// rust-gcc.cc -- Rust frontend to gcc IR.
// Copyright (C) 2011-2020 Free Software Foundation, Inc.
// Contributed by Ian Lance Taylor, Google.
// forked from gccgo
// This file is part of GCC.
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// .
#include "rust-system.h"
// This has to be included outside of extern "C", so we have to
// include it here before tree.h includes it later.
#include
#include "tree.h"
#include "opts.h"
#include "fold-const.h"
#include "stringpool.h"
#include "stor-layout.h"
#include "varasm.h"
#include "tree-iterator.h"
#include "tm.h"
#include "function.h"
#include "cgraph.h"
#include "convert.h"
#include "gimple-expr.h"
#include "gimplify.h"
#include "langhooks.h"
#include "toplev.h"
#include "output.h"
#include "realmpfr.h"
#include "builtins.h"
#include "rust-location.h"
#include "rust-linemap.h"
#include "rust-backend.h"
#include "rust-object-export.h"
// TODO: this will have to be significantly modified to work with Rust
// A class wrapping a tree.
class Gcc_tree
{
public:
Gcc_tree (tree t) : t_ (t) {}
tree get_tree () const { return this->t_; }
void set_tree (tree t) { this->t_ = t; }
private:
tree t_;
};
// In gcc, types, expressions, and statements are all trees.
class Btype : public Gcc_tree
{
public:
Btype (tree t) : Gcc_tree (t) {}
};
class Bexpression : public Gcc_tree
{
public:
Bexpression (tree t) : Gcc_tree (t) {}
};
class Bstatement : public Gcc_tree
{
public:
Bstatement (tree t) : Gcc_tree (t) {}
};
class Bfunction : public Gcc_tree
{
public:
Bfunction (tree t) : Gcc_tree (t) {}
};
class Bblock : public Gcc_tree
{
public:
Bblock (tree t) : Gcc_tree (t) {}
};
class Blabel : public Gcc_tree
{
public:
Blabel (tree t) : Gcc_tree (t) {}
};
// Bvariable is a bit more complicated, because of zero-sized types.
// The GNU linker does not permit dynamic variables with zero size.
// When we see such a variable, we generate a version of the type with
// non-zero size. However, when referring to the global variable, we
// want an expression of zero size; otherwise, if, say, the global
// variable is passed to a function, we will be passing a
// non-zero-sized value to a zero-sized value, which can lead to a
// miscompilation.
class Bvariable
{
public:
Bvariable (tree t) : t_ (t), orig_type_ (NULL) {}
Bvariable (tree t, tree orig_type) : t_ (t), orig_type_ (orig_type) {}
// Get the tree for use as an expression.
tree get_tree (Location) const;
// Get the actual decl;
tree get_decl () const { return this->t_; }
private:
tree t_;
tree orig_type_;
};
// Get the tree of a variable for use as an expression. If this is a
// zero-sized global, create an expression that refers to the decl but
// has zero size.
tree
Bvariable::get_tree (Location location) const
{
if (this->orig_type_ == NULL || this->t_ == error_mark_node
|| TREE_TYPE (this->t_) == this->orig_type_)
return this->t_;
// Return *(orig_type*)&decl. */
tree t = build_fold_addr_expr_loc (location.gcc_location (), this->t_);
t = fold_build1_loc (location.gcc_location (), NOP_EXPR,
build_pointer_type (this->orig_type_), t);
return build_fold_indirect_ref_loc (location.gcc_location (), t);
}
// This file implements the interface between the Rust frontend proper
// and the gcc IR. This implements specific instantiations of
// abstract classes defined by the Rust frontend proper. The Rust
// frontend proper class methods of these classes to generate the
// backend representation.
class Gcc_backend : public Backend
{
public:
Gcc_backend ();
// Types.
Btype *error_type () { return this->make_type (error_mark_node); }
Btype *void_type () { return this->make_type (void_type_node); }
Btype *bool_type () { return this->make_type (boolean_type_node); }
Btype *integer_type (bool, int);
Btype *float_type (int);
Btype *complex_type (int);
Btype *pointer_type (Btype *);
Btype *function_type (const Btyped_identifier &,
const std::vector &,
const std::vector &, Btype *,
const Location);
Btype *struct_type (const std::vector &);
Btype *array_type (Btype *, Bexpression *);
Btype *placeholder_pointer_type (const std::string &, Location, bool);
bool set_placeholder_pointer_type (Btype *, Btype *);
bool set_placeholder_function_type (Btype *, Btype *);
Btype *placeholder_struct_type (const std::string &, Location);
bool set_placeholder_struct_type (Btype *placeholder,
const std::vector &);
Btype *placeholder_array_type (const std::string &, Location);
bool set_placeholder_array_type (Btype *, Btype *, Bexpression *);
Btype *named_type (const std::string &, Btype *, Location);
Btype *circular_pointer_type (Btype *, bool);
bool is_circular_pointer_type (Btype *);
int64_t type_size (Btype *);
int64_t type_alignment (Btype *);
int64_t type_field_alignment (Btype *);
int64_t type_field_offset (Btype *, size_t index);
// Expressions.
Bexpression *zero_expression (Btype *);
Bexpression *error_expression ()
{
return this->make_expression (error_mark_node);
}
Bexpression *nil_pointer_expression ()
{
return this->make_expression (null_pointer_node);
}
Bexpression *var_expression (Bvariable *var, Location);
Bexpression *indirect_expression (Btype *, Bexpression *expr,
bool known_valid, Location);
Bexpression *named_constant_expression (Btype *btype, const std::string &name,
Bexpression *val, Location);
Bexpression *integer_constant_expression (Btype *btype, mpz_t val);
Bexpression *float_constant_expression (Btype *btype, mpfr_t val);
Bexpression *complex_constant_expression (Btype *btype, mpc_t val);
Bexpression *string_constant_expression (const std::string &val);
Bexpression *boolean_constant_expression (bool val);
Bexpression *real_part_expression (Bexpression *bcomplex, Location);
Bexpression *imag_part_expression (Bexpression *bcomplex, Location);
Bexpression *complex_expression (Bexpression *breal, Bexpression *bimag,
Location);
Bexpression *convert_expression (Btype *type, Bexpression *expr, Location);
Bexpression *function_code_expression (Bfunction *, Location);
Bexpression *address_expression (Bexpression *, Location);
Bexpression *struct_field_expression (Bexpression *, size_t, Location);
Bexpression *compound_expression (Bstatement *, Bexpression *, Location);
Bexpression *conditional_expression (Bfunction *, Btype *, Bexpression *,
Bexpression *, Bexpression *, Location);
Bexpression *unary_expression (Operator, Bexpression *, Location);
Bexpression *binary_expression (Operator, Bexpression *, Bexpression *,
Location);
Bexpression *constructor_expression (Btype *,
const std::vector &,
Location);
Bexpression *array_constructor_expression (Btype *,
const std::vector &,
const std::vector &,
Location);
Bexpression *pointer_offset_expression (Bexpression *base,
Bexpression *offset, Location);
Bexpression *array_index_expression (Bexpression *array, Bexpression *index,
Location);
Bexpression *call_expression (Bfunction *caller, Bexpression *fn,
const std::vector &args,
Bexpression *static_chain, Location);
// Statements.
Bstatement *error_statement ()
{
return this->make_statement (error_mark_node);
}
Bstatement *expression_statement (Bfunction *, Bexpression *);
Bstatement *init_statement (Bfunction *, Bvariable *var, Bexpression *init);
Bstatement *assignment_statement (Bfunction *, Bexpression *lhs,
Bexpression *rhs, Location);
Bstatement *return_statement (Bfunction *, const std::vector &,
Location);
Bstatement *if_statement (Bfunction *, Bexpression *condition,
Bblock *then_block, Bblock *else_block, Location);
Bstatement *
switch_statement (Bfunction *function, Bexpression *value,
const std::vector > &cases,
const std::vector &statements, Location);
Bstatement *compound_statement (Bstatement *, Bstatement *);
Bstatement *statement_list (const std::vector &);
Bstatement *exception_handler_statement (Bstatement *bstat,
Bstatement *except_stmt,
Bstatement *finally_stmt, Location);
// Blocks.
Bblock *block (Bfunction *, Bblock *, const std::vector &,
Location, Location);
void block_add_statements (Bblock *, const std::vector &);
Bstatement *block_statement (Bblock *);
// Variables.
Bvariable *error_variable () { return new Bvariable (error_mark_node); }
Bvariable *global_variable (const std::string &var_name,
const std::string &asm_name, Btype *btype,
bool is_external, bool is_hidden,
bool in_unique_section, Location location);
void global_variable_set_init (Bvariable *, Bexpression *);
Bvariable *local_variable (Bfunction *, const std::string &, Btype *,
Bvariable *, bool, Location);
Bvariable *parameter_variable (Bfunction *, const std::string &, Btype *,
bool, Location);
Bvariable *static_chain_variable (Bfunction *, const std::string &, Btype *,
Location);
Bvariable *temporary_variable (Bfunction *, Bblock *, Btype *, Bexpression *,
bool, Location, Bstatement **);
Bvariable *implicit_variable (const std::string &, const std::string &,
Btype *, bool, bool, bool, int64_t);
void implicit_variable_set_init (Bvariable *, const std::string &, Btype *,
bool, bool, bool, Bexpression *);
Bvariable *implicit_variable_reference (const std::string &,
const std::string &, Btype *);
Bvariable *immutable_struct (const std::string &, const std::string &, bool,
bool, Btype *, Location);
void immutable_struct_set_init (Bvariable *, const std::string &, bool, bool,
Btype *, Location, Bexpression *);
Bvariable *immutable_struct_reference (const std::string &,
const std::string &, Btype *,
Location);
// Labels.
Blabel *label (Bfunction *, const std::string &name, Location);
Bstatement *label_definition_statement (Blabel *);
Bstatement *goto_statement (Blabel *, Location);
Bexpression *label_address (Blabel *, Location);
// Functions.
Bfunction *error_function () { return this->make_function (error_mark_node); }
Bfunction *function (Btype *fntype, const std::string &name,
const std::string &asm_name, unsigned int flags,
Location);
Bstatement *function_defer_statement (Bfunction *function,
Bexpression *undefer,
Bexpression *defer, Location);
bool function_set_parameters (Bfunction *function,
const std::vector &);
bool function_set_body (Bfunction *function, Bstatement *code_stmt);
Bfunction *lookup_builtin (const std::string &);
void write_global_definitions (const std::vector &,
const std::vector &,
const std::vector &,
const std::vector &);
void write_export_data (const char *bytes, unsigned int size);
private:
// Make a Bexpression from a tree.
Bexpression *make_expression (tree t) { return new Bexpression (t); }
// Make a Bstatement from a tree.
Bstatement *make_statement (tree t) { return new Bstatement (t); }
// Make a Btype from a tree.
Btype *make_type (tree t) { return new Btype (t); }
Bfunction *make_function (tree t) { return new Bfunction (t); }
Btype *fill_in_struct (Btype *, const std::vector &);
Btype *fill_in_array (Btype *, Btype *, Bexpression *);
tree non_zero_size_type (tree);
tree convert_tree (tree, tree, Location);
private:
static const int builtin_const = 1 << 0;
static const int builtin_noreturn = 1 << 1;
static const int builtin_novops = 1 << 2;
void define_builtin (built_in_function bcode, const char *name,
const char *libname, tree fntype, int flags);
// A mapping of the GCC built-ins exposed to GCCRust.
std::map builtin_functions_;
};
// A helper function to create a GCC identifier from a C++ string.
static inline tree
get_identifier_from_string (const std::string &str)
{
return get_identifier_with_length (str.data (), str.length ());
}
// Define the built-in functions that are exposed to GCCRust.
Gcc_backend::Gcc_backend ()
{
/* We need to define the fetch_and_add functions, since we use them
for ++ and --. */
tree t = this->integer_type (true, BITS_PER_UNIT)->get_tree ();
tree p = build_pointer_type (build_qualified_type (t, TYPE_QUAL_VOLATILE));
this->define_builtin (BUILT_IN_SYNC_ADD_AND_FETCH_1, "__sync_fetch_and_add_1",
NULL, build_function_type_list (t, p, t, NULL_TREE), 0);
t = this->integer_type (true, BITS_PER_UNIT * 2)->get_tree ();
p = build_pointer_type (build_qualified_type (t, TYPE_QUAL_VOLATILE));
this->define_builtin (BUILT_IN_SYNC_ADD_AND_FETCH_2, "__sync_fetch_and_add_2",
NULL, build_function_type_list (t, p, t, NULL_TREE), 0);
t = this->integer_type (true, BITS_PER_UNIT * 4)->get_tree ();
p = build_pointer_type (build_qualified_type (t, TYPE_QUAL_VOLATILE));
this->define_builtin (BUILT_IN_SYNC_ADD_AND_FETCH_4, "__sync_fetch_and_add_4",
NULL, build_function_type_list (t, p, t, NULL_TREE), 0);
t = this->integer_type (true, BITS_PER_UNIT * 8)->get_tree ();
p = build_pointer_type (build_qualified_type (t, TYPE_QUAL_VOLATILE));
this->define_builtin (BUILT_IN_SYNC_ADD_AND_FETCH_8, "__sync_fetch_and_add_8",
NULL, build_function_type_list (t, p, t, NULL_TREE), 0);
// We use __builtin_expect for magic import functions.
this->define_builtin (BUILT_IN_EXPECT, "__builtin_expect", NULL,
build_function_type_list (long_integer_type_node,
long_integer_type_node,
long_integer_type_node,
NULL_TREE),
builtin_const);
// We use __builtin_memcmp for struct comparisons.
this->define_builtin (BUILT_IN_MEMCMP, "__builtin_memcmp", "memcmp",
build_function_type_list (integer_type_node,
const_ptr_type_node,
const_ptr_type_node,
size_type_node, NULL_TREE),
0);
// We use __builtin_memmove for copying data.
this->define_builtin (BUILT_IN_MEMMOVE, "__builtin_memmove", "memmove",
build_function_type_list (void_type_node, ptr_type_node,
const_ptr_type_node,
size_type_node, NULL_TREE),
0);
// We use __builtin_memset for zeroing data.
this->define_builtin (BUILT_IN_MEMSET, "__builtin_memset", "memset",
build_function_type_list (void_type_node, ptr_type_node,
integer_type_node,
size_type_node, NULL_TREE),
0);
// Used by runtime/internal/sys and math/bits.
this->define_builtin (BUILT_IN_CTZ, "__builtin_ctz", "ctz",
build_function_type_list (integer_type_node,
unsigned_type_node,
NULL_TREE),
builtin_const);
this->define_builtin (BUILT_IN_CTZLL, "__builtin_ctzll", "ctzll",
build_function_type_list (integer_type_node,
long_long_unsigned_type_node,
NULL_TREE),
builtin_const);
this->define_builtin (BUILT_IN_CLZ, "__builtin_clz", "clz",
build_function_type_list (integer_type_node,
unsigned_type_node,
NULL_TREE),
builtin_const);
this->define_builtin (BUILT_IN_CLZLL, "__builtin_clzll", "clzll",
build_function_type_list (integer_type_node,
long_long_unsigned_type_node,
NULL_TREE),
builtin_const);
this->define_builtin (BUILT_IN_POPCOUNT, "__builtin_popcount", "popcount",
build_function_type_list (integer_type_node,
unsigned_type_node,
NULL_TREE),
builtin_const);
this->define_builtin (BUILT_IN_POPCOUNTLL, "__builtin_popcountll",
"popcountll",
build_function_type_list (integer_type_node,
long_long_unsigned_type_node,
NULL_TREE),
builtin_const);
this->define_builtin (BUILT_IN_BSWAP16, "__builtin_bswap16", "bswap16",
build_function_type_list (uint16_type_node,
uint16_type_node, NULL_TREE),
builtin_const);
this->define_builtin (BUILT_IN_BSWAP32, "__builtin_bswap32", "bswap32",
build_function_type_list (uint32_type_node,
uint32_type_node, NULL_TREE),
builtin_const);
this->define_builtin (BUILT_IN_BSWAP64, "__builtin_bswap64", "bswap64",
build_function_type_list (uint64_type_node,
uint64_type_node, NULL_TREE),
builtin_const);
// We provide some functions for the math library.
tree math_function_type
= build_function_type_list (double_type_node, double_type_node, NULL_TREE);
tree math_function_type_long
= build_function_type_list (long_double_type_node, long_double_type_node,
NULL_TREE);
tree math_function_type_two
= build_function_type_list (double_type_node, double_type_node,
double_type_node, NULL_TREE);
tree math_function_type_long_two
= build_function_type_list (long_double_type_node, long_double_type_node,
long_double_type_node, NULL_TREE);
this->define_builtin (BUILT_IN_ACOS, "__builtin_acos", "acos",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_ACOSL, "__builtin_acosl", "acosl",
math_function_type_long, builtin_const);
this->define_builtin (BUILT_IN_ASIN, "__builtin_asin", "asin",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_ASINL, "__builtin_asinl", "asinl",
math_function_type_long, builtin_const);
this->define_builtin (BUILT_IN_ATAN, "__builtin_atan", "atan",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_ATANL, "__builtin_atanl", "atanl",
math_function_type_long, builtin_const);
this->define_builtin (BUILT_IN_ATAN2, "__builtin_atan2", "atan2",
math_function_type_two, builtin_const);
this->define_builtin (BUILT_IN_ATAN2L, "__builtin_atan2l", "atan2l",
math_function_type_long_two, builtin_const);
this->define_builtin (BUILT_IN_CEIL, "__builtin_ceil", "ceil",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_CEILL, "__builtin_ceill", "ceill",
math_function_type_long, builtin_const);
this->define_builtin (BUILT_IN_COS, "__builtin_cos", "cos",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_COSL, "__builtin_cosl", "cosl",
math_function_type_long, builtin_const);
this->define_builtin (BUILT_IN_EXP, "__builtin_exp", "exp",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_EXPL, "__builtin_expl", "expl",
math_function_type_long, builtin_const);
this->define_builtin (BUILT_IN_EXPM1, "__builtin_expm1", "expm1",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_EXPM1L, "__builtin_expm1l", "expm1l",
math_function_type_long, builtin_const);
this->define_builtin (BUILT_IN_FABS, "__builtin_fabs", "fabs",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_FABSL, "__builtin_fabsl", "fabsl",
math_function_type_long, builtin_const);
this->define_builtin (BUILT_IN_FLOOR, "__builtin_floor", "floor",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_FLOORL, "__builtin_floorl", "floorl",
math_function_type_long, builtin_const);
this->define_builtin (BUILT_IN_FMOD, "__builtin_fmod", "fmod",
math_function_type_two, builtin_const);
this->define_builtin (BUILT_IN_FMODL, "__builtin_fmodl", "fmodl",
math_function_type_long_two, builtin_const);
this->define_builtin (BUILT_IN_LDEXP, "__builtin_ldexp", "ldexp",
build_function_type_list (double_type_node,
double_type_node,
integer_type_node, NULL_TREE),
builtin_const);
this->define_builtin (BUILT_IN_LDEXPL, "__builtin_ldexpl", "ldexpl",
build_function_type_list (long_double_type_node,
long_double_type_node,
integer_type_node, NULL_TREE),
builtin_const);
this->define_builtin (BUILT_IN_LOG, "__builtin_log", "log",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_LOGL, "__builtin_logl", "logl",
math_function_type_long, builtin_const);
this->define_builtin (BUILT_IN_LOG1P, "__builtin_log1p", "log1p",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_LOG1PL, "__builtin_log1pl", "log1pl",
math_function_type_long, builtin_const);
this->define_builtin (BUILT_IN_LOG10, "__builtin_log10", "log10",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_LOG10L, "__builtin_log10l", "log10l",
math_function_type_long, builtin_const);
this->define_builtin (BUILT_IN_LOG2, "__builtin_log2", "log2",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_LOG2L, "__builtin_log2l", "log2l",
math_function_type_long, builtin_const);
this->define_builtin (BUILT_IN_SIN, "__builtin_sin", "sin",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_SINL, "__builtin_sinl", "sinl",
math_function_type_long, builtin_const);
this->define_builtin (BUILT_IN_SQRT, "__builtin_sqrt", "sqrt",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_SQRTL, "__builtin_sqrtl", "sqrtl",
math_function_type_long, builtin_const);
this->define_builtin (BUILT_IN_TAN, "__builtin_tan", "tan",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_TANL, "__builtin_tanl", "tanl",
math_function_type_long, builtin_const);
this->define_builtin (BUILT_IN_TRUNC, "__builtin_trunc", "trunc",
math_function_type, builtin_const);
this->define_builtin (BUILT_IN_TRUNCL, "__builtin_truncl", "truncl",
math_function_type_long, builtin_const);
// We use __builtin_return_address in the thunk we build for
// functions which call recover, and for runtime.getcallerpc.
t = build_function_type_list (ptr_type_node, unsigned_type_node, NULL_TREE);
this->define_builtin (BUILT_IN_RETURN_ADDRESS, "__builtin_return_address",
NULL, t, 0);
// The runtime calls __builtin_dwarf_cfa for runtime.getcallersp.
t = build_function_type_list (ptr_type_node, NULL_TREE);
this->define_builtin (BUILT_IN_DWARF_CFA, "__builtin_dwarf_cfa", NULL, t, 0);
// The runtime calls __builtin_extract_return_addr when recording
// the address to which a function returns.
this->define_builtin (
BUILT_IN_EXTRACT_RETURN_ADDR, "__builtin_extract_return_addr", NULL,
build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE), 0);
// The compiler uses __builtin_trap for some exception handling
// cases.
this->define_builtin (BUILT_IN_TRAP, "__builtin_trap", NULL,
build_function_type (void_type_node, void_list_node),
builtin_noreturn);
// The runtime uses __builtin_prefetch.
this->define_builtin (BUILT_IN_PREFETCH, "__builtin_prefetch", NULL,
build_varargs_function_type_list (void_type_node,
const_ptr_type_node,
NULL_TREE),
builtin_novops);
// The compiler uses __builtin_unreachable for cases that cannot
// occur.
this->define_builtin (BUILT_IN_UNREACHABLE, "__builtin_unreachable", NULL,
build_function_type (void_type_node, void_list_node),
builtin_const | builtin_noreturn);
// We provide some atomic functions.
t = build_function_type_list (uint32_type_node, ptr_type_node,
integer_type_node, NULL_TREE);
this->define_builtin (BUILT_IN_ATOMIC_LOAD_4, "__atomic_load_4", NULL, t, 0);
t = build_function_type_list (uint64_type_node, ptr_type_node,
integer_type_node, NULL_TREE);
this->define_builtin (BUILT_IN_ATOMIC_LOAD_8, "__atomic_load_8", NULL, t, 0);
t = build_function_type_list (void_type_node, ptr_type_node, uint32_type_node,
integer_type_node, NULL_TREE);
this->define_builtin (BUILT_IN_ATOMIC_STORE_4, "__atomic_store_4", NULL, t,
0);
t = build_function_type_list (void_type_node, ptr_type_node, uint64_type_node,
integer_type_node, NULL_TREE);
this->define_builtin (BUILT_IN_ATOMIC_STORE_8, "__atomic_store_8", NULL, t,
0);
t = build_function_type_list (uint32_type_node, ptr_type_node,
uint32_type_node, integer_type_node, NULL_TREE);
this->define_builtin (BUILT_IN_ATOMIC_EXCHANGE_4, "__atomic_exchange_4", NULL,
t, 0);
t = build_function_type_list (uint64_type_node, ptr_type_node,
uint64_type_node, integer_type_node, NULL_TREE);
this->define_builtin (BUILT_IN_ATOMIC_EXCHANGE_8, "__atomic_exchange_8", NULL,
t, 0);
t = build_function_type_list (boolean_type_node, ptr_type_node, ptr_type_node,
uint32_type_node, boolean_type_node,
integer_type_node, integer_type_node,
NULL_TREE);
this->define_builtin (BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4,
"__atomic_compare_exchange_4", NULL, t, 0);
t = build_function_type_list (boolean_type_node, ptr_type_node, ptr_type_node,
uint64_type_node, boolean_type_node,
integer_type_node, integer_type_node,
NULL_TREE);
this->define_builtin (BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8,
"__atomic_compare_exchange_8", NULL, t, 0);
t = build_function_type_list (uint32_type_node, ptr_type_node,
uint32_type_node, integer_type_node, NULL_TREE);
this->define_builtin (BUILT_IN_ATOMIC_ADD_FETCH_4, "__atomic_add_fetch_4",
NULL, t, 0);
t = build_function_type_list (uint64_type_node, ptr_type_node,
uint64_type_node, integer_type_node, NULL_TREE);
this->define_builtin (BUILT_IN_ATOMIC_ADD_FETCH_8, "__atomic_add_fetch_8",
NULL, t, 0);
t = build_function_type_list (unsigned_char_type_node, ptr_type_node,
unsigned_char_type_node, integer_type_node,
NULL_TREE);
this->define_builtin (BUILT_IN_ATOMIC_AND_FETCH_1, "__atomic_and_fetch_1",
NULL, t, 0);
this->define_builtin (BUILT_IN_ATOMIC_FETCH_AND_1, "__atomic_fetch_and_1",
NULL, t, 0);
t = build_function_type_list (unsigned_char_type_node, ptr_type_node,
unsigned_char_type_node, integer_type_node,
NULL_TREE);
this->define_builtin (BUILT_IN_ATOMIC_OR_FETCH_1, "__atomic_or_fetch_1", NULL,
t, 0);
this->define_builtin (BUILT_IN_ATOMIC_FETCH_OR_1, "__atomic_fetch_or_1", NULL,
t, 0);
}
// Get an unnamed integer type.
Btype *
Gcc_backend::integer_type (bool is_unsigned, int bits)
{
tree type;
if (is_unsigned)
{
if (bits == INT_TYPE_SIZE)
type = unsigned_type_node;
else if (bits == CHAR_TYPE_SIZE)
type = unsigned_char_type_node;
else if (bits == SHORT_TYPE_SIZE)
type = short_unsigned_type_node;
else if (bits == LONG_TYPE_SIZE)
type = long_unsigned_type_node;
else if (bits == LONG_LONG_TYPE_SIZE)
type = long_long_unsigned_type_node;
else
type = make_unsigned_type (bits);
}
else
{
if (bits == INT_TYPE_SIZE)
type = integer_type_node;
else if (bits == CHAR_TYPE_SIZE)
type = signed_char_type_node;
else if (bits == SHORT_TYPE_SIZE)
type = short_integer_type_node;
else if (bits == LONG_TYPE_SIZE)
type = long_integer_type_node;
else if (bits == LONG_LONG_TYPE_SIZE)
type = long_long_integer_type_node;
else
type = make_signed_type (bits);
}
return this->make_type (type);
}
// Get an unnamed float type.
Btype *
Gcc_backend::float_type (int bits)
{
tree type;
if (bits == FLOAT_TYPE_SIZE)
type = float_type_node;
else if (bits == DOUBLE_TYPE_SIZE)
type = double_type_node;
else if (bits == LONG_DOUBLE_TYPE_SIZE)
type = long_double_type_node;
else
{
type = make_node (REAL_TYPE);
TYPE_PRECISION (type) = bits;
layout_type (type);
}
return this->make_type (type);
}
// Get an unnamed complex type.
Btype *
Gcc_backend::complex_type (int bits)
{
tree type;
if (bits == FLOAT_TYPE_SIZE * 2)
type = complex_float_type_node;
else if (bits == DOUBLE_TYPE_SIZE * 2)
type = complex_double_type_node;
else if (bits == LONG_DOUBLE_TYPE_SIZE * 2)
type = complex_long_double_type_node;
else
{
type = make_node (REAL_TYPE);
TYPE_PRECISION (type) = bits / 2;
layout_type (type);
type = build_complex_type (type);
}
return this->make_type (type);
}
// Get a pointer type.
Btype *
Gcc_backend::pointer_type (Btype *to_type)
{
tree to_type_tree = to_type->get_tree ();
if (to_type_tree == error_mark_node)
return this->error_type ();
tree type = build_pointer_type (to_type_tree);
return this->make_type (type);
}
// Make a function type.
Btype *
Gcc_backend::function_type (const Btyped_identifier &receiver,
const std::vector ¶meters,
const std::vector &results,
Btype *result_struct, Location)
{
tree args = NULL_TREE;
tree *pp = &args;
if (receiver.btype != NULL)
{
tree t = receiver.btype->get_tree ();
if (t == error_mark_node)
return this->error_type ();
*pp = tree_cons (NULL_TREE, t, NULL_TREE);
pp = &TREE_CHAIN (*pp);
}
for (std::vector::const_iterator p = parameters.begin ();
p != parameters.end (); ++p)
{
tree t = p->btype->get_tree ();
if (t == error_mark_node)
return this->error_type ();
*pp = tree_cons (NULL_TREE, t, NULL_TREE);
pp = &TREE_CHAIN (*pp);
}
// Varargs is handled entirely at the Rust level. When converted to
// GENERIC functions are not varargs.
*pp = void_list_node;
tree result;
if (results.empty ())
result = void_type_node;
else if (results.size () == 1)
result = results.front ().btype->get_tree ();
else
{
gcc_assert (result_struct != NULL);
result = result_struct->get_tree ();
}
if (result == error_mark_node)
return this->error_type ();
// The libffi library cannot represent a zero-sized object. To
// avoid causing confusion on 32-bit SPARC, we treat a function that
// returns a zero-sized value as returning void. That should do no
// harm since there is no actual value to be returned. See
// https://gcc.gnu.org/PR72814 for details.
if (result != void_type_node && int_size_in_bytes (result) == 0)
result = void_type_node;
tree fntype = build_function_type (result, args);
if (fntype == error_mark_node)
return this->error_type ();
return this->make_type (build_pointer_type (fntype));
}
// Make a struct type.
Btype *
Gcc_backend::struct_type (const std::vector &fields)
{
return this->fill_in_struct (this->make_type (make_node (RECORD_TYPE)),
fields);
}
// Fill in the fields of a struct type.
Btype *
Gcc_backend::fill_in_struct (Btype *fill,
const std::vector &fields)
{
tree fill_tree = fill->get_tree ();
tree field_trees = NULL_TREE;
tree *pp = &field_trees;
for (std::vector::const_iterator p = fields.begin ();
p != fields.end (); ++p)
{
tree name_tree = get_identifier_from_string (p->name);
tree type_tree = p->btype->get_tree ();
if (type_tree == error_mark_node)
return this->error_type ();
tree field = build_decl (p->location.gcc_location (), FIELD_DECL,
name_tree, type_tree);
DECL_CONTEXT (field) = fill_tree;
*pp = field;
pp = &DECL_CHAIN (field);
}
TYPE_FIELDS (fill_tree) = field_trees;
layout_type (fill_tree);
// Because Rust permits converting between named struct types and
// equivalent struct types, for which we use VIEW_CONVERT_EXPR, and
// because we don't try to maintain TYPE_CANONICAL for struct types,
// we need to tell the middle-end to use structural equality.
SET_TYPE_STRUCTURAL_EQUALITY (fill_tree);
return fill;
}
// Make an array type.
Btype *
Gcc_backend::array_type (Btype *element_btype, Bexpression *length)
{
return this->fill_in_array (this->make_type (make_node (ARRAY_TYPE)),
element_btype, length);
}
// Fill in an array type.
Btype *
Gcc_backend::fill_in_array (Btype *fill, Btype *element_type,
Bexpression *length)
{
tree element_type_tree = element_type->get_tree ();
tree length_tree = length->get_tree ();
if (element_type_tree == error_mark_node || length_tree == error_mark_node)
return this->error_type ();
gcc_assert (TYPE_SIZE (element_type_tree) != NULL_TREE);
length_tree = fold_convert (sizetype, length_tree);
// build_index_type takes the maximum index, which is one less than
// the length.
tree index_type_tree = build_index_type (
fold_build2 (MINUS_EXPR, sizetype, length_tree, size_one_node));
tree fill_tree = fill->get_tree ();
TREE_TYPE (fill_tree) = element_type_tree;
TYPE_DOMAIN (fill_tree) = index_type_tree;
TYPE_ADDR_SPACE (fill_tree) = TYPE_ADDR_SPACE (element_type_tree);
layout_type (fill_tree);
if (TYPE_STRUCTURAL_EQUALITY_P (element_type_tree))
SET_TYPE_STRUCTURAL_EQUALITY (fill_tree);
else if (TYPE_CANONICAL (element_type_tree) != element_type_tree
|| TYPE_CANONICAL (index_type_tree) != index_type_tree)
TYPE_CANONICAL (fill_tree)
= build_array_type (TYPE_CANONICAL (element_type_tree),
TYPE_CANONICAL (index_type_tree));
return fill;
}
// Create a placeholder for a pointer type.
Btype *
Gcc_backend::placeholder_pointer_type (const std::string &name,
Location location, bool)
{
tree ret = build_distinct_type_copy (ptr_type_node);
if (!name.empty ())
{
tree decl = build_decl (location.gcc_location (), TYPE_DECL,
get_identifier_from_string (name), ret);
TYPE_NAME (ret) = decl;
}
return this->make_type (ret);
}
// Set the real target type for a placeholder pointer type.
bool
Gcc_backend::set_placeholder_pointer_type (Btype *placeholder, Btype *to_type)
{
tree pt = placeholder->get_tree ();
if (pt == error_mark_node)
return false;
gcc_assert (TREE_CODE (pt) == POINTER_TYPE);
tree tt = to_type->get_tree ();
if (tt == error_mark_node)
{
placeholder->set_tree (error_mark_node);
return false;
}
gcc_assert (TREE_CODE (tt) == POINTER_TYPE);
TREE_TYPE (pt) = TREE_TYPE (tt);
TYPE_CANONICAL (pt) = TYPE_CANONICAL (tt);
if (TYPE_NAME (pt) != NULL_TREE)
{
// Build the data structure gcc wants to see for a typedef.
tree copy = build_variant_type_copy (pt);
TYPE_NAME (copy) = NULL_TREE;
DECL_ORIGINAL_TYPE (TYPE_NAME (pt)) = copy;
}
return true;
}
// Set the real values for a placeholder function type.
bool
Gcc_backend::set_placeholder_function_type (Btype *placeholder, Btype *ft)
{
return this->set_placeholder_pointer_type (placeholder, ft);
}
// Create a placeholder for a struct type.
Btype *
Gcc_backend::placeholder_struct_type (const std::string &name,
Location location)
{
tree ret = make_node (RECORD_TYPE);
if (!name.empty ())
{
tree decl = build_decl (location.gcc_location (), TYPE_DECL,
get_identifier_from_string (name), ret);
TYPE_NAME (ret) = decl;
// The struct type that eventually replaces this placeholder will require
// structural equality. The placeholder must too, so that the requirement
// for structural equality propagates to references that are constructed
// before the replacement occurs.
SET_TYPE_STRUCTURAL_EQUALITY (ret);
}
return this->make_type (ret);
}
// Fill in the fields of a placeholder struct type.
bool
Gcc_backend::set_placeholder_struct_type (
Btype *placeholder, const std::vector &fields)
{
tree t = placeholder->get_tree ();
gcc_assert (TREE_CODE (t) == RECORD_TYPE && TYPE_FIELDS (t) == NULL_TREE);
Btype *r = this->fill_in_struct (placeholder, fields);
if (TYPE_NAME (t) != NULL_TREE)
{
// Build the data structure gcc wants to see for a typedef.
tree copy = build_distinct_type_copy (t);
TYPE_NAME (copy) = NULL_TREE;
DECL_ORIGINAL_TYPE (TYPE_NAME (t)) = copy;
TYPE_SIZE (copy) = NULL_TREE;
Btype *bc = this->make_type (copy);
this->fill_in_struct (bc, fields);
delete bc;
}
return r->get_tree () != error_mark_node;
}
// Create a placeholder for an array type.
Btype *
Gcc_backend::placeholder_array_type (const std::string &name, Location location)
{
tree ret = make_node (ARRAY_TYPE);
tree decl = build_decl (location.gcc_location (), TYPE_DECL,
get_identifier_from_string (name), ret);
TYPE_NAME (ret) = decl;
return this->make_type (ret);
}
// Fill in the fields of a placeholder array type.
bool
Gcc_backend::set_placeholder_array_type (Btype *placeholder,
Btype *element_btype,
Bexpression *length)
{
tree t = placeholder->get_tree ();
gcc_assert (TREE_CODE (t) == ARRAY_TYPE && TREE_TYPE (t) == NULL_TREE);
Btype *r = this->fill_in_array (placeholder, element_btype, length);
// Build the data structure gcc wants to see for a typedef.
tree copy = build_distinct_type_copy (t);
TYPE_NAME (copy) = NULL_TREE;
DECL_ORIGINAL_TYPE (TYPE_NAME (t)) = copy;
return r->get_tree () != error_mark_node;
}
// Return a named version of a type.
Btype *
Gcc_backend::named_type (const std::string &name, Btype *btype,
Location location)
{
tree type = btype->get_tree ();
if (type == error_mark_node)
return this->error_type ();
// The middle-end expects a basic type to have a name. In Go every
// basic type will have a name. The first time we see a basic type,
// give it whatever Go name we have at this point.
if (TYPE_NAME (type) == NULL_TREE
&& location.gcc_location () == BUILTINS_LOCATION
&& (TREE_CODE (type) == INTEGER_TYPE || TREE_CODE (type) == REAL_TYPE
|| TREE_CODE (type) == COMPLEX_TYPE
|| TREE_CODE (type) == BOOLEAN_TYPE))
{
tree decl = build_decl (BUILTINS_LOCATION, TYPE_DECL,
get_identifier_from_string (name), type);
TYPE_NAME (type) = decl;
return this->make_type (type);
}
tree copy = build_variant_type_copy (type);
tree decl = build_decl (location.gcc_location (), TYPE_DECL,
get_identifier_from_string (name), copy);
DECL_ORIGINAL_TYPE (decl) = type;
TYPE_NAME (copy) = decl;
return this->make_type (copy);
}
// Return a pointer type used as a marker for a circular type.
Btype *
Gcc_backend::circular_pointer_type (Btype *, bool)
{
return this->make_type (ptr_type_node);
}
// Return whether we might be looking at a circular type.
bool
Gcc_backend::is_circular_pointer_type (Btype *btype)
{
return btype->get_tree () == ptr_type_node;
}
// Return the size of a type.
int64_t
Gcc_backend::type_size (Btype *btype)
{
tree t = btype->get_tree ();
if (t == error_mark_node)
return 1;
if (t == void_type_node)
return 0;
t = TYPE_SIZE_UNIT (t);
gcc_assert (tree_fits_uhwi_p (t));
unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW (t);
int64_t ret = static_cast (val_wide);
if (ret < 0 || static_cast (ret) != val_wide)
return -1;
return ret;
}
// Return the alignment of a type.
int64_t
Gcc_backend::type_alignment (Btype *btype)
{
tree t = btype->get_tree ();
if (t == error_mark_node)
return 1;
return TYPE_ALIGN_UNIT (t);
}
// Return the alignment of a struct field of type BTYPE.
int64_t
Gcc_backend::type_field_alignment (Btype *btype)
{
tree t = btype->get_tree ();
if (t == error_mark_node)
return 1;
return rust_field_alignment (t);
}
// Return the offset of a field in a struct.
int64_t
Gcc_backend::type_field_offset (Btype *btype, size_t index)
{
tree struct_tree = btype->get_tree ();
if (struct_tree == error_mark_node)
return 0;
gcc_assert (TREE_CODE (struct_tree) == RECORD_TYPE);
tree field = TYPE_FIELDS (struct_tree);
for (; index > 0; --index)
{
field = DECL_CHAIN (field);
gcc_assert (field != NULL_TREE);
}
HOST_WIDE_INT offset_wide = int_byte_position (field);
int64_t ret = static_cast (offset_wide);
gcc_assert (ret == offset_wide);
return ret;
}
// Return the zero value for a type.
Bexpression *
Gcc_backend::zero_expression (Btype *btype)
{
tree t = btype->get_tree ();
tree ret;
if (t == error_mark_node)
ret = error_mark_node;
else
ret = build_zero_cst (t);
return this->make_expression (ret);
}
// An expression that references a variable.
Bexpression *
Gcc_backend::var_expression (Bvariable *var, Location location)
{
tree ret = var->get_tree (location);
if (ret == error_mark_node)
return this->error_expression ();
return this->make_expression (ret);
}
// An expression that indirectly references an expression.
Bexpression *
Gcc_backend::indirect_expression (Btype *btype, Bexpression *expr,
bool known_valid, Location location)
{
tree expr_tree = expr->get_tree ();
tree type_tree = btype->get_tree ();
if (expr_tree == error_mark_node || type_tree == error_mark_node)
return this->error_expression ();
// If the type of EXPR is a recursive pointer type, then we
// need to insert a cast before indirecting.
tree target_type_tree = TREE_TYPE (TREE_TYPE (expr_tree));
if (VOID_TYPE_P (target_type_tree))
expr_tree = fold_convert_loc (location.gcc_location (),
build_pointer_type (type_tree), expr_tree);
tree ret = build_fold_indirect_ref_loc (location.gcc_location (), expr_tree);
if (known_valid)
TREE_THIS_NOTRAP (ret) = 1;
return this->make_expression (ret);
}
// Return an expression that declares a constant named NAME with the
// constant value VAL in BTYPE.
Bexpression *
Gcc_backend::named_constant_expression (Btype *btype, const std::string &name,
Bexpression *val, Location location)
{
tree type_tree = btype->get_tree ();
tree const_val = val->get_tree ();
if (type_tree == error_mark_node || const_val == error_mark_node)
return this->error_expression ();
tree name_tree = get_identifier_from_string (name);
tree decl
= build_decl (location.gcc_location (), CONST_DECL, name_tree, type_tree);
DECL_INITIAL (decl) = const_val;
TREE_CONSTANT (decl) = 1;
TREE_READONLY (decl) = 1;
rust_preserve_from_gc (decl);
return this->make_expression (decl);
}
// Return a typed value as a constant integer.
Bexpression *
Gcc_backend::integer_constant_expression (Btype *btype, mpz_t val)
{
tree t = btype->get_tree ();
if (t == error_mark_node)
return this->error_expression ();
tree ret = double_int_to_tree (t, mpz_get_double_int (t, val, true));
return this->make_expression (ret);
}
// Return a typed value as a constant floating-point number.
Bexpression *
Gcc_backend::float_constant_expression (Btype *btype, mpfr_t val)
{
tree t = btype->get_tree ();
tree ret;
if (t == error_mark_node)
return this->error_expression ();
REAL_VALUE_TYPE r1;
real_from_mpfr (&r1, val, t, GMP_RNDN);
REAL_VALUE_TYPE r2;
real_convert (&r2, TYPE_MODE (t), &r1);
ret = build_real (t, r2);
return this->make_expression (ret);
}
// Return a typed real and imaginary value as a constant complex number.
Bexpression *
Gcc_backend::complex_constant_expression (Btype *btype, mpc_t val)
{
tree t = btype->get_tree ();
tree ret;
if (t == error_mark_node)
return this->error_expression ();
REAL_VALUE_TYPE r1;
real_from_mpfr (&r1, mpc_realref (val), TREE_TYPE (t), GMP_RNDN);
REAL_VALUE_TYPE r2;
real_convert (&r2, TYPE_MODE (TREE_TYPE (t)), &r1);
REAL_VALUE_TYPE r3;
real_from_mpfr (&r3, mpc_imagref (val), TREE_TYPE (t), GMP_RNDN);
REAL_VALUE_TYPE r4;
real_convert (&r4, TYPE_MODE (TREE_TYPE (t)), &r3);
ret = build_complex (t, build_real (TREE_TYPE (t), r2),
build_real (TREE_TYPE (t), r4));
return this->make_expression (ret);
}
// Make a constant string expression.
Bexpression *
Gcc_backend::string_constant_expression (const std::string &val)
{
tree index_type = build_index_type (size_int (val.length ()));
tree const_char_type
= build_qualified_type (unsigned_char_type_node, TYPE_QUAL_CONST);
tree string_type = build_array_type (const_char_type, index_type);
TYPE_STRING_FLAG (string_type) = 1;
tree string_val = build_string (val.length (), val.data ());
TREE_TYPE (string_val) = string_type;
return this->make_expression (string_val);
}
// Make a constant boolean expression.
Bexpression *
Gcc_backend::boolean_constant_expression (bool val)
{
tree bool_cst = val ? boolean_true_node : boolean_false_node;
return this->make_expression (bool_cst);
}
// Return the real part of a complex expression.
Bexpression *
Gcc_backend::real_part_expression (Bexpression *bcomplex, Location location)
{
tree complex_tree = bcomplex->get_tree ();
if (complex_tree == error_mark_node)
return this->error_expression ();
gcc_assert (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (complex_tree)));
tree ret
= fold_build1_loc (location.gcc_location (), REALPART_EXPR,
TREE_TYPE (TREE_TYPE (complex_tree)), complex_tree);
return this->make_expression (ret);
}
// Return the imaginary part of a complex expression.
Bexpression *
Gcc_backend::imag_part_expression (Bexpression *bcomplex, Location location)
{
tree complex_tree = bcomplex->get_tree ();
if (complex_tree == error_mark_node)
return this->error_expression ();
gcc_assert (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (complex_tree)));
tree ret
= fold_build1_loc (location.gcc_location (), IMAGPART_EXPR,
TREE_TYPE (TREE_TYPE (complex_tree)), complex_tree);
return this->make_expression (ret);
}
// Make a complex expression given its real and imaginary parts.
Bexpression *
Gcc_backend::complex_expression (Bexpression *breal, Bexpression *bimag,
Location location)
{
tree real_tree = breal->get_tree ();
tree imag_tree = bimag->get_tree ();
if (real_tree == error_mark_node || imag_tree == error_mark_node)
return this->error_expression ();
gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (real_tree))
== TYPE_MAIN_VARIANT (TREE_TYPE (imag_tree)));
gcc_assert (SCALAR_FLOAT_TYPE_P (TREE_TYPE (real_tree)));
tree ret = fold_build2_loc (location.gcc_location (), COMPLEX_EXPR,
build_complex_type (TREE_TYPE (real_tree)),
real_tree, imag_tree);
return this->make_expression (ret);
}
// An expression that converts an expression to a different type.
Bexpression *
Gcc_backend::convert_expression (Btype *type, Bexpression *expr,
Location location)
{
tree type_tree = type->get_tree ();
tree expr_tree = expr->get_tree ();
if (type_tree == error_mark_node || expr_tree == error_mark_node
|| TREE_TYPE (expr_tree) == error_mark_node)
return this->error_expression ();
tree ret;
if (this->type_size (type) == 0 || TREE_TYPE (expr_tree) == void_type_node)
{
// Do not convert zero-sized types.
ret = expr_tree;
}
else if (TREE_CODE (type_tree) == INTEGER_TYPE)
ret = fold (convert_to_integer (type_tree, expr_tree));
else if (TREE_CODE (type_tree) == REAL_TYPE)
ret = fold (convert_to_real (type_tree, expr_tree));
else if (TREE_CODE (type_tree) == COMPLEX_TYPE)
ret = fold (convert_to_complex (type_tree, expr_tree));
else if (TREE_CODE (type_tree) == POINTER_TYPE
&& TREE_CODE (TREE_TYPE (expr_tree)) == INTEGER_TYPE)
ret = fold (convert_to_pointer (type_tree, expr_tree));
else if (TREE_CODE (type_tree) == RECORD_TYPE
|| TREE_CODE (type_tree) == ARRAY_TYPE)
ret = fold_build1_loc (location.gcc_location (), VIEW_CONVERT_EXPR,
type_tree, expr_tree);
else
ret = fold_convert_loc (location.gcc_location (), type_tree, expr_tree);
return this->make_expression (ret);
}
// Get the address of a function.
Bexpression *
Gcc_backend::function_code_expression (Bfunction *bfunc, Location location)
{
tree func = bfunc->get_tree ();
if (func == error_mark_node)
return this->error_expression ();
tree ret = build_fold_addr_expr_loc (location.gcc_location (), func);
return this->make_expression (ret);
}
// Get the address of an expression.
Bexpression *
Gcc_backend::address_expression (Bexpression *bexpr, Location location)
{
tree expr = bexpr->get_tree ();
if (expr == error_mark_node)
return this->error_expression ();
tree ret = build_fold_addr_expr_loc (location.gcc_location (), expr);
return this->make_expression (ret);
}
// Return an expression for the field at INDEX in BSTRUCT.
Bexpression *
Gcc_backend::struct_field_expression (Bexpression *bstruct, size_t index,
Location location)
{
tree struct_tree = bstruct->get_tree ();
if (struct_tree == error_mark_node
|| TREE_TYPE (struct_tree) == error_mark_node)
return this->error_expression ();
gcc_assert (TREE_CODE (TREE_TYPE (struct_tree)) == RECORD_TYPE);
tree field = TYPE_FIELDS (TREE_TYPE (struct_tree));
if (field == NULL_TREE)
{
// This can happen for a type which refers to itself indirectly
// and then turns out to be erroneous.
return this->error_expression ();
}
for (unsigned int i = index; i > 0; --i)
{
field = DECL_CHAIN (field);
gcc_assert (field != NULL_TREE);
}
if (TREE_TYPE (field) == error_mark_node)
return this->error_expression ();
tree ret = fold_build3_loc (location.gcc_location (), COMPONENT_REF,
TREE_TYPE (field), struct_tree, field, NULL_TREE);
if (TREE_CONSTANT (struct_tree))
TREE_CONSTANT (ret) = 1;
return this->make_expression (ret);
}
// Return an expression that executes BSTAT before BEXPR.
Bexpression *
Gcc_backend::compound_expression (Bstatement *bstat, Bexpression *bexpr,
Location location)
{
tree stat = bstat->get_tree ();
tree expr = bexpr->get_tree ();
if (stat == error_mark_node || expr == error_mark_node)
return this->error_expression ();
tree ret = fold_build2_loc (location.gcc_location (), COMPOUND_EXPR,
TREE_TYPE (expr), stat, expr);
return this->make_expression (ret);
}
// Return an expression that executes THEN_EXPR if CONDITION is true, or
// ELSE_EXPR otherwise.
Bexpression *
Gcc_backend::conditional_expression (Bfunction *, Btype *btype,
Bexpression *condition,
Bexpression *then_expr,
Bexpression *else_expr, Location location)
{
tree type_tree = btype == NULL ? void_type_node : btype->get_tree ();
tree cond_tree = condition->get_tree ();
tree then_tree = then_expr->get_tree ();
tree else_tree = else_expr == NULL ? NULL_TREE : else_expr->get_tree ();
if (type_tree == error_mark_node || cond_tree == error_mark_node
|| then_tree == error_mark_node || else_tree == error_mark_node)
return this->error_expression ();
tree ret = build3_loc (location.gcc_location (), COND_EXPR, type_tree,
cond_tree, then_tree, else_tree);
return this->make_expression (ret);
}
// Return an expression for the unary operation OP EXPR.
Bexpression *
Gcc_backend::unary_expression (Operator op, Bexpression *expr,
Location location)
{
tree expr_tree = expr->get_tree ();
if (expr_tree == error_mark_node || TREE_TYPE (expr_tree) == error_mark_node)
return this->error_expression ();
tree type_tree = TREE_TYPE (expr_tree);
enum tree_code code;
switch (op)
{
case OPERATOR_MINUS: {
tree computed_type = excess_precision_type (type_tree);
if (computed_type != NULL_TREE)
{
expr_tree = convert (computed_type, expr_tree);
type_tree = computed_type;
}
code = NEGATE_EXPR;
break;
}
case OPERATOR_NOT:
code = TRUTH_NOT_EXPR;
break;
case OPERATOR_XOR:
code = BIT_NOT_EXPR;
break;
default:
gcc_unreachable ();
break;
}
tree ret
= fold_build1_loc (location.gcc_location (), code, type_tree, expr_tree);
return this->make_expression (ret);
}
// Convert a rustfrontend operator to an equivalent tree_code.
static enum tree_code
operator_to_tree_code (Operator op, tree type)
{
enum tree_code code;
switch (op)
{
case OPERATOR_EQEQ:
code = EQ_EXPR;
break;
case OPERATOR_NOTEQ:
code = NE_EXPR;
break;
case OPERATOR_LT:
code = LT_EXPR;
break;
case OPERATOR_LE:
code = LE_EXPR;
break;
case OPERATOR_GT:
code = GT_EXPR;
break;
case OPERATOR_GE:
code = GE_EXPR;
break;
case OPERATOR_OROR:
code = TRUTH_ORIF_EXPR;
break;
case OPERATOR_ANDAND:
code = TRUTH_ANDIF_EXPR;
break;
case OPERATOR_PLUS:
code = PLUS_EXPR;
break;
case OPERATOR_MINUS:
code = MINUS_EXPR;
break;
case OPERATOR_OR:
code = BIT_IOR_EXPR;
break;
case OPERATOR_XOR:
code = BIT_XOR_EXPR;
break;
case OPERATOR_MULT:
code = MULT_EXPR;
break;
case OPERATOR_DIV:
if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == COMPLEX_TYPE)
code = RDIV_EXPR;
else
code = TRUNC_DIV_EXPR;
break;
case OPERATOR_MOD:
code = TRUNC_MOD_EXPR;
break;
case OPERATOR_LSHIFT:
code = LSHIFT_EXPR;
break;
case OPERATOR_RSHIFT:
code = RSHIFT_EXPR;
break;
case OPERATOR_AND:
code = BIT_AND_EXPR;
break;
case OPERATOR_BITCLEAR:
code = BIT_AND_EXPR;
break;
default:
gcc_unreachable ();
}
return code;
}
// Return an expression for the binary operation LEFT OP RIGHT.
Bexpression *
Gcc_backend::binary_expression (Operator op, Bexpression *left,
Bexpression *right, Location location)
{
tree left_tree = left->get_tree ();
tree right_tree = right->get_tree ();
if (left_tree == error_mark_node || right_tree == error_mark_node)
return this->error_expression ();
enum tree_code code = operator_to_tree_code (op, TREE_TYPE (left_tree));
bool use_left_type = op != OPERATOR_OROR && op != OPERATOR_ANDAND;
tree type_tree
= use_left_type ? TREE_TYPE (left_tree) : TREE_TYPE (right_tree);
tree computed_type = excess_precision_type (type_tree);
if (computed_type != NULL_TREE)
{
left_tree = convert (computed_type, left_tree);
right_tree = convert (computed_type, right_tree);
type_tree = computed_type;
}
// For comparison operators, the resulting type should be boolean.
switch (op)
{
case OPERATOR_EQEQ:
case OPERATOR_NOTEQ:
case OPERATOR_LT:
case OPERATOR_LE:
case OPERATOR_GT:
case OPERATOR_GE:
type_tree = boolean_type_node;
break;
default:
break;
}
tree ret = fold_build2_loc (location.gcc_location (), code, type_tree,
left_tree, right_tree);
return this->make_expression (ret);
}
// Return an expression that constructs BTYPE with VALS.
Bexpression *
Gcc_backend::constructor_expression (Btype *btype,
const std::vector &vals,
Location location)
{
tree type_tree = btype->get_tree ();
if (type_tree == error_mark_node)
return this->error_expression ();
vec *init;
vec_alloc (init, vals.size ());
tree sink = NULL_TREE;
bool is_constant = true;
tree field = TYPE_FIELDS (type_tree);
for (std::vector::const_iterator p = vals.begin ();
p != vals.end (); ++p, field = DECL_CHAIN (field))
{
gcc_assert (field != NULL_TREE);
tree val = (*p)->get_tree ();
if (TREE_TYPE (field) == error_mark_node || val == error_mark_node
|| TREE_TYPE (val) == error_mark_node)
return this->error_expression ();
if (int_size_in_bytes (TREE_TYPE (field)) == 0)
{
// GIMPLE cannot represent indices of zero-sized types so
// trying to construct a map with zero-sized keys might lead
// to errors. Instead, we evaluate each expression that
// would have been added as a map element for its
// side-effects and construct an empty map.
append_to_statement_list (val, &sink);
continue;
}
constructor_elt empty = {NULL, NULL};
constructor_elt *elt = init->quick_push (empty);
elt->index = field;
elt->value = this->convert_tree (TREE_TYPE (field), val, location);
if (!TREE_CONSTANT (elt->value))
is_constant = false;
}
gcc_assert (field == NULL_TREE);
tree ret = build_constructor (type_tree, init);
if (is_constant)
TREE_CONSTANT (ret) = 1;
if (sink != NULL_TREE)
ret = fold_build2_loc (location.gcc_location (), COMPOUND_EXPR, type_tree,
sink, ret);
return this->make_expression (ret);
}
Bexpression *
Gcc_backend::array_constructor_expression (
Btype *array_btype, const std::vector &indexes,
const std::vector &vals, Location location)
{
tree type_tree = array_btype->get_tree ();
if (type_tree == error_mark_node)
return this->error_expression ();
gcc_assert (indexes.size () == vals.size ());
tree element_type = TREE_TYPE (type_tree);
HOST_WIDE_INT element_size = int_size_in_bytes (element_type);
vec *init;
vec_alloc (init, element_size == 0 ? 0 : vals.size ());
tree sink = NULL_TREE;
bool is_constant = true;
for (size_t i = 0; i < vals.size (); ++i)
{
tree index = size_int (indexes[i]);
tree val = (vals[i])->get_tree ();
if (index == error_mark_node || val == error_mark_node)
return this->error_expression ();
if (element_size == 0)
{
// GIMPLE cannot represent arrays of zero-sized types so trying
// to construct an array of zero-sized values might lead to errors.
// Instead, we evaluate each expression that would have been added as
// an array value for its side-effects and construct an empty array.
append_to_statement_list (val, &sink);
continue;
}
if (!TREE_CONSTANT (val))
is_constant = false;
constructor_elt empty = {NULL, NULL};
constructor_elt *elt = init->quick_push (empty);
elt->index = index;
elt->value = val;
}
tree ret = build_constructor (type_tree, init);
if (is_constant)
TREE_CONSTANT (ret) = 1;
if (sink != NULL_TREE)
ret = fold_build2_loc (location.gcc_location (), COMPOUND_EXPR, type_tree,
sink, ret);
return this->make_expression (ret);
}
// Return an expression for the address of BASE[INDEX].
Bexpression *
Gcc_backend::pointer_offset_expression (Bexpression *base, Bexpression *index,
Location location)
{
tree base_tree = base->get_tree ();
tree index_tree = index->get_tree ();
tree element_type_tree = TREE_TYPE (TREE_TYPE (base_tree));
if (base_tree == error_mark_node || TREE_TYPE (base_tree) == error_mark_node
|| index_tree == error_mark_node || element_type_tree == error_mark_node)
return this->error_expression ();
tree element_size = TYPE_SIZE_UNIT (element_type_tree);
index_tree
= fold_convert_loc (location.gcc_location (), sizetype, index_tree);
tree offset = fold_build2_loc (location.gcc_location (), MULT_EXPR, sizetype,
index_tree, element_size);
tree ptr = fold_build2_loc (location.gcc_location (), POINTER_PLUS_EXPR,
TREE_TYPE (base_tree), base_tree, offset);
return this->make_expression (ptr);
}
// Return an expression representing ARRAY[INDEX]
Bexpression *
Gcc_backend::array_index_expression (Bexpression *array, Bexpression *index,
Location location)
{
tree array_tree = array->get_tree ();
tree index_tree = index->get_tree ();
if (array_tree == error_mark_node || TREE_TYPE (array_tree) == error_mark_node
|| index_tree == error_mark_node)
return this->error_expression ();
// A function call that returns a zero sized object will have been
// changed to return void. If we see void here, assume we are
// dealing with a zero sized type and just evaluate the operands.
tree ret;
if (TREE_TYPE (array_tree) != void_type_node)
ret = build4_loc (location.gcc_location (), ARRAY_REF,
TREE_TYPE (TREE_TYPE (array_tree)), array_tree,
index_tree, NULL_TREE, NULL_TREE);
else
ret = fold_build2_loc (location.gcc_location (), COMPOUND_EXPR,
void_type_node, array_tree, index_tree);
return this->make_expression (ret);
}
// Create an expression for a call to FN_EXPR with FN_ARGS.
Bexpression *
Gcc_backend::call_expression (Bfunction *, // containing fcn for call
Bexpression *fn_expr,
const std::vector &fn_args,
Bexpression *chain_expr, Location location)
{
tree fn = fn_expr->get_tree ();
if (fn == error_mark_node || TREE_TYPE (fn) == error_mark_node)
return this->error_expression ();
gcc_assert (FUNCTION_POINTER_TYPE_P (TREE_TYPE (fn)));
tree rettype = TREE_TYPE (TREE_TYPE (TREE_TYPE (fn)));
size_t nargs = fn_args.size ();
tree *args = nargs == 0 ? NULL : new tree[nargs];
for (size_t i = 0; i < nargs; ++i)
{
args[i] = fn_args.at (i)->get_tree ();
if (args[i] == error_mark_node)
return this->error_expression ();
}
tree fndecl = fn;
if (TREE_CODE (fndecl) == ADDR_EXPR)
fndecl = TREE_OPERAND (fndecl, 0);
// This is to support builtin math functions when using 80387 math.
tree excess_type = NULL_TREE;
if (optimize && TREE_CODE (fndecl) == FUNCTION_DECL
&& fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
&& DECL_IS_UNDECLARED_BUILTIN (fndecl) && nargs > 0
&& ((SCALAR_FLOAT_TYPE_P (rettype)
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (args[0])))
|| (COMPLEX_FLOAT_TYPE_P (rettype)
&& COMPLEX_FLOAT_TYPE_P (TREE_TYPE (args[0])))))
{
excess_type = excess_precision_type (TREE_TYPE (args[0]));
if (excess_type != NULL_TREE)
{
tree excess_fndecl
= mathfn_built_in (excess_type, DECL_FUNCTION_CODE (fndecl));
if (excess_fndecl == NULL_TREE)
excess_type = NULL_TREE;
else
{
fn = build_fold_addr_expr_loc (location.gcc_location (),
excess_fndecl);
for (size_t i = 0; i < nargs; ++i)
{
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (args[i]))
|| COMPLEX_FLOAT_TYPE_P (TREE_TYPE (args[i])))
args[i] = ::convert (excess_type, args[i]);
}
}
}
}
tree ret
= build_call_array_loc (location.gcc_location (),
excess_type != NULL_TREE ? excess_type : rettype,
fn, nargs, args);
if (chain_expr)
CALL_EXPR_STATIC_CHAIN (ret) = chain_expr->get_tree ();
if (excess_type != NULL_TREE)
{
// Calling convert here can undo our excess precision change.
// That may or may not be a bug in convert_to_real.
ret = build1_loc (location.gcc_location (), NOP_EXPR, rettype, ret);
}
delete[] args;
return this->make_expression (ret);
}
// An expression as a statement.
Bstatement *
Gcc_backend::expression_statement (Bfunction *, Bexpression *expr)
{
return this->make_statement (expr->get_tree ());
}
// Variable initialization.
Bstatement *
Gcc_backend::init_statement (Bfunction *, Bvariable *var, Bexpression *init)
{
tree var_tree = var->get_decl ();
tree init_tree = init->get_tree ();
if (var_tree == error_mark_node || init_tree == error_mark_node)
return this->error_statement ();
gcc_assert (TREE_CODE (var_tree) == VAR_DECL);
// To avoid problems with GNU ld, we don't make zero-sized
// externally visible variables. That might lead us to doing an
// initialization of a zero-sized expression to a non-zero sized
// variable, or vice-versa. Avoid crashes by omitting the
// initializer. Such initializations don't mean anything anyhow.
if (int_size_in_bytes (TREE_TYPE (var_tree)) != 0 && init_tree != NULL_TREE
&& TREE_TYPE (init_tree) != void_type_node
&& int_size_in_bytes (TREE_TYPE (init_tree)) != 0)
{
DECL_INITIAL (var_tree) = init_tree;
init_tree = NULL_TREE;
}
tree ret = build1_loc (DECL_SOURCE_LOCATION (var_tree), DECL_EXPR,
void_type_node, var_tree);
if (init_tree != NULL_TREE)
ret = build2_loc (DECL_SOURCE_LOCATION (var_tree), COMPOUND_EXPR,
void_type_node, init_tree, ret);
return this->make_statement (ret);
}
// Assignment.
Bstatement *
Gcc_backend::assignment_statement (Bfunction *bfn, Bexpression *lhs,
Bexpression *rhs, Location location)
{
tree lhs_tree = lhs->get_tree ();
tree rhs_tree = rhs->get_tree ();
if (lhs_tree == error_mark_node || rhs_tree == error_mark_node)
return this->error_statement ();
// To avoid problems with GNU ld, we don't make zero-sized
// externally visible variables. That might lead us to doing an
// assignment of a zero-sized expression to a non-zero sized
// expression; avoid crashes here by avoiding assignments of
// zero-sized expressions. Such assignments don't really mean
// anything anyhow.
if (TREE_TYPE (lhs_tree) == void_type_node
|| int_size_in_bytes (TREE_TYPE (lhs_tree)) == 0
|| TREE_TYPE (rhs_tree) == void_type_node
|| int_size_in_bytes (TREE_TYPE (rhs_tree)) == 0)
return this->compound_statement (this->expression_statement (bfn, lhs),
this->expression_statement (bfn, rhs));
rhs_tree = this->convert_tree (TREE_TYPE (lhs_tree), rhs_tree, location);
return this->make_statement (fold_build2_loc (location.gcc_location (),
MODIFY_EXPR, void_type_node,
lhs_tree, rhs_tree));
}
// Return.
Bstatement *
Gcc_backend::return_statement (Bfunction *bfunction,
const std::vector &vals,
Location location)
{
tree fntree = bfunction->get_tree ();
if (fntree == error_mark_node)
return this->error_statement ();
tree result = DECL_RESULT (fntree);
if (result == error_mark_node)
return this->error_statement ();
// If the result size is zero bytes, we have set the function type
// to have a result type of void, so don't return anything.
// See the function_type method.
tree res_type = TREE_TYPE (result);
if (res_type == void_type_node || int_size_in_bytes (res_type) == 0)
{
tree stmt_list = NULL_TREE;
for (std::vector::const_iterator p = vals.begin ();
p != vals.end (); p++)
{
tree val = (*p)->get_tree ();
if (val == error_mark_node)
return this->error_statement ();
append_to_statement_list (val, &stmt_list);
}
tree ret = fold_build1_loc (location.gcc_location (), RETURN_EXPR,
void_type_node, NULL_TREE);
append_to_statement_list (ret, &stmt_list);
return this->make_statement (stmt_list);
}
tree ret;
if (vals.empty ())
ret = fold_build1_loc (location.gcc_location (), RETURN_EXPR,
void_type_node, NULL_TREE);
else if (vals.size () == 1)
{
tree val = vals.front ()->get_tree ();
if (val == error_mark_node)
return this->error_statement ();
tree set
= fold_build2_loc (location.gcc_location (), MODIFY_EXPR,
void_type_node, result, vals.front ()->get_tree ());
ret = fold_build1_loc (location.gcc_location (), RETURN_EXPR,
void_type_node, set);
}
else
{
// To return multiple values, copy the values into a temporary
// variable of the right structure type, and then assign the
// temporary variable to the DECL_RESULT in the return
// statement.
tree stmt_list = NULL_TREE;
tree rettype = TREE_TYPE (result);
if (DECL_STRUCT_FUNCTION (fntree) == NULL)
push_struct_function (fntree);
else
push_cfun (DECL_STRUCT_FUNCTION (fntree));
tree rettmp = create_tmp_var (rettype, "RESULT");
pop_cfun ();
tree field = TYPE_FIELDS (rettype);
for (std::vector::const_iterator p = vals.begin ();
p != vals.end (); p++, field = DECL_CHAIN (field))
{
gcc_assert (field != NULL_TREE);
tree ref
= fold_build3_loc (location.gcc_location (), COMPONENT_REF,
TREE_TYPE (field), rettmp, field, NULL_TREE);
tree val = (*p)->get_tree ();
if (val == error_mark_node)
return this->error_statement ();
tree set = fold_build2_loc (location.gcc_location (), MODIFY_EXPR,
void_type_node, ref, (*p)->get_tree ());
append_to_statement_list (set, &stmt_list);
}
gcc_assert (field == NULL_TREE);
tree set = fold_build2_loc (location.gcc_location (), MODIFY_EXPR,
void_type_node, result, rettmp);
tree ret_expr = fold_build1_loc (location.gcc_location (), RETURN_EXPR,
void_type_node, set);
append_to_statement_list (ret_expr, &stmt_list);
ret = stmt_list;
}
return this->make_statement (ret);
}
// Create a statement that attempts to execute BSTAT and calls EXCEPT_STMT if an
// error occurs. EXCEPT_STMT may be NULL. FINALLY_STMT may be NULL and if not
// NULL, it will always be executed. This is used for handling defers in Rust
// functions. In C++, the resulting code is of this form:
// try { BSTAT; } catch { EXCEPT_STMT; } finally { FINALLY_STMT; }
Bstatement *
Gcc_backend::exception_handler_statement (Bstatement *bstat,
Bstatement *except_stmt,
Bstatement *finally_stmt,
Location location)
{
tree stat_tree = bstat->get_tree ();
tree except_tree = except_stmt == NULL ? NULL_TREE : except_stmt->get_tree ();
tree finally_tree
= finally_stmt == NULL ? NULL_TREE : finally_stmt->get_tree ();
if (stat_tree == error_mark_node || except_tree == error_mark_node
|| finally_tree == error_mark_node)
return this->error_statement ();
if (except_tree != NULL_TREE)
stat_tree = build2_loc (location.gcc_location (), TRY_CATCH_EXPR,
void_type_node, stat_tree,
build2_loc (location.gcc_location (), CATCH_EXPR,
void_type_node, NULL, except_tree));
if (finally_tree != NULL_TREE)
stat_tree = build2_loc (location.gcc_location (), TRY_FINALLY_EXPR,
void_type_node, stat_tree, finally_tree);
return this->make_statement (stat_tree);
}
// If.
Bstatement *
Gcc_backend::if_statement (Bfunction *, Bexpression *condition,
Bblock *then_block, Bblock *else_block,
Location location)
{
tree cond_tree = condition->get_tree ();
tree then_tree = then_block->get_tree ();
tree else_tree = else_block == NULL ? NULL_TREE : else_block->get_tree ();
if (cond_tree == error_mark_node || then_tree == error_mark_node
|| else_tree == error_mark_node)
return this->error_statement ();
tree ret = build3_loc (location.gcc_location (), COND_EXPR, void_type_node,
cond_tree, then_tree, else_tree);
return this->make_statement (ret);
}
// Switch.
Bstatement *
Gcc_backend::switch_statement (
Bfunction *function, Bexpression *value,
const std::vector > &cases,
const std::vector &statements, Location switch_location)
{
gcc_assert (cases.size () == statements.size ());
tree decl = function->get_tree ();
if (DECL_STRUCT_FUNCTION (decl) == NULL)
push_struct_function (decl);
else
push_cfun (DECL_STRUCT_FUNCTION (decl));
tree stmt_list = NULL_TREE;
std::vector >::const_iterator pc = cases.begin ();
for (std::vector::const_iterator ps = statements.begin ();
ps != statements.end (); ++ps, ++pc)
{
if (pc->empty ())
{
location_t loc = (*ps != NULL ? EXPR_LOCATION ((*ps)->get_tree ())
: UNKNOWN_LOCATION);
tree label = create_artificial_label (loc);
tree c = build_case_label (NULL_TREE, NULL_TREE, label);
append_to_statement_list (c, &stmt_list);
}
else
{
for (std::vector::const_iterator pcv = pc->begin ();
pcv != pc->end (); ++pcv)
{
tree t = (*pcv)->get_tree ();
if (t == error_mark_node)
return this->error_statement ();
location_t loc = EXPR_LOCATION (t);
tree label = create_artificial_label (loc);
tree c = build_case_label ((*pcv)->get_tree (), NULL_TREE, label);
append_to_statement_list (c, &stmt_list);
}
}
if (*ps != NULL)
{
tree t = (*ps)->get_tree ();
if (t == error_mark_node)
return this->error_statement ();
append_to_statement_list (t, &stmt_list);
}
}
pop_cfun ();
tree tv = value->get_tree ();
if (tv == error_mark_node)
return this->error_statement ();
tree t = build2_loc (switch_location.gcc_location (), SWITCH_EXPR, NULL_TREE,
tv, stmt_list);
return this->make_statement (t);
}
// Pair of statements.
Bstatement *
Gcc_backend::compound_statement (Bstatement *s1, Bstatement *s2)
{
tree stmt_list = NULL_TREE;
tree t = s1->get_tree ();
if (t == error_mark_node)
return this->error_statement ();
append_to_statement_list (t, &stmt_list);
t = s2->get_tree ();
if (t == error_mark_node)
return this->error_statement ();
append_to_statement_list (t, &stmt_list);
// If neither statement has any side effects, stmt_list can be NULL
// at this point.
if (stmt_list == NULL_TREE)
stmt_list = integer_zero_node;
return this->make_statement (stmt_list);
}
// List of statements.
Bstatement *
Gcc_backend::statement_list (const std::vector &statements)
{
tree stmt_list = NULL_TREE;
for (std::vector::const_iterator p = statements.begin ();
p != statements.end (); ++p)
{
tree t = (*p)->get_tree ();
if (t == error_mark_node)
return this->error_statement ();
append_to_statement_list (t, &stmt_list);
}
return this->make_statement (stmt_list);
}
// Make a block. For some reason gcc uses a dual structure for
// blocks: BLOCK tree nodes and BIND_EXPR tree nodes. Since the
// BIND_EXPR node points to the BLOCK node, we store the BIND_EXPR in
// the Bblock.
Bblock *
Gcc_backend::block (Bfunction *function, Bblock *enclosing,
const std::vector &vars,
Location start_location, Location)
{
tree block_tree = make_node (BLOCK);
if (enclosing == NULL)
{
tree fndecl = function->get_tree ();
gcc_assert (fndecl != NULL_TREE);
// We may have already created a block for local variables when
// we take the address of a parameter.
if (DECL_INITIAL (fndecl) == NULL_TREE)
{
BLOCK_SUPERCONTEXT (block_tree) = fndecl;
DECL_INITIAL (fndecl) = block_tree;
}
else
{
tree superblock_tree = DECL_INITIAL (fndecl);
BLOCK_SUPERCONTEXT (block_tree) = superblock_tree;
tree *pp;
for (pp = &BLOCK_SUBBLOCKS (superblock_tree); *pp != NULL_TREE;
pp = &BLOCK_CHAIN (*pp))
;
*pp = block_tree;
}
}
else
{
tree superbind_tree = enclosing->get_tree ();
tree superblock_tree = BIND_EXPR_BLOCK (superbind_tree);
gcc_assert (TREE_CODE (superblock_tree) == BLOCK);
BLOCK_SUPERCONTEXT (block_tree) = superblock_tree;
tree *pp;
for (pp = &BLOCK_SUBBLOCKS (superblock_tree); *pp != NULL_TREE;
pp = &BLOCK_CHAIN (*pp))
;
*pp = block_tree;
}
tree *pp = &BLOCK_VARS (block_tree);
for (std::vector::const_iterator pv = vars.begin ();
pv != vars.end (); ++pv)
{
*pp = (*pv)->get_decl ();
if (*pp != error_mark_node)
pp = &DECL_CHAIN (*pp);
}
*pp = NULL_TREE;
TREE_USED (block_tree) = 1;
tree bind_tree
= build3_loc (start_location.gcc_location (), BIND_EXPR, void_type_node,
BLOCK_VARS (block_tree), NULL_TREE, block_tree);
TREE_SIDE_EFFECTS (bind_tree) = 1;
return new Bblock (bind_tree);
}
// Add statements to a block.
void
Gcc_backend::block_add_statements (Bblock *bblock,
const std::vector &statements)
{
tree stmt_list = NULL_TREE;
for (std::vector::const_iterator p = statements.begin ();
p != statements.end (); ++p)
{
tree s = (*p)->get_tree ();
if (s != error_mark_node)
append_to_statement_list (s, &stmt_list);
}
tree bind_tree = bblock->get_tree ();
gcc_assert (TREE_CODE (bind_tree) == BIND_EXPR);
BIND_EXPR_BODY (bind_tree) = stmt_list;
}
// Return a block as a statement.
Bstatement *
Gcc_backend::block_statement (Bblock *bblock)
{
tree bind_tree = bblock->get_tree ();
gcc_assert (TREE_CODE (bind_tree) == BIND_EXPR);
return this->make_statement (bind_tree);
}
// This is not static because we declare it with GTY(()) in rust-c.h.
tree rust_non_zero_struct;
// Return a type corresponding to TYPE with non-zero size.
tree
Gcc_backend::non_zero_size_type (tree type)
{
if (int_size_in_bytes (type) != 0)
return type;
switch (TREE_CODE (type))
{
case RECORD_TYPE:
if (TYPE_FIELDS (type) != NULL_TREE)
{
tree ns = make_node (RECORD_TYPE);
tree field_trees = NULL_TREE;
tree *pp = &field_trees;
for (tree field = TYPE_FIELDS (type); field != NULL_TREE;
field = DECL_CHAIN (field))
{
tree ft = TREE_TYPE (field);
if (field == TYPE_FIELDS (type))
ft = non_zero_size_type (ft);
tree f = build_decl (DECL_SOURCE_LOCATION (field), FIELD_DECL,
DECL_NAME (field), ft);
DECL_CONTEXT (f) = ns;
*pp = f;
pp = &DECL_CHAIN (f);
}
TYPE_FIELDS (ns) = field_trees;
layout_type (ns);
return ns;
}
if (rust_non_zero_struct == NULL_TREE)
{
type = make_node (RECORD_TYPE);
tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
get_identifier ("dummy"), boolean_type_node);
DECL_CONTEXT (field) = type;
TYPE_FIELDS (type) = field;
layout_type (type);
rust_non_zero_struct = type;
}
return rust_non_zero_struct;
case ARRAY_TYPE: {
tree element_type = non_zero_size_type (TREE_TYPE (type));
return build_array_type_nelts (element_type, 1);
}
default:
gcc_unreachable ();
}
gcc_unreachable ();
}
// Convert EXPR_TREE to TYPE_TREE. Sometimes the same unnamed Rust type
// can be created multiple times and thus have multiple tree
// representations. Make sure this does not confuse the middle-end.
tree
Gcc_backend::convert_tree (tree type_tree, tree expr_tree, Location location)
{
if (type_tree == TREE_TYPE (expr_tree))
return expr_tree;
if (type_tree == error_mark_node || expr_tree == error_mark_node
|| TREE_TYPE (expr_tree) == error_mark_node)
return error_mark_node;
gcc_assert (TREE_CODE (type_tree) == TREE_CODE (TREE_TYPE (expr_tree)));
if (POINTER_TYPE_P (type_tree) || INTEGRAL_TYPE_P (type_tree)
|| SCALAR_FLOAT_TYPE_P (type_tree) || COMPLEX_FLOAT_TYPE_P (type_tree))
return fold_convert_loc (location.gcc_location (), type_tree, expr_tree);
else if (TREE_CODE (type_tree) == RECORD_TYPE
|| TREE_CODE (type_tree) == ARRAY_TYPE)
{
gcc_assert (int_size_in_bytes (type_tree)
== int_size_in_bytes (TREE_TYPE (expr_tree)));
if (TYPE_MAIN_VARIANT (type_tree)
== TYPE_MAIN_VARIANT (TREE_TYPE (expr_tree)))
return fold_build1_loc (location.gcc_location (), NOP_EXPR, type_tree,
expr_tree);
return fold_build1_loc (location.gcc_location (), VIEW_CONVERT_EXPR,
type_tree, expr_tree);
}
gcc_unreachable ();
}
// Make a global variable.
Bvariable *
Gcc_backend::global_variable (const std::string &var_name,
const std::string &asm_name, Btype *btype,
bool is_external, bool is_hidden,
bool in_unique_section, Location location)
{
tree type_tree = btype->get_tree ();
if (type_tree == error_mark_node)
return this->error_variable ();
// The GNU linker does not like dynamic variables with zero size.
tree orig_type_tree = type_tree;
if ((is_external || !is_hidden) && int_size_in_bytes (type_tree) == 0)
type_tree = this->non_zero_size_type (type_tree);
tree decl = build_decl (location.gcc_location (), VAR_DECL,
get_identifier_from_string (var_name), type_tree);
if (is_external)
DECL_EXTERNAL (decl) = 1;
else
TREE_STATIC (decl) = 1;
if (!is_hidden)
{
TREE_PUBLIC (decl) = 1;
SET_DECL_ASSEMBLER_NAME (decl, get_identifier_from_string (asm_name));
}
else
{
SET_DECL_ASSEMBLER_NAME (decl, get_identifier_from_string (asm_name));
}
TREE_USED (decl) = 1;
if (in_unique_section)
resolve_unique_section (decl, 0, 1);
rust_preserve_from_gc (decl);
return new Bvariable (decl, orig_type_tree);
}
// Set the initial value of a global variable.
void
Gcc_backend::global_variable_set_init (Bvariable *var, Bexpression *expr)
{
tree expr_tree = expr->get_tree ();
if (expr_tree == error_mark_node)
return;
gcc_assert (TREE_CONSTANT (expr_tree));
tree var_decl = var->get_decl ();
if (var_decl == error_mark_node)
return;
DECL_INITIAL (var_decl) = expr_tree;
// If this variable rustes in a unique section, it may need to rust into
// a different one now that DECL_INITIAL is set.
if (symtab_node::get (var_decl)
&& symtab_node::get (var_decl)->implicit_section)
{
set_decl_section_name (var_decl, (const char *) NULL);
resolve_unique_section (var_decl, compute_reloc_for_constant (expr_tree),
1);
}
}
// Make a local variable.
Bvariable *
Gcc_backend::local_variable (Bfunction *function, const std::string &name,
Btype *btype, Bvariable *decl_var,
bool is_address_taken, Location location)
{
tree type_tree = btype->get_tree ();
if (type_tree == error_mark_node)
return this->error_variable ();
tree decl = build_decl (location.gcc_location (), VAR_DECL,
get_identifier_from_string (name), type_tree);
DECL_CONTEXT (decl) = function->get_tree ();
TREE_USED (decl) = 1;
if (is_address_taken)
TREE_ADDRESSABLE (decl) = 1;
if (decl_var != NULL)
{
DECL_HAS_VALUE_EXPR_P (decl) = 1;
SET_DECL_VALUE_EXPR (decl, decl_var->get_decl ());
}
rust_preserve_from_gc (decl);
return new Bvariable (decl);
}
// Make a function parameter variable.
Bvariable *
Gcc_backend::parameter_variable (Bfunction *function, const std::string &name,
Btype *btype, bool is_address_taken,
Location location)
{
tree type_tree = btype->get_tree ();
if (type_tree == error_mark_node)
return this->error_variable ();
tree decl = build_decl (location.gcc_location (), PARM_DECL,
get_identifier_from_string (name), type_tree);
DECL_CONTEXT (decl) = function->get_tree ();
DECL_ARG_TYPE (decl) = type_tree;
TREE_USED (decl) = 1;
if (is_address_taken)
TREE_ADDRESSABLE (decl) = 1;
rust_preserve_from_gc (decl);
return new Bvariable (decl);
}
// Make a static chain variable.
Bvariable *
Gcc_backend::static_chain_variable (Bfunction *function,
const std::string &name, Btype *btype,
Location location)
{
tree type_tree = btype->get_tree ();
if (type_tree == error_mark_node)
return this->error_variable ();
tree decl = build_decl (location.gcc_location (), PARM_DECL,
get_identifier_from_string (name), type_tree);
tree fndecl = function->get_tree ();
DECL_CONTEXT (decl) = fndecl;
DECL_ARG_TYPE (decl) = type_tree;
TREE_USED (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
DECL_IGNORED_P (decl) = 1;
TREE_READONLY (decl) = 1;
struct function *f = DECL_STRUCT_FUNCTION (fndecl);
if (f == NULL)
{
push_struct_function (fndecl);
pop_cfun ();
f = DECL_STRUCT_FUNCTION (fndecl);
}
gcc_assert (f->static_chain_decl == NULL);
f->static_chain_decl = decl;
DECL_STATIC_CHAIN (fndecl) = 1;
rust_preserve_from_gc (decl);
return new Bvariable (decl);
}
// Make a temporary variable.
Bvariable *
Gcc_backend::temporary_variable (Bfunction *function, Bblock *bblock,
Btype *btype, Bexpression *binit,
bool is_address_taken, Location location,
Bstatement **pstatement)
{
gcc_assert (function != NULL);
tree decl = function->get_tree ();
tree type_tree = btype->get_tree ();
tree init_tree = binit == NULL ? NULL_TREE : binit->get_tree ();
if (type_tree == error_mark_node || init_tree == error_mark_node
|| decl == error_mark_node)
{
*pstatement = this->error_statement ();
return this->error_variable ();
}
tree var;
// We can only use create_tmp_var if the type is not addressable.
if (!TREE_ADDRESSABLE (type_tree))
{
if (DECL_STRUCT_FUNCTION (decl) == NULL)
push_struct_function (decl);
else
push_cfun (DECL_STRUCT_FUNCTION (decl));
var = create_tmp_var (type_tree, "RUSTTMP");
pop_cfun ();
}
else
{
gcc_assert (bblock != NULL);
var = build_decl (location.gcc_location (), VAR_DECL,
create_tmp_var_name ("RUSTTMP"), type_tree);
DECL_ARTIFICIAL (var) = 1;
DECL_IGNORED_P (var) = 1;
TREE_USED (var) = 1;
DECL_CONTEXT (var) = decl;
// We have to add this variable to the BLOCK and the BIND_EXPR.
tree bind_tree = bblock->get_tree ();
gcc_assert (TREE_CODE (bind_tree) == BIND_EXPR);
tree block_tree = BIND_EXPR_BLOCK (bind_tree);
gcc_assert (TREE_CODE (block_tree) == BLOCK);
DECL_CHAIN (var) = BLOCK_VARS (block_tree);
BLOCK_VARS (block_tree) = var;
BIND_EXPR_VARS (bind_tree) = BLOCK_VARS (block_tree);
}
if (this->type_size (btype) != 0 && init_tree != NULL_TREE
&& TREE_TYPE (init_tree) != void_type_node)
DECL_INITIAL (var) = this->convert_tree (type_tree, init_tree, location);
if (is_address_taken)
TREE_ADDRESSABLE (var) = 1;
*pstatement = this->make_statement (
build1_loc (location.gcc_location (), DECL_EXPR, void_type_node, var));
// For a zero sized type, don't initialize VAR with BINIT, but still
// evaluate BINIT for its side effects.
if (init_tree != NULL_TREE
&& (this->type_size (btype) == 0
|| TREE_TYPE (init_tree) == void_type_node))
*pstatement
= this->compound_statement (this->expression_statement (function, binit),
*pstatement);
return new Bvariable (var);
}
// Create an implicit variable that is compiler-defined. This is used when
// generating GC root variables and storing the values of a slice initializer.
Bvariable *
Gcc_backend::implicit_variable (const std::string &name,
const std::string &asm_name, Btype *type,
bool is_hidden, bool is_constant,
bool is_common, int64_t alignment)
{
tree type_tree = type->get_tree ();
if (type_tree == error_mark_node)
return this->error_variable ();
tree decl = build_decl (BUILTINS_LOCATION, VAR_DECL,
get_identifier_from_string (name), type_tree);
DECL_EXTERNAL (decl) = 0;
TREE_PUBLIC (decl) = !is_hidden;
TREE_STATIC (decl) = 1;
TREE_USED (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
if (is_common)
{
DECL_COMMON (decl) = 1;
// When the initializer for one implicit_variable refers to another,
// it needs to know the visibility of the referenced struct so that
// compute_reloc_for_constant will return the right value. On many
// systems calling make_decl_one_only will mark the decl as weak,
// which will change the return value of compute_reloc_for_constant.
// We can't reliably call make_decl_one_only yet, because we don't
// yet know the initializer. This issue doesn't arise in C because
// Rust initializers, unlike C initializers, can be indirectly
// recursive. To ensure that compute_reloc_for_constant computes
// the right value if some other initializer refers to this one, we
// mark this symbol as weak here. We undo that below in
// immutable_struct_set_init before calling mark_decl_one_only.
DECL_WEAK (decl) = 1;
}
if (is_constant)
{
TREE_READONLY (decl) = 1;
TREE_CONSTANT (decl) = 1;
}
if (alignment != 0)
{
SET_DECL_ALIGN (decl, alignment * BITS_PER_UNIT);
DECL_USER_ALIGN (decl) = 1;
}
if (!asm_name.empty ())
SET_DECL_ASSEMBLER_NAME (decl, get_identifier_from_string (asm_name));
rust_preserve_from_gc (decl);
return new Bvariable (decl);
}
// Set the initalizer for a variable created by implicit_variable.
// This is where we finish compiling the variable.
void
Gcc_backend::implicit_variable_set_init (Bvariable *var, const std::string &,
Btype *, bool, bool, bool is_common,
Bexpression *init)
{
tree decl = var->get_decl ();
tree init_tree;
if (init == NULL)
init_tree = NULL_TREE;
else
init_tree = init->get_tree ();
if (decl == error_mark_node || init_tree == error_mark_node)
return;
DECL_INITIAL (decl) = init_tree;
// Now that DECL_INITIAL is set, we can't call make_decl_one_only.
// See the comment where DECL_WEAK is set in implicit_variable.
if (is_common)
{
DECL_WEAK (decl) = 0;
make_decl_one_only (decl, DECL_ASSEMBLER_NAME (decl));
}
resolve_unique_section (decl, 2, 1);
rest_of_decl_compilation (decl, 1, 0);
}
// Return a reference to an implicit variable defined in another package.
Bvariable *
Gcc_backend::implicit_variable_reference (const std::string &name,
const std::string &asm_name,
Btype *btype)
{
tree type_tree = btype->get_tree ();
if (type_tree == error_mark_node)
return this->error_variable ();
tree decl = build_decl (BUILTINS_LOCATION, VAR_DECL,
get_identifier_from_string (name), type_tree);
DECL_EXTERNAL (decl) = 1;
TREE_PUBLIC (decl) = 1;
TREE_STATIC (decl) = 0;
DECL_ARTIFICIAL (decl) = 1;
if (!asm_name.empty ())
SET_DECL_ASSEMBLER_NAME (decl, get_identifier_from_string (asm_name));
rust_preserve_from_gc (decl);
return new Bvariable (decl);
}
// Create a named immutable initialized data structure.
Bvariable *
Gcc_backend::immutable_struct (const std::string &name,
const std::string &asm_name, bool is_hidden,
bool is_common, Btype *btype, Location location)
{
tree type_tree = btype->get_tree ();
if (type_tree == error_mark_node)
return this->error_variable ();
gcc_assert (TREE_CODE (type_tree) == RECORD_TYPE);
tree decl = build_decl (location.gcc_location (), VAR_DECL,
get_identifier_from_string (name),
build_qualified_type (type_tree, TYPE_QUAL_CONST));
TREE_STATIC (decl) = 1;
TREE_USED (decl) = 1;
TREE_READONLY (decl) = 1;
TREE_CONSTANT (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
if (!is_hidden)
TREE_PUBLIC (decl) = 1;
if (!asm_name.empty ())
SET_DECL_ASSEMBLER_NAME (decl, get_identifier_from_string (asm_name));
// When the initializer for one immutable_struct refers to another,
// it needs to know the visibility of the referenced struct so that
// compute_reloc_for_constant will return the right value. On many
// systems calling make_decl_one_only will mark the decl as weak,
// which will change the return value of compute_reloc_for_constant.
// We can't reliably call make_decl_one_only yet, because we don't
// yet know the initializer. This issue doesn't arise in C because
// Rust initializers, unlike C initializers, can be indirectly
// recursive. To ensure that compute_reloc_for_constant computes
// the right value if some other initializer refers to this one, we
// mark this symbol as weak here. We undo that below in
// immutable_struct_set_init before calling mark_decl_one_only.
if (is_common)
DECL_WEAK (decl) = 1;
// We don't call rest_of_decl_compilation until we have the
// initializer.
rust_preserve_from_gc (decl);
return new Bvariable (decl);
}
// Set the initializer for a variable created by immutable_struct.
// This is where we finish compiling the variable.
void
Gcc_backend::immutable_struct_set_init (Bvariable *var, const std::string &,
bool, bool is_common, Btype *, Location,
Bexpression *initializer)
{
tree decl = var->get_decl ();
tree init_tree = initializer->get_tree ();
if (decl == error_mark_node || init_tree == error_mark_node)
return;
DECL_INITIAL (decl) = init_tree;
// Now that DECL_INITIAL is set, we can't call make_decl_one_only.
// See the comment where DECL_WEAK is set in immutable_struct.
if (is_common)
{
DECL_WEAK (decl) = 0;
make_decl_one_only (decl, DECL_ASSEMBLER_NAME (decl));
}
// These variables are often unneeded in the final program, so put
// them in their own section so that linker GC can discard them.
resolve_unique_section (decl, compute_reloc_for_constant (init_tree), 1);
rest_of_decl_compilation (decl, 1, 0);
}
// Return a reference to an immutable initialized data structure
// defined in another package.
Bvariable *
Gcc_backend::immutable_struct_reference (const std::string &name,
const std::string &asm_name,
Btype *btype, Location location)
{
tree type_tree = btype->get_tree ();
if (type_tree == error_mark_node)
return this->error_variable ();
gcc_assert (TREE_CODE (type_tree) == RECORD_TYPE);
tree decl = build_decl (location.gcc_location (), VAR_DECL,
get_identifier_from_string (name),
build_qualified_type (type_tree, TYPE_QUAL_CONST));
TREE_READONLY (decl) = 1;
TREE_CONSTANT (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
TREE_PUBLIC (decl) = 1;
DECL_EXTERNAL (decl) = 1;
if (!asm_name.empty ())
SET_DECL_ASSEMBLER_NAME (decl, get_identifier_from_string (asm_name));
rust_preserve_from_gc (decl);
return new Bvariable (decl);
}
// Make a label.
Blabel *
Gcc_backend::label (Bfunction *function, const std::string &name,
Location location)
{
tree decl;
if (name.empty ())
{
tree func_tree = function->get_tree ();
if (DECL_STRUCT_FUNCTION (func_tree) == NULL)
push_struct_function (func_tree);
else
push_cfun (DECL_STRUCT_FUNCTION (func_tree));
decl = create_artificial_label (location.gcc_location ());
pop_cfun ();
}
else
{
tree id = get_identifier_from_string (name);
decl
= build_decl (location.gcc_location (), LABEL_DECL, id, void_type_node);
DECL_CONTEXT (decl) = function->get_tree ();
}
return new Blabel (decl);
}
// Make a statement which defines a label.
Bstatement *
Gcc_backend::label_definition_statement (Blabel *label)
{
tree lab = label->get_tree ();
tree ret = fold_build1_loc (DECL_SOURCE_LOCATION (lab), LABEL_EXPR,
void_type_node, lab);
return this->make_statement (ret);
}
// Make a goto statement.
Bstatement *
Gcc_backend::goto_statement (Blabel *label, Location location)
{
tree lab = label->get_tree ();
tree ret = fold_build1_loc (location.gcc_location (), GOTO_EXPR,
void_type_node, lab);
return this->make_statement (ret);
}
// Get the address of a label.
Bexpression *
Gcc_backend::label_address (Blabel *label, Location location)
{
tree lab = label->get_tree ();
TREE_USED (lab) = 1;
TREE_ADDRESSABLE (lab) = 1;
tree ret
= fold_convert_loc (location.gcc_location (), ptr_type_node,
build_fold_addr_expr_loc (location.gcc_location (),
lab));
return this->make_expression (ret);
}
// Declare or define a new function.
Bfunction *
Gcc_backend::function (Btype *fntype, const std::string &name,
const std::string &asm_name, unsigned int flags,
Location location)
{
tree functype = fntype->get_tree ();
if (functype != error_mark_node)
{
gcc_assert (FUNCTION_POINTER_TYPE_P (functype));
functype = TREE_TYPE (functype);
}
tree id = get_identifier_from_string (name);
if (functype == error_mark_node || id == error_mark_node)
return this->error_function ();
tree decl
= build_decl (location.gcc_location (), FUNCTION_DECL, id, functype);
if (!asm_name.empty ())
SET_DECL_ASSEMBLER_NAME (decl, get_identifier_from_string (asm_name));
if ((flags & function_is_visible) != 0)
TREE_PUBLIC (decl) = 1;
if ((flags & function_is_declaration) != 0)
DECL_EXTERNAL (decl) = 1;
else
{
tree restype = TREE_TYPE (functype);
tree resdecl = build_decl (location.gcc_location (), RESULT_DECL,
NULL_TREE, restype);
DECL_ARTIFICIAL (resdecl) = 1;
DECL_IGNORED_P (resdecl) = 1;
DECL_CONTEXT (resdecl) = decl;
DECL_RESULT (decl) = resdecl;
}
if ((flags & function_is_inlinable) == 0)
DECL_UNINLINABLE (decl) = 1;
if ((flags & function_no_split_stack) != 0)
{
tree attr = get_identifier ("no_split_stack");
DECL_ATTRIBUTES (decl) = tree_cons (attr, NULL_TREE, NULL_TREE);
}
if ((flags & function_does_not_return) != 0)
TREE_THIS_VOLATILE (decl) = 1;
if ((flags & function_in_unique_section) != 0)
resolve_unique_section (decl, 0, 1);
if ((flags & function_only_inline) != 0)
{
TREE_PUBLIC (decl) = 1;
DECL_EXTERNAL (decl) = 1;
DECL_DECLARED_INLINE_P (decl) = 1;
}
// Optimize thunk functions for size. A thunk created for a defer
// statement that may call recover looks like:
// if runtime.setdeferretaddr(L1) {
// goto L1
// }
// realfn()
// L1:
// The idea is that L1 should be the address to which realfn
// returns. This only works if this little function is not over
// optimized. At some point GCC started duplicating the epilogue in
// the basic-block reordering pass, breaking this assumption.
// Optimizing the function for size avoids duplicating the epilogue.
// This optimization shouldn't matter for any thunk since all thunks
// are small.
size_t pos = name.find ("..thunk");
if (pos != std::string::npos)
{
for (pos += 7; pos < name.length (); ++pos)
{
if (name[pos] < '0' || name[pos] > '9')
break;
}
if (pos == name.length ())
{
struct cl_optimization cur_opts;
cl_optimization_save (&cur_opts, &global_options,
&global_options_set);
global_options.x_optimize_size = 1;
global_options.x_optimize_fast = 0;
global_options.x_optimize_debug = 0;
DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
= build_optimization_node (&global_options, &global_options_set);
cl_optimization_restore (&global_options, &global_options_set,
&cur_opts);
}
}
rust_preserve_from_gc (decl);
return new Bfunction (decl);
}
// Create a statement that runs all deferred calls for FUNCTION. This should
// be a statement that looks like this in C++:
// finish:
// try { UNDEFER; } catch { CHECK_DEFER; goto finish; }
Bstatement *
Gcc_backend::function_defer_statement (Bfunction *function,
Bexpression *undefer, Bexpression *defer,
Location location)
{
tree undefer_tree = undefer->get_tree ();
tree defer_tree = defer->get_tree ();
tree fntree = function->get_tree ();
if (undefer_tree == error_mark_node || defer_tree == error_mark_node
|| fntree == error_mark_node)
return this->error_statement ();
if (DECL_STRUCT_FUNCTION (fntree) == NULL)
push_struct_function (fntree);
else
push_cfun (DECL_STRUCT_FUNCTION (fntree));
tree stmt_list = NULL;
Blabel *blabel = this->label (function, "", location);
Bstatement *label_def = this->label_definition_statement (blabel);
append_to_statement_list (label_def->get_tree (), &stmt_list);
Bstatement *jump_stmt = this->goto_statement (blabel, location);
tree jump = jump_stmt->get_tree ();
tree catch_body = build2 (COMPOUND_EXPR, void_type_node, defer_tree, jump);
catch_body = build2 (CATCH_EXPR, void_type_node, NULL, catch_body);
tree try_catch
= build2 (TRY_CATCH_EXPR, void_type_node, undefer_tree, catch_body);
append_to_statement_list (try_catch, &stmt_list);
pop_cfun ();
return this->make_statement (stmt_list);
}
// Record PARAM_VARS as the variables to use for the parameters of FUNCTION.
// This will only be called for a function definition.
bool
Gcc_backend::function_set_parameters (
Bfunction *function, const std::vector ¶m_vars)
{
tree func_tree = function->get_tree ();
if (func_tree == error_mark_node)
return false;
tree params = NULL_TREE;
tree *pp = ¶ms;
for (std::vector::const_iterator pv = param_vars.begin ();
pv != param_vars.end (); ++pv)
{
*pp = (*pv)->get_decl ();
gcc_assert (*pp != error_mark_node);
pp = &DECL_CHAIN (*pp);
}
*pp = NULL_TREE;
DECL_ARGUMENTS (func_tree) = params;
return true;
}
// Set the function body for FUNCTION using the code in CODE_BLOCK.
bool
Gcc_backend::function_set_body (Bfunction *function, Bstatement *code_stmt)
{
tree func_tree = function->get_tree ();
tree code = code_stmt->get_tree ();
if (func_tree == error_mark_node || code == error_mark_node)
return false;
DECL_SAVED_TREE (func_tree) = code;
return true;
}
// Look up a named built-in function in the current backend implementation.
// Returns NULL if no built-in function by that name exists.
Bfunction *
Gcc_backend::lookup_builtin (const std::string &name)
{
if (this->builtin_functions_.count (name) != 0)
return this->builtin_functions_[name];
return NULL;
}
// Write the definitions for all TYPE_DECLS, CONSTANT_DECLS,
// FUNCTION_DECLS, and VARIABLE_DECLS declared globally, as well as
// emit early debugging information.
void
Gcc_backend::write_global_definitions (
const std::vector &type_decls,
const std::vector &constant_decls,
const std::vector &function_decls,
const std::vector &variable_decls)
{
size_t count_definitions = type_decls.size () + constant_decls.size ()
+ function_decls.size () + variable_decls.size ();
tree *defs = new tree[count_definitions];
// Convert all non-erroneous declarations into Gimple form.
size_t i = 0;
for (std::vector::const_iterator p = variable_decls.begin ();
p != variable_decls.end (); ++p)
{
tree v = (*p)->get_decl ();
if (v != error_mark_node)
{
defs[i] = v;
rust_preserve_from_gc (defs[i]);
++i;
}
}
for (std::vector::const_iterator p = type_decls.begin ();
p != type_decls.end (); ++p)
{
tree type_tree = (*p)->get_tree ();
if (type_tree != error_mark_node && IS_TYPE_OR_DECL_P (type_tree))
{
defs[i] = TYPE_NAME (type_tree);
gcc_assert (defs[i] != NULL);
rust_preserve_from_gc (defs[i]);
++i;
}
}
for (std::vector::const_iterator p = constant_decls.begin ();
p != constant_decls.end (); ++p)
{
if ((*p)->get_tree () != error_mark_node)
{
defs[i] = (*p)->get_tree ();
rust_preserve_from_gc (defs[i]);
++i;
}
}
for (std::vector::const_iterator p = function_decls.begin ();
p != function_decls.end (); ++p)
{
tree decl = (*p)->get_tree ();
if (decl != error_mark_node)
{
rust_preserve_from_gc (decl);
if (DECL_STRUCT_FUNCTION (decl) == NULL)
allocate_struct_function (decl, false);
cgraph_node::finalize_function (decl, true);
defs[i] = decl;
++i;
}
}
// Pass everything back to the middle-end.
wrapup_global_declarations (defs, i);
delete[] defs;
}
void
Gcc_backend::write_export_data (const char *bytes, unsigned int size)
{
rust_write_export_data (bytes, size);
}
// Define a builtin function. BCODE is the builtin function code
// defined by builtins.def. NAME is the name of the builtin function.
// LIBNAME is the name of the corresponding library function, and is
// NULL if there isn't one. FNTYPE is the type of the function.
// CONST_P is true if the function has the const attribute.
// NORETURN_P is true if the function has the noreturn attribute.
void
Gcc_backend::define_builtin (built_in_function bcode, const char *name,
const char *libname, tree fntype, int flags)
{
tree decl = add_builtin_function (name, fntype, bcode, BUILT_IN_NORMAL,
libname, NULL_TREE);
if ((flags & builtin_const) != 0)
TREE_READONLY (decl) = 1;
if ((flags & builtin_noreturn) != 0)
TREE_THIS_VOLATILE (decl) = 1;
if ((flags & builtin_novops) != 0)
DECL_IS_NOVOPS (decl) = 1;
set_builtin_decl (bcode, decl, true);
this->builtin_functions_[name] = this->make_function (decl);
if (libname != NULL)
{
decl = add_builtin_function (libname, fntype, bcode, BUILT_IN_NORMAL,
NULL, NULL_TREE);
if ((flags & builtin_const) != 0)
TREE_READONLY (decl) = 1;
if ((flags & builtin_noreturn) != 0)
TREE_THIS_VOLATILE (decl) = 1;
if ((flags & builtin_novops) != 0)
DECL_IS_NOVOPS (decl) = 1;
this->builtin_functions_[libname] = this->make_function (decl);
}
}
// Return the backend generator.
Backend *
rust_get_backend ()
{
return new Gcc_backend ();
}