// Copyright (C) 2020-2025 Free Software Foundation, Inc.
// This file is part of GCC.
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// .
#include "rust-toplevel-name-resolver-2.0.h"
#include "input.h"
#include "optional.h"
#include "rust-ast-full.h"
#include "rust-hir-map.h"
#include "rust-attribute-values.h"
namespace Rust {
namespace Resolver2_0 {
TopLevel::TopLevel (NameResolutionContext &resolver)
: DefaultResolver (resolver), dirty (false)
{}
template
void
TopLevel::insert_or_error_out (const Identifier &identifier, const T &node,
Namespace ns)
{
insert_or_error_out (identifier, node.get_locus (), node.get_node_id (), ns);
}
void
TopLevel::insert_or_error_out (const Identifier &identifier,
const location_t &locus, const NodeId &node_id,
Namespace ns)
{
// keep track of each node's location to provide useful errors
node_locations.emplace (node_id, locus);
auto result = ctx.insert (identifier, node_id, ns);
if (result)
dirty = true;
else if (result.error ().existing != node_id)
{
rich_location rich_loc (line_table, locus);
rich_loc.add_range (node_locations[result.error ().existing]);
rust_error_at (rich_loc, ErrorCode::E0428, "%qs defined multiple times",
identifier.as_string ().c_str ());
}
}
void
TopLevel::go (AST::Crate &crate)
{
// we do not include builtin types in the top-level definition collector, as
// they are not used until `Late`. furthermore, we run this visitor multiple
// times in a row in a fixed-point fashion, so it would make the code
// responsible for this ugly and perfom a lot of error checking.
for (auto &item : crate.items)
item->accept_vis (*this);
}
void
TopLevel::visit (AST::Module &module)
{
insert_or_error_out (module.get_name (), module, Namespace::Types);
// Parse the module's items if they haven't been expanded and the file
// should be parsed (i.e isn't hidden behind an untrue or impossible cfg
// directive
// TODO: make sure this is right
// TODO: avoid loading items if cfg attributes are present?
// might not be needed if this runs after early resolution?
// This was copied from the old early resolver method
// 'accumulate_escaped_macros'
if (module.get_kind () == AST::Module::UNLOADED)
module.load_items ();
auto sub_visitor = [this, &module] () {
for (auto &item : module.get_items ())
item->accept_vis (*this);
};
ctx.scoped (Rib::Kind::Module, module.get_node_id (), sub_visitor,
module.get_name ());
if (Analysis::Mappings::get ().lookup_ast_module (module.get_node_id ())
== tl::nullopt)
Analysis::Mappings::get ().insert_ast_module (&module);
}
void
TopLevel::visit (AST::Trait &trait)
{
// FIXME: This Self injection is dodgy. It even lead to issues with metadata
// export in the past (#2349). We cannot tell appart injected parameters from
// regular ones. Dumping generic parameters highlights this Self in metadata,
// during debug or proc macro collection. This is clearly a hack.
//
// For now I'll keep it here in the new name resolver even if it should
// probably not be there. We need to find another way to solve this.
// Maybe an additional attribute to Trait ?
//
// From old resolver:
//// we need to inject an implicit self TypeParam here
//// FIXME: which location should be used for Rust::Identifier `Self`?
AST::TypeParam *implicit_self
= new AST::TypeParam ({"Self"}, trait.get_locus ());
trait.insert_implict_self (
std::unique_ptr (implicit_self));
DefaultResolver::visit (trait);
}
template
static void
insert_macros (std::vector ¯os, NameResolutionContext &ctx)
{
for (auto ¯o : macros)
{
auto res = ctx.macros.insert (macro.get_name (), macro.get_node_id ());
if (!res && res.error ().existing != macro.get_node_id ())
{
rust_error_at (UNKNOWN_LOCATION, ErrorCode::E0428,
"macro %qs defined multiple times",
macro.get_name ().c_str ());
}
}
}
void
TopLevel::visit (AST::ExternCrate &crate)
{
auto &mappings = Analysis::Mappings::get ();
CrateNum num = *mappings.lookup_crate_name (crate.get_referenced_crate ());
auto attribute_macros = mappings.lookup_attribute_proc_macros (num);
auto bang_macros = mappings.lookup_bang_proc_macros (num);
auto derive_macros = mappings.lookup_derive_proc_macros (num);
auto sub_visitor = [&] () {
// TODO: Find a way to keep this part clean without the double dispatch.
if (derive_macros.has_value ())
{
insert_macros (derive_macros.value (), ctx);
for (auto ¯o : derive_macros.value ())
mappings.insert_derive_proc_macro_def (macro);
}
if (attribute_macros.has_value ())
{
insert_macros (attribute_macros.value (), ctx);
for (auto ¯o : attribute_macros.value ())
mappings.insert_attribute_proc_macro_def (macro);
}
if (bang_macros.has_value ())
{
insert_macros (bang_macros.value (), ctx);
for (auto ¯o : bang_macros.value ())
mappings.insert_bang_proc_macro_def (macro);
}
};
if (crate.has_as_clause ())
ctx.scoped (Rib::Kind::Module, crate.get_node_id (), sub_visitor,
crate.get_as_clause ());
else
ctx.scoped (Rib::Kind::Module, crate.get_node_id (), sub_visitor,
crate.get_referenced_crate ());
}
static bool
is_macro_export (AST::MacroRulesDefinition &def)
{
for (const auto &attr : def.get_outer_attrs ())
if (attr.get_path ().as_string () == Values::Attributes::MACRO_EXPORT)
return true;
return false;
}
void
TopLevel::visit (AST::MacroRulesDefinition ¯o)
{
// we do not insert macros in the current rib as that needs to be done in the
// textual scope of the Early pass. we only insert them in the root of the
// crate if they are marked with #[macro_export]. The execption to this is
// macros 2.0, which get resolved and inserted like regular items.
if (is_macro_export (macro))
{
auto res = ctx.macros.insert_at_root (macro.get_rule_name (),
macro.get_node_id ());
if (!res && res.error ().existing != macro.get_node_id ())
{
// TODO: Factor this
rich_location rich_loc (line_table, macro.get_locus ());
rich_loc.add_range (node_locations[res.error ().existing]);
rust_error_at (rich_loc, ErrorCode::E0428,
"macro %qs defined multiple times",
macro.get_rule_name ().as_string ().c_str ());
}
}
if (macro.get_kind () == AST::MacroRulesDefinition::MacroKind::DeclMacro)
insert_or_error_out (macro.get_rule_name (), macro, Namespace::Macros);
auto &mappings = Analysis::Mappings::get ();
if (mappings.lookup_macro_def (macro.get_node_id ()))
return;
mappings.insert_macro_def (¯o);
}
void
TopLevel::visit (AST::Function &function)
{
insert_or_error_out (function.get_function_name (), function,
Namespace::Values);
DefaultResolver::visit (function);
}
void
TopLevel::visit (AST::BlockExpr &expr)
{
// extracting the lambda from the `scoped` call otherwise the code looks like
// a hot turd thanks to our .clang-format
auto sub_vis = [this, &expr] () {
for (auto &stmt : expr.get_statements ())
stmt->accept_vis (*this);
if (expr.has_tail_expr ())
expr.get_tail_expr ().accept_vis (*this);
};
ctx.scoped (Rib::Kind::Normal, expr.get_node_id (), sub_vis);
}
void
TopLevel::visit (AST::StaticItem &static_item)
{
auto sub_vis
= [this, &static_item] () { static_item.get_expr ().accept_vis (*this); };
ctx.scoped (Rib::Kind::Item, static_item.get_node_id (), sub_vis);
insert_or_error_out (static_item.get_identifier ().as_string (), static_item,
Namespace::Values);
}
void
TopLevel::visit (AST::ExternalStaticItem &static_item)
{
insert_or_error_out (static_item.get_identifier ().as_string (), static_item,
Namespace::Values);
}
void
TopLevel::visit (AST::StructStruct &struct_item)
{
auto generic_vis = [this, &struct_item] () {
for (auto &g : struct_item.get_generic_params ())
{
g->accept_vis (*this);
}
};
ctx.scoped (Rib::Kind::Item, struct_item.get_node_id (), generic_vis);
insert_or_error_out (struct_item.get_struct_name (), struct_item,
Namespace::Types);
// Do we need to insert the constructor in the value namespace as well?
// Do we need to do anything if the struct is a unit struct?
if (struct_item.is_unit_struct ())
insert_or_error_out (struct_item.get_struct_name (), struct_item,
Namespace::Values);
}
void
TopLevel::visit (AST::TypeParam &type_param)
{
// Hacky and weird, find a better solution
// We should probably not even insert self in the first place ?
if (type_param.get_type_representation ().as_string () != "Self")
insert_or_error_out (type_param.get_type_representation (), type_param,
Namespace::Types);
}
void
TopLevel::visit (AST::ConstGenericParam &const_param)
{
insert_or_error_out (const_param.get_name (), const_param, Namespace::Values);
DefaultResolver::visit (const_param);
}
void
TopLevel::visit (AST::TupleStruct &tuple_struct)
{
insert_or_error_out (tuple_struct.get_struct_name (), tuple_struct,
Namespace::Types);
insert_or_error_out (tuple_struct.get_struct_name (), tuple_struct,
Namespace::Values);
}
void
TopLevel::visit (AST::EnumItem &variant)
{
insert_or_error_out (variant.get_identifier (), variant, Namespace::Types);
}
void
TopLevel::visit (AST::EnumItemTuple &variant)
{
insert_or_error_out (variant.get_identifier (), variant, Namespace::Types);
}
void
TopLevel::visit (AST::EnumItemStruct &variant)
{
insert_or_error_out (variant.get_identifier (), variant, Namespace::Types);
}
void
TopLevel::visit (AST::EnumItemDiscriminant &variant)
{
insert_or_error_out (variant.get_identifier (), variant, Namespace::Types);
}
void
TopLevel::visit (AST::Enum &enum_item)
{
insert_or_error_out (enum_item.get_identifier (), enum_item,
Namespace::Types);
auto field_vis = [this, &enum_item] () {
for (auto &variant : enum_item.get_variants ())
variant->accept_vis (*this);
};
ctx.scoped (Rib::Kind::Item /* FIXME: Is that correct? */,
enum_item.get_node_id (), field_vis, enum_item.get_identifier ());
}
void
TopLevel::visit (AST::Union &union_item)
{
insert_or_error_out (union_item.get_identifier (), union_item,
Namespace::Types);
}
void
TopLevel::visit (AST::ConstantItem &const_item)
{
insert_or_error_out (const_item.get_identifier (), const_item,
Namespace::Values);
DefaultResolver::visit (const_item);
}
void
TopLevel::visit (AST::TypeAlias &type_item)
{
insert_or_error_out (type_item.get_new_type_name (), type_item,
Namespace::Types);
DefaultResolver::visit (type_item);
}
static void
flatten_rebind (
const AST::UseTreeRebind &glob,
std::vector> &rebind_paths);
static void
flatten_list (
const AST::UseTreeList &glob, std::vector &paths,
std::vector &glob_paths,
std::vector> &rebind_paths,
NameResolutionContext &ctx);
static void
flatten_glob (const AST::UseTreeGlob &glob,
std::vector &glob_paths,
NameResolutionContext &ctx);
static void
flatten (
const AST::UseTree *tree, std::vector &paths,
std::vector &glob_paths,
std::vector> &rebind_paths,
NameResolutionContext &ctx)
{
switch (tree->get_kind ())
{
case AST::UseTree::Rebind: {
auto rebind = static_cast (tree);
flatten_rebind (*rebind, rebind_paths);
break;
}
case AST::UseTree::List: {
auto list = static_cast (tree);
flatten_list (*list, paths, glob_paths, rebind_paths, ctx);
break;
}
case AST::UseTree::Glob: {
auto glob = static_cast (tree);
flatten_glob (*glob, glob_paths, ctx);
break;
}
break;
}
}
static void
flatten_rebind (
const AST::UseTreeRebind &rebind,
std::vector> &rebind_paths)
{
rebind_paths.emplace_back (rebind.get_path (), rebind);
}
/** Prefix a list of subpath
* @param prefix A prefix for all subpath
* @param subs List of subpath to prefix
* @param size List where results should be stored
*/
static void
prefix_subpaths (AST::SimplePath prefix, std::vector subs,
std::vector &results)
{
for (auto &sub : subs)
{
auto new_path = prefix;
std::copy (sub.get_segments ().begin (), sub.get_segments ().end (),
std::back_inserter (new_path.get_segments ()));
results.emplace_back (new_path);
}
}
static void
prefix_rebinds (
AST::SimplePath prefix,
std::vector> subs,
std::vector> &results)
{
for (auto &sub : subs)
{
auto new_path = prefix;
std::copy (sub.first.get_segments ().begin (),
sub.first.get_segments ().end (),
std::back_inserter (new_path.get_segments ()));
results.emplace_back (std::make_pair (new_path, sub.second));
}
}
static void
flatten_list (
const AST::UseTreeList &list, std::vector &paths,
std::vector &glob_paths,
std::vector> &rebind_paths,
NameResolutionContext &ctx)
{
auto prefix = AST::SimplePath::create_empty ();
if (list.has_path ())
prefix = list.get_path ();
for (const auto &tree : list.get_trees ())
{
auto sub_paths = std::vector ();
auto sub_globs = std::vector ();
auto sub_rebinds
= std::vector> ();
flatten (tree.get (), sub_paths, sub_globs, sub_rebinds, ctx);
prefix_subpaths (prefix, sub_paths, paths);
prefix_subpaths (prefix, sub_globs, glob_paths);
prefix_rebinds (prefix, sub_rebinds, rebind_paths);
}
}
static void
flatten_glob (const AST::UseTreeGlob &glob, std::vector &paths,
NameResolutionContext &ctx)
{
if (glob.has_path ())
paths.emplace_back (glob.get_path ());
}
void
TopLevel::visit (AST::UseDeclaration &use)
{
auto paths = std::vector ();
auto glob_path = std::vector ();
auto rebind_path
= std::vector> ();
auto &values_rib = ctx.values.peek ();
auto &types_rib = ctx.types.peek ();
auto ¯os_rib = ctx.macros.peek ();
// FIXME: How do we handle `use foo::{self}` imports? Some beforehand cleanup?
// How do we handle module imports in general? Should they get added to all
// namespaces?
const auto &tree = use.get_tree ();
flatten (tree.get (), paths, glob_path, rebind_path, this->ctx);
auto imports = std::vector ();
for (auto &&path : paths)
imports.emplace_back (
ImportKind::Simple (std::move (path), values_rib, types_rib, macros_rib));
for (auto &&glob : glob_path)
imports.emplace_back (
ImportKind::Glob (std::move (glob), values_rib, types_rib, macros_rib));
for (auto &&rebind : rebind_path)
imports.emplace_back (
ImportKind::Rebind (std::move (rebind.first), std::move (rebind.second),
values_rib, types_rib, macros_rib));
imports_to_resolve.insert ({use.get_node_id (), std::move (imports)});
}
} // namespace Resolver2_0
} // namespace Rust