i = reload_completed ? DONE_PRIORITY : MAX_PRIORITY;
#endif

  for (; insn != prev_head; insn = PREV_INSN (insn))
    {
      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	{
	  priority (insn);
	  if (INSN_REF_COUNT (insn) == 0)
	    ready[n_ready++] = insn;
	  if (SCHED_GROUP_P (insn))
	    {
	      while (SCHED_GROUP_P (insn))
		{
		  insn = PREV_INSN (insn);
		  while (GET_CODE (insn) == NOTE)
		    insn = PREV_INSN (insn);
		  priority (insn);
		}
	      continue;
	    }
#if 0
	  if (i < 0)
	    continue;
	  if (INSN_PRIORITY (insn) < i)
	    i = INSN_PRIORITY (insn);
	  else if (INSN_PRIORITY (insn) > i)
	    i = DONE_PRIORITY;
#endif
	}
    }

#if 0
  /* This short-cut doesn't work.  It does not count call insns crossed by
     registers in reg_sometimes_live.  It does not mark these registers as
     dead if they die in this block.  It does not mark these registers live
     (or create new reg_sometimes_live entries if necessary) if they are born
     in this block.

     The easy solution is to just always schedule a block.  These blocks tend
     to be very short, so this doesn't slow down this pass by much.  */

  /* If existing order is good, don't bother to reorder.  */
  if (i != DONE_PRIORITY)
    {
      if (file)
	fprintf (file, ";; already scheduled\n");

      if (reload_completed == 0)
	{
	  for (i = 0; i < sometimes_max; i++)
	    regs_sometimes_live[i].live_length += n_insns;

	  finish_sometimes_live (regs_sometimes_live, sometimes_max);
	}
      free_pending_lists ();
      return;
    }
#endif

  /* Scan all the insns to be scheduled, removing NOTE insns
     and register death notes.
     Line number NOTE insns end up in NOTE_LIST.
     Register death notes end up in DEAD_NOTES.

     Recreate the register life information for the end of this basic
     block.  */

  if (reload_completed == 0)
    {
      bcopy (basic_block_live_at_start[b], bb_live_regs, regset_bytes);
      bzero (bb_dead_regs, regset_bytes);

      if (b == 0)
	{
	  /* This is the first block in the function.  There may be insns
	     before head that we can't schedule.   We still need to examine
	     them though for accurate register lifetime analysis.  */

	  /* We don't want to remove any REG_DEAD notes as the code below
	     does.  */

	  for (insn = basic_block_head[b]; insn != head;
	       insn = NEXT_INSN (insn))
	    if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	      {
		/* See if the register gets born here.  */
		/* We must check for registers being born before we check for
		   registers dying.  It is possible for a register to be born
		   and die in the same insn, e.g. reading from a volatile
		   memory location into an otherwise unused register.  Such
		   a register must be marked as dead after this insn.  */
		if (GET_CODE (PATTERN (insn)) == SET
		    || GET_CODE (PATTERN (insn)) == CLOBBER)
		  sched_note_set (b, PATTERN (insn), 0);
		else if (GET_CODE (PATTERN (insn)) == PARALLEL)
		  {
		    int j;
		    for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
		      if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
			  || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
			sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);

		    /* ??? This code is obsolete and should be deleted.  It
		       is harmless though, so we will leave it in for now.  */
		    for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
		      if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == USE)
			sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
		  }

		for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
		  {
		    if ((REG_NOTE_KIND (link) == REG_DEAD
			 || REG_NOTE_KIND (link) == REG_UNUSED)
			/* Verify that the REG_NOTE has a legal value.  */
			&& GET_CODE (XEXP (link, 0)) == REG)
		      {
			register int regno = REGNO (XEXP (link, 0));
			register int offset = regno / REGSET_ELT_BITS;
			register int bit = 1 << (regno % REGSET_ELT_BITS);

			if (regno < FIRST_PSEUDO_REGISTER)
			  {
			    int j = HARD_REGNO_NREGS (regno,
						      GET_MODE (XEXP (link, 0)));
			    while (--j >= 0)
			      {
				offset = (regno + j) / REGSET_ELT_BITS;
				bit = 1 << ((regno + j) % REGSET_ELT_BITS);

				bb_live_regs[offset] &= ~bit;
				bb_dead_regs[offset] |= bit;
			      }
			  }
			else
			  {
			    bb_live_regs[offset] &= ~bit;
			    bb_dead_regs[offset] |= bit;
			  }
		      }
		  }
	      }
	}
    }

  /* If debugging information is being produced, keep track of the line
     number notes for each insn.  */
  if (write_symbols != NO_DEBUG)
    {
      /* We must use the true line number for the first insn in the block
	 that was computed and saved at the start of this pass.  We can't
	 use the current line number, because scheduling of the previous
	 block may have changed the current line number.  */
      rtx line = line_note_head[b];

      for (insn = basic_block_head[b];
	   insn != next_tail;
	   insn = NEXT_INSN (insn))
	if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
	  line = insn;
	else
	  LINE_NOTE (insn) = line;
    }

  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
    {
      rtx prev, next, link;

      /* Farm out notes.  This is needed to keep the debugger from
	 getting completely deranged.  */
      if (GET_CODE (insn) == NOTE)
	{
	  prev = insn;
	  insn = unlink_notes (insn, next_tail);
	  if (prev == tail)
	    abort ();
	  if (prev == head)
	    abort ();
	  if (insn == next_tail)
	    abort ();
	}

      if (reload_completed == 0
	  && GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	{
	  /* See if the register gets born here.  */
	  /* We must check for registers being born before we check for
	     registers dying.  It is possible for a register to be born and
	     die in the same insn, e.g. reading from a volatile memory
	     location into an otherwise unused register.  Such a register
	     must be marked as dead after this insn.  */
	  if (GET_CODE (PATTERN (insn)) == SET
	      || GET_CODE (PATTERN (insn)) == CLOBBER)
	    sched_note_set (b, PATTERN (insn), 0);
	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
	    {
	      int j;
	      for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
		if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
		    || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
		  sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);

	      /* ??? This code is obsolete and should be deleted.  It
		 is harmless though, so we will leave it in for now.  */
	      for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
		if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == USE)
		  sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
	    }

	  /* Need to know what registers this insn kills.  */
	  for (prev = 0, link = REG_NOTES (insn); link; link = next)
	    {
	      int regno;

	      next = XEXP (link, 1);
	      if ((REG_NOTE_KIND (link) == REG_DEAD
		   || REG_NOTE_KIND (link) == REG_UNUSED)
		  /* Verify that the REG_NOTE has a legal value.  */
		  && GET_CODE (XEXP (link, 0)) == REG)
		{
		  register int regno = REGNO (XEXP (link, 0));
		  register int offset = regno / REGSET_ELT_BITS;
		  register int bit = 1 << (regno % REGSET_ELT_BITS);

		  /* Only unlink REG_DEAD notes; leave REG_UNUSED notes
		     alone.  */
		  if (REG_NOTE_KIND (link) == REG_DEAD)
		    {
		      if (prev)
			XEXP (prev, 1) = next;
		      else
			REG_NOTES (insn) = next;
		      XEXP (link, 1) = dead_notes;
		      dead_notes = link;
		    }
		  else
		    prev = link;

		  if (regno < FIRST_PSEUDO_REGISTER)
		    {
		      int j = HARD_REGNO_NREGS (regno,
						GET_MODE (XEXP (link, 0)));
		      while (--j >= 0)
			{
			  offset = (regno + j) / REGSET_ELT_BITS;
			  bit = 1 << ((regno + j) % REGSET_ELT_BITS);

			  bb_live_regs[offset] &= ~bit;
			  bb_dead_regs[offset] |= bit;
			}
		    }
		  else
		    {
		      bb_live_regs[offset] &= ~bit;
		      bb_dead_regs[offset] |= bit;
		    }
		}
	      else
		prev = link;
	    }
	}
    }

  if (reload_completed == 0)
    {
      /* Keep track of register lives.  */
      old_live_regs = (regset) alloca (regset_bytes);
      regs_sometimes_live
	= (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
      sometimes_max = 0;

      /* Start with registers live at end.  */
      for (j = 0; j < regset_size; j++)
	{
	  int live = bb_live_regs[j];
	  old_live_regs[j] = live;
	  if (live)
	    {
	      register int bit;
	      for (bit = 0; bit < REGSET_ELT_BITS; bit++)
		if (live & (1 << bit))
		  sometimes_max = new_sometimes_live (regs_sometimes_live, j,
						      bit, sometimes_max);
	    }
	}
    }

  SCHED_SORT (ready, n_ready, 1);

  if (file)
    {
      fprintf (file, ";; ready list initially:\n;; ");
      for (i = 0; i < n_ready; i++)
	fprintf (file, "%d ", INSN_UID (ready[i]));
      fprintf (file, "\n\n");

      for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
	if (INSN_PRIORITY (insn) > 0)
	  fprintf (file, ";; insn[%4d]: priority = %4d, ref_count = %4d\n",
		   INSN_UID (insn), INSN_PRIORITY (insn),
		   INSN_REF_COUNT (insn));
    }

  /* Now HEAD and TAIL are going to become disconnected
     entirely from the insn chain.  */
  tail = ready[0];

  /* Q_SIZE will always be zero here.  */
  q_ptr = 0;
  bzero (insn_queue, sizeof (insn_queue));

  /* Now, perform list scheduling.  */

  /* Where we start inserting insns is after TAIL.  */
  last = next_tail;

  new_needs = (NEXT_INSN (prev_head) == basic_block_head[b]
	       ? NEED_HEAD : NEED_NOTHING);
  if (PREV_INSN (next_tail) == basic_block_end[b])
    new_needs |= NEED_TAIL;

  new_ready = n_ready;
  while (sched_n_insns < n_insns)
    {
      q_ptr = NEXT_Q (q_ptr);

      /* Add all pending insns that can be scheduled without stalls to the
	 ready list.  */
      for (insn = insn_queue[q_ptr]; insn; insn = NEXT_INSN (insn))
	{
	  if (file)
	    fprintf (file, ";; launching %d before %d with no stalls\n",
		     INSN_UID (insn), INSN_UID (last));
	  ready[new_ready++] = insn;
	  q_size -= 1;
	}
      insn_queue[q_ptr] = 0;

      /* If there are no ready insns, stall until one is ready and add all
	 of the pending insns at that point to the ready list.  */
      if (new_ready == 0)
	{
	  register int stalls;

	  for (stalls = 1; stalls < Q_SIZE; stalls++)
	    if (insn = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)])
	      {
		for (; insn; insn = NEXT_INSN (insn))
		  {
		    if (file)
		      fprintf (file, ";; issue insn %d before %d with %d stalls\n",
			       INSN_UID (insn), INSN_UID (last), stalls);
		    ready[new_ready++] = insn;
		    q_size -= 1;
		  }
		insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
		break;
	      }

#if 0
	  /* This looks logically correct, but on the SPEC benchmark set on
	     the SPARC, I get better code without it.  */
	  q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
#endif
	}

      /* There should be some instructions waiting to fire.  */
      if (new_ready == 0)
	abort ();

      /* Sort the ready list and choose the best insn to schedule.
	 N_READY holds the number of items that were scheduled the last time,
	 minus the one instruction scheduled on the last loop iteration; it
	 is not modified for any other reason in this loop.  */
      SCHED_SORT (ready, new_ready, n_ready);
      n_ready = new_ready;
      last_scheduled_insn = insn = ready[0];

      if (DONE_PRIORITY_P (insn))
	abort ();

      if (reload_completed == 0)
	{
	  /* Process this insn, and each insn linked to this one which must
	     be immediately output after this insn.  */
	  do
	    {
	      /* First we kill registers set by this insn, and then we
		 make registers used by this insn live.  This is the opposite
		 order used above because we are traversing the instructions
		 backwards.  */

	      /* Strictly speaking, we should scan REG_UNUSED notes and make
		 every register mentioned there live, however, we will just
		 kill them again immediately below, so there doesn't seem to
		 be any reason why we bother to do this.  */

	      /* See if this is the last notice we must take of a register.  */
	      if (GET_CODE (PATTERN (insn)) == SET
		  || GET_CODE (PATTERN (insn)) == CLOBBER)
		sched_note_set (b, PATTERN (insn), 1);
	      else if (GET_CODE (PATTERN (insn)) == PARALLEL)
		{
		  int j;
		  for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
		    if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
			|| GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
		      sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 1);
		}
	      
	      /* This code keeps life analysis information up to date.  */
	      if (GET_CODE (insn) == CALL_INSN)
		{
		  register struct sometimes *p;

		  /* A call kills all call used and global registers, except
		     for those mentioned in the call pattern which will be
		     made live again later.  */
		  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
		    if (call_used_regs[i] || global_regs[i])
		      {
			register int offset = i / REGSET_ELT_BITS;
			register int bit = 1 << (i % REGSET_ELT_BITS);

			bb_live_regs[offset] &= ~bit;
			bb_dead_regs[offset] |= bit;
		      }

		  /* Regs live at the time of a call instruction must not
		     go in a register clobbered by calls.  Record this for
		     all regs now live.  Note that insns which are born or
		     die in a call do not cross a call, so this must be done
		     after the killings (above) and before the births
		     (below).  */
		  p = regs_sometimes_live;
		  for (i = 0; i < sometimes_max; i++, p++)
		    if (bb_live_regs[p->offset] & (1 << p->bit))
		      p->calls_crossed += 1;
		}

	      /* Make every register used live, and add REG_DEAD notes for
		 registers which were not live before we started.  */
	      attach_deaths_insn (insn);

	      /* Find registers now made live by that instruction.  */
	      for (i = 0; i < regset_size; i++)
		{
		  int diff = bb_live_regs[i] & ~old_live_regs[i];
		  if (diff)
		    {
		      register int bit;
		      old_live_regs[i] |= diff;
		      for (bit = 0; bit < REGSET_ELT_BITS; bit++)
			if (diff & (1 << bit))
			  sometimes_max
			    = new_sometimes_live (regs_sometimes_live, i, bit,
						  sometimes_max);
		    }
		}

	      /* Count lengths of all regs we are worrying about now,
		 and handle registers no longer live.  */

	      for (i = 0; i < sometimes_max; i++)
		{
		  register struct sometimes *p = &regs_sometimes_live[i];
		  int regno = p->offset*REGSET_ELT_BITS + p->bit;

		  p->live_length += 1;

		  if ((bb_live_regs[p->offset] & (1 << p->bit)) == 0)
		    {
		      /* This is the end of one of this register's lifetime
			 segments.  Save the lifetime info collected so far,
			 and clear its bit in the old_live_regs entry.  */
		      sched_reg_live_length[regno] += p->live_length;
		      sched_reg_n_calls_crossed[regno] += p->calls_crossed;
		      old_live_regs[p->offset] &= ~(1 << p->bit);

		      /* Delete the reg_sometimes_live entry for this reg by
			 copying the last entry over top of it.  */
		      *p = regs_sometimes_live[--sometimes_max];
		      /* ...and decrement i so that this newly copied entry
			 will be processed.  */
		      i--;
		    }
		}

	      link = insn;
	      insn = PREV_INSN (insn);
	    }
	  while (SCHED_GROUP_P (link));

	  /* Set INSN back to the insn we are scheduling now.  */
	  insn = ready[0];
	}

      /* Schedule INSN.  Remove it from the ready list.  */
      ready += 1;
      n_ready -= 1;

      sched_n_insns += 1;
      NEXT_INSN (insn) = last;
      PREV_INSN (last) = insn;
      last = insn;

      /* Everything that precedes INSN now either becomes "ready", if
	 it can execute immediately before INSN, or "pending", if
	 there must be a delay.  Give INSN high enough priority that
	 at least one (maybe more) reg-killing insns can be launched
	 ahead of all others.  Mark INSN as scheduled by changing its
	 priority to -1.  */
      INSN_PRIORITY (insn) = LAUNCH_PRIORITY;
      new_ready = launch_links (insn, ready, n_ready);
      INSN_PRIORITY (insn) = DONE_PRIORITY;

      /* Schedule all prior insns that must not be moved.  */
      if (SCHED_GROUP_P (insn))
	{
	  /* Disable these insns from being launched.  */
	  link = insn;
	  while (SCHED_GROUP_P (link))
	    {
	      /* Disable these insns from being launched by anybody.  */
	      link = PREV_INSN (link);
	      INSN_REF_COUNT (link) = 0;
	    }

	  /* None of these insns can move forward into delay slots.  */
	  while (SCHED_GROUP_P (insn))
	    {
	      insn = PREV_INSN (insn);
	      new_ready = launch_links (insn, ready, new_ready);
	      INSN_PRIORITY (insn) = DONE_PRIORITY;

	      sched_n_insns += 1;
	      NEXT_INSN (insn) = last;
	      PREV_INSN (last) = insn;
	      last = insn;
	    }
	}
    }
  if (q_size != 0)
    abort ();

  if (reload_completed == 0)
    finish_sometimes_live (regs_sometimes_live, sometimes_max);

  /* HEAD is now the first insn in the chain of insns that
     been scheduled by the loop above.
     TAIL is the last of those insns.  */
  head = insn;

  /* NOTE_LIST is the end of a chain of notes previously found
     among the insns.  Insert them at the beginning of the insns.  */
  if (note_list != 0)
    {
      rtx note_head = note_list;
      while (PREV_INSN (note_head))
	note_head = PREV_INSN (note_head);

      PREV_INSN (head) = note_list;
      NEXT_INSN (note_list) = head;
      head = note_head;
    }

  /* In theory, there should be no REG_DEAD notes leftover at the end.
     In practice, this can occur as the result of bugs in flow, combine.c,
     and/or sched.c.  The values of the REG_DEAD notes remaining are
     meaningless, because dead_notes is just used as a free list.  */
#if 1
  if (dead_notes != 0)
    abort ();
#endif

  if (new_needs & NEED_HEAD)
    basic_block_head[b] = head;
  PREV_INSN (head) = prev_head;
  NEXT_INSN (prev_head) = head;

  if (new_needs & NEED_TAIL)
    basic_block_end[b] = tail;
  NEXT_INSN (tail) = next_tail;
  PREV_INSN (next_tail) = tail;

  /* Restore the line-number notes of each insn.  */
  if (write_symbols != NO_DEBUG)
    {
      rtx line, note, prev, new;
      int notes = 0;

      head = basic_block_head[b];
      next_tail = NEXT_INSN (basic_block_end[b]);

      /* Determine the current line-number.  We want to know the current
	 line number of the first insn of the block here, in case it is
	 different from the true line number that was saved earlier.  If
	 different, then we need a line number note before the first insn
	 of this block.  If it happens to be the same, then we don't want to
	 emit another line number note here.  */
      for (line = head; line; line = PREV_INSN (line))
	if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
	  break;

      /* Walk the insns keeping track of the current line-number and inserting
	 the line-number notes as needed.  */
      for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
	if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
	  line = insn;
	else if (! (GET_CODE (insn) == NOTE
		    && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
		 && (note = LINE_NOTE (insn)) != 0
		 && note != line
		 && (line == 0
		     || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
		     || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
	  {
	    line = note;
	    prev = PREV_INSN (insn);
	    if (LINE_NOTE (note))
	      {
		/* Re-use the orignal line-number note. */
		LINE_NOTE (note) = 0;
		PREV_INSN (note) = prev;
		NEXT_INSN (prev) = note;
		PREV_INSN (insn) = note;
		NEXT_INSN (note) = insn;
	      }
	    else
	      {
		notes++;
		new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
		NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
	      }
	  }
      if (file && notes)
	fprintf (file, ";; added %d line-number notes\n", notes);
    }

  if (file)
    {
      fprintf (file, ";; new basic block head = %d\n;; new basic block end = %d\n\n",
	       INSN_UID (basic_block_head[b]), INSN_UID (basic_block_end[b]));
    }

  /* Yow! We're done!  */
  free_pending_lists ();

  return;
}

/* Subroutine of split_hard_reg_notes.  Searches X for any reference to
   REGNO, returning the rtx of the reference found if any.  Otherwise,
   returns 0.  */

rtx
regno_use_in (regno, x)
     int regno;
     rtx x;
{
  register char *fmt;
  int i, j;
  rtx tem;

  if (GET_CODE (x) == REG && REGNO (x) == regno)
    return x;

  fmt = GET_RTX_FORMAT (GET_CODE (x));
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  if (tem = regno_use_in (regno, XEXP (x, i)))
	    return tem;
	}
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  if (tem = regno_use_in (regno , XVECEXP (x, i, j)))
	    return tem;
    }

  return 0;
}

/* Subroutine of update_flow_info.  Determines whether any new REG_NOTEs are
   needed for the hard register mentioned in the note.  This can happen
   if the reference to the hard register in the original insn was split into
   several smaller hard register references in the split insns.  */

static void
split_hard_reg_notes (note, first, last, orig_insn)
     rtx note, first, last, orig_insn;
{
  rtx reg, temp, link;
  int n_regs, i, new_reg;
  rtx insn;

  /* Assume that this is a REG_DEAD note.  */
  if (REG_NOTE_KIND (note) != REG_DEAD)
    abort ();

  reg = XEXP (note, 0);

  n_regs = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));

  /* ??? Could add check here to see whether, the hard register is referenced
     in the same mode as in the original insn.  If so, then it has not been
     split, and the rest of the code below is unnecessary.  */

  for (i = 1; i < n_regs; i++)
    {
      new_reg = REGNO (reg) + i;

      /* Check for references to new_reg in the split insns.  */
      for (insn = last; ; insn = PREV_INSN (insn))
	{
	  if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
	      && (temp = regno_use_in (new_reg, PATTERN (insn))))
	    {
	      /* Create a new reg dead note here.  */
	      link = rtx_alloc (EXPR_LIST);
	      PUT_REG_NOTE_KIND (link, REG_DEAD);
	      XEXP (link, 0) = temp;
	      XEXP (link, 1) = REG_NOTES (insn);
	      REG_NOTES (insn) = link;
	      break;
	    }
	  /* It isn't mentioned anywhere, so no new reg note is needed for
	     this register.  */
	  if (insn == first)
	    break;
	}
    }
}

/* Subroutine of update_flow_info.  Determines whether a SET or CLOBBER in an
   insn created by splitting needs a REG_DEAD or REG_UNUSED note added.  */

static void
new_insn_dead_notes (pat, insn, last, orig_insn)
     rtx pat, insn, last, orig_insn;
{
  rtx dest, tem, set;

  /* PAT is either a CLOBBER or a SET here.  */
  dest = XEXP (pat, 0);

  while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
	 || GET_CODE (dest) == STRICT_LOW_PART
	 || GET_CODE (dest) == SIGN_EXTRACT)
    dest = XEXP (dest, 0);

  if (GET_CODE (dest) == REG)
    {
      for (tem = last; tem != insn; tem = PREV_INSN (tem))
	{
	  if (GET_RTX_CLASS (GET_CODE (tem)) == 'i'
	      && reg_overlap_mentioned_p (dest, PATTERN (tem))
	      && (set = single_set (tem)))
	    {
	      rtx tem_dest = SET_DEST (set);

	      while (GET_CODE (tem_dest) == ZERO_EXTRACT
		     || GET_CODE (tem_dest) == SUBREG
		     || GET_CODE (tem_dest) == STRICT_LOW_PART
		     || GET_CODE (tem_dest) == SIGN_EXTRACT)
		tem_dest = XEXP (tem_dest, 0);

	      if (tem_dest != dest)
		{
		  /* Use the same scheme as combine.c, don't put both REG_DEAD
		     and REG_UNUSED notes on the same insn.  */
		  if (! find_regno_note (tem, REG_UNUSED, REGNO (dest))
		      && ! find_regno_note (tem, REG_DEAD, REGNO (dest)))
		    {
		      rtx note = rtx_alloc (EXPR_LIST);
		      PUT_REG_NOTE_KIND (note, REG_DEAD);
		      XEXP (note, 0) = dest;
		      XEXP (note, 1) = REG_NOTES (tem);
		      REG_NOTES (tem) = note;
		    }
		  /* The reg only dies in one insn, the last one that uses
		     it.  */
		  break;
		}
	      else if (reg_overlap_mentioned_p (dest, SET_SRC (set)))
		/* We found an instruction that both uses the register,
		   and sets it, so no new REG_NOTE is needed for this set.  */
		break;
	    }
	}
      /* If this is a set, it must die somewhere, unless it is the dest of
	 the original insn, and hence is live after the original insn.  Abort
	 if it isn't supposed to be live after the original insn.

	 If this is a clobber, then just add a REG_UNUSED note.  */
      if (tem == insn)
	{
	  int live_after_orig_insn = 0;
	  rtx pattern = PATTERN (orig_insn);
	  int i;

	  if (GET_CODE (pat) == CLOBBER)
	    {
	      rtx note = rtx_alloc (EXPR_LIST);
	      PUT_REG_NOTE_KIND (note, REG_UNUSED);
	      XEXP (note, 0) = dest;
	      XEXP (note, 1) = REG_NOTES (insn);
	      REG_NOTES (insn) = note;
	      return;
	    }

	  /* The original insn could have multiple sets, so search the
	     insn for all sets.  */
	  if (GET_CODE (pattern) == SET)
	    {
	      if (reg_overlap_mentioned_p (dest, SET_DEST (pattern)))
		live_after_orig_insn = 1;
	    }
	  else if (GET_CODE (pattern) == PARALLEL)
	    {
	      for (i = 0; i < XVECLEN (pattern, 0); i++)
		if (GET_CODE (XVECEXP (pattern, 0, i)) == SET
		    && reg_overlap_mentioned_p (dest,
						SET_DEST (XVECEXP (pattern,
								   0, i))))
		  live_after_orig_insn = 1;
	    }

	  if (! live_after_orig_insn)
	    abort ();
	}
    }
}

/* Subroutine of update_flow_info.  Update the value of reg_n_sets for all
   registers modified by X.  INC is -1 if the containing insn is being deleted,
   and is 1 if the containing insn is a newly generated insn.  */

static void
update_n_sets (x, inc)
     rtx x;
     int inc;
{
  rtx dest = SET_DEST (x);

  while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
	 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
    dest = SUBREG_REG (dest);
	  
  if (GET_CODE (dest) == REG)
    {
      int regno = REGNO (dest);
      
      if (regno < FIRST_PSEUDO_REGISTER)
	{
	  register int i;
	  int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (dest));
	  
	  for (i = regno; i < endregno; i++)
	    reg_n_sets[i] += inc;
	}
      else
	reg_n_sets[regno] += inc;
    }
}

/* Updates all flow-analysis related quantities (including REG_NOTES) for
   the insns from FIRST to LAST inclusive that were created by splitting
   ORIG_INSN.  NOTES are the original REG_NOTES.  */

static void
update_flow_info (notes, first, last, orig_insn)
     rtx notes;
     rtx first, last;
     rtx orig_insn;
{
  rtx insn, note;
  rtx next;
  rtx orig_dest, temp;
  rtx set;

  /* Get and save the destination set by the original insn.  */

  orig_dest = single_set (orig_insn);
  if (orig_dest)
    orig_dest = SET_DEST (orig_dest);

  /* Move REG_NOTES from the original insn to where they now belong.  */

  for (note = notes; note; note = next)
    {
      next = XEXP (note, 1);
      switch (REG_NOTE_KIND (note))
	{
	case REG_DEAD:
	case REG_UNUSED:
	  /* Move these notes from the original insn to the last new insn where
	     the register is now set.  */

	  for (insn = last; ; insn = PREV_INSN (insn))
	    {
	      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
		  && reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
		{
		  XEXP (note, 1) = REG_NOTES (insn);
		  REG_NOTES (insn) = note;

		  /* Sometimes need to convert REG_UNUSED notes to REG_DEAD
		     notes.  */
		  /* ??? This won't handle mutiple word registers correctly,
		     but should be good enough for now.  */
		  if (REG_NOTE_KIND (note) == REG_UNUSED
		      && ! dead_or_set_p (insn, XEXP (note, 0)))
		    PUT_REG_NOTE_KIND (note, REG_DEAD);

		  /* The reg only dies in one insn, the last one that uses
		     it.  */
		  break;
		}
	      /* It must die somewhere, fail it we couldn't find where it died.

		 If this is a REG_UNUSED note, then it must be a temporary
		 register that was not needed by this instantiation of the
		 pattern, so we can safely ignore it.  */
	      if (insn == first)
		{
		  if (REG_NOTE_KIND (note) != REG_UNUSED)
		    abort ();

		  break;
		}
	    }

	  /* If this note refers to a multiple word hard register, it may
	     have been split into several smaller hard register references.
	     Check to see if there are any new register references that
	     need REG_NOTES added for them.  */
	  temp = XEXP (note, 0);
	  if (REG_NOTE_KIND (note) == REG_DEAD
	      && GET_CODE (temp) == REG
	      && REGNO (temp) < FIRST_PSEUDO_REGISTER
	      && HARD_REGNO_NREGS (REGNO (temp), GET_MODE (temp)))
	    split_hard_reg_notes (note, first, last, orig_insn);
	  break;

	case REG_WAS_0:
	  /* This note applies to the dest of the original insn.  Find the
	     first new insn that now has the same dest, and move the note
	     there.  */

	  if (! orig_dest)
	    abort ();

	  for (insn = first; ; insn = NEXT_INSN (insn))
	    {
	      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
		  && (temp = single_set (insn))
		  && rtx_equal_p (SET_DEST (temp), orig_dest))
		{
		  XEXP (note, 1) = REG_NOTES (insn);
		  REG_NOTES (insn) = note;
		  /* The reg is only zero before one insn, the first that
		     uses it.  */
		  break;
		}
	      /* It must be set somewhere, fail if we couldn't find where it
		 was set.  */
	      if (insn == last)
		abort ();
	    }
	  break;

	case REG_EQUAL:
	case REG_EQUIV:
	  /* A REG_EQUIV or REG_EQUAL note on an insn with more than one
	     set is meaningless.  Just drop the note.  */
	  if (! orig_dest)
	    break;

	case REG_NO_CONFLICT:
	  /* These notes apply to the dest of the original insn.  Find the last
	     new insn that now has the same dest, and move the note there.  */

	  if (! orig_dest)
	    abort ();

	  for (insn = last; ; insn = PREV_INSN (insn))
	    {
	      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
		  && (temp = single_set (insn))
		  && rtx_equal_p (SET_DEST (temp), orig_dest))
		{
		  XEXP (note, 1) = REG_NOTES (insn);
		  REG_NOTES (insn) = note;
		  /* Only put this note on one of the new insns.  */
		  break;
		}

	      /* The original dest must still be set someplace.  Abort if we
		 couldn't find it.  */
	      if (insn == first)
		abort ();
	    }
	  break;

	case REG_LIBCALL:
	  /* Move a REG_LIBCALL note to the first insn created, and update
	     the corresponding REG_RETVAL note.  */
	  XEXP (note, 1) = REG_NOTES (first);
	  REG_NOTES (first) = note;

	  insn = XEXP (note, 0);
	  note = find_reg_note (insn, REG_RETVAL, 0);
	  if (note)
	    XEXP (note, 0) = first;
	  break;

	case REG_RETVAL:
	  /* Move a REG_RETVAL note to the last insn created, and update
	     the corresponding REG_LIBCALL note.  */
	  XEXP (note, 1) = REG_NOTES (last);
	  REG_NOTES (last) = note;

	  insn = XEXP (note, 0);
	  note = find_reg_note (insn, REG_LIBCALL, 0);
	  if (note)
	    XEXP (note, 0) = last;
	  break;

	case REG_NONNEG:
	  /* This should be moved to whichever instruction is a JUMP_INSN.  */

	  for (insn = last; ; insn = PREV_INSN (insn))
	    {
	      if (GET_CODE (insn) == JUMP_INSN)
		{
		  XEXP (note, 1) = REG_NOTES (insn);
		  REG_NOTES (insn) = note;
		  /* Only put this note on one of the new insns.  */
		  break;
		}
	      /* Fail if we couldn't find a JUMP_INSN.  */
	      if (insn == first)
		abort ();
	    }
	  break;

	case REG_INC:
	  /* This should be moved to whichever instruction now has the
	     increment operation.  */
	  abort ();

	case REG_LABEL:
	  /* Should be moved to the new insn(s) which use the label.  */
	  abort ();

	case REG_CC_SETTER:
	case REG_CC_USER:
	  /* These two notes will never appear until after reorg, so we don't
	     have to handle them here.  */
	default:
	  abort ();
	}
    }

  /* Each new insn created, except the last, has a new set.  If the destination
     is a register, then this reg is now live across several insns, whereas
     previously the dest reg was born and died within the same insn.  To
     reflect this, we now need a REG_DEAD note on the insn where this
     dest reg dies.

     Similarly, the new insns may have clobbers that need REG_UNUSED notes.  */

  for (insn = first; insn != last; insn = NEXT_INSN (insn))
    {
      rtx pat;
      int i;

      pat = PATTERN (insn);
      if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
	new_insn_dead_notes (pat, insn, last, orig_insn);
      else if (GET_CODE (pat) == PARALLEL)
	{
	  for (i = 0; i < XVECLEN (pat, 0); i++)
	    if (GET_CODE (XVECEXP (pat, 0, i)) == SET
		|| GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER)
	      new_insn_dead_notes (XVECEXP (pat, 0, i), insn, last, orig_insn);
	}
    }

  /* If any insn, except the last, uses the register set by the last insn,
     then we need a new REG_DEAD note on that insn.  In this case, there
     would not have been a REG_DEAD note for this register in the original
     insn because it was used and set within one insn.

     There is no new REG_DEAD note needed if the last insn uses the register
     that it is setting.  */

  set = single_set (last);
  if (set)
    {
      rtx dest = SET_DEST (set);

      while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
	     || GET_CODE (dest) == STRICT_LOW_PART
	     || GET_CODE (dest) == SIGN_EXTRACT)
	dest = XEXP (dest, 0);

      if (GET_CODE (dest) == REG
	  && ! reg_overlap_mentioned_p (dest, SET_SRC (set)))
	{
	  for (insn = PREV_INSN (last); ; insn = PREV_INSN (insn))
	    {
	      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
		  && reg_mentioned_p (dest, PATTERN (insn))
		  && (set = single_set (insn)))
		{
		  rtx insn_dest = SET_DEST (set);

		  while (GET_CODE (insn_dest) == ZERO_EXTRACT
			 || GET_CODE (insn_dest) == SUBREG
			 || GET_CODE (insn_dest) == STRICT_LOW_PART
			 || GET_CODE (insn_dest) == SIGN_EXTRACT)
		    insn_dest = XEXP (insn_dest, 0);

		  if (insn_dest != dest)
		    {
		      note = rtx_alloc (EXPR_LIST);
		      PUT_REG_NOTE_KIND (note, REG_DEAD);
		      XEXP (note, 0) = dest;
		      XEXP (note, 1) = REG_NOTES (insn);
		      REG_NOTES (insn) = note;
		      /* The reg only dies in one insn, the last one
			 that uses it.  */
		      break;
		    }
		}
	      if (insn == first)
		break;
	    }
	}
    }

  /* If the original dest is modifying a multiple register target, and the
     original instruction was split such that the original dest is now set
     by two or more SUBREG sets, then the split insns no longer kill the
     destination of the original insn.

     In this case, if there exists an instruction in the same basic block,
     before the split insn, which uses the original dest, and this use is
     killed by the original insn, then we must remove the REG_DEAD note on
     this insn, because it is now superfluous.

     This does not apply when a hard register gets split, because the code
     knows how to handle overlapping hard registers properly.  */
  if (orig_dest && GET_CODE (orig_dest) == REG)
    {
      int found_orig_dest = 0;
      int found_split_dest = 0;

      for (insn = first; ; insn = NEXT_INSN (insn))
	{
	  set = single_set (insn);
	  if (set)
	    {
	      if (GET_CODE (SET_DEST (set)) == REG
		  && REGNO (SET_DEST (set)) == REGNO (orig_dest))
		{
		  found_orig_dest = 1;
		  break;
		}
	      else if (GET_CODE (SET_DEST (set)) == SUBREG
		       && SUBREG_REG (SET_DEST (set)) == orig_dest)
		{
		  found_split_dest = 1;
		  break;
		}
	    }

	  if (insn == last)
	    break;
	}

      if (found_split_dest)
	{
	  /* Search backwards from FIRST, looking for the first insn that uses
	     the original dest.  Stop if we pass a CODE_LABEL or a JUMP_INSN.
	     If we find an insn, and it has a REG_DEAD note, then delete the
	     note.  */

	  for (insn = first; insn; insn = PREV_INSN (insn))
	    {
	      if (GET_CODE (insn) == CODE_LABEL
		  || GET_CODE (insn) == JUMP_INSN)
		break;
	      else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
		       && reg_mentioned_p (orig_dest, insn))
		{
		  note = find_regno_note (insn, REG_DEAD, REGNO (orig_dest));
		  if (note)
		    remove_note (insn, note);
		}
	    }
	}
      else if (! found_orig_dest)
	{
	  /* This should never happen.  */
	  abort ();
	}
    }

  /* Update reg_n_sets.  This is necessary to prevent local alloc from
     converting REG_EQUAL notes to REG_EQUIV when splitting has modified
     a reg from set once to set multiple times.  */

  {
    rtx x = PATTERN (orig_insn);
    RTX_CODE code = GET_CODE (x);

    if (code == SET || code == CLOBBER)
      update_n_sets (x, -1);
    else if (code == PARALLEL)
      {
	int i;
	for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	  {
	    code = GET_CODE (XVECEXP (x, 0, i));
	    if (code == SET || code == CLOBBER)
	      update_n_sets (XVECEXP (x, 0, i), -1);
	  }
      }

    for (insn = first; ; insn = NEXT_INSN (insn))
      {
	x = PATTERN (insn);
	code = GET_CODE (x);

	if (code == SET || code == CLOBBER)
	  update_n_sets (x, 1);
	else if (code == PARALLEL)
	  {
	    int i;
	    for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	      {
		code = GET_CODE (XVECEXP (x, 0, i));
		if (code == SET || code == CLOBBER)
		  update_n_sets (XVECEXP (x, 0, i), 1);
	      }
	  }

	if (insn == last)
	  break;
      }
  }
}

/* The one entry point in this file.  DUMP_FILE is the dump file for
   this pass.  */

void
schedule_insns (dump_file)
     FILE *dump_file;
{
  int max_uid = MAX_INSNS_PER_SPLIT * (get_max_uid () + 1);
  int i, b;
  rtx insn;

  /* Taking care of this degenerate case makes the rest of
     this code simpler.  */
  if (n_basic_blocks == 0)
    return;

  /* Create an insn here so that we can hang dependencies off of it later.  */
  sched_before_next_call = gen_rtx (INSN, VOIDmode, 0, 0, 0, 0, 0, 0, 0);

  /* Initialize the unused_*_lists.  We can't use the ones left over from
     the previous function, because gcc has freed that memory.  We can use
     the ones left over from the first sched pass in the second pass however,
     so only clear them on the first sched pass.  The first pass is before
     reload if flag_schedule_insns is set, otherwise it is afterwards.  */

  if (reload_completed == 0 || ! flag_schedule_insns)
    {
      unused_insn_list = 0;
      unused_expr_list = 0;
    }

  /* We create no insns here, only reorder them, so we
     remember how far we can cut back the stack on exit.  */

  /* Allocate data for this pass.  See comments, above,
     for what these vectors do.  */
  /* ??? Instruction splitting below may create new instructions, so these
     arrays must be bigger than just max_uid.  */
  insn_luid = (int *) alloca (max_uid * sizeof (int));
  insn_priority = (int *) alloca (max_uid * sizeof (int));
  insn_ref_count = (int *) alloca (max_uid * sizeof (int));

  if (reload_completed == 0)
    {
      sched_reg_n_deaths = (short *) alloca (max_regno * sizeof (short));
      sched_reg_n_calls_crossed = (int *) alloca (max_regno * sizeof (int));
      sched_reg_live_length = (int *) alloca (max_regno * sizeof (int));
      bb_dead_regs = (regset) alloca (regset_bytes);
      bb_live_regs = (regset) alloca (regset_bytes);
      bzero (sched_reg_n_calls_crossed, max_regno * sizeof (int));
      bzero (sched_reg_live_length, max_regno * sizeof (int));
      bcopy (reg_n_deaths, sched_reg_n_deaths, max_regno * sizeof (short));
      init_alias_analysis ();
    }
  else
    {
      sched_reg_n_deaths = 0;
      sched_reg_n_calls_crossed = 0;
      sched_reg_live_length = 0;
      bb_dead_regs = 0;
      bb_live_regs = 0;
      if (! flag_schedule_insns)
	init_alias_analysis ();
    }

  if (write_symbols != NO_DEBUG)
    {
      rtx line;

      line_note = (rtx *) alloca (max_uid * sizeof (rtx));
      bzero (line_note, max_uid * sizeof (rtx));
      line_note_head = (rtx *) alloca (n_basic_blocks * sizeof (rtx));
      bzero (line_note_head, n_basic_blocks * sizeof (rtx));

      /* Determine the line-number at the start of each basic block.
	 This must be computed and saved now, because after a basic block's
	 predecessor has been scheduled, it is impossible to accurately
	 determine the correct line number for the first insn of the block.  */
	 
      for (b = 0; b < n_basic_blocks; b++)
	for (line = basic_block_head[b]; line; line = PREV_INSN (line))
	  if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
	    {
	      line_note_head[b] = line;
	      break;
	    }
    }

  bzero (insn_luid, max_uid * sizeof (int));
  bzero (insn_priority, max_uid * sizeof (int));
  bzero (insn_ref_count, max_uid * sizeof (int));

  /* Schedule each basic block, block by block.  */

  if (NEXT_INSN (basic_block_end[n_basic_blocks-1]) == 0
      || (GET_CODE (basic_block_end[n_basic_blocks-1]) != NOTE
	  && GET_CODE (basic_block_end[n_basic_blocks-1]) != CODE_LABEL))
    emit_note_after (NOTE_INSN_DELETED, basic_block_end[n_basic_blocks-1]);

  for (b = 0; b < n_basic_blocks; b++)
    {
      rtx insn, next;
      rtx insns;

      note_list = 0;

      for (insn = basic_block_head[b]; ; insn = next)
	{
	  rtx prev;
	  rtx set;

	  /* Can't use `next_real_insn' because that
	     might go across CODE_LABELS and short-out basic blocks.  */
	  next = NEXT_INSN (insn);
	  if (GET_CODE (insn) != INSN)
	    {
	      if (insn == basic_block_end[b])
		break;

	      continue;
	    }

	  /* Don't split no-op move insns.  These should silently disappear
	     later in final.  Splitting such insns would break the code
	     that handles REG_NO_CONFLICT blocks.  */
	  set = single_set (insn);
	  if (set && rtx_equal_p (SET_SRC (set), SET_DEST (set)))
	    {
	      if (insn == basic_block_end[b])
		break;

	      /* Nops get in the way while scheduling, so delete them now if
		 register allocation has already been done.  It is too risky
		 to try to do this before register allocation, and there are
		 unlikely to be very many nops then anyways.  */
	      if (reload_completed)
		{
		  PUT_CODE (insn, NOTE);
		  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
		  NOTE_SOURCE_FILE (insn) = 0;
		}

	      continue;
	    }

	  /* Split insns here to get max fine-grain parallelism.  */
	  prev = PREV_INSN (insn);
	  if (reload_completed == 0)
	    {
	      rtx last, first = PREV_INSN (insn);
	      rtx notes = REG_NOTES (insn);

	      last = try_split (PATTERN (insn), insn, 1);
	      if (last != insn)
		{
		  /* try_split returns the NOTE that INSN became.  */
		  first = NEXT_INSN (first);
		  update_flow_info (notes, first, last, insn);

		  PUT_CODE (insn, NOTE);
		  NOTE_SOURCE_FILE (insn) = 0;
		  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
		  if (insn == basic_block_head[b])
		    basic_block_head[b] = first;
		  if (insn == basic_block_end[b])
		    {
		      basic_block_end[b] = last;
		      break;
		    }
		}
	    }

	  if (insn == basic_block_end[b])
	    break;
	}

      schedule_block (b, dump_file);

#ifdef USE_C_ALLOCA
      alloca (0);
#endif
    }

  if (write_symbols != NO_DEBUG)
    {
      rtx line = 0;
      rtx insn = get_insns ();
      int active_insn = 0;
      int notes = 0;

      /* Walk the insns deleting redundant line-number notes.  Many of these
	 are already present.  The remainder tend to occur at basic
	 block boundaries.  */
      for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
	if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
	  {
	    /* If there are no active insns following, INSN is redundant.  */
	    if (active_insn == 0)
	      {
		notes++;
		NOTE_SOURCE_FILE (insn) = 0;
		NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
	      }
	    /* If the line number is unchanged, LINE is redundant.  */
	    else if (line
		     && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
		     && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
	      {
		notes++;
		NOTE_SOURCE_FILE (line) = 0;
		NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
		line = insn;
	      }
	    else
	      line = insn;
	    active_insn = 0;
	  }
	else if (! ((GET_CODE (insn) == NOTE
		     && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
		    || (GET_CODE (insn) == INSN
			&& (GET_CODE (PATTERN (insn)) == USE
			    || GET_CODE (PATTERN (insn)) == CLOBBER))))
	  active_insn++;

      if (dump_file && notes)
	fprintf (dump_file, ";; deleted %d line-number notes\n", notes);
    }

  if (reload_completed == 0)
    {
      int regno;
      for (regno = 0; regno < max_regno; regno++)
	if (sched_reg_live_length[regno])
	  {
	    if (dump_file)
	      {
		if (reg_live_length[regno] > sched_reg_live_length[regno])
		  fprintf (dump_file,
			   ";; register %d life shortened from %d to %d\n",
			   regno, reg_live_length[regno],
			   sched_reg_live_length[regno]);
		/* Negative values are special; don't overwrite the current
		   reg_live_length value if it is negative.  */
		else if (reg_live_length[regno] < sched_reg_live_length[regno]
			 && reg_live_length[regno] >= 0)
		  fprintf (dump_file,
			   ";; register %d life extended from %d to %d\n",
			   regno, reg_live_length[regno],
			   sched_reg_live_length[regno]);

		if (reg_n_calls_crossed[regno]
		    && ! sched_reg_n_calls_crossed[regno])
		  fprintf (dump_file,
			   ";; register %d no longer crosses calls\n", regno);
		else if (! reg_n_calls_crossed[regno]
			 && sched_reg_n_calls_crossed[regno])
		  fprintf (dump_file,
			   ";; register %d now crosses calls\n", regno);
	      }
	    reg_live_length[regno] = sched_reg_live_length[regno];
	    reg_n_calls_crossed[regno] = sched_reg_n_calls_crossed[regno];
	  }
    }
}
#endif /* INSN_SCHEDULING */