// Copyright (C) 2020-2022 Free Software Foundation, Inc. // This file is part of GCC. // GCC is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 3, or (at your option) any later // version. // GCC is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // You should have received a copy of the GNU General Public License // along with GCC; see the file COPYING3. If not see // . // #include "rust-session-manager.h" #include "rust-session-manager.h" #include "rust-diagnostics.h" #include "rust-lex.h" #include "rust-parse.h" #include "rust-macro-expand.h" #include "rust-ast-resolve.h" #include "rust-ast-lower.h" #include "rust-hir-type-check.h" #include "rust-privacy-check.h" #include "rust-tycheck-dump.h" #include "rust-compile.h" #include "rust-cfg-parser.h" #include "rust-lint-scan-deadcode.h" #include "rust-lint-unused-var.h" #include "diagnostic.h" #include "input.h" #include "rust-target.h" extern bool saw_errors (void); extern Linemap * rust_get_linemap (); extern Backend * rust_get_backend (); namespace Rust { const char *kLexDumpFile = "gccrs.lex.dump"; const char *kASTDumpFile = "gccrs.ast.dump"; const char *kASTExpandedDumpFile = "gccrs.ast-expanded.dump"; const char *kHIRDumpFile = "gccrs.hir.dump"; const char *kHIRTypeResolutionDumpFile = "gccrs.type-resolution.dump"; const char *kTargetOptionsDumpFile = "gccrs.target-options.dump"; const std::string kDefaultCrateName = "rust_out"; static std::string infer_crate_name (const std::string filename) { if (filename == "-") return kDefaultCrateName; std::string crate = std::string (filename); size_t path_sep = crate.find_last_of (file_separator); // find the base filename if (path_sep != std::string::npos) crate.erase (0, path_sep + 1); // find the file stem name (remove file extension) size_t ext_position = crate.find_last_of ('.'); if (ext_position != std::string::npos) crate.erase (ext_position); return crate; } // Implicitly enable a target_feature (and recursively enable dependencies). void Session::implicitly_enable_feature (std::string feature_name) { // TODO: is this really required since features added would be complete via // target spec? if (!options.target_data.has_key_value_pair ("target_feature", feature_name)) { // if feature has dependencies, enable them if (feature_name == "aes") { implicitly_enable_feature ("sse2"); } else if (feature_name == "avx") { implicitly_enable_feature ("sse4.2"); } else if (feature_name == "avx2") { implicitly_enable_feature ("avx"); } else if (feature_name == "fma") { implicitly_enable_feature ("avx"); } else if (feature_name == "pclmulqdq") { implicitly_enable_feature ("sse2"); } else if (feature_name == "sha") { implicitly_enable_feature ("sse2"); } else if (feature_name == "sse2") { implicitly_enable_feature ("sse"); } else if (feature_name == "sse3") { implicitly_enable_feature ("sse2"); } else if (feature_name == "sse4.1") { implicitly_enable_feature ("sse3"); } else if (feature_name == "sse4.2") { implicitly_enable_feature ("sse4.1"); } else if (feature_name == "ssse3") { implicitly_enable_feature ("sse3"); } options.target_data.insert_key_value_pair ("target_feature", std::move (feature_name)); } } // Meant to enable all target features. As this will be done by target hook, // this method's deprecated. void Session::enable_features () { bool has_target_crt_static = false; rust_debug ( "ERROR: Somewhere in call chain Session::enable_features is called."); if (has_target_crt_static) { // enable "crt-static" attribute } /* TODO: do this via target hook. have one for each target that implicitly * enables the * features for that platform. Would probably have to make custom target hook. */ /* if (target == "x86" || target == "x86_64") { if (TARGET_AES) { // enable aes, implicitly enable sse2 implicitly_enable_feature("aes"); } if (TARGET_AVX) { // enable avx, implicitly enable sse4.2 implicitly_enable_feature("sse4.2"); } if (TARGET_AVX2) { // enable avx2, implicitly enable avx implicitly_enable_feature("avx"); } if (TARGET_BMI) { // enable bmi1 implicitly_enable_feature("bmi1"); } if (TARGET_BMI2) { // enable bmi2 implicitly_enable_feature("bmi2"); } if (TARGET_FMA) { // enable fma, implicitly enable avx implicitly_enable_feature("fma"); } if (TARGET_FXSR) { // enable fxsr implicitly_enable_feature("fxsr"); } if (TARGET_LZCNT) { // enable lzcnt implicitly_enable_feature("lzcnt"); } if (TARGET_VPCLMULQDQ) { // enable pclmulqdq, implicitly enable sse2 implicitly_enable_feature("pclmulqdq"); } if (TARGET_POPCNT) { // enable popcnt implicitly_enable_feature("popcnt"); } if (TARGET_RDRND) { // enable rdrand implicitly_enable_feature("rdrand"); } if (TARGET_RDSEED) { // enable rdseed implicitly_enable_feature("rdseed"); } if (TARGET_SHA) { // enable sha, implicitly enable sse2 implicitly_enable_feature("sha"); } if (TARGET_SSE) { // enable sse implicitly_enable_feature("sse"); } if (TARGET_SSE2) { // enable sse2, implicitly enable sse implicitly_enable_feature("sse2"); } if (TARGET_SSE3) { // enable sse3, implicitly enable sse2 implicitly_enable_feature("sse3"); } if (TARGET_SSE4_1) { // enable sse4.1, implicitly enable sse3 implicitly_enable_feature("sse4.1"); } if (TARGET_SSE4_2) { // enable sse4.2, implicitly enable sse4.1 implicitly_enable_feature("sse4.2"); } if (TARGET_SSSE3) { // enable ssse3, implicitly enable sse3 implicitly_enable_feature("ssse3"); } if (TARGET_XSAVE) { // enable xsave implicitly_enable_feature("xsave"); } if (TARGET_XSAVEC) { // enable xsavec implicitly_enable_feature("xsavec"); } if (TARGET_XSAVEOPT) { // enable xsaveopt implicitly_enable_feature("xsaveopt"); } if (TARGET_XSAVES) { // enable xsaves implicitly_enable_feature("xsaves"); } } options.target_data.features.shrink_to_fit(); std::sort(options.target_data.features.begin(), options.target_data.features.end());*/ } void Session::init () { #ifndef TARGET_RUST_OS_INFO #define TARGET_RUST_OS_INFO() #endif //#define builtin_rust_info(KEY, VALUE) rust_add_target_info (KEY, VALUE) // might as well use c++ stuff #define builtin_rust_info(KEY, VALUE) \ options.target_data.insert_key_value_pair (KEY, VALUE) // initialise target hooks // targetrustm.rust_cpu_info(); // targetrustm.rust_os_info(); // ok, that's not working too well TODO - see if can salvage old // implementation TARGET_RUST_CPU_INFO (); TARGET_RUST_OS_INFO (); /* note that due to issues with gcc targets, some implementations of those two * macros above (TARGET_RUST_CPU_INFO and TARGET_RUST_OS_INFO) are not * function calls, but actually inline substitutions. As such, they can't be * stored with a function pointer in a "real" target hook. * At least, that's my current understanding of it. */ #undef builtin_rust_info // target-independent values that should exist in all targets options.target_data.insert_key_value_pair ("target_pointer_width", std::to_string (POINTER_SIZE)); options.target_data.insert_key_value_pair ("target_endian", BYTES_BIG_ENDIAN ? "big" : "little"); // TODO: find min atomic width and max atomic width // from it, add atomic-related stuff for sizes 8, 16, 32, 64, and 128 (if // inside bounds) in rustc, min atomic width is a known quantity (or 8 if not // known), and max is also a known quantity (or is pointer size if not known) // TODO: add atomic pointer if some criteria is satisfied // TODO: find whether target has "atomic cas" // add debug_assertions if enabled and proc_macro if crate type has it or // whatever // derived values from hook options.target_data.init_derived_values (); // setup singleton linemap linemap = rust_get_linemap (); // setup backend to GCC GIMPLE backend = rust_get_backend (); } /* Initialise default options. Actually called before handle_option, unlike init * itself. */ void Session::init_options () {} // Handle option selection. bool Session::handle_option ( enum opt_code code, const char *arg, HOST_WIDE_INT value ATTRIBUTE_UNUSED, int kind ATTRIBUTE_UNUSED, location_t loc ATTRIBUTE_UNUSED, const struct cl_option_handlers *handlers ATTRIBUTE_UNUSED) { // used to store whether results of various stuff are successful bool ret = true; // Handles options as listed in lang.opt. switch (code) { case OPT_I: // TODO: add search path break; case OPT_L: // TODO: add library link path or something break; case OPT_frust_crate_: // set the crate name if (arg != nullptr) ret = options.set_crate_name (arg); else ret = false; break; case OPT_frust_dump_: // enable dump and return whether this was successful if (arg != nullptr) { ret = enable_dump (std::string (arg)); } else { ret = false; } break; case OPT_frust_mangling_: Compile::Mangler::set_mangling (flag_rust_mangling); break; case OPT_frust_cfg_: { auto string_arg = std::string (arg); ret = handle_cfg_option (string_arg); break; } case OPT_frust_edition_: options.set_edition (flag_rust_edition); break; default: break; } return ret; } bool Session::handle_cfg_option (std::string &input) { std::string key; std::string value; // Refactor this if needed if (!parse_cfg_option (input, key, value)) { rust_error_at ( Location (), "invalid argument to %<-frust-cfg%>: Accepted formats are " "%<-frust-cfg=key%> or %<-frust-cfg=key=\"value\"%> (quoted)"); return false; } if (value.empty ()) // rustc does not seem to error on dup key options.target_data.insert_key (key); else options.target_data.insert_key_value_pair (key, value); return true; } /* Enables a certain dump depending on the name passed in. Returns true if * name is valid, false otherwise. */ bool Session::enable_dump (std::string arg) { if (arg.empty ()) { rust_error_at ( Location (), "dump option was not given a name. choose %, %, " "%, %, %, %," " %, %, or %"); return false; } if (arg == "all") { options.enable_all_dump_options (); } else if (arg == "lex") { options.enable_dump_option (CompileOptions::LEXER_DUMP); } else if (arg == "parse") { options.enable_dump_option (CompileOptions::PARSER_AST_DUMP); } else if (arg == "register_plugins") { options.enable_dump_option (CompileOptions::REGISTER_PLUGINS_DUMP); } else if (arg == "injection") { options.enable_dump_option (CompileOptions::INJECTION_DUMP); } else if (arg == "expansion") { options.enable_dump_option (CompileOptions::EXPANSION_DUMP); } else if (arg == "resolution") { options.enable_dump_option (CompileOptions::RESOLUTION_DUMP); } else if (arg == "target_options") { options.enable_dump_option (CompileOptions::TARGET_OPTION_DUMP); } else if (arg == "hir") { options.enable_dump_option (CompileOptions::HIR_DUMP); } else { rust_error_at ( Location (), "dump option %qs was unrecognised. choose %, %, " "%, %, %, %," " %, or %", arg.c_str ()); return false; } return true; } /* Actual main entry point for front-end. Called from langhook to parse files. */ void Session::parse_files (int num_files, const char **files) { rust_assert (num_files > 0); if (options.crate_name.empty ()) { /* HACK: We use the first file to infer the crate name, which might be * incorrect: since rustc only allows one file to be supplied in the * command-line */ auto crate_name = infer_crate_name (files[0]); rust_debug_loc (Location (), "inferred crate name: %s", crate_name.c_str ()); if (!options.set_crate_name (crate_name)) { rust_inform (Location (), "crate name inferred from the input file %<%s%>", files[0]); return; } } auto mappings = Analysis::Mappings::get (); CrateNum crate_num = mappings->setup_crate_mappings (options.crate_name); mappings->set_current_crate (crate_num); for (int i = 0; i < num_files; i++) { rust_debug ("Attempting to parse file: %s", files[i]); parse_file (files[i]); } /* TODO: should semantic analysis be dealed with here? or per file? for now, * per-file. */ } // Parses a single file with filename filename. void Session::parse_file (const char *filename) { RAIIFile file_wrap (filename); if (file_wrap.get_raw () == nullptr) { rust_fatal_error (Location (), "cannot open filename %s: %m", filename); } // parse file here /* create lexer and parser - these are file-specific and so aren't instance * variables */ Lexer lex (filename, std::move (file_wrap), linemap); Parser parser (std::move (lex)); // generate crate from parser auto parsed_crate = parser.parse_crate (); // setup the mappings for this AST auto mappings = Analysis::Mappings::get (); mappings->insert_ast_crate (&parsed_crate); if (options.dump_option_enabled (CompileOptions::LEXER_DUMP)) { dump_lex (parser); } if (options.dump_option_enabled (CompileOptions::PARSER_AST_DUMP)) { dump_ast (parser, parsed_crate); } if (options.dump_option_enabled (CompileOptions::TARGET_OPTION_DUMP)) { options.target_data.dump_target_options (); } if (saw_errors ()) return; /* basic pipeline: * - lex * - parse * - register plugins (dummy stage for now) - attribute injection? what is * this? (attribute injection is injecting attributes specified in command * line into crate root) * - injection (some lint checks or dummy, register builtin macros, crate * injection) * - expansion (expands all macros, maybe build test harness, AST * validation, maybe macro crate) * - resolution (name resolution, type resolution, maybe feature checking, * maybe buffered lints) * TODO not done */ rust_debug ("\033[0;31mSUCCESSFULLY PARSED CRATE \033[0m"); // If -fsyntax-only was passed, we can just skip the remaining passes. // Parsing errors are already emitted in `parse_crate()` if (flag_syntax_only) return; // register plugins pipeline stage register_plugins (parsed_crate); rust_debug ("\033[0;31mSUCCESSFULLY REGISTERED PLUGINS \033[0m"); if (options.dump_option_enabled (CompileOptions::REGISTER_PLUGINS_DUMP)) { // TODO: what do I dump here? } // injection pipeline stage injection (parsed_crate); rust_debug ("\033[0;31mSUCCESSFULLY FINISHED INJECTION \033[0m"); if (options.dump_option_enabled (CompileOptions::INJECTION_DUMP)) { // TODO: what do I dump here? injected crate names? } // expansion pipeline stage expansion (parsed_crate); rust_debug ("\033[0;31mSUCCESSFULLY FINISHED EXPANSION \033[0m"); if (options.dump_option_enabled (CompileOptions::EXPANSION_DUMP)) { // dump AST with expanded stuff rust_debug ("BEGIN POST-EXPANSION AST DUMP"); dump_ast_expanded (parser, parsed_crate); rust_debug ("END POST-EXPANSION AST DUMP"); } // resolution pipeline stage Resolver::NameResolution::Resolve (parsed_crate); if (options.dump_option_enabled (CompileOptions::RESOLUTION_DUMP)) { // TODO: what do I dump here? resolved names? AST with resolved names? } if (saw_errors ()) return; // lower AST to HIR HIR::Crate hir = HIR::ASTLowering::Resolve (parsed_crate); if (options.dump_option_enabled (CompileOptions::HIR_DUMP)) { dump_hir (hir); } if (saw_errors ()) return; // type resolve Resolver::TypeResolution::Resolve (hir); if (options.dump_option_enabled (CompileOptions::TYPE_RESOLUTION_DUMP)) { dump_type_resolution (hir); } if (saw_errors ()) return; // privacy pass Privacy::Resolver::resolve (hir); // do compile to gcc generic Compile::Context ctx (backend); Compile::CompileCrate::Compile (hir, &ctx); // we can't do static analysis if there are errors to worry about if (!saw_errors ()) { Analysis::ScanDeadcode::Scan (hir); Analysis::UnusedVariables::Lint (ctx); } // pass to GCC middle-end ctx.write_to_backend (); } // TODO: actually implement method void load_extern_crate (std::string crate_name ATTRIBUTE_UNUSED) {} // TODO: deprecated - don't use // Parses up to the "load (external) crates" part of the frontend. // TODO: lots of this code is probably actually useful outside of dumping, so // maybe split off function void Session::debug_dump_load_crates (Parser &parser) { // parse crate as AST AST::Crate crate = parser.parse_crate (); /* TODO: search through inner attrs and see whether any of those attr paths * contain "no_core", "no_std", "compiler_builtins". If so/not, save certain * crate names. In these names, insert items at beginning of crate items. * This is crate injection. Also, inject prelude use decl at beginning * (first name is assumed to be prelude - prelude is a use decl * automatically generated to enable using Option and Copy without * qualifying it or importing it via 'use' manually) */ std::vector crate_names; for (const auto &item : crate.items) { // if item is extern crate, add name? to list of stuff ONLY IF config is // checked if item is module, iterate this loop inside it as well // (recursive?) ONLY IF config is checked // TODO: actually do the checks somewhere - probably in the items item->add_crate_name (crate_names); } /* loop through list of crate names/paths/whatever, attempting to load each * one. save loaded crates to a Session variable? Or save to current * AST::Crate? */ for (const auto &name : crate_names) { load_extern_crate (name /*, basename = ""?*/); } // for each loaded crate, load dependencies of it as well } // TODO: deprecated - don't use void Session::register_plugins (AST::Crate &crate ATTRIBUTE_UNUSED) { rust_debug ("ran register_plugins (with no body)"); } // TODO: move somewhere else bool contains_name (const AST::AttrVec &attrs, std::string name) { for (const auto &attr : attrs) { if (attr.get_path () == name) return true; } return false; } void Session::injection (AST::Crate &crate) { rust_debug ("started injection"); // lint checks in future maybe? // register builtin macros /* In rustc, builtin macros are divided into 3 categories depending on use - * "bang" macros, "attr" macros, and "derive" macros. I think the meanings * of these categories should be fairly obvious to anyone who has used rust. * Builtin macro list by category: Bang * - asm * - assert * - cfg * - column * - compile_error * - concat_idents * - concat * - env * - file * - format_args_nl * - format_args * - global_asm * - include_bytes * - include_str * - include * - line * - log_syntax * - module_path * - option_env * - stringify * - trace_macros * Attr * - bench * - global_allocator * - test * - test_case * Derive * - Clone * - Copy * - Debug * - Default * - Eq * - Hash * - Ord * - PartialEq * - PartialOrd * - RustcDecodable * - RustcEncodable * rustc also has a "quote" macro that is defined differently and is * supposedly not stable so eh. */ /* TODO: actually implement injection of these macros. In particular, derive * macros, cfg, and test should be prioritised since they seem to be used * the most. */ // crate injection std::vector names; if (contains_name (crate.inner_attrs, "no_core")) { // no prelude injected_crate_name = ""; } else if (contains_name (crate.inner_attrs, "no_std")) { names.push_back ("core"); if (!contains_name (crate.inner_attrs, "compiler_builtins")) { names.push_back ("compiler_builtins"); } injected_crate_name = "core"; } else { names.push_back ("std"); injected_crate_name = "std"; } // reverse iterate through names to insert crate items in "forward" order at // beginning of crate for (auto it = names.rbegin (); it != names.rend (); ++it) { // create "macro use" attribute for use on extern crate item to enable // loading macros from it AST::Attribute attr (AST::SimplePath::from_str ("macro_use"), nullptr); // create "extern crate" item with the name std::unique_ptr extern_crate ( new AST::ExternCrate (*it, AST::Visibility::create_error (), {std::move (attr)}, Linemap::unknown_location ())); // insert at beginning crate.items.insert (crate.items.begin (), std::move (extern_crate)); } // create use tree path // prelude is injected_crate_name std::vector segments = {AST::SimplePathSegment (injected_crate_name), AST::SimplePathSegment ("prelude"), AST::SimplePathSegment ("v1")}; // create use tree and decl std::unique_ptr use_tree ( new AST::UseTreeGlob (AST::UseTreeGlob::PATH_PREFIXED, AST::SimplePath (std::move (segments)), Location ())); AST::Attribute prelude_attr (AST::SimplePath::from_str ("prelude_import"), nullptr); std::unique_ptr use_decl ( new AST::UseDeclaration (std::move (use_tree), AST::Visibility::create_error (), {std::move (prelude_attr)}, Location ())); crate.items.insert (crate.items.begin (), std::move (use_decl)); /* TODO: potentially add checking attribute crate type? I can't figure out * what this does currently comment says "Unconditionally collect crate * types from attributes to make them used", which presumably refers to * checking the linkage info by "crate_type". It also seems to ensure that * an invalid crate type is not specified, so maybe just do that. Valid * crate types: bin lib dylib staticlib cdylib rlib proc-macro */ rust_debug ("finished injection"); } void Session::expansion (AST::Crate &crate) { rust_debug ("started expansion"); /* rustc has a modification to windows PATH temporarily here, which may end * up being required */ // create macro expansion config? // if not, would at least have to configure recursion_limit ExpansionCfg cfg; // create extctxt? from parse session, cfg, and resolver? /* expand by calling cxtctxt object's monotonic_expander's expand_crate * method. */ MacroExpander expander (crate, cfg, *this); expander.expand_crate (); // error reporting - check unused macros, get missing fragment specifiers // build test harness // ast validation (also with proc macro decls) // maybe create macro crate if not rustdoc rust_debug ("finished expansion"); } void Session::dump_lex (Parser &parser) const { std::ofstream out; out.open (kLexDumpFile); if (out.fail ()) { rust_error_at (Linemap::unknown_location (), "cannot open %s:%m; ignored", kLexDumpFile); return; } // TODO: rewrite lexer dump or something so that it allows for the crate // to already be parsed parser.debug_dump_lex_output (out); out.close (); } void Session::dump_ast (Parser &parser, AST::Crate &crate) const { std::ofstream out; out.open (kASTDumpFile); if (out.fail ()) { rust_error_at (Linemap::unknown_location (), "cannot open %s:%m; ignored", kASTDumpFile); return; } parser.debug_dump_ast_output (crate, out); out.close (); } void Session::dump_ast_expanded (Parser &parser, AST::Crate &crate) const { std::ofstream out; out.open (kASTExpandedDumpFile); if (out.fail ()) { rust_error_at (Linemap::unknown_location (), "cannot open %s:%m; ignored", kASTExpandedDumpFile); return; } parser.debug_dump_ast_output (crate, out); out.close (); } void Session::dump_hir (HIR::Crate &hir) const { std::ofstream out; out.open (kHIRDumpFile); if (out.fail ()) { rust_error_at (Linemap::unknown_location (), "cannot open %s:%m; ignored", kHIRDumpFile); return; } out << hir.as_string (); out.close (); } void Session::dump_type_resolution (HIR::Crate &hir) const { std::ofstream out; out.open (kHIRTypeResolutionDumpFile); if (out.fail ()) { rust_error_at (Linemap::unknown_location (), "cannot open %s:%m; ignored", kHIRTypeResolutionDumpFile); return; } Resolver::TypeResolverDump::go (hir, out); out.close (); } void TargetOptions::dump_target_options () const { std::ofstream out; out.open (kTargetOptionsDumpFile); if (out.fail ()) { rust_error_at (Linemap::unknown_location (), "cannot open %s:%m; ignored", kTargetOptionsDumpFile); return; } if (features.empty ()) { out << "No target options available!\n"; } for (const auto &pairs : features) { for (const auto &value : pairs.second) out << pairs.first + ": \"" + value + "\"\n"; if (pairs.second.empty ()) out << pairs.first + "\n"; } out.close (); } void TargetOptions::init_derived_values () { // enable derived values based on target families if (has_key_value_pair ("target_family", "unix")) insert_key ("unix"); if (has_key_value_pair ("target_family", "windows")) insert_key ("windows"); // implicitly enable features - this should not be required in general if (has_key_value_pair ("target_feature", "aes")) enable_implicit_feature_reqs ("aes"); if (has_key_value_pair ("target_feature", "avx")) enable_implicit_feature_reqs ("sse4.2"); if (has_key_value_pair ("target_feature", "avx2")) enable_implicit_feature_reqs ("avx"); if (has_key_value_pair ("target_feature", "pclmulqdq")) enable_implicit_feature_reqs ("sse2"); if (has_key_value_pair ("target_feature", "sha")) enable_implicit_feature_reqs ("sse2"); if (has_key_value_pair ("target_feature", "sse2")) enable_implicit_feature_reqs ("sse"); if (has_key_value_pair ("target_feature", "sse3")) enable_implicit_feature_reqs ("sse2"); if (has_key_value_pair ("target_feature", "sse4.1")) enable_implicit_feature_reqs ("sse3"); if (has_key_value_pair ("target_feature", "sse4.2")) enable_implicit_feature_reqs ("sse4.1"); if (has_key_value_pair ("target_feature", "ssse3")) enable_implicit_feature_reqs ("sse3"); } void TargetOptions::enable_implicit_feature_reqs (std::string feature) { if (feature == "aes") enable_implicit_feature_reqs ("sse2"); else if (feature == "avx") enable_implicit_feature_reqs ("sse4.2"); else if (feature == "avx2") enable_implicit_feature_reqs ("avx"); else if (feature == "fma") enable_implicit_feature_reqs ("avx"); else if (feature == "pclmulqdq") enable_implicit_feature_reqs ("sse2"); else if (feature == "sha") enable_implicit_feature_reqs ("sse2"); else if (feature == "sse2") enable_implicit_feature_reqs ("sse"); else if (feature == "sse3") enable_implicit_feature_reqs ("sse2"); else if (feature == "sse4.1") enable_implicit_feature_reqs ("sse3"); else if (feature == "sse4.2") enable_implicit_feature_reqs ("sse4.1"); else if (feature == "ssse3") enable_implicit_feature_reqs ("sse3"); if (!has_key_value_pair ("target_feature", feature)) { insert_key_value_pair ("target_feature", feature); rust_debug ("had to implicitly enable feature '%s'!", feature.c_str ()); } } // NOTEs: /* mrustc compile pipeline: * - target load (pass target spec to parser?) * - parse (convert source to AST) * - load crates (load any explicitly mentioned extern crates [not all of * them]) * - expand (AST transformations from attributes and macros, loads remaining * extern crates [std/core and any triggered by macro expansion]) * - implicit crates (test harness, allocator crate, panic crate) * - resolve use (annotate every 'use' item with source [supposedly handles * nasty recursion]) * - resolve index (generate index of visible items for every module [avoids * recursion in next pass]) * - resolve absolute (resolve all paths into either variable names * [types/values] or absolute paths) * - HIR lower (convert modified AST to simpler HIR [both expressions and * module tree]) * - resolve type aliases (replace any usages of type aliases with actual * type [except associated types]) * - resolve bind (iterate HIR tree and set binding annotations on all * concrete types [avoids path lookups later]) * - resolve HIR markings (generate "markings" [e.g. for Copy/Send/Sync/...] * for all types * - sort impls (small pass - sort impls into groups) * - resolve UFCS outer (determine source trait for all top-level ::Type * [qualified] paths) * - resolve UFCS paths (do the same, but include for exprs this time. also * normalises results of previous pass [expanding known associated types]) * - constant evaluate (evaluate all constants) * - typecheck outer (checks impls are sane) * - typecheck expressions (resolve and check types for all exprs) * - expand HIR annotate (annotate how exprs are used - used for closure * extractions and reborrows) * - expand HIR closures (extract closures into structs implementing Fn* * traits) * - expand HIR vtables (generate vtables for types with dyn dispatch) * - expand HIR calls (converts method and callable calls into explicit * function calls) * - expand HIR reborrows (apply reborrow rules [taking '&mut *v' instead of * 'v']) * - expand HIR erasedtype (replace all erased types 'impl Trait' with the * true type) * - typecheck expressions (validate - double check that previous passes * haven't broke type system rules) * - lower MIR (convert HIR exprs into a control-flow graph [MIR]) * - MIR validate (check that the generated MIR is consistent) * - MIR cleanup (perform various transformations on MIR - replace reads of * const items with the item itself; convert casts to unsized types into * 'MakeDst' operations) * - MIR optimise (perform various simple optimisations on the MIR - constant * propagation, dead code elimination, borrow elimination, some inlining) * - MIR validate PO (re-validate the MIR) * - MIR validate full (optionally: perform expensive state-tracking * validation on MIR) * - trans enumerate (enumerate all items needed for code generation, * primarily types used for generics) * - trans auto impls (create magic trait impls as enumerated in previous * pass) * - trans monomorph (generate monomorphised copies of all functions [with * generics replaced with real types]) * - MIR optimise inline (run optimisation again, this time with full type * info [primarily for inlining]) * - HIR serialise (write out HIR dump [module tree and generic/inline MIR]) * - trans codegen (generate final output file: emit C source file and call C * compiler) */ /* rustc compile pipeline (basic, in way less detail): * - parse input (parse .rs to AST) * - name resolution, macro expansion, and configuration (process AST * recursively, resolving paths, expanding macros, processing #[cfg] nodes * [i.e. maybe stripping stuff from AST]) * - lower to HIR * - type check and other analyses (e.g. privacy checking) * - lower to MIR and post-processing (and do stuff like borrow checking) * - translation to LLVM IR and LLVM optimisations (produce the .o files) * - linking (link together .o files) */ /* Pierced-together rustc compile pipeline (from source): * - parse input (parse file to crate) * - register plugins (attributes injection, set various options, register * lints, load plugins) * - expansion/configure and expand (initial 'cfg' processing, 'loading * compiler plugins', syntax expansion, secondary 'cfg' expansion, synthesis * of a test harness if required, injection of any std lib dependency and * prelude, and name resolution) - actually documented inline * - seeming pierced-together order: pre-AST expansion lint checks, * registering builtin macros, crate injection, then expand all macros, then * maybe build test harness, AST validation, maybe create a macro crate (if * not rustdoc), name resolution, complete gated feature checking, add all * buffered lints * - create global context (lower to HIR) * - analysis on global context (HIR optimisations? create MIR?) * - code generation * - link */ } // namespace Rust