// Copyright (C) 2020-2025 Free Software Foundation, Inc. // This file is part of GCC. // GCC is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 3, or (at your option) any later // version. // GCC is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // You should have received a copy of the GNU General Public License // along with GCC; see the file COPYING3. If not see // . #include "rust-toplevel-name-resolver-2.0.h" #include "input.h" #include "optional.h" #include "rust-ast-full.h" #include "rust-hir-map.h" #include "rust-attribute-values.h" namespace Rust { namespace Resolver2_0 { TopLevel::TopLevel (NameResolutionContext &resolver) : DefaultResolver (resolver), dirty (false) {} template void TopLevel::insert_or_error_out (const Identifier &identifier, const T &node, Namespace ns) { insert_or_error_out (identifier, node.get_locus (), node.get_node_id (), ns); } void TopLevel::insert_or_error_out (const Identifier &identifier, const location_t &locus, const NodeId &node_id, Namespace ns) { // keep track of each node's location to provide useful errors node_locations.emplace (node_id, locus); auto result = ctx.insert (identifier, node_id, ns); if (result) dirty = true; else if (result.error ().existing != node_id) { rich_location rich_loc (line_table, locus); rich_loc.add_range (node_locations[result.error ().existing]); rust_error_at (rich_loc, ErrorCode::E0428, "%qs defined multiple times", identifier.as_string ().c_str ()); } } void TopLevel::go (AST::Crate &crate) { // we do not include builtin types in the top-level definition collector, as // they are not used until `Late`. furthermore, we run this visitor multiple // times in a row in a fixed-point fashion, so it would make the code // responsible for this ugly and perfom a lot of error checking. for (auto &item : crate.items) item->accept_vis (*this); } void TopLevel::visit (AST::Module &module) { insert_or_error_out (module.get_name (), module, Namespace::Types); // Parse the module's items if they haven't been expanded and the file // should be parsed (i.e isn't hidden behind an untrue or impossible cfg // directive // TODO: make sure this is right // TODO: avoid loading items if cfg attributes are present? // might not be needed if this runs after early resolution? // This was copied from the old early resolver method // 'accumulate_escaped_macros' if (module.get_kind () == AST::Module::UNLOADED) module.load_items (); auto sub_visitor = [this, &module] () { for (auto &item : module.get_items ()) item->accept_vis (*this); }; ctx.scoped (Rib::Kind::Module, module.get_node_id (), sub_visitor, module.get_name ()); if (Analysis::Mappings::get ().lookup_ast_module (module.get_node_id ()) == tl::nullopt) Analysis::Mappings::get ().insert_ast_module (&module); } void TopLevel::visit (AST::Trait &trait) { // FIXME: This Self injection is dodgy. It even lead to issues with metadata // export in the past (#2349). We cannot tell appart injected parameters from // regular ones. Dumping generic parameters highlights this Self in metadata, // during debug or proc macro collection. This is clearly a hack. // // For now I'll keep it here in the new name resolver even if it should // probably not be there. We need to find another way to solve this. // Maybe an additional attribute to Trait ? // // From old resolver: //// we need to inject an implicit self TypeParam here //// FIXME: which location should be used for Rust::Identifier `Self`? AST::TypeParam *implicit_self = new AST::TypeParam ({"Self"}, trait.get_locus ()); trait.insert_implict_self ( std::unique_ptr (implicit_self)); DefaultResolver::visit (trait); } template static void insert_macros (std::vector ¯os, NameResolutionContext &ctx) { for (auto ¯o : macros) { auto res = ctx.macros.insert (macro.get_name (), macro.get_node_id ()); if (!res && res.error ().existing != macro.get_node_id ()) { rust_error_at (UNKNOWN_LOCATION, ErrorCode::E0428, "macro %qs defined multiple times", macro.get_name ().c_str ()); } } } void TopLevel::visit (AST::ExternCrate &crate) { auto &mappings = Analysis::Mappings::get (); CrateNum num = *mappings.lookup_crate_name (crate.get_referenced_crate ()); auto attribute_macros = mappings.lookup_attribute_proc_macros (num); auto bang_macros = mappings.lookup_bang_proc_macros (num); auto derive_macros = mappings.lookup_derive_proc_macros (num); auto sub_visitor = [&] () { // TODO: Find a way to keep this part clean without the double dispatch. if (derive_macros.has_value ()) { insert_macros (derive_macros.value (), ctx); for (auto ¯o : derive_macros.value ()) mappings.insert_derive_proc_macro_def (macro); } if (attribute_macros.has_value ()) { insert_macros (attribute_macros.value (), ctx); for (auto ¯o : attribute_macros.value ()) mappings.insert_attribute_proc_macro_def (macro); } if (bang_macros.has_value ()) { insert_macros (bang_macros.value (), ctx); for (auto ¯o : bang_macros.value ()) mappings.insert_bang_proc_macro_def (macro); } }; if (crate.has_as_clause ()) ctx.scoped (Rib::Kind::Module, crate.get_node_id (), sub_visitor, crate.get_as_clause ()); else ctx.scoped (Rib::Kind::Module, crate.get_node_id (), sub_visitor, crate.get_referenced_crate ()); } static bool is_macro_export (AST::MacroRulesDefinition &def) { for (const auto &attr : def.get_outer_attrs ()) if (attr.get_path ().as_string () == Values::Attributes::MACRO_EXPORT) return true; return false; } void TopLevel::visit (AST::MacroRulesDefinition ¯o) { // we do not insert macros in the current rib as that needs to be done in the // textual scope of the Early pass. we only insert them in the root of the // crate if they are marked with #[macro_export]. The execption to this is // macros 2.0, which get resolved and inserted like regular items. if (is_macro_export (macro)) { auto res = ctx.macros.insert_at_root (macro.get_rule_name (), macro.get_node_id ()); if (!res && res.error ().existing != macro.get_node_id ()) { // TODO: Factor this rich_location rich_loc (line_table, macro.get_locus ()); rich_loc.add_range (node_locations[res.error ().existing]); rust_error_at (rich_loc, ErrorCode::E0428, "macro %qs defined multiple times", macro.get_rule_name ().as_string ().c_str ()); } } if (macro.get_kind () == AST::MacroRulesDefinition::MacroKind::DeclMacro) insert_or_error_out (macro.get_rule_name (), macro, Namespace::Macros); auto &mappings = Analysis::Mappings::get (); if (mappings.lookup_macro_def (macro.get_node_id ())) return; mappings.insert_macro_def (¯o); } void TopLevel::visit (AST::Function &function) { insert_or_error_out (function.get_function_name (), function, Namespace::Values); DefaultResolver::visit (function); } void TopLevel::visit (AST::BlockExpr &expr) { // extracting the lambda from the `scoped` call otherwise the code looks like // a hot turd thanks to our .clang-format auto sub_vis = [this, &expr] () { for (auto &stmt : expr.get_statements ()) stmt->accept_vis (*this); if (expr.has_tail_expr ()) expr.get_tail_expr ().accept_vis (*this); }; ctx.scoped (Rib::Kind::Normal, expr.get_node_id (), sub_vis); } void TopLevel::visit (AST::StaticItem &static_item) { auto sub_vis = [this, &static_item] () { static_item.get_expr ().accept_vis (*this); }; ctx.scoped (Rib::Kind::Item, static_item.get_node_id (), sub_vis); insert_or_error_out (static_item.get_identifier ().as_string (), static_item, Namespace::Values); } void TopLevel::visit (AST::ExternalStaticItem &static_item) { insert_or_error_out (static_item.get_identifier ().as_string (), static_item, Namespace::Values); } void TopLevel::visit (AST::StructStruct &struct_item) { auto generic_vis = [this, &struct_item] () { for (auto &g : struct_item.get_generic_params ()) { g->accept_vis (*this); } }; ctx.scoped (Rib::Kind::Item, struct_item.get_node_id (), generic_vis); insert_or_error_out (struct_item.get_struct_name (), struct_item, Namespace::Types); // Do we need to insert the constructor in the value namespace as well? // Do we need to do anything if the struct is a unit struct? if (struct_item.is_unit_struct ()) insert_or_error_out (struct_item.get_struct_name (), struct_item, Namespace::Values); } void TopLevel::visit (AST::TypeParam &type_param) { // Hacky and weird, find a better solution // We should probably not even insert self in the first place ? if (type_param.get_type_representation ().as_string () != "Self") insert_or_error_out (type_param.get_type_representation (), type_param, Namespace::Types); } void TopLevel::visit (AST::ConstGenericParam &const_param) { insert_or_error_out (const_param.get_name (), const_param, Namespace::Values); DefaultResolver::visit (const_param); } void TopLevel::visit (AST::TupleStruct &tuple_struct) { insert_or_error_out (tuple_struct.get_struct_name (), tuple_struct, Namespace::Types); insert_or_error_out (tuple_struct.get_struct_name (), tuple_struct, Namespace::Values); } void TopLevel::visit (AST::EnumItem &variant) { insert_or_error_out (variant.get_identifier (), variant, Namespace::Types); } void TopLevel::visit (AST::EnumItemTuple &variant) { insert_or_error_out (variant.get_identifier (), variant, Namespace::Types); } void TopLevel::visit (AST::EnumItemStruct &variant) { insert_or_error_out (variant.get_identifier (), variant, Namespace::Types); } void TopLevel::visit (AST::EnumItemDiscriminant &variant) { insert_or_error_out (variant.get_identifier (), variant, Namespace::Types); } void TopLevel::visit (AST::Enum &enum_item) { insert_or_error_out (enum_item.get_identifier (), enum_item, Namespace::Types); auto field_vis = [this, &enum_item] () { for (auto &variant : enum_item.get_variants ()) variant->accept_vis (*this); }; ctx.scoped (Rib::Kind::Item /* FIXME: Is that correct? */, enum_item.get_node_id (), field_vis, enum_item.get_identifier ()); } void TopLevel::visit (AST::Union &union_item) { insert_or_error_out (union_item.get_identifier (), union_item, Namespace::Types); } void TopLevel::visit (AST::ConstantItem &const_item) { insert_or_error_out (const_item.get_identifier (), const_item, Namespace::Values); DefaultResolver::visit (const_item); } void TopLevel::visit (AST::TypeAlias &type_item) { insert_or_error_out (type_item.get_new_type_name (), type_item, Namespace::Types); DefaultResolver::visit (type_item); } static void flatten_rebind ( const AST::UseTreeRebind &glob, std::vector> &rebind_paths); static void flatten_list ( const AST::UseTreeList &glob, std::vector &paths, std::vector &glob_paths, std::vector> &rebind_paths, NameResolutionContext &ctx); static void flatten_glob (const AST::UseTreeGlob &glob, std::vector &glob_paths, NameResolutionContext &ctx); static void flatten ( const AST::UseTree *tree, std::vector &paths, std::vector &glob_paths, std::vector> &rebind_paths, NameResolutionContext &ctx) { switch (tree->get_kind ()) { case AST::UseTree::Rebind: { auto rebind = static_cast (tree); flatten_rebind (*rebind, rebind_paths); break; } case AST::UseTree::List: { auto list = static_cast (tree); flatten_list (*list, paths, glob_paths, rebind_paths, ctx); break; } case AST::UseTree::Glob: { auto glob = static_cast (tree); flatten_glob (*glob, glob_paths, ctx); break; } break; } } static void flatten_rebind ( const AST::UseTreeRebind &rebind, std::vector> &rebind_paths) { rebind_paths.emplace_back (rebind.get_path (), rebind); } /** Prefix a list of subpath * @param prefix A prefix for all subpath * @param subs List of subpath to prefix * @param size List where results should be stored */ static void prefix_subpaths (AST::SimplePath prefix, std::vector subs, std::vector &results) { for (auto &sub : subs) { auto new_path = prefix; std::copy (sub.get_segments ().begin (), sub.get_segments ().end (), std::back_inserter (new_path.get_segments ())); results.emplace_back (new_path); } } static void prefix_rebinds ( AST::SimplePath prefix, std::vector> subs, std::vector> &results) { for (auto &sub : subs) { auto new_path = prefix; std::copy (sub.first.get_segments ().begin (), sub.first.get_segments ().end (), std::back_inserter (new_path.get_segments ())); results.emplace_back (std::make_pair (new_path, sub.second)); } } static void flatten_list ( const AST::UseTreeList &list, std::vector &paths, std::vector &glob_paths, std::vector> &rebind_paths, NameResolutionContext &ctx) { auto prefix = AST::SimplePath::create_empty (); if (list.has_path ()) prefix = list.get_path (); for (const auto &tree : list.get_trees ()) { auto sub_paths = std::vector (); auto sub_globs = std::vector (); auto sub_rebinds = std::vector> (); flatten (tree.get (), sub_paths, sub_globs, sub_rebinds, ctx); prefix_subpaths (prefix, sub_paths, paths); prefix_subpaths (prefix, sub_globs, glob_paths); prefix_rebinds (prefix, sub_rebinds, rebind_paths); } } static void flatten_glob (const AST::UseTreeGlob &glob, std::vector &paths, NameResolutionContext &ctx) { if (glob.has_path ()) paths.emplace_back (glob.get_path ()); } void TopLevel::visit (AST::UseDeclaration &use) { auto paths = std::vector (); auto glob_path = std::vector (); auto rebind_path = std::vector> (); auto &values_rib = ctx.values.peek (); auto &types_rib = ctx.types.peek (); auto ¯os_rib = ctx.macros.peek (); // FIXME: How do we handle `use foo::{self}` imports? Some beforehand cleanup? // How do we handle module imports in general? Should they get added to all // namespaces? const auto &tree = use.get_tree (); flatten (tree.get (), paths, glob_path, rebind_path, this->ctx); auto imports = std::vector (); for (auto &&path : paths) imports.emplace_back ( ImportKind::Simple (std::move (path), values_rib, types_rib, macros_rib)); for (auto &&glob : glob_path) imports.emplace_back ( ImportKind::Glob (std::move (glob), values_rib, types_rib, macros_rib)); for (auto &&rebind : rebind_path) imports.emplace_back ( ImportKind::Rebind (std::move (rebind.first), std::move (rebind.second), values_rib, types_rib, macros_rib)); imports_to_resolve.insert ({use.get_node_id (), std::move (imports)}); } } // namespace Resolver2_0 } // namespace Rust